3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably* nil
21 "If true, all objects will be printed readably. If readable printing
22 is impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape* t
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base* 10.
33 "The output base for RATIONALs (including integers).")
34 (defvar *print-radix* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines* nil
59 "The maximum number of lines to print per object.")
60 (defvar *print-right-margin* nil
62 "The position of the right margin in ems (for pretty-printing).")
63 (defvar *print-miser-width* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch*)
71 (setf (fdocumentation '*print-pprint-dispatch* 'variable)
72 "The pprint-dispatch-table that controls how to pretty-print objects.")
74 (defmacro with-standard-io-syntax (&body body)
76 "Bind the reader and printer control variables to values that enable READ
77 to reliably read the results of PRINT. These values are:
78 *PACKAGE* the COMMON-LISP-USER package
88 *PRINT-MISER-WIDTH* NIL
89 *PRINT-PPRINT-DISPATCH* the standard pprint dispatch table
93 *PRINT-RIGHT-MARGIN* NIL
95 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
98 *READTABLE* the standard readtable"
99 `(%with-standard-io-syntax (lambda () ,@body)))
101 (defun %with-standard-io-syntax (function)
102 (declare (type function function))
103 (let ((*package* (find-package "COMMON-LISP-USER"))
106 (*print-case* :upcase)
113 (*print-miser-width* nil)
114 (*print-pprint-dispatch* sb!pretty::*standard-pprint-dispatch-table*)
118 (*print-right-margin* nil)
120 (*read-default-float-format* 'single-float)
122 (*read-suppress* nil)
123 (*readtable* *standard-readtable*))
126 ;;;; routines to print objects
129 ;;; keyword variables shared by WRITE and WRITE-TO-STRING, and
130 ;;; the bindings they map to.
131 (eval-when (:compile-toplevel :load-toplevel)
132 (defvar *printer-keyword-variables*
133 '(:escape *print-escape*
136 :circle *print-circle*
137 :pretty *print-pretty*
139 :length *print-length*
142 :gensym *print-gensym*
143 :readably *print-readably*
144 :right-margin *print-right-margin*
145 :miser-width *print-miser-width*
147 :pprint-dispatch *print-pprint-dispatch*)))
149 (defun write (object &key
150 ((:stream stream) *standard-output*)
151 ((:escape *print-escape*) *print-escape*)
152 ((:radix *print-radix*) *print-radix*)
153 ((:base *print-base*) *print-base*)
154 ((:circle *print-circle*) *print-circle*)
155 ((:pretty *print-pretty*) *print-pretty*)
156 ((:level *print-level*) *print-level*)
157 ((:length *print-length*) *print-length*)
158 ((:case *print-case*) *print-case*)
159 ((:array *print-array*) *print-array*)
160 ((:gensym *print-gensym*) *print-gensym*)
161 ((:readably *print-readably*) *print-readably*)
162 ((:right-margin *print-right-margin*)
163 *print-right-margin*)
164 ((:miser-width *print-miser-width*)
166 ((:lines *print-lines*) *print-lines*)
167 ((:pprint-dispatch *print-pprint-dispatch*)
168 *print-pprint-dispatch*))
170 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
171 (output-object object (out-synonym-of stream))
174 ;;; Optimize common case of constant keyword arguments
175 (define-compiler-macro write (&whole form object &rest keys)
179 ;; Odd number of keys, punt
181 (return-from write form)))
182 (let* ((key (pop keys))
184 (variable (or (getf *printer-keyword-variables* key)
185 (when (eq :stream key)
187 (return-from write form))))
188 (when (assoc variable bind)
189 ;; First key has precedence, but we still need to execute the
190 ;; argument, and in the right order.
191 (setf variable (gensym "IGNORE"))
192 (push variable ignore))
193 (push (list variable value) bind)))
194 (unless (assoc 'stream bind)
195 (push (list 'stream '*standard-output*) bind))
196 (once-only ((object object))
197 `(let ,(nreverse bind)
198 ,@(when ignore `((declare (ignore ,@ignore))))
199 (output-object ,object stream)
202 (defun prin1 (object &optional stream)
204 "Output a mostly READable printed representation of OBJECT on the specified
206 (let ((*print-escape* t))
207 (output-object object (out-synonym-of stream)))
210 (defun princ (object &optional stream)
212 "Output an aesthetic but not necessarily READable printed representation
213 of OBJECT on the specified STREAM."
214 (let ((*print-escape* nil)
215 (*print-readably* nil))
216 (output-object object (out-synonym-of stream)))
219 (defun print (object &optional stream)
221 "Output a newline, the mostly READable printed representation of OBJECT, and
222 space to the specified STREAM."
223 (let ((stream (out-synonym-of stream)))
225 (prin1 object stream)
226 (write-char #\space stream)
229 (defun pprint (object &optional stream)
231 "Prettily output OBJECT preceded by a newline."
232 (let ((*print-pretty* t)
234 (stream (out-synonym-of stream)))
236 (output-object object stream))
239 (defun write-to-string
241 ((:escape *print-escape*) *print-escape*)
242 ((:radix *print-radix*) *print-radix*)
243 ((:base *print-base*) *print-base*)
244 ((:circle *print-circle*) *print-circle*)
245 ((:pretty *print-pretty*) *print-pretty*)
246 ((:level *print-level*) *print-level*)
247 ((:length *print-length*) *print-length*)
248 ((:case *print-case*) *print-case*)
249 ((:array *print-array*) *print-array*)
250 ((:gensym *print-gensym*) *print-gensym*)
251 ((:readably *print-readably*) *print-readably*)
252 ((:right-margin *print-right-margin*) *print-right-margin*)
253 ((:miser-width *print-miser-width*) *print-miser-width*)
254 ((:lines *print-lines*) *print-lines*)
255 ((:pprint-dispatch *print-pprint-dispatch*)
256 *print-pprint-dispatch*))
258 "Return the printed representation of OBJECT as a string."
259 (stringify-object object))
261 ;;; Optimize common case of constant keyword arguments
262 (define-compiler-macro write-to-string (&whole form object &rest keys)
266 ;; Odd number of keys, punt
268 (return-from write-to-string form)))
269 (let* ((key (pop keys))
271 (variable (or (getf *printer-keyword-variables* key)
272 (return-from write-to-string form))))
273 (when (assoc variable bind)
274 ;; First key has precedence, but we still need to execute the
275 ;; argument, and in the right order.
276 (setf variable (gensym "IGNORE"))
277 (push variable ignore))
278 (push (list variable value) bind)))
280 `(let ,(nreverse bind)
281 ,@(when ignore `((declare (ignore ,@ignore))))
282 (stringify-object ,object))
283 `(stringify-object ,object))))
285 (defun prin1-to-string (object)
287 "Return the printed representation of OBJECT as a string with
289 (let ((*print-escape* t))
290 (stringify-object object)))
292 (defun princ-to-string (object)
294 "Return the printed representation of OBJECT as a string with
296 (let ((*print-escape* nil)
297 (*print-readably* nil))
298 (stringify-object object)))
300 ;;; This produces the printed representation of an object as a string.
301 ;;; The few ...-TO-STRING functions above call this.
302 (defun stringify-object (object)
303 (let ((stream (make-string-output-stream)))
304 (setup-printer-state)
305 (output-object object stream)
306 (get-output-stream-string stream)))
308 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
310 ;;; guts of PRINT-UNREADABLE-OBJECT
311 (defun %print-unreadable-object (object stream type identity body)
312 (declare (type (or null function) body))
313 (when *print-readably*
314 (error 'print-not-readable :object object))
315 (flet ((print-description ()
317 (write (type-of object) :stream stream :circle nil
318 :level nil :length nil)
319 (write-char #\space stream)
320 (pprint-newline :fill stream))
324 (when (or body (not type))
325 (write-char #\space stream))
326 (pprint-newline :fill stream)
327 (write-char #\{ stream)
328 (write (get-lisp-obj-address object) :stream stream
330 (write-char #\} stream))))
331 (cond ((print-pretty-on-stream-p stream)
332 ;; Since we're printing prettily on STREAM, format the
333 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
334 ;; not rebind the stream when it is already a pretty stream,
335 ;; so output from the body will go to the same stream.
336 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
337 (print-description)))
339 (write-string "#<" stream)
341 (write-char #\> stream))))
344 ;;;; OUTPUT-OBJECT -- the main entry point
346 ;;; Objects whose print representation identifies them EQLly don't
347 ;;; need to be checked for circularity.
348 (defun uniquely-identified-by-print-p (x)
352 (symbol-package x))))
354 ;;; Output OBJECT to STREAM observing all printer control variables.
355 (defun output-object (object stream)
356 (labels ((print-it (stream)
358 (sb!pretty:output-pretty-object object stream)
359 (output-ugly-object object stream)))
361 (multiple-value-bind (marker initiate)
362 (check-for-circularity object t)
363 (if (eq initiate :initiate)
364 (let ((*circularity-hash-table*
365 (make-hash-table :test 'eq)))
366 (check-it (make-broadcast-stream))
367 (let ((*circularity-counter* 0))
371 (when (handle-circularity marker stream)
373 (print-it stream))))))
374 (cond (;; Maybe we don't need to bother with circularity detection.
375 (or (not *print-circle*)
376 (uniquely-identified-by-print-p object))
378 (;; If we have already started circularity detection, this
379 ;; object might be a shared reference. If we have not, then
380 ;; if it is a compound object it might contain a circular
381 ;; reference to itself or multiple shared references.
382 (or *circularity-hash-table*
383 (compound-object-p object))
386 (print-it stream)))))
388 ;;; a hack to work around recurring gotchas with printing while
389 ;;; DEFGENERIC PRINT-OBJECT is being built
391 ;;; (hopefully will go away naturally when CLOS moves into cold init)
392 (defvar *print-object-is-disabled-p*)
394 ;;; Output OBJECT to STREAM observing all printer control variables
395 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
396 ;;; then the pretty printer will be used for any components of OBJECT,
397 ;;; just not for OBJECT itself.
398 (defun output-ugly-object (object stream)
400 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
401 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
402 ;; PRINT-OBJECT methods covering all classes. We deviate from this
403 ;; by using PRINT-OBJECT only when we print instance values. However,
404 ;; ANSI makes it hard to tell that we're deviating from this:
405 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
407 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
408 ;; a method on an external symbol in the CL package which is
409 ;; applicable to arg lists containing only direct instances of
410 ;; standardized classes.
411 ;; Thus, in order for the user to detect our sleaziness in conforming
412 ;; code, he has to do something relatively obscure like
413 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
415 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
416 ;; value (e.g. a Gray stream object).
417 ;; As long as no one comes up with a non-obscure way of detecting this
418 ;; sleaziness, fixing this nonconformity will probably have a low
419 ;; priority. -- WHN 2001-11-25
422 (output-symbol object stream)
423 (output-list object stream)))
425 (cond ((not (and (boundp '*print-object-is-disabled-p*)
426 *print-object-is-disabled-p*))
427 (print-object object stream))
428 ((typep object 'structure-object)
429 (default-structure-print object stream *current-level-in-print*))
431 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream))))
432 (funcallable-instance
434 ((not (and (boundp '*print-object-is-disabled-p*)
435 *print-object-is-disabled-p*))
436 (print-object object stream))
437 (t (output-fun object stream))))
439 (output-fun object stream))
441 (output-symbol object stream))
445 (output-integer object stream))
447 (output-float object stream))
449 (output-ratio object stream))
451 (output-complex object stream))))
453 (output-character object stream))
455 (output-vector object stream))
457 (output-array object stream))
459 (output-sap object stream))
461 (output-weak-pointer object stream))
463 (output-lra object stream))
465 (output-code-component object stream))
467 (output-fdefn object stream))
469 (output-random object stream))))
473 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
474 ;;; time the printer was called
475 (defvar *previous-case* nil)
476 (defvar *previous-readtable-case* nil)
478 ;;; This variable contains the current definition of one of three
479 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
480 (defvar *internal-symbol-output-fun* nil)
482 ;;; This function sets the internal global symbol
483 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
484 ;;; the value of *PRINT-CASE*. See the manual for details. The print
485 ;;; buffer stream is also reset.
486 (defun setup-printer-state ()
487 (unless (and (eq *print-case* *previous-case*)
488 (eq (readtable-case *readtable*) *previous-readtable-case*))
489 (setq *previous-case* *print-case*)
490 (setq *previous-readtable-case* (readtable-case *readtable*))
491 (unless (member *print-case* '(:upcase :downcase :capitalize))
492 (setq *print-case* :upcase)
493 (error "invalid *PRINT-CASE* value: ~S" *previous-case*))
494 (unless (member *previous-readtable-case*
495 '(:upcase :downcase :invert :preserve))
496 (setf (readtable-case *readtable*) :upcase)
497 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case*))
499 (setq *internal-symbol-output-fun*
500 (case *previous-readtable-case*
503 (:upcase #'output-preserve-symbol)
504 (:downcase #'output-lowercase-symbol)
505 (:capitalize #'output-capitalize-symbol)))
508 (:upcase #'output-uppercase-symbol)
509 (:downcase #'output-preserve-symbol)
510 (:capitalize #'output-capitalize-symbol)))
511 (:preserve #'output-preserve-symbol)
512 (:invert #'output-invert-symbol)))))
514 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
515 ;;; and with any embedded |'s or \'s escaped.
516 (defun output-quoted-symbol-name (pname stream)
517 (write-char #\| stream)
518 (dotimes (index (length pname))
519 (let ((char (schar pname index)))
520 (when (or (char= char #\\) (char= char #\|))
521 (write-char #\\ stream))
522 (write-char char stream)))
523 (write-char #\| stream))
525 (defun output-symbol (object stream)
526 (if (or *print-escape* *print-readably*)
527 (let ((package (symbol-package object))
528 (name (symbol-name object)))
530 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
531 ;; requires that keywords be printed with preceding colons
532 ;; always, regardless of the value of *PACKAGE*.
533 ((eq package *keyword-package*)
534 (write-char #\: stream))
535 ;; Otherwise, if the symbol's home package is the current
536 ;; one, then a prefix is never necessary.
537 ((eq package (sane-package)))
538 ;; Uninterned symbols print with a leading #:.
540 (when (or *print-gensym* *print-readably*)
541 (write-string "#:" stream)))
543 (multiple-value-bind (symbol accessible)
544 (find-symbol name (sane-package))
545 ;; If we can find the symbol by looking it up, it need not
546 ;; be qualified. This can happen if the symbol has been
547 ;; inherited from a package other than its home package.
548 (unless (and accessible (eq symbol object))
549 (output-symbol-name (package-name package) stream)
550 (multiple-value-bind (symbol externalp)
551 (find-external-symbol name package)
552 (declare (ignore symbol))
554 (write-char #\: stream)
555 (write-string "::" stream)))))))
556 (output-symbol-name name stream))
557 (output-symbol-name (symbol-name object) stream nil)))
559 ;;; Output the string NAME as if it were a symbol name. In other
560 ;;; words, diddle its case according to *PRINT-CASE* and
562 (defun output-symbol-name (name stream &optional (maybe-quote t))
563 (declare (type simple-string name))
564 (let ((*readtable* (if *print-readably* *standard-readtable* *readtable*)))
565 (setup-printer-state)
566 (if (and maybe-quote (symbol-quotep name))
567 (output-quoted-symbol-name name stream)
568 (funcall *internal-symbol-output-fun* name stream))))
570 ;;;; escaping symbols
572 ;;; When we print symbols we have to figure out if they need to be
573 ;;; printed with escape characters. This isn't a whole lot easier than
574 ;;; reading symbols in the first place.
576 ;;; For each character, the value of the corresponding element is a
577 ;;; fixnum with bits set corresponding to attributes that the
578 ;;; character has. At characters have at least one bit set, so we can
579 ;;; search for any character with a positive test.
580 (defvar *character-attributes*
581 (make-array 160 ; FIXME
582 :element-type '(unsigned-byte 16)
584 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
585 *character-attributes*))
587 ;;; constants which are a bit-mask for each interesting character attribute
588 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
589 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
590 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
591 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
592 (defconstant sign-attribute (ash 1 4)) ; +-
593 (defconstant extension-attribute (ash 1 5)) ; ^_
594 (defconstant dot-attribute (ash 1 6)) ; .
595 (defconstant slash-attribute (ash 1 7)) ; /
596 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
598 (eval-when (:compile-toplevel :load-toplevel :execute)
600 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
601 ;;; that don't need to be escaped (according to READTABLE-CASE.)
602 (defparameter *attribute-names*
603 `((number . number-attribute) (lowercase . lowercase-attribute)
604 (uppercase . uppercase-attribute) (letter . letter-attribute)
605 (sign . sign-attribute) (extension . extension-attribute)
606 (dot . dot-attribute) (slash . slash-attribute)
607 (other . other-attribute) (funny . funny-attribute)))
611 (flet ((set-bit (char bit)
612 (let ((code (char-code char)))
613 (setf (aref *character-attributes* code)
614 (logior bit (aref *character-attributes* code))))))
616 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
618 (set-bit char other-attribute))
621 (set-bit (digit-char i) number-attribute))
623 (do ((code (char-code #\A) (1+ code))
624 (end (char-code #\Z)))
626 (declare (fixnum code end))
627 (set-bit (code-char code) uppercase-attribute)
628 (set-bit (char-downcase (code-char code)) lowercase-attribute))
630 (set-bit #\- sign-attribute)
631 (set-bit #\+ sign-attribute)
632 (set-bit #\^ extension-attribute)
633 (set-bit #\_ extension-attribute)
634 (set-bit #\. dot-attribute)
635 (set-bit #\/ slash-attribute)
637 ;; Mark anything not explicitly allowed as funny.
638 (dotimes (i 160) ; FIXME
639 (when (zerop (aref *character-attributes* i))
640 (setf (aref *character-attributes* i) funny-attribute))))
642 ;;; For each character, the value of the corresponding element is the
643 ;;; lowest base in which that character is a digit.
644 (defvar *digit-bases*
645 (make-array 128 ; FIXME
646 :element-type '(unsigned-byte 8)
647 :initial-element 36))
648 (declaim (type (simple-array (unsigned-byte 8) (#.128)) ; FIXME
651 (let ((char (digit-char i 36)))
652 (setf (aref *digit-bases* (char-code char)) i)))
654 ;;; A FSM-like thingie that determines whether a symbol is a potential
655 ;;; number or has evil characters in it.
656 (defun symbol-quotep (name)
657 (declare (simple-string name))
658 (macrolet ((advance (tag &optional (at-end t))
661 ,(if at-end '(go TEST-SIGN) '(return nil)))
662 (setq current (schar name index)
663 code (char-code current)
665 ((< code 160) (aref attributes code))
666 ((upper-case-p current) uppercase-attribute)
667 ((lower-case-p current) lowercase-attribute)
668 (t other-attribute)))
671 (test (&rest attributes)
683 `(and (< code 128) ; FIXME
684 (< (the fixnum (aref bases code)) base))))
686 (prog ((len (length name))
687 (attributes *character-attributes*)
688 (bases *digit-bases*)
691 (case (readtable-case *readtable*)
692 (:upcase uppercase-attribute)
693 (:downcase lowercase-attribute)
694 (t (logior lowercase-attribute uppercase-attribute))))
699 (declare (fixnum len base index bits code))
702 TEST-SIGN ; At end, see whether it is a sign...
703 (return (not (test sign)))
705 OTHER ; not potential number, see whether funny chars...
706 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
709 (do ((i (1- index) (1+ i)))
710 ((= i len) (return-from symbol-quotep nil))
711 (unless (zerop (logand (let* ((char (schar name i))
712 (code (char-code char)))
714 ((< code 160) (aref attributes code))
715 ((upper-case-p char) uppercase-attribute)
716 ((lower-case-p char) lowercase-attribute)
717 (t other-attribute)))
719 (return-from symbol-quotep t))))
724 (advance LAST-DIGIT-ALPHA)
726 (when (test letter number other slash) (advance OTHER nil))
727 (when (char= current #\.) (advance DOT-FOUND))
728 (when (test sign extension) (advance START-STUFF nil))
731 DOT-FOUND ; leading dots...
732 (when (test letter) (advance START-DOT-MARKER nil))
733 (when (digitp) (advance DOT-DIGIT))
734 (when (test number other) (advance OTHER nil))
735 (when (test extension slash sign) (advance START-DOT-STUFF nil))
736 (when (char= current #\.) (advance DOT-FOUND))
739 START-STUFF ; leading stuff before any dot or digit
742 (advance LAST-DIGIT-ALPHA)
744 (when (test number other) (advance OTHER nil))
745 (when (test letter) (advance START-MARKER nil))
746 (when (char= current #\.) (advance START-DOT-STUFF nil))
747 (when (test sign extension slash) (advance START-STUFF nil))
750 START-MARKER ; number marker in leading stuff...
751 (when (test letter) (advance OTHER nil))
754 START-DOT-STUFF ; leading stuff containing dot without digit...
755 (when (test letter) (advance START-DOT-STUFF nil))
756 (when (digitp) (advance DOT-DIGIT))
757 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
758 (when (test number other) (advance OTHER nil))
761 START-DOT-MARKER ; number marker in leading stuff with dot..
762 ;; leading stuff containing dot without digit followed by letter...
763 (when (test letter) (advance OTHER nil))
766 DOT-DIGIT ; in a thing with dots...
767 (when (test letter) (advance DOT-MARKER))
768 (when (digitp) (advance DOT-DIGIT))
769 (when (test number other) (advance OTHER nil))
770 (when (test sign extension dot slash) (advance DOT-DIGIT))
773 DOT-MARKER ; number marker in number with dot...
774 (when (test letter) (advance OTHER nil))
777 LAST-DIGIT-ALPHA ; previous char is a letter digit...
778 (when (or (digitp) (test sign slash))
779 (advance ALPHA-DIGIT))
780 (when (test letter number other dot) (advance OTHER nil))
783 ALPHA-DIGIT ; seen a digit which is a letter...
784 (when (or (digitp) (test sign slash))
786 (advance LAST-DIGIT-ALPHA)
787 (advance ALPHA-DIGIT)))
788 (when (test letter) (advance ALPHA-MARKER))
789 (when (test number other dot) (advance OTHER nil))
792 ALPHA-MARKER ; number marker in number with alpha digit...
793 (when (test letter) (advance OTHER nil))
796 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
799 (advance ALPHA-DIGIT)
801 (when (test number other) (advance OTHER nil))
802 (when (test letter) (advance MARKER))
803 (when (test extension slash sign) (advance DIGIT))
804 (when (char= current #\.) (advance DOT-DIGIT))
807 MARKER ; number marker in a numeric number...
808 ;; ("What," you may ask, "is a 'number marker'?" It's something
809 ;; that a conforming implementation might use in number syntax.
810 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
811 (when (test letter) (advance OTHER nil))
814 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
816 ;;;; case hackery: These functions are stored in
817 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
818 ;;;; *PRINT-CASE* and READTABLE-CASE.
821 ;;; READTABLE-CASE *PRINT-CASE*
823 ;;; :DOWNCASE :DOWNCASE
825 (defun output-preserve-symbol (pname stream)
826 (declare (simple-string pname))
827 (write-string pname stream))
830 ;;; READTABLE-CASE *PRINT-CASE*
831 ;;; :UPCASE :DOWNCASE
832 (defun output-lowercase-symbol (pname stream)
833 (declare (simple-string pname))
834 (dotimes (index (length pname))
835 (let ((char (schar pname index)))
836 (write-char (char-downcase char) stream))))
839 ;;; READTABLE-CASE *PRINT-CASE*
840 ;;; :DOWNCASE :UPCASE
841 (defun output-uppercase-symbol (pname stream)
842 (declare (simple-string pname))
843 (dotimes (index (length pname))
844 (let ((char (schar pname index)))
845 (write-char (char-upcase char) stream))))
848 ;;; READTABLE-CASE *PRINT-CASE*
849 ;;; :UPCASE :CAPITALIZE
850 ;;; :DOWNCASE :CAPITALIZE
851 (defun output-capitalize-symbol (pname stream)
852 (declare (simple-string pname))
853 (let ((prev-not-alphanum t)
854 (up (eq (readtable-case *readtable*) :upcase)))
855 (dotimes (i (length pname))
856 (let ((char (char pname i)))
858 (if (or prev-not-alphanum (lower-case-p char))
860 (char-downcase char))
861 (if prev-not-alphanum
865 (setq prev-not-alphanum (not (alphanumericp char)))))))
868 ;;; READTABLE-CASE *PRINT-CASE*
870 (defun output-invert-symbol (pname stream)
871 (declare (simple-string pname))
874 (dotimes (i (length pname))
875 (let ((ch (schar pname i)))
876 (when (both-case-p ch)
877 (if (upper-case-p ch)
879 (setq all-upper nil)))))
880 (cond (all-upper (output-lowercase-symbol pname stream))
881 (all-lower (output-uppercase-symbol pname stream))
883 (write-string pname stream)))))
887 (let ((*readtable* (copy-readtable nil)))
888 (format t "READTABLE-CASE Input Symbol-name~@
889 ----------------------------------~%")
890 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
891 (setf (readtable-case *readtable*) readtable-case)
892 (dolist (input '("ZEBRA" "Zebra" "zebra"))
893 (format t "~&:~A~16T~A~24T~A"
894 (string-upcase readtable-case)
896 (symbol-name (read-from-string input)))))))
899 (let ((*readtable* (copy-readtable nil)))
900 (format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
901 --------------------------------------------------------~%")
902 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
903 (setf (readtable-case *readtable*) readtable-case)
904 (dolist (*print-case* '(:upcase :downcase :capitalize))
905 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|))
906 (format t "~&:~A~15T:~A~29T~A~42T~A~50T~A"
907 (string-upcase readtable-case)
908 (string-upcase *print-case*)
910 (prin1-to-string symbol)
911 (princ-to-string symbol)))))))
914 ;;;; recursive objects
916 (defun output-list (list stream)
917 (descend-into (stream)
918 (write-char #\( stream)
922 (punt-print-if-too-long length stream)
923 (output-object (pop list) stream)
926 (when (or (atom list)
927 (check-for-circularity list))
928 (write-string " . " stream)
929 (output-object list stream)
931 (write-char #\space stream)
933 (write-char #\) stream)))
935 (defun output-vector (vector stream)
936 (declare (vector vector))
937 (cond ((stringp vector)
938 (cond ((and *print-readably*
939 (not (eq (array-element-type vector)
942 (make-array 0 :element-type 'character))))))
943 (error 'print-not-readable :object vector))
944 ((or *print-escape* *print-readably*)
945 (write-char #\" stream)
946 (quote-string vector stream)
947 (write-char #\" stream))
949 (write-string vector stream))))
950 ((not (or *print-array* *print-readably*))
951 (output-terse-array vector stream))
952 ((bit-vector-p vector)
953 (write-string "#*" stream)
954 (dovector (bit vector)
955 ;; (Don't use OUTPUT-OBJECT here, since this code
956 ;; has to work for all possible *PRINT-BASE* values.)
957 (write-char (if (zerop bit) #\0 #\1) stream)))
959 (when (and *print-readably*
960 (not (array-readably-printable-p vector)))
961 (error 'print-not-readable :object vector))
962 (descend-into (stream)
963 (write-string "#(" stream)
964 (dotimes (i (length vector))
966 (write-char #\space stream))
967 (punt-print-if-too-long i stream)
968 (output-object (aref vector i) stream))
969 (write-string ")" stream)))))
971 ;;; This function outputs a string quoting characters sufficiently
972 ;;; so that someone can read it in again. Basically, put a slash in
973 ;;; front of an character satisfying NEEDS-SLASH-P.
974 (defun quote-string (string stream)
975 (macrolet ((needs-slash-p (char)
976 ;; KLUDGE: We probably should look at the readtable, but just do
977 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
978 `(or (char= ,char #\\)
980 (with-array-data ((data string) (start) (end)
981 :check-fill-pointer t)
982 (do ((index start (1+ index)))
984 (let ((char (schar data index)))
985 (when (needs-slash-p char) (write-char #\\ stream))
986 (write-char char stream))))))
988 (defun array-readably-printable-p (array)
989 (and (eq (array-element-type array) t)
990 (let ((zero (position 0 (array-dimensions array)))
991 (number (position 0 (array-dimensions array)
992 :test (complement #'eql)
994 (or (null zero) (null number) (> zero number)))))
996 ;;; Output the printed representation of any array in either the #< or #A
998 (defun output-array (array stream)
999 (if (or *print-array* *print-readably*)
1000 (output-array-guts array stream)
1001 (output-terse-array array stream)))
1003 ;;; Output the abbreviated #< form of an array.
1004 (defun output-terse-array (array stream)
1005 (let ((*print-level* nil)
1006 (*print-length* nil))
1007 (print-unreadable-object (array stream :type t :identity t))))
1009 ;;; Output the readable #A form of an array.
1010 (defun output-array-guts (array stream)
1011 (when (and *print-readably*
1012 (not (array-readably-printable-p array)))
1013 (error 'print-not-readable :object array))
1014 (write-char #\# stream)
1015 (let ((*print-base* 10)
1016 (*print-radix* nil))
1017 (output-integer (array-rank array) stream))
1018 (write-char #\A stream)
1019 (with-array-data ((data array) (start) (end))
1020 (declare (ignore end))
1021 (sub-output-array-guts data (array-dimensions array) stream start)))
1023 (defun sub-output-array-guts (array dimensions stream index)
1024 (declare (type (simple-array * (*)) array) (fixnum index))
1025 (cond ((null dimensions)
1026 (output-object (aref array index) stream))
1028 (descend-into (stream)
1029 (write-char #\( stream)
1030 (let* ((dimension (car dimensions))
1031 (dimensions (cdr dimensions))
1032 (count (reduce #'* dimensions)))
1033 (dotimes (i dimension)
1035 (write-char #\space stream))
1036 (punt-print-if-too-long i stream)
1037 (sub-output-array-guts array dimensions stream index)
1038 (incf index count)))
1039 (write-char #\) stream)))))
1041 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
1042 ;;; use until CLOS is set up (at which time it will be replaced with
1043 ;;; the real generic function implementation)
1044 (defun print-object (instance stream)
1045 (default-structure-print instance stream *current-level-in-print*))
1047 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1049 (defun %output-radix (base stream)
1050 (write-char #\# stream)
1051 (write-char (case base
1055 (t (%output-reasonable-integer-in-base base 10 stream)
1059 (defun %output-reasonable-integer-in-base (n base stream)
1060 (multiple-value-bind (q r)
1062 ;; Recurse until you have all the digits pushed on
1065 (%output-reasonable-integer-in-base q base stream))
1066 ;; Then as each recursive call unwinds, turn the
1067 ;; digit (in remainder) into a character and output
1070 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r)
1073 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1074 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1075 ;;; always prior a GC to drop overly large bignums from the cache.
1077 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1078 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1079 (defvar *power-cache* nil)
1081 (defconstant +power-cache-integer-length-limit+ 2048)
1083 (defun scrub-power-cache ()
1084 (let ((cache *power-cache*))
1085 (dolist (cell cache)
1086 (let ((powers (cdr cell)))
1087 (declare (simple-vector powers))
1088 (let ((too-big (position-if
1090 (>= (integer-length x)
1091 +power-cache-integer-length-limit+))
1094 (setf (cdr cell) (subseq powers 0 too-big))))))
1095 ;; Since base 10 is overwhelmingly common, make sure it's at head.
1096 ;; Try to keep other bases in a hopefully sensible order as well.
1097 (if (eql 10 (caar cache))
1098 (setf *power-cache* cache)
1099 ;; If we modify the list destructively we need to copy it, otherwise
1100 ;; an alist lookup in progress might be screwed.
1101 (setf *power-cache* (sort (copy-list cache)
1103 (declare (fixnum a b))
1113 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1114 ;;; the vector holds integers for which
1115 ;;; (aref powers k) == (expt base (expt 2 k))
1117 (defun powers-for-base (base limit)
1118 (flet ((compute-powers (from)
1120 (do ((p from (* p p)))
1122 ;; We don't actually need this, but we also
1123 ;; prefer not to cons it up a second time...
1126 (nreverse powers))))
1127 ;; Grab a local reference so that we won't stuff consed at the
1128 ;; head by other threads -- or sorting by SCRUB-POWER-CACHE.
1129 (let ((cache *power-cache*))
1130 (let ((cell (assoc base cache)))
1132 (let* ((powers (cdr cell))
1133 (len (length powers))
1134 (max (svref powers (1- len))))
1138 (concatenate 'vector powers
1139 (compute-powers (* max max)))))
1140 (setf (cdr cell) new)
1142 (let ((powers (coerce (compute-powers base) 'vector)))
1143 ;; Add new base to head: SCRUB-POWER-CACHE will later
1144 ;; put it to a better place.
1145 (setf *power-cache* (acons base powers cache))
1148 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1149 (defun %output-huge-integer-in-base (n base stream)
1150 (declare (type bignum n) (type fixnum base))
1151 ;; POWER is a vector for which the following holds:
1152 ;; (aref power k) == (expt base (expt 2 k))
1153 (let* ((power (powers-for-base base n))
1154 (k-start (or (position-if (lambda (x) (> x n)) power)
1155 (bug "power-vector too short"))))
1156 (labels ((bisect (n k exactp)
1157 (declare (fixnum k))
1158 ;; N is the number to bisect
1159 ;; K on initial entry BASE^(2^K) > N
1160 ;; EXACTP is true if 2^K is the exact number of digits
1163 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1166 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1170 (multiple-value-bind (q r) (truncate n (aref power k))
1171 ;; EXACTP is NIL only at the head of the
1172 ;; initial number, as we don't know the number
1173 ;; of digits there, but we do know that it
1174 ;; doesn't get any leading zeros.
1176 (bisect r k (or exactp (plusp q))))))))
1177 (bisect n k-start nil))))
1179 (defun %output-integer-in-base (integer base stream)
1180 (when (minusp integer)
1181 (write-char #\- stream)
1182 (setf integer (- integer)))
1183 ;; The ideal cutoff point between these two algorithms is almost
1184 ;; certainly quite platform dependent: this gives 87 for 32 bit
1185 ;; SBCL, which is about right at least for x86/Darwin.
1186 (if (or (fixnump integer)
1187 (< (integer-length integer) (* 3 sb!vm:n-positive-fixnum-bits)))
1188 (%output-reasonable-integer-in-base integer base stream)
1189 (%output-huge-integer-in-base integer base stream)))
1191 (defun output-integer (integer stream)
1192 (let ((base *print-base*))
1193 (when (and (/= base 10) *print-radix*)
1194 (%output-radix base stream))
1195 (%output-integer-in-base integer base stream)
1196 (when (and *print-radix* (= base 10))
1197 (write-char #\. stream))))
1199 (defun output-ratio (ratio stream)
1200 (let ((base *print-base*))
1202 (%output-radix base stream))
1203 (%output-integer-in-base (numerator ratio) base stream)
1204 (write-char #\/ stream)
1205 (%output-integer-in-base (denominator ratio) base stream)))
1207 (defun output-complex (complex stream)
1208 (write-string "#C(" stream)
1209 ;; FIXME: Could this just be OUTPUT-NUMBER?
1210 (output-object (realpart complex) stream)
1211 (write-char #\space stream)
1212 (output-object (imagpart complex) stream)
1213 (write-char #\) stream))
1217 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1218 ;;; most of the work for all printing of floating point numbers in
1219 ;;; FORMAT. It converts a floating point number to a string in a free
1220 ;;; or fixed format with no exponent. The interpretation of the
1221 ;;; arguments is as follows:
1223 ;;; X - The floating point number to convert, which must not be
1225 ;;; WIDTH - The preferred field width, used to determine the number
1226 ;;; of fraction digits to produce if the FDIGITS parameter
1227 ;;; is unspecified or NIL. If the non-fraction digits and the
1228 ;;; decimal point alone exceed this width, no fraction digits
1229 ;;; will be produced unless a non-NIL value of FDIGITS has been
1230 ;;; specified. Field overflow is not considerd an error at this
1232 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1233 ;;; trailing zeroes may be introduced as needed. May be
1234 ;;; unspecified or NIL, in which case as many digits as possible
1235 ;;; are generated, subject to the constraint that there are no
1236 ;;; trailing zeroes.
1237 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1238 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1239 ;;; and cannot lose precision.
1240 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1241 ;;; number of fraction digits which will be produced, regardless
1242 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1243 ;;; the ~E format directive to prevent complete loss of
1244 ;;; significance in the printed value due to a bogus choice of
1248 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1249 ;;; where the results have the following interpretation:
1251 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1252 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1253 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1255 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1257 ;;; POINT-POS - The position of the digit preceding the decimal
1258 ;;; point. Zero indicates point before first digit.
1260 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1261 ;;; accuracy. Specifically, the decimal number printed is the closest
1262 ;;; possible approximation to the true value of the binary number to
1263 ;;; be printed from among all decimal representations with the same
1264 ;;; number of digits. In free-format output, i.e. with the number of
1265 ;;; digits unconstrained, it is guaranteed that all the information is
1266 ;;; preserved, so that a properly- rounding reader can reconstruct the
1267 ;;; original binary number, bit-for-bit, from its printed decimal
1268 ;;; representation. Furthermore, only as many digits as necessary to
1269 ;;; satisfy this condition will be printed.
1271 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1272 ;;; see below for comments.
1274 (defun flonum-to-string (x &optional width fdigits scale fmin)
1275 (declare (type float x))
1276 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1277 ;; possibly-negative X.
1280 ;; Zero is a special case which FLOAT-STRING cannot handle.
1282 (let ((s (make-string (1+ fdigits) :initial-element #\0)))
1283 (setf (schar s 0) #\.)
1284 (values s (length s) t (zerop fdigits) 0))
1285 (values "." 1 t t 0)))
1287 (multiple-value-bind (e string)
1289 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1291 (if (and width (> width 1))
1292 (let ((w (multiple-value-list
1296 (if (and scale (minusp scale))
1299 (f (multiple-value-list
1300 (flonum-to-digits x (- (+ (or fmin 0)
1301 (if scale scale 0)))))))
1303 ((>= (length (cadr w)) (length (cadr f)))
1305 (t (values-list f))))
1306 (flonum-to-digits x)))
1307 (let ((e (+ e (or scale 0)))
1308 (stream (make-string-output-stream)))
1311 (write-string string stream :end (min (length string)
1313 (dotimes (i (- e (length string)))
1314 (write-char #\0 stream))
1315 (write-char #\. stream)
1316 (write-string string stream :start (min (length
1319 (dotimes (i (- fdigits
1321 (min (length string) e))))
1322 (write-char #\0 stream))))
1324 (write-string "." stream)
1326 (write-char #\0 stream))
1327 (write-string string stream)
1329 (dotimes (i (+ fdigits e (- (length string))))
1330 (write-char #\0 stream)))))
1331 (let ((string (get-output-stream-string stream)))
1332 (values string (length string)
1333 (char= (char string 0) #\.)
1334 (char= (char string (1- (length string))) #\.)
1335 (position #\. string))))))))
1337 ;;; implementation of figure 1 from Burger and Dybvig, 1996. As the
1338 ;;; implementation of the Dragon from Classic CMUCL (and previously in
1339 ;;; SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF
1340 ;;; ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE PAPER!",
1341 ;;; and in this case we have to add that even reading the paper might
1342 ;;; not bring immediate illumination as CSR has attempted to turn
1343 ;;; idiomatic Scheme into idiomatic Lisp.
1345 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1346 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1347 ;;; an improved algorithm, but CSR ran out of energy.
1349 ;;; possible extension for the enthusiastic: printing floats in bases
1350 ;;; other than base 10.
1351 (defconstant single-float-min-e
1352 (- 2 sb!vm:single-float-bias sb!vm:single-float-digits))
1353 (defconstant double-float-min-e
1354 (- 2 sb!vm:double-float-bias sb!vm:double-float-digits))
1356 (defconstant long-float-min-e
1357 (nth-value 1 (decode-float least-positive-long-float)))
1359 (defun flonum-to-digits (v &optional position relativep)
1360 (let ((print-base 10) ; B
1362 (float-digits (float-digits v)) ; p
1363 (digit-characters "0123456789")
1366 (single-float single-float-min-e)
1367 (double-float double-float-min-e)
1369 (long-float long-float-min-e))))
1370 (multiple-value-bind (f e)
1371 (integer-decode-float v)
1372 (let (;; FIXME: these even tests assume normal IEEE rounding
1373 ;; mode. I wonder if we should cater for non-normal?
1376 (with-push-char (:element-type base-char)
1377 (labels ((scale (r s m+ m-)
1379 (s s (* s print-base)))
1380 ((not (or (> (+ r m+) s)
1381 (and high-ok (= (+ r m+) s))))
1383 (r r (* r print-base))
1384 (m+ m+ (* m+ print-base))
1385 (m- m- (* m- print-base)))
1386 ((not (or (< (* (+ r m+) print-base) s)
1388 (= (* (+ r m+) print-base) s))))
1389 (values k (generate r s m+ m-)))))))
1390 (generate (r s m+ m-)
1394 (setf (values d r) (truncate (* r print-base) s))
1395 (setf m+ (* m+ print-base))
1396 (setf m- (* m- print-base))
1397 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1398 (setf tc2 (or (> (+ r m+) s)
1399 (and high-ok (= (+ r m+) s))))
1402 (push-char (char digit-characters d))
1406 ((and (not tc1) tc2) (1+ d))
1407 ((and tc1 (not tc2)) d)
1409 (if (< (* r 2) s) d (1+ d))))))
1410 (push-char (char digit-characters d))
1411 (return-from generate (get-pushed-string))))))
1415 (let* ((be (expt float-radix e))
1416 (be1 (* be float-radix)))
1417 (if (/= f (expt float-radix (1- float-digits)))
1427 (/= f (expt float-radix (1- float-digits))))
1429 s (* (expt float-radix (- e)) 2)
1432 (setf r (* f float-radix 2)
1433 s (* (expt float-radix (- 1 e)) 2)
1438 (aver (> position 0))
1440 ;; running out of letters here
1441 (l 1 (* l print-base)))
1442 ((>= (* s l) (+ r m+))
1444 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1445 (* s (expt print-base k)))
1446 (setf position (- k position))
1447 (setf position (- k position 1))))))
1448 (let ((low (max m- (/ (* s (expt print-base position)) 2)))
1449 (high (max m+ (/ (* s (expt print-base position)) 2))))
1456 (values r s m+ m-))))
1457 (multiple-value-bind (r s m+ m-) (initialize)
1458 (scale r s m+ m-))))))))
1460 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1461 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1462 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1463 ;;; original number. There may be some loss of precision due the
1464 ;;; floating point representation. The scaling is always done with
1465 ;;; long float arithmetic, which helps printing of lesser precisions
1466 ;;; as well as avoiding generic arithmetic.
1468 ;;; When computing our initial scale factor using EXPT, we pull out
1469 ;;; part of the computation to avoid over/under flow. When
1470 ;;; denormalized, we must pull out a large factor, since there is more
1471 ;;; negative exponent range than positive range.
1473 (eval-when (:compile-toplevel :execute)
1474 (setf *read-default-float-format*
1475 #!+long-float 'long-float #!-long-float 'double-float))
1476 (defun scale-exponent (original-x)
1477 (let* ((x (coerce original-x 'long-float)))
1478 (multiple-value-bind (sig exponent) (decode-float x)
1479 (declare (ignore sig))
1481 (values (float 0.0e0 original-x) 1)
1482 (let* ((ex (locally (declare (optimize (safety 0)))
1485 ;; this is the closest double float
1486 ;; to (log 2 10), but expressed so
1487 ;; that we're not vulnerable to the
1488 ;; host lisp's interpretation of
1489 ;; arithmetic. (FIXME: it turns
1490 ;; out that sbcl itself is off by 1
1491 ;; ulp in this value, which is a
1492 ;; little unfortunate.)
1495 (sb!kernel:make-double-float 1070810131 1352628735)
1497 (error "(log 2 10) not computed")))))))
1499 (if (float-denormalized-p x)
1501 (* x 1.0e16 (expt 10.0e0 (- (- ex) 16)))
1503 (* x 1.0e18 (expt 10.0e0 (- (- ex) 18)))
1504 (* x 10.0e0 (expt 10.0e0 (- (- ex) 1))))
1505 (/ x 10.0e0 (expt 10.0e0 (1- ex))))))
1506 (do ((d 10.0e0 (* d 10.0e0))
1510 (do ((m 10.0e0 (* m 10.0e0))
1514 (values (float z original-x) ex))
1515 (declare (long-float m) (integer ex))))
1516 (declare (long-float d))))))))
1517 (eval-when (:compile-toplevel :execute)
1518 (setf *read-default-float-format* 'single-float))
1520 ;;;; entry point for the float printer
1522 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1523 ;;; argument is printed free-format, in either exponential or
1524 ;;; non-exponential notation, depending on its magnitude.
1526 ;;; NOTE: When a number is to be printed in exponential format, it is
1527 ;;; scaled in floating point. Since precision may be lost in this
1528 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1529 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1530 ;;; extensive computations with integers of similar magnitude to that
1531 ;;; of the number being printed. For large exponents, the bignums
1532 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1533 ;;; fast and the exponent range is not too large, then it might become
1534 ;;; attractive to handle exponential notation with the same accuracy
1535 ;;; as non-exponential notation, using the method described in the
1536 ;;; Steele and White paper.
1538 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1539 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1540 ;;; probably (a) implement the optimizations suggested by Burger and
1541 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1542 ;;; fixed-format printing.
1544 ;;; Print the appropriate exponent marker for X and the specified exponent.
1545 (defun print-float-exponent (x exp stream)
1546 (declare (type float x) (type integer exp) (type stream stream))
1547 (let ((*print-radix* nil))
1548 (if (typep x *read-default-float-format*)
1550 (format stream "e~D" exp))
1551 (format stream "~C~D"
1559 (defun output-float-infinity (x stream)
1560 (declare (float x) (stream stream))
1562 (write-string "#." stream))
1564 (error 'print-not-readable :object x))
1566 (write-string "#<" stream)))
1567 (write-string "SB-EXT:" stream)
1568 (write-string (symbol-name (float-format-name x)) stream)
1569 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1571 (write-string "INFINITY" stream)
1573 (write-string ">" stream)))
1575 (defun output-float-nan (x stream)
1576 (print-unreadable-object (x stream)
1577 (princ (float-format-name x) stream)
1578 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1579 (write-string " NaN" stream)))
1581 ;;; the function called by OUTPUT-OBJECT to handle floats
1582 (defun output-float (x stream)
1584 ((float-infinity-p x)
1585 (output-float-infinity x stream))
1587 (output-float-nan x stream))
1589 (let ((x (cond ((minusp (float-sign x))
1590 (write-char #\- stream)
1596 (write-string "0.0" stream)
1597 (print-float-exponent x 0 stream))
1599 (output-float-aux x stream -3 8)))))))
1601 (defun output-float-aux (x stream e-min e-max)
1602 (multiple-value-bind (e string)
1603 (flonum-to-digits x)
1608 (write-string string stream :end (min (length string) e))
1609 (dotimes (i (- e (length string)))
1610 (write-char #\0 stream))
1611 (write-char #\. stream)
1612 (write-string string stream :start (min (length string) e))
1613 (when (<= (length string) e)
1614 (write-char #\0 stream))
1615 (print-float-exponent x 0 stream))
1617 (write-string "0." stream)
1619 (write-char #\0 stream))
1620 (write-string string stream)
1621 (print-float-exponent x 0 stream))))
1622 (t (write-string string stream :end 1)
1623 (write-char #\. stream)
1624 (write-string string stream :start 1)
1625 (print-float-exponent x (1- e) stream)))))
1627 ;;;; other leaf objects
1629 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1630 ;;; the character name or the character in the #\char format.
1631 (defun output-character (char stream)
1632 (if (or *print-escape* *print-readably*)
1633 (let ((graphicp (and (graphic-char-p char)
1634 (standard-char-p char)))
1635 (name (char-name char)))
1636 (write-string "#\\" stream)
1637 (if (and name (not graphicp))
1638 (quote-string name stream)
1639 (write-char char stream)))
1640 (write-char char stream)))
1642 (defun output-sap (sap stream)
1643 (declare (type system-area-pointer sap))
1645 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1647 (print-unreadable-object (sap stream)
1648 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1650 (defun output-weak-pointer (weak-pointer stream)
1651 (declare (type weak-pointer weak-pointer))
1652 (print-unreadable-object (weak-pointer stream)
1653 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1655 (write-string "weak pointer: " stream)
1656 (write value :stream stream))
1658 (write-string "broken weak pointer" stream))))))
1660 (defun output-code-component (component stream)
1661 (print-unreadable-object (component stream :identity t)
1662 (let ((dinfo (%code-debug-info component)))
1663 (cond ((eq dinfo :bogus-lra)
1664 (write-string "bogus code object" stream))
1666 (write-string "code object" stream)
1668 (write-char #\space stream)
1669 (output-object (sb!c::debug-info-name dinfo) stream)))))))
1671 (defun output-lra (lra stream)
1672 (print-unreadable-object (lra stream :identity t)
1673 (write-string "return PC object" stream)))
1675 (defun output-fdefn (fdefn stream)
1676 (print-unreadable-object (fdefn stream)
1677 (write-string "FDEFINITION object for " stream)
1678 (output-object (fdefn-name fdefn) stream)))
1682 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1683 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1685 ;;; The definition here is a simple temporary placeholder. It will be
1686 ;;; overwritten by a smarter version (capable of calling generic
1687 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1688 (defun printed-as-funcallable-standard-class (object stream)
1689 (declare (ignore object stream))
1692 (defun output-fun (object stream)
1693 (let* ((*print-length* 3) ; in case we have to..
1694 (*print-level* 3) ; ..print an interpreted function definition
1695 (name (%fun-name object))
1696 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
1697 (eq (fdefinition name) object))))
1698 (print-unreadable-object (object stream :identity (not proper-name-p))
1699 (format stream "~:[FUNCTION~;CLOSURE~]~@[ ~S~]"
1703 ;;;; catch-all for unknown things
1705 (defun output-random (object stream)
1706 (print-unreadable-object (object stream :identity t)
1707 (let ((lowtag (lowtag-of object)))
1709 (#.sb!vm:other-pointer-lowtag
1710 (let ((widetag (widetag-of object)))
1712 (#.sb!vm:value-cell-header-widetag
1713 (write-string "value cell " stream)
1714 (output-object (value-cell-ref object) stream))
1716 (write-string "unknown pointer object, widetag=" stream)
1717 (let ((*print-base* 16) (*print-radix* t))
1718 (output-integer widetag stream))))))
1719 ((#.sb!vm:fun-pointer-lowtag
1720 #.sb!vm:instance-pointer-lowtag
1721 #.sb!vm:list-pointer-lowtag)
1722 (write-string "unknown pointer object, lowtag=" stream)
1723 (let ((*print-base* 16) (*print-radix* t))
1724 (output-integer lowtag stream)))
1726 (case (widetag-of object)
1727 (#.sb!vm:unbound-marker-widetag
1728 (write-string "unbound marker" stream))
1730 (write-string "unknown immediate object, lowtag=" stream)
1731 (let ((*print-base* 2) (*print-radix* t))
1732 (output-integer lowtag stream))
1733 (write-string ", widetag=" stream)
1734 (let ((*print-base* 16) (*print-radix* t))
1735 (output-integer (widetag-of object) stream)))))))))