1 ;;;; This file contains all the irrational functions. (Actually, most
2 ;;;; of the work is done by calling out to C.)
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!KERNEL")
15 ;;;; miscellaneous constants, utility functions, and macros
17 (defconstant pi 3.14159265358979323846264338327950288419716939937511L0)
18 ;(defconstant e 2.71828182845904523536028747135266249775724709369996L0)
20 ;;; Make these INLINE, since the call to C is at least as compact as a
21 ;;; Lisp call, and saves number consing to boot.
22 (eval-when (:compile-toplevel :execute)
24 (sb!xc:defmacro def-math-rtn (name num-args)
25 (let ((function (symbolicate "%" (string-upcase name))))
27 (proclaim '(inline ,function))
28 (sb!alien:define-alien-routine (,name ,function) double-float
29 ,@(let ((results nil))
30 (dotimes (i num-args (nreverse results))
31 (push (list (intern (format nil "ARG-~D" i))
35 (defun handle-reals (function var)
36 `((((foreach fixnum single-float bignum ratio))
37 (coerce (,function (coerce ,var 'double-float)) 'single-float))
43 ;;;; stubs for the Unix math library
45 ;;;; Many of these are unnecessary on the X86 because they're built
49 #!-x86 (def-math-rtn "sin" 1)
50 #!-x86 (def-math-rtn "cos" 1)
51 #!-x86 (def-math-rtn "tan" 1)
52 (def-math-rtn "asin" 1)
53 (def-math-rtn "acos" 1)
54 #!-x86 (def-math-rtn "atan" 1)
55 #!-x86 (def-math-rtn "atan2" 2)
56 (def-math-rtn "sinh" 1)
57 (def-math-rtn "cosh" 1)
58 (def-math-rtn "tanh" 1)
59 (def-math-rtn "asinh" 1)
60 (def-math-rtn "acosh" 1)
61 (def-math-rtn "atanh" 1)
63 ;;; exponential and logarithmic
64 #!-x86 (def-math-rtn "exp" 1)
65 #!-x86 (def-math-rtn "log" 1)
66 #!-x86 (def-math-rtn "log10" 1)
67 (def-math-rtn "pow" 2)
68 #!-x86 (def-math-rtn "sqrt" 1)
69 (def-math-rtn "hypot" 2)
70 #!-(or hpux x86) (def-math-rtn "log1p" 1)
76 "Return e raised to the power NUMBER."
77 (number-dispatch ((number number))
78 (handle-reals %exp number)
80 (* (exp (realpart number))
81 (cis (imagpart number))))))
83 ;;; INTEXP -- Handle the rational base, integer power case.
85 ;;; FIXME: As long as the system dies on stack overflow or memory
86 ;;; exhaustion, it seems reasonable to have this, but its default
87 ;;; should be NIL, and when it's NIL, anything should be accepted.
88 (defparameter *intexp-maximum-exponent* 10000)
90 ;;; This function precisely calculates base raised to an integral
91 ;;; power. It separates the cases by the sign of power, for efficiency
92 ;;; reasons, as powers can be calculated more efficiently if power is
93 ;;; a positive integer. Values of power are calculated as positive
94 ;;; integers, and inverted if negative.
95 (defun intexp (base power)
96 (when (> (abs power) *intexp-maximum-exponent*)
97 ;; FIXME: should be ordinary error, not CERROR. (Once we set the
98 ;; default for the variable to NIL, the un-continuable error will
99 ;; be less obnoxious.)
100 (cerror "Continue with calculation."
101 "The absolute value of ~S exceeds ~S."
102 power '*intexp-maximum-exponent* base power))
103 (cond ((minusp power)
104 (/ (intexp base (- power))))
108 (do ((nextn (ash power -1) (ash power -1))
109 (total (if (oddp power) base 1)
110 (if (oddp power) (* base total) total)))
111 ((zerop nextn) total)
112 (setq base (* base base))
113 (setq power nextn)))))
115 ;;; If an integer power of a rational, use INTEXP above. Otherwise, do
116 ;;; floating point stuff. If both args are real, we try %POW right
117 ;;; off, assuming it will return 0 if the result may be complex. If
118 ;;; so, we call COMPLEX-POW which directly computes the complex
119 ;;; result. We also separate the complex-real and real-complex cases
120 ;;; from the general complex case.
121 (defun expt (base power)
123 "Return BASE raised to the POWER."
126 (labels (;; determine if the double float is an integer.
127 ;; 0 - not an integer
131 (declare (type (unsigned-byte 31) ihi)
132 (type (unsigned-byte 32) lo)
133 (optimize (speed 3) (safety 0)))
135 (declare (type fixnum isint))
136 (cond ((>= ihi #x43400000) ; exponent >= 53
139 (let ((k (- (ash ihi -20) #x3ff))) ; exponent
140 (declare (type (mod 53) k))
142 (let* ((shift (- 52 k))
143 (j (logand (ash lo (- shift))))
145 (declare (type (mod 32) shift)
146 (type (unsigned-byte 32) j j2))
148 (setq isint (- 2 (logand j 1))))))
150 (let* ((shift (- 20 k))
151 (j (ash ihi (- shift)))
153 (declare (type (mod 32) shift)
154 (type (unsigned-byte 31) j j2))
156 (setq isint (- 2 (logand j 1))))))))))
158 (real-expt (x y rtype)
159 (let ((x (coerce x 'double-float))
160 (y (coerce y 'double-float)))
161 (declare (double-float x y))
162 (let* ((x-hi (sb!kernel:double-float-high-bits x))
163 (x-lo (sb!kernel:double-float-low-bits x))
164 (x-ihi (logand x-hi #x7fffffff))
165 (y-hi (sb!kernel:double-float-high-bits y))
166 (y-lo (sb!kernel:double-float-low-bits y))
167 (y-ihi (logand y-hi #x7fffffff)))
168 (declare (type (signed-byte 32) x-hi y-hi)
169 (type (unsigned-byte 31) x-ihi y-ihi)
170 (type (unsigned-byte 32) x-lo y-lo))
172 (when (zerop (logior y-ihi y-lo))
173 (return-from real-expt (coerce 1d0 rtype)))
175 (when (or (> x-ihi #x7ff00000)
176 (and (= x-ihi #x7ff00000) (/= x-lo 0))
178 (and (= y-ihi #x7ff00000) (/= y-lo 0)))
179 (return-from real-expt (coerce (+ x y) rtype)))
180 (let ((yisint (if (< x-hi 0) (isint y-ihi y-lo) 0)))
181 (declare (type fixnum yisint))
182 ;; special value of y
183 (when (and (zerop y-lo) (= y-ihi #x7ff00000))
185 (return-from real-expt
186 (cond ((and (= x-ihi #x3ff00000) (zerop x-lo))
188 (coerce (- y y) rtype))
189 ((>= x-ihi #x3ff00000)
190 ;; (|x|>1)**+-inf = inf,0
195 ;; (|x|<1)**-,+inf = inf,0
198 (coerce 0 rtype))))))
200 (let ((abs-x (abs x)))
201 (declare (double-float abs-x))
202 ;; special value of x
203 (when (and (zerop x-lo)
204 (or (= x-ihi #x7ff00000) (zerop x-ihi)
205 (= x-ihi #x3ff00000)))
206 ;; x is +-0,+-inf,+-1
207 (let ((z (if (< y-hi 0)
208 (/ 1 abs-x) ; z = (1/|x|)
210 (declare (double-float z))
212 (cond ((and (= x-ihi #x3ff00000) (zerop yisint))
214 (let ((y*pi (* y pi)))
215 (declare (double-float y*pi))
216 (return-from real-expt
218 (coerce (%cos y*pi) rtype)
219 (coerce (%sin y*pi) rtype)))))
221 ;; (x<0)**odd = -(|x|**odd)
223 (return-from real-expt (coerce z rtype))))
227 (coerce (sb!kernel::%pow x y) rtype)
229 (let ((pow (sb!kernel::%pow abs-x y)))
230 (declare (double-float pow))
233 (coerce (* -1d0 pow) rtype))
237 (let ((y*pi (* y pi)))
238 (declare (double-float y*pi))
240 (coerce (* pow (%cos y*pi))
242 (coerce (* pow (%sin y*pi))
244 (declare (inline real-expt))
245 (number-dispatch ((base number) (power number))
246 (((foreach fixnum (or bignum ratio) (complex rational)) integer)
248 (((foreach single-float double-float) rational)
249 (real-expt base power '(dispatch-type base)))
250 (((foreach fixnum (or bignum ratio) single-float)
251 (foreach ratio single-float))
252 (real-expt base power 'single-float))
253 (((foreach fixnum (or bignum ratio) single-float double-float)
255 (real-expt base power 'double-float))
256 ((double-float single-float)
257 (real-expt base power 'double-float))
258 (((foreach (complex rational) (complex float)) rational)
259 (* (expt (abs base) power)
260 (cis (* power (phase base)))))
261 (((foreach fixnum (or bignum ratio) single-float double-float)
263 (if (and (zerop base) (plusp (realpart power)))
265 (exp (* power (log base)))))
266 (((foreach (complex float) (complex rational))
267 (foreach complex double-float single-float))
268 (if (and (zerop base) (plusp (realpart power)))
270 (exp (* power (log base)))))))))
272 (defun log (number &optional (base nil base-p))
274 "Return the logarithm of NUMBER in the base BASE, which defaults to e."
278 (/ (log number) (log base)))
279 (number-dispatch ((number number))
280 (((foreach fixnum bignum ratio))
282 (complex (log (- number)) (coerce pi 'single-float))
283 (coerce (%log (coerce number 'double-float)) 'single-float)))
284 (((foreach single-float double-float))
285 ;; Is (log -0) -infinity (libm.a) or -infinity + i*pi (Kahan)?
286 ;; Since this doesn't seem to be an implementation issue
287 ;; I (pw) take the Kahan result.
288 (if (< (float-sign number)
289 (coerce 0 '(dispatch-type number)))
290 (complex (log (- number)) (coerce pi '(dispatch-type number)))
291 (coerce (%log (coerce number 'double-float))
292 '(dispatch-type number))))
294 (complex-log number)))))
298 "Return the square root of NUMBER."
299 (number-dispatch ((number number))
300 (((foreach fixnum bignum ratio))
302 (complex-sqrt number)
303 (coerce (%sqrt (coerce number 'double-float)) 'single-float)))
304 (((foreach single-float double-float))
306 (complex-sqrt number)
307 (coerce (%sqrt (coerce number 'double-float))
308 '(dispatch-type number))))
310 (complex-sqrt number))))
312 ;;;; trigonometic and related functions
316 "Return the absolute value of the number."
317 (number-dispatch ((number number))
318 (((foreach single-float double-float fixnum rational))
321 (let ((rx (realpart number))
322 (ix (imagpart number)))
325 (sqrt (+ (* rx rx) (* ix ix))))
327 (coerce (%hypot (coerce rx 'double-float)
328 (coerce ix 'double-float))
333 (defun phase (number)
335 "Return the angle part of the polar representation of a complex number.
336 For complex numbers, this is (atan (imagpart number) (realpart number)).
337 For non-complex positive numbers, this is 0. For non-complex negative
342 (coerce pi 'single-float)
345 (if (minusp (float-sign number))
346 (coerce pi 'single-float)
349 (if (minusp (float-sign number))
350 (coerce pi 'double-float)
353 (atan (imagpart number) (realpart number)))))
357 "Return the sine of NUMBER."
358 (number-dispatch ((number number))
359 (handle-reals %sin number)
361 (let ((x (realpart number))
362 (y (imagpart number)))
363 (complex (* (sin x) (cosh y))
364 (* (cos x) (sinh y)))))))
368 "Return the cosine of NUMBER."
369 (number-dispatch ((number number))
370 (handle-reals %cos number)
372 (let ((x (realpart number))
373 (y (imagpart number)))
374 (complex (* (cos x) (cosh y))
375 (- (* (sin x) (sinh y))))))))
379 "Return the tangent of NUMBER."
380 (number-dispatch ((number number))
381 (handle-reals %tan number)
383 (complex-tan number))))
387 "Return cos(Theta) + i sin(Theta), i.e. exp(i Theta)."
388 (declare (type real theta))
389 (complex (cos theta) (sin theta)))
393 "Return the arc sine of NUMBER."
394 (number-dispatch ((number number))
396 (if (or (> number 1) (< number -1))
397 (complex-asin number)
398 (coerce (%asin (coerce number 'double-float)) 'single-float)))
399 (((foreach single-float double-float))
400 (if (or (> number (coerce 1 '(dispatch-type number)))
401 (< number (coerce -1 '(dispatch-type number))))
402 (complex-asin number)
403 (coerce (%asin (coerce number 'double-float))
404 '(dispatch-type number))))
406 (complex-asin number))))
410 "Return the arc cosine of NUMBER."
411 (number-dispatch ((number number))
413 (if (or (> number 1) (< number -1))
414 (complex-acos number)
415 (coerce (%acos (coerce number 'double-float)) 'single-float)))
416 (((foreach single-float double-float))
417 (if (or (> number (coerce 1 '(dispatch-type number)))
418 (< number (coerce -1 '(dispatch-type number))))
419 (complex-acos number)
420 (coerce (%acos (coerce number 'double-float))
421 '(dispatch-type number))))
423 (complex-acos number))))
425 (defun atan (y &optional (x nil xp))
427 "Return the arc tangent of Y if X is omitted or Y/X if X is supplied."
430 (declare (type double-float y x)
431 (values double-float))
434 (if (plusp (float-sign x))
437 (float-sign y (/ pi 2)))
439 (number-dispatch ((y number) (x number))
441 (foreach double-float single-float fixnum bignum ratio))
442 (atan2 y (coerce x 'double-float)))
443 (((foreach single-float fixnum bignum ratio)
445 (atan2 (coerce y 'double-float) x))
446 (((foreach single-float fixnum bignum ratio)
447 (foreach single-float fixnum bignum ratio))
448 (coerce (atan2 (coerce y 'double-float) (coerce x 'double-float))
450 (number-dispatch ((y number))
451 (handle-reals %atan y)
455 ;; It seems that everyone has a C version of sinh, cosh, and
456 ;; tanh. Let's use these for reals because the original
457 ;; implementations based on the definitions lose big in round-off
458 ;; error. These bad definitions also mean that sin and cos for
459 ;; complex numbers can also lose big.
463 "Return the hyperbolic sine of NUMBER."
464 (number-dispatch ((number number))
465 (handle-reals %sinh number)
467 (let ((x (realpart number))
468 (y (imagpart number)))
469 (complex (* (sinh x) (cos y))
470 (* (cosh x) (sin y)))))))
474 "Return the hyperbolic cosine of NUMBER."
475 (number-dispatch ((number number))
476 (handle-reals %cosh number)
478 (let ((x (realpart number))
479 (y (imagpart number)))
480 (complex (* (cosh x) (cos y))
481 (* (sinh x) (sin y)))))))
485 "Return the hyperbolic tangent of NUMBER."
486 (number-dispatch ((number number))
487 (handle-reals %tanh number)
489 (complex-tanh number))))
491 (defun asinh (number)
493 "Return the hyperbolic arc sine of NUMBER."
494 (number-dispatch ((number number))
495 (handle-reals %asinh number)
497 (complex-asinh number))))
499 (defun acosh (number)
501 "Return the hyperbolic arc cosine of NUMBER."
502 (number-dispatch ((number number))
504 ;; acosh is complex if number < 1
506 (complex-acosh number)
507 (coerce (%acosh (coerce number 'double-float)) 'single-float)))
508 (((foreach single-float double-float))
509 (if (< number (coerce 1 '(dispatch-type number)))
510 (complex-acosh number)
511 (coerce (%acosh (coerce number 'double-float))
512 '(dispatch-type number))))
514 (complex-acosh number))))
516 (defun atanh (number)
518 "Return the hyperbolic arc tangent of NUMBER."
519 (number-dispatch ((number number))
521 ;; atanh is complex if |number| > 1
522 (if (or (> number 1) (< number -1))
523 (complex-atanh number)
524 (coerce (%atanh (coerce number 'double-float)) 'single-float)))
525 (((foreach single-float double-float))
526 (if (or (> number (coerce 1 '(dispatch-type number)))
527 (< number (coerce -1 '(dispatch-type number))))
528 (complex-atanh number)
529 (coerce (%atanh (coerce number 'double-float))
530 '(dispatch-type number))))
532 (complex-atanh number))))
534 ;;; HP-UX does not supply a C version of log1p, so use the definition.
536 ;;; FIXME: This is really not a good definition. As per Raymond Toy
537 ;;; working on CMU CL, "The definition really loses big-time in
538 ;;; roundoff as x gets small."
540 #!-sb-fluid (declaim (inline %log1p))
542 (defun %log1p (number)
543 (declare (double-float number)
544 (optimize (speed 3) (safety 0)))
545 (the double-float (log (the (double-float 0d0) (+ number 1d0)))))
547 ;;;; not-OLD-SPECFUN stuff
549 ;;;; (This was conditional on #-OLD-SPECFUN in the CMU CL sources,
550 ;;;; but OLD-SPECFUN was mentioned nowhere else, so it seems to be
551 ;;;; the standard special function system.)
553 ;;;; This is a set of routines that implement many elementary
554 ;;;; transcendental functions as specified by ANSI Common Lisp. The
555 ;;;; implementation is based on Kahan's paper.
557 ;;;; I believe I have accurately implemented the routines and are
558 ;;;; correct, but you may want to check for your self.
560 ;;;; These functions are written for CMU Lisp and take advantage of
561 ;;;; some of the features available there. It may be possible,
562 ;;;; however, to port this to other Lisps.
564 ;;;; Some functions are significantly more accurate than the original
565 ;;;; definitions in CMU Lisp. In fact, some functions in CMU Lisp
566 ;;;; give the wrong answer like (acos #c(-2.0 0.0)), where the true
567 ;;;; answer is pi + i*log(2-sqrt(3)).
569 ;;;; All of the implemented functions will take any number for an
570 ;;;; input, but the result will always be a either a complex
571 ;;;; single-float or a complex double-float.
573 ;;;; general functions:
585 ;;;; utility functions:
588 ;;;; internal functions:
589 ;;;; square coerce-to-complex-type cssqs complex-log-scaled
592 ;;;; Kahan, W. "Branch Cuts for Complex Elementary Functions, or Much
593 ;;;; Ado About Nothing's Sign Bit" in Iserles and Powell (eds.) "The
594 ;;;; State of the Art in Numerical Analysis", pp. 165-211, Clarendon
597 ;;;; The original CMU CL code requested:
598 ;;;; Please send any bug reports, comments, or improvements to
599 ;;;; Raymond Toy at toy@rtp.ericsson.se.
601 ;;; FIXME: In SBCL, the floating point infinity constants like
602 ;;; SB!EXT:DOUBLE-FLOAT-POSITIVE-INFINITY aren't available as
603 ;;; constants at cross-compile time, because the cross-compilation
604 ;;; host might not have support for floating point infinities. Thus,
605 ;;; they're effectively implemented as special variable references,
606 ;;; and the code below which uses them might be unnecessarily
607 ;;; inefficient. Perhaps some sort of MAKE-LOAD-TIME-VALUE hackery
608 ;;; should be used instead?
610 (declaim (inline square))
612 (declare (double-float x))
615 ;;; original CMU CL comment, apparently re. SCALB and LOGB and
617 ;;; If you have these functions in libm, perhaps they should be used
618 ;;; instead of these Lisp versions. These versions are probably good
619 ;;; enough, especially since they are portable.
621 ;;; Compute 2^N * X without computing 2^N first. (Use properties of
622 ;;; the underlying floating-point format.)
623 (declaim (inline scalb))
625 (declare (type double-float x)
626 (type double-float-exponent n))
629 ;;; This is like LOGB, but X is not infinity and non-zero and not a
630 ;;; NaN, so we can always return an integer.
631 (declaim (inline logb-finite))
632 (defun logb-finite (x)
633 (declare (type double-float x))
634 (multiple-value-bind (signif exponent sign)
636 (declare (ignore signif sign))
637 ;; DECODE-FLOAT is almost right, except that the exponent is off
641 ;;; Compute an integer N such that 1 <= |2^N * x| < 2.
642 ;;; For the special cases, the following values are used:
645 ;;; +/- infinity +infinity
648 (declare (type double-float x))
649 (cond ((float-nan-p x)
651 ((float-infinity-p x)
652 sb!ext:double-float-positive-infinity)
654 ;; The answer is negative infinity, but we are supposed to
655 ;; signal divide-by-zero, so do the actual division
661 ;;; This function is used to create a complex number of the
662 ;;; appropriate type:
663 ;;; Create complex number with real part X and imaginary part Y
664 ;;; such that has the same type as Z. If Z has type (complex
665 ;;; rational), the X and Y are coerced to single-float.
666 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
667 (error "needs work for long float support"))
668 (declaim (inline coerce-to-complex-type))
669 (defun coerce-to-complex-type (x y z)
670 (declare (double-float x y)
672 (if (subtypep (type-of (realpart z)) 'double-float)
674 ;; Convert anything that's not a DOUBLE-FLOAT to a SINGLE-FLOAT.
675 (complex (float x 1f0)
678 ;;; Compute |(x+i*y)/2^k|^2 scaled to avoid over/underflow. The
679 ;;; result is r + i*k, where k is an integer.
680 #!+long-float (eval-when (:compile-toplevel :load-toplevel :execute)
681 (error "needs work for long float support"))
683 (let ((x (float (realpart z) 1d0))
684 (y (float (imagpart z) 1d0)))
685 ;; Would this be better handled using an exception handler to
686 ;; catch the overflow or underflow signal? For now, we turn all
687 ;; traps off and look at the accrued exceptions to see if any
688 ;; signal would have been raised.
689 (with-float-traps-masked (:underflow :overflow)
690 (let ((rho (+ (square x) (square y))))
691 (declare (optimize (speed 3) (space 0)))
692 (cond ((and (or (float-nan-p rho)
693 (float-infinity-p rho))
694 (or (float-infinity-p (abs x))
695 (float-infinity-p (abs y))))
696 (values sb!ext:double-float-positive-infinity 0))
697 ((let ((threshold #.(/ least-positive-double-float
698 double-float-epsilon))
699 (traps (ldb sb!vm::float-sticky-bits
700 (sb!vm:floating-point-modes))))
701 ;; Overflow raised or (underflow raised and rho <
703 (or (not (zerop (logand sb!vm:float-overflow-trap-bit traps)))
704 (and (not (zerop (logand sb!vm:float-underflow-trap-bit
707 ;; If we're here, neither x nor y are infinity and at
708 ;; least one is non-zero.. Thus logb returns a nice
710 (let ((k (- (logb-finite (max (abs x) (abs y))))))
711 (values (+ (square (scalb x k))
712 (square (scalb y k)))
717 ;;; principal square root of Z
719 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
720 (defun complex-sqrt (z)
722 (multiple-value-bind (rho k)
724 (declare (type (or (member 0d0) (double-float 0d0)) rho)
726 (let ((x (float (realpart z) 1.0d0))
727 (y (float (imagpart z) 1.0d0))
730 (declare (double-float x y eta nu))
733 ;; space 0 to get maybe-inline functions inlined.
734 (declare (optimize (speed 3) (space 0)))
736 (if (not (float-nan-p x))
737 (setf rho (+ (scalb (abs x) (- k)) (sqrt rho))))
742 (setf k (1- (ash k -1)))
743 (setf rho (+ rho rho))))
745 (setf rho (scalb (sqrt rho) k))
751 (when (not (float-infinity-p (abs nu)))
752 (setf nu (/ (/ nu rho) 2d0)))
755 (setf nu (float-sign y rho))))
756 (coerce-to-complex-type eta nu z)))))
758 ;;; Compute log(2^j*z).
760 ;;; This is for use with J /= 0 only when |z| is huge.
761 (defun complex-log-scaled (z j)
764 ;; The constants t0, t1, t2 should be evaluated to machine
765 ;; precision. In addition, Kahan says the accuracy of log1p
766 ;; influences the choices of these constants but doesn't say how to
767 ;; choose them. We'll just assume his choices matches our
768 ;; implementation of log1p.
769 (let ((t0 #.(/ 1 (sqrt 2.0d0)))
773 (x (float (realpart z) 1.0d0))
774 (y (float (imagpart z) 1.0d0)))
775 (multiple-value-bind (rho k)
777 (declare (optimize (speed 3)))
778 (let ((beta (max (abs x) (abs y)))
779 (theta (min (abs x) (abs y))))
780 (coerce-to-complex-type (if (and (zerop k)
784 (/ (%log1p (+ (* (- beta 1.0d0)
793 ;;; log of Z = log |Z| + i * arg Z
795 ;;; Z may be any number, but the result is always a complex.
796 (defun complex-log (z)
798 (complex-log-scaled z 0))
800 ;;; KLUDGE: Let us note the following "strange" behavior. atanh 1.0d0
801 ;;; is +infinity, but the following code returns approx 176 + i*pi/4.
802 ;;; The reason for the imaginary part is caused by the fact that arg
803 ;;; i*y is never 0 since we have positive and negative zeroes. -- rtoy
804 ;;; Compute atanh z = (log(1+z) - log(1-z))/2.
805 (defun complex-atanh (z)
808 (theta (/ (sqrt most-positive-double-float) 4.0d0))
809 (rho (/ 4.0d0 (sqrt most-positive-double-float)))
810 (half-pi (/ pi 2.0d0))
811 (rp (float (realpart z) 1.0d0))
812 (beta (float-sign rp 1.0d0))
814 (y (* beta (- (float (imagpart z) 1.0d0))))
817 ;; Shouldn't need this declare.
818 (declare (double-float x y))
820 (declare (optimize (speed 3)))
821 (cond ((or (> x theta)
823 ;; To avoid overflow...
824 (setf eta (float-sign y half-pi))
825 ;; nu is real part of 1/(x + iy). This is x/(x^2+y^2),
826 ;; which can cause overflow. Arrange this computation so
827 ;; that it won't overflow.
828 (setf nu (let* ((x-bigger (> x (abs y)))
829 (r (if x-bigger (/ y x) (/ x y)))
830 (d (+ 1.0d0 (* r r))))
835 ;; Should this be changed so that if y is zero, eta is set
836 ;; to +infinity instead of approx 176? In any case
837 ;; tanh(176) is 1.0d0 within working precision.
838 (let ((t1 (+ 4d0 (square y)))
839 (t2 (+ (abs y) rho)))
840 (setf eta (log (/ (sqrt (sqrt t1)))
844 (+ half-pi (atan (* 0.5d0 t2))))))))
846 (let ((t1 (+ (abs y) rho)))
847 ;; Normal case using log1p(x) = log(1 + x)
849 (%log1p (/ (* 4.0d0 x)
850 (+ (square (- 1.0d0 x))
857 (coerce-to-complex-type (* beta eta)
861 ;;; Compute tanh z = sinh z / cosh z.
862 (defun complex-tanh (z)
864 (let ((x (float (realpart z) 1.0d0))
865 (y (float (imagpart z) 1.0d0)))
867 ;; space 0 to get maybe-inline functions inlined
868 (declare (optimize (speed 3) (space 0)))
870 #-(or linux hpux) #.(/ (asinh most-positive-double-float) 4d0)
871 ;; This is more accurate under linux.
872 #+(or linux hpux) #.(/ (+ (log 2.0d0)
873 (log most-positive-double-float))
875 (coerce-to-complex-type (float-sign x)
879 (beta (+ 1.0d0 (* tv tv)))
881 (rho (sqrt (+ 1.0d0 (* s s)))))
882 (if (float-infinity-p (abs tv))
883 (coerce-to-complex-type (/ rho s)
886 (let ((den (+ 1.0d0 (* beta s s))))
887 (coerce-to-complex-type (/ (* beta rho s)
892 ;;; Compute acos z = pi/2 - asin z.
894 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
895 (defun complex-acos (z)
896 ;; Kahan says we should only compute the parts needed. Thus, the
897 ;; REALPART's below should only compute the real part, not the whole
898 ;; complex expression. Doing this can be important because we may get
899 ;; spurious signals that occur in the part that we are not using.
901 ;; However, we take a pragmatic approach and just use the whole
904 ;; NOTE: The formula given by Kahan is somewhat ambiguous in whether
905 ;; it's the conjugate of the square root or the square root of the
906 ;; conjugate. This needs to be checked.
908 ;; I checked. It doesn't matter because (conjugate (sqrt z)) is the
909 ;; same as (sqrt (conjugate z)) for all z. This follows because
911 ;; (conjugate (sqrt z)) = exp(0.5*log |z|)*exp(-0.5*j*arg z).
913 ;; (sqrt (conjugate z)) = exp(0.5*log|z|)*exp(0.5*j*arg conj z)
915 ;; and these two expressions are equal if and only if arg conj z =
916 ;; -arg z, which is clearly true for all z.
918 (let ((sqrt-1+z (complex-sqrt (+ 1 z)))
919 (sqrt-1-z (complex-sqrt (- 1 z))))
920 (with-float-traps-masked (:divide-by-zero)
921 (complex (* 2 (atan (/ (realpart sqrt-1-z)
922 (realpart sqrt-1+z))))
923 (asinh (imagpart (* (conjugate sqrt-1+z)
926 ;;; Compute acosh z = 2 * log(sqrt((z+1)/2) + sqrt((z-1)/2))
928 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
929 (defun complex-acosh (z)
931 (let ((sqrt-z-1 (complex-sqrt (- z 1)))
932 (sqrt-z+1 (complex-sqrt (+ z 1))))
933 (with-float-traps-masked (:divide-by-zero)
934 (complex (asinh (realpart (* (conjugate sqrt-z-1)
936 (* 2 (atan (/ (imagpart sqrt-z-1)
937 (realpart sqrt-z+1))))))))
939 ;;; Compute asin z = asinh(i*z)/i.
941 ;;; Z may be any NUMBER, but the result is always a COMPLEX.
942 (defun complex-asin (z)
944 (let ((sqrt-1-z (complex-sqrt (- 1 z)))
945 (sqrt-1+z (complex-sqrt (+ 1 z))))
946 (with-float-traps-masked (:divide-by-zero)
947 (complex (atan (/ (realpart z)
948 (realpart (* sqrt-1-z sqrt-1+z))))
949 (asinh (imagpart (* (conjugate sqrt-1-z)
952 ;;; Compute asinh z = log(z + sqrt(1 + z*z)).
954 ;;; Z may be any number, but the result is always a complex.
955 (defun complex-asinh (z)
957 ;; asinh z = -i * asin (i*z)
958 (let* ((iz (complex (- (imagpart z)) (realpart z)))
959 (result (complex-asin iz)))
960 (complex (imagpart result)
961 (- (realpart result)))))
963 ;;; Compute atan z = atanh (i*z) / i.
965 ;;; Z may be any number, but the result is always a complex.
966 (defun complex-atan (z)
968 ;; atan z = -i * atanh (i*z)
969 (let* ((iz (complex (- (imagpart z)) (realpart z)))
970 (result (complex-atanh iz)))
971 (complex (imagpart result)
972 (- (realpart result)))))
974 ;;; Compute tan z = -i * tanh(i * z)
976 ;;; Z may be any number, but the result is always a complex.
977 (defun complex-tan (z)
979 ;; tan z = -i * tanh(i*z)
980 (let* ((iz (complex (- (imagpart z)) (realpart z)))
981 (result (complex-tanh iz)))
982 (complex (imagpart result)
983 (- (realpart result)))))