3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably* nil
21 "If true, all objects will printed readably. If readable printing is
22 impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape* T
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base* 10.
33 "the output base for RATIONALs (including integers)")
34 (defvar *print-radix* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines* nil
59 "the maximum number of lines to print per object")
60 (defvar *print-right-margin* nil
62 "the position of the right margin in ems (for pretty-printing)")
63 (defvar *print-miser-width* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch* nil
71 "the pprint-dispatch-table that controls how to pretty-print objects")
73 (defmacro with-standard-io-syntax (&body body)
75 "Bind the reader and printer control variables to values that enable READ
76 to reliably read the results of PRINT. These values are:
77 *PACKAGE* the COMMON-LISP-USER package
87 *PRINT-MISER-WIDTH* NIL
91 *PRINT-RIGHT-MARGIN* NIL
93 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
96 *READTABLE* the standard readtable"
97 `(%with-standard-io-syntax (lambda () ,@body)))
99 (defun %with-standard-io-syntax (function)
100 (declare (type function function))
101 (let ((*package* (find-package "COMMON-LISP-USER"))
104 (*print-case* :upcase)
111 (*print-miser-width* nil)
115 (*print-right-margin* nil)
117 (*read-default-float-format* 'single-float)
119 (*read-suppress* nil)
120 ;; FIXME: It doesn't seem like a good idea to expose our
121 ;; disaster-recovery *STANDARD-READTABLE* here. What if some
122 ;; enterprising user corrupts the disaster-recovery readtable
123 ;; by doing destructive readtable operations within
124 ;; WITH-STANDARD-IO-SYNTAX? Perhaps we should do a
125 ;; COPY-READTABLE? The consing would be unfortunate, though.
126 (*readtable* *standard-readtable*))
129 ;;;; routines to print objects
131 (defun write (object &key
132 ((:stream stream) *standard-output*)
133 ((:escape *print-escape*) *print-escape*)
134 ((:radix *print-radix*) *print-radix*)
135 ((:base *print-base*) *print-base*)
136 ((:circle *print-circle*) *print-circle*)
137 ((:pretty *print-pretty*) *print-pretty*)
138 ((:level *print-level*) *print-level*)
139 ((:length *print-length*) *print-length*)
140 ((:case *print-case*) *print-case*)
141 ((:array *print-array*) *print-array*)
142 ((:gensym *print-gensym*) *print-gensym*)
143 ((:readably *print-readably*) *print-readably*)
144 ((:right-margin *print-right-margin*)
145 *print-right-margin*)
146 ((:miser-width *print-miser-width*)
148 ((:lines *print-lines*) *print-lines*)
149 ((:pprint-dispatch *print-pprint-dispatch*)
150 *print-pprint-dispatch*))
152 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*"
153 (output-object object (out-synonym-of stream))
156 (defun prin1 (object &optional stream)
158 "Output a mostly READable printed representation of OBJECT on the specified
160 (let ((*print-escape* T))
161 (output-object object (out-synonym-of stream)))
164 (defun princ (object &optional stream)
166 "Output an aesthetic but not necessarily READable printed representation
167 of OBJECT on the specified STREAM."
168 (let ((*print-escape* NIL)
169 (*print-readably* NIL))
170 (output-object object (out-synonym-of stream)))
173 (defun print (object &optional stream)
175 "Output a newline, the mostly READable printed representation of OBJECT, and
176 space to the specified STREAM."
177 (let ((stream (out-synonym-of stream)))
179 (prin1 object stream)
180 (write-char #\space stream)
183 (defun pprint (object &optional stream)
185 "Prettily output OBJECT preceded by a newline."
186 (let ((*print-pretty* t)
188 (stream (out-synonym-of stream)))
190 (output-object object stream))
193 (defun write-to-string
195 ((:escape *print-escape*) *print-escape*)
196 ((:radix *print-radix*) *print-radix*)
197 ((:base *print-base*) *print-base*)
198 ((:circle *print-circle*) *print-circle*)
199 ((:pretty *print-pretty*) *print-pretty*)
200 ((:level *print-level*) *print-level*)
201 ((:length *print-length*) *print-length*)
202 ((:case *print-case*) *print-case*)
203 ((:array *print-array*) *print-array*)
204 ((:gensym *print-gensym*) *print-gensym*)
205 ((:readably *print-readably*) *print-readably*)
206 ((:right-margin *print-right-margin*) *print-right-margin*)
207 ((:miser-width *print-miser-width*) *print-miser-width*)
208 ((:lines *print-lines*) *print-lines*)
209 ((:pprint-dispatch *print-pprint-dispatch*)
210 *print-pprint-dispatch*))
212 "Return the printed representation of OBJECT as a string."
213 (stringify-object object))
215 (defun prin1-to-string (object)
217 "Return the printed representation of OBJECT as a string with
219 (stringify-object object t))
221 (defun princ-to-string (object)
223 "Return the printed representation of OBJECT as a string with
225 (stringify-object object nil))
227 ;;; This produces the printed representation of an object as a string.
228 ;;; The few ...-TO-STRING functions above call this.
229 (defvar *string-output-streams* ())
230 (defun stringify-object (object &optional (*print-escape* *print-escape*))
231 (let ((stream (if *string-output-streams*
232 (pop *string-output-streams*)
233 (make-string-output-stream))))
234 (setup-printer-state)
235 (output-object object stream)
237 (get-output-stream-string stream)
238 (push stream *string-output-streams*))))
240 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
242 ;;; guts of PRINT-UNREADABLE-OBJECT
243 (defun %print-unreadable-object (object stream type identity body)
244 (declare (type (or null function) body))
245 (when *print-readably*
246 (error 'print-not-readable :object object))
247 (flet ((print-description ()
249 (write (type-of object) :stream stream :circle nil
250 :level nil :length nil)
251 (when (or body identity)
252 (write-char #\space stream)
253 (pprint-newline :fill stream)))
258 (write-char #\space stream)
259 (pprint-newline :fill stream))
260 (write-char #\{ stream)
261 (write (get-lisp-obj-address object) :stream stream
263 (write-char #\} stream))))
264 (cond ((print-pretty-on-stream-p stream)
265 ;; Since we're printing prettily on STREAM, format the
266 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
267 ;; not rebind the stream when it is already a pretty stream,
268 ;; so output from the body will go to the same stream.
269 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
270 (print-description)))
272 (write-string "#<" stream)
274 (write-char #\> stream))))
277 ;;;; circularity detection stuff
279 ;;; When *PRINT-CIRCLE* is T, this gets bound to a hash table that
280 ;;; (eventually) ends up with entries for every object printed. When
281 ;;; we are initially looking for circularities, we enter a T when we
282 ;;; find an object for the first time, and a 0 when we encounter an
283 ;;; object a second time around. When we are actually printing, the 0
284 ;;; entries get changed to the actual marker value when they are first
286 (defvar *circularity-hash-table* nil)
288 ;;; When NIL, we are just looking for circularities. After we have
289 ;;; found them all, this gets bound to 0. Then whenever we need a new
290 ;;; marker, it is incremented.
291 (defvar *circularity-counter* nil)
293 ;;; Check to see whether OBJECT is a circular reference, and return
294 ;;; something non-NIL if it is. If ASSIGN is T, then the number to use
295 ;;; in the #n= and #n# noise is assigned at this time.
296 ;;; If ASSIGN is true, reference bookkeeping will only be done for
297 ;;; existing entries, no new references will be recorded!
299 ;;; Note: CHECK-FOR-CIRCULARITY must be called *exactly* once with
300 ;;; ASSIGN true, or the circularity detection noise will get confused
301 ;;; about when to use #n= and when to use #n#. If this returns non-NIL
302 ;;; when ASSIGN is true, then you must call HANDLE-CIRCULARITY on it.
303 ;;; If CHECK-FOR-CIRCULARITY returns :INITIATE as the second value,
304 ;;; you need to initiate the circularity detection noise, e.g. bind
305 ;;; *CIRCULARITY-HASH-TABLE* and *CIRCULARITY-COUNTER* to suitable values
306 ;;; (see #'OUTPUT-OBJECT for an example).
307 (defun check-for-circularity (object &optional assign)
308 (cond ((null *print-circle*)
309 ;; Don't bother, nobody cares.
311 ((null *circularity-hash-table*)
312 (values nil :initiate))
313 ((null *circularity-counter*)
314 (ecase (gethash object *circularity-hash-table*)
317 (setf (gethash object *circularity-hash-table*) t)
318 ;; We need to keep looking.
322 (setf (gethash object *circularity-hash-table*) 0)
323 ;; It's a circular reference.
326 ;; It's a circular reference.
329 (let ((value (gethash object *circularity-hash-table*)))
332 ;; If NIL, we found an object that wasn't there the
333 ;; first time around. If T, this object appears exactly
334 ;; once. Either way, just print the thing without any
335 ;; special processing. Note: you might argue that
336 ;; finding a new object means that something is broken,
337 ;; but this can happen. If someone uses the ~@<...~:>
338 ;; format directive, it conses a new list each time
339 ;; though format (i.e. the &REST list), so we will have
344 (let ((value (incf *circularity-counter*)))
345 ;; first occurrence of this object: Set the counter.
346 (setf (gethash object *circularity-hash-table*) value)
350 ;; second or later occurrence
353 ;;; Handle the results of CHECK-FOR-CIRCULARITY. If this returns T then
354 ;;; you should go ahead and print the object. If it returns NIL, then
355 ;;; you should blow it off.
356 (defun handle-circularity (marker stream)
359 ;; Someone forgot to initiate circularity detection.
360 (let ((*print-circle* nil))
361 (error "trying to use CHECK-FOR-CIRCULARITY when ~
362 circularity checking isn't initiated")))
364 ;; It's a second (or later) reference to the object while we are
365 ;; just looking. So don't bother groveling it again.
368 (write-char #\# stream)
369 (let ((*print-base* 10) (*print-radix* nil))
370 (cond ((minusp marker)
371 (output-integer (- marker) stream)
372 (write-char #\# stream)
375 (output-integer marker stream)
376 (write-char #\= stream)
379 ;;;; OUTPUT-OBJECT -- the main entry point
381 ;;; Objects whose print representation identifies them EQLly don't
382 ;;; need to be checked for circularity.
383 (defun uniquely-identified-by-print-p (x)
387 (symbol-package x))))
389 ;;; Output OBJECT to STREAM observing all printer control variables.
390 (defun output-object (object stream)
391 (labels ((print-it (stream)
393 (sb!pretty:output-pretty-object object stream)
394 (output-ugly-object object stream)))
396 (multiple-value-bind (marker initiate)
397 (check-for-circularity object t)
398 ;; initialization of the circulation detect noise ...
399 (if (eq initiate :initiate)
400 (let ((*circularity-hash-table*
401 (make-hash-table :test 'eq)))
402 (check-it (make-broadcast-stream))
403 (let ((*circularity-counter* 0))
407 (when (handle-circularity marker stream)
409 (print-it stream))))))
410 (cond (;; Maybe we don't need to bother with circularity detection.
411 (or (not *print-circle*)
412 (uniquely-identified-by-print-p object))
414 (;; If we have already started circularity detection, this
415 ;; object might be a shared reference. If we have not, then
416 ;; if it is a compound object it might contain a circular
417 ;; reference to itself or multiple shared references.
418 (or *circularity-hash-table*
419 (compound-object-p object))
422 (print-it stream)))))
424 ;;; a hack to work around recurring gotchas with printing while
425 ;;; DEFGENERIC PRINT-OBJECT is being built
427 ;;; (hopefully will go away naturally when CLOS moves into cold init)
428 (defvar *print-object-is-disabled-p*)
430 ;;; Output OBJECT to STREAM observing all printer control variables
431 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
432 ;;; then the pretty printer will be used for any components of OBJECT,
433 ;;; just not for OBJECT itself.
434 (defun output-ugly-object (object stream)
436 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
437 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
438 ;; PRINT-OBJECT methods covering all classes. We deviate from this
439 ;; by using PRINT-OBJECT only when we print instance values. However,
440 ;; ANSI makes it hard to tell that we're deviating from this:
441 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
443 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
444 ;; a method on an external symbol in the CL package which is
445 ;; applicable to arg lists containing only direct instances of
446 ;; standardized classes.
447 ;; Thus, in order for the user to detect our sleaziness in conforming
448 ;; code, he has to do something relatively obscure like
449 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
451 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
452 ;; value (e.g. a Gray stream object).
453 ;; As long as no one comes up with a non-obscure way of detecting this
454 ;; sleaziness, fixing this nonconformity will probably have a low
455 ;; priority. -- WHN 2001-11-25
457 (output-integer object stream))
460 (output-symbol object stream)
461 (output-list object stream)))
463 (cond ((not (and (boundp '*print-object-is-disabled-p*)
464 *print-object-is-disabled-p*))
465 (print-object object stream))
466 ((typep object 'structure-object)
467 (default-structure-print object stream *current-level-in-print*))
469 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream))))
471 (unless (and (funcallable-instance-p object)
472 (printed-as-funcallable-standard-class object stream))
473 (output-fun object stream)))
475 (output-symbol object stream))
479 (output-integer object stream))
481 (output-float object stream))
483 (output-ratio object stream))
485 (output-ratio object stream))
487 (output-complex object stream))))
489 (output-character object stream))
491 (output-vector object stream))
493 (output-array object stream))
495 (output-sap object stream))
497 (output-weak-pointer object stream))
499 (output-lra object stream))
501 (output-code-component object stream))
503 (output-fdefn object stream))
505 (output-random object stream))))
509 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
510 ;;; time the printer was called
511 (defvar *previous-case* nil)
512 (defvar *previous-readtable-case* nil)
514 ;;; This variable contains the current definition of one of three
515 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
516 (defvar *internal-symbol-output-fun* nil)
518 ;;; This function sets the internal global symbol
519 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
520 ;;; the value of *PRINT-CASE*. See the manual for details. The print
521 ;;; buffer stream is also reset.
522 (defun setup-printer-state ()
523 (unless (and (eq *print-case* *previous-case*)
524 (eq (readtable-case *readtable*) *previous-readtable-case*))
525 (setq *previous-case* *print-case*)
526 (setq *previous-readtable-case* (readtable-case *readtable*))
527 (unless (member *print-case* '(:upcase :downcase :capitalize))
528 (setq *print-case* :upcase)
529 (error "invalid *PRINT-CASE* value: ~S" *previous-case*))
530 (unless (member *previous-readtable-case*
531 '(:upcase :downcase :invert :preserve))
532 (setf (readtable-case *readtable*) :upcase)
533 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case*))
535 (setq *internal-symbol-output-fun*
536 (case *previous-readtable-case*
539 (:upcase #'output-preserve-symbol)
540 (:downcase #'output-lowercase-symbol)
541 (:capitalize #'output-capitalize-symbol)))
544 (:upcase #'output-uppercase-symbol)
545 (:downcase #'output-preserve-symbol)
546 (:capitalize #'output-capitalize-symbol)))
547 (:preserve #'output-preserve-symbol)
548 (:invert #'output-invert-symbol)))))
550 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
551 ;;; and with any embedded |'s or \'s escaped.
552 (defun output-quoted-symbol-name (pname stream)
553 (write-char #\| stream)
554 (dotimes (index (length pname))
555 (let ((char (schar pname index)))
556 (when (or (char= char #\\) (char= char #\|))
557 (write-char #\\ stream))
558 (write-char char stream)))
559 (write-char #\| stream))
561 (defun output-symbol (object stream)
562 (if (or *print-escape* *print-readably*)
563 (let ((package (symbol-package object))
564 (name (symbol-name object)))
566 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
567 ;; requires that keywords be printed with preceding colons
568 ;; always, regardless of the value of *PACKAGE*.
569 ((eq package *keyword-package*)
570 (write-char #\: stream))
571 ;; Otherwise, if the symbol's home package is the current
572 ;; one, then a prefix is never necessary.
573 ((eq package (sane-package)))
574 ;; Uninterned symbols print with a leading #:.
576 (when (or *print-gensym* *print-readably*)
577 (write-string "#:" stream)))
579 (multiple-value-bind (symbol accessible)
580 (find-symbol name (sane-package))
581 ;; If we can find the symbol by looking it up, it need not
582 ;; be qualified. This can happen if the symbol has been
583 ;; inherited from a package other than its home package.
584 (unless (and accessible (eq symbol object))
585 (output-symbol-name (package-name package) stream)
586 (multiple-value-bind (symbol externalp)
587 (find-external-symbol name package)
588 (declare (ignore symbol))
590 (write-char #\: stream)
591 (write-string "::" stream)))))))
592 (output-symbol-name name stream))
593 (output-symbol-name (symbol-name object) stream nil)))
595 ;;; Output the string NAME as if it were a symbol name. In other
596 ;;; words, diddle its case according to *PRINT-CASE* and
598 (defun output-symbol-name (name stream &optional (maybe-quote t))
599 (declare (type simple-base-string name))
600 (setup-printer-state)
601 (if (and maybe-quote (symbol-quotep name))
602 (output-quoted-symbol-name name stream)
603 (funcall *internal-symbol-output-fun* name stream)))
605 ;;;; escaping symbols
607 ;;; When we print symbols we have to figure out if they need to be
608 ;;; printed with escape characters. This isn't a whole lot easier than
609 ;;; reading symbols in the first place.
611 ;;; For each character, the value of the corresponding element is a
612 ;;; fixnum with bits set corresponding to attributes that the
613 ;;; character has. At characters have at least one bit set, so we can
614 ;;; search for any character with a positive test.
615 (defvar *character-attributes*
616 (make-array char-code-limit
617 :element-type '(unsigned-byte 16)
619 (declaim (type (simple-array (unsigned-byte 16) (#.char-code-limit))
620 *character-attributes*))
622 ;;; constants which are a bit-mask for each interesting character attribute
623 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
624 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
625 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
626 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
627 (defconstant sign-attribute (ash 1 4)) ; +-
628 (defconstant extension-attribute (ash 1 5)) ; ^_
629 (defconstant dot-attribute (ash 1 6)) ; .
630 (defconstant slash-attribute (ash 1 7)) ; /
631 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
633 (eval-when (:compile-toplevel :load-toplevel :execute)
635 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
636 ;;; that don't need to be escaped (according to READTABLE-CASE.)
637 (defparameter *attribute-names*
638 `((number . number-attribute) (lowercase . lowercase-attribute)
639 (uppercase . uppercase-attribute) (letter . letter-attribute)
640 (sign . sign-attribute) (extension . extension-attribute)
641 (dot . dot-attribute) (slash . slash-attribute)
642 (other . other-attribute) (funny . funny-attribute)))
646 (flet ((set-bit (char bit)
647 (let ((code (char-code char)))
648 (setf (aref *character-attributes* code)
649 (logior bit (aref *character-attributes* code))))))
651 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
653 (set-bit char other-attribute))
656 (set-bit (digit-char i) number-attribute))
658 (do ((code (char-code #\A) (1+ code))
659 (end (char-code #\Z)))
661 (declare (fixnum code end))
662 (set-bit (code-char code) uppercase-attribute)
663 (set-bit (char-downcase (code-char code)) lowercase-attribute))
665 (set-bit #\- sign-attribute)
666 (set-bit #\+ sign-attribute)
667 (set-bit #\^ extension-attribute)
668 (set-bit #\_ extension-attribute)
669 (set-bit #\. dot-attribute)
670 (set-bit #\/ slash-attribute)
672 ;; Mark anything not explicitly allowed as funny.
673 (dotimes (i char-code-limit)
674 (when (zerop (aref *character-attributes* i))
675 (setf (aref *character-attributes* i) funny-attribute))))
677 ;;; For each character, the value of the corresponding element is the
678 ;;; lowest base in which that character is a digit.
679 (defvar *digit-bases*
680 (make-array char-code-limit
681 :element-type '(unsigned-byte 8)
682 :initial-element 36))
683 (declaim (type (simple-array (unsigned-byte 8) (#.char-code-limit))
687 (let ((char (digit-char i 36)))
688 (setf (aref *digit-bases* (char-code char)) i)))
690 ;;; A FSM-like thingie that determines whether a symbol is a potential
691 ;;; number or has evil characters in it.
692 (defun symbol-quotep (name)
693 (declare (simple-string name))
694 (macrolet ((advance (tag &optional (at-end t))
697 ,(if at-end '(go TEST-SIGN) '(return nil)))
698 (setq current (schar name index)
699 code (char-code current)
700 bits (aref attributes code))
703 (test (&rest attributes)
715 `(< (the fixnum (aref bases code)) base)))
717 (prog ((len (length name))
718 (attributes *character-attributes*)
719 (bases *digit-bases*)
722 (case (readtable-case *readtable*)
723 (:upcase uppercase-attribute)
724 (:downcase lowercase-attribute)
725 (t (logior lowercase-attribute uppercase-attribute))))
730 (declare (fixnum len base index bits code))
733 TEST-SIGN ; At end, see whether it is a sign...
734 (return (not (test sign)))
736 OTHER ; not potential number, see whether funny chars...
737 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
740 (do ((i (1- index) (1+ i)))
741 ((= i len) (return-from symbol-quotep nil))
742 (unless (zerop (logand (aref attributes (char-code (schar name i)))
744 (return-from symbol-quotep t))))
749 (advance LAST-DIGIT-ALPHA)
751 (when (test letter number other slash) (advance OTHER nil))
752 (when (char= current #\.) (advance DOT-FOUND))
753 (when (test sign extension) (advance START-STUFF nil))
756 DOT-FOUND ; leading dots...
757 (when (test letter) (advance START-DOT-MARKER nil))
758 (when (digitp) (advance DOT-DIGIT))
759 (when (test number other) (advance OTHER nil))
760 (when (test extension slash sign) (advance START-DOT-STUFF nil))
761 (when (char= current #\.) (advance DOT-FOUND))
764 START-STUFF ; leading stuff before any dot or digit
767 (advance LAST-DIGIT-ALPHA)
769 (when (test number other) (advance OTHER nil))
770 (when (test letter) (advance START-MARKER nil))
771 (when (char= current #\.) (advance START-DOT-STUFF nil))
772 (when (test sign extension slash) (advance START-STUFF nil))
775 START-MARKER ; number marker in leading stuff...
776 (when (test letter) (advance OTHER nil))
779 START-DOT-STUFF ; leading stuff containing dot without digit...
780 (when (test letter) (advance START-DOT-STUFF nil))
781 (when (digitp) (advance DOT-DIGIT))
782 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
783 (when (test number other) (advance OTHER nil))
786 START-DOT-MARKER ; number marker in leading stuff with dot..
787 ;; leading stuff containing dot without digit followed by letter...
788 (when (test letter) (advance OTHER nil))
791 DOT-DIGIT ; in a thing with dots...
792 (when (test letter) (advance DOT-MARKER))
793 (when (digitp) (advance DOT-DIGIT))
794 (when (test number other) (advance OTHER nil))
795 (when (test sign extension dot slash) (advance DOT-DIGIT))
798 DOT-MARKER ; number marker in number with dot...
799 (when (test letter) (advance OTHER nil))
802 LAST-DIGIT-ALPHA ; previous char is a letter digit...
803 (when (or (digitp) (test sign slash))
804 (advance ALPHA-DIGIT))
805 (when (test letter number other dot) (advance OTHER nil))
808 ALPHA-DIGIT ; seen a digit which is a letter...
809 (when (or (digitp) (test sign slash))
811 (advance LAST-DIGIT-ALPHA)
812 (advance ALPHA-DIGIT)))
813 (when (test letter) (advance ALPHA-MARKER))
814 (when (test number other dot) (advance OTHER nil))
817 ALPHA-MARKER ; number marker in number with alpha digit...
818 (when (test letter) (advance OTHER nil))
821 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
824 (advance ALPHA-DIGIT)
826 (when (test number other) (advance OTHER nil))
827 (when (test letter) (advance MARKER))
828 (when (test extension slash sign) (advance DIGIT))
829 (when (char= current #\.) (advance DOT-DIGIT))
832 MARKER ; number marker in a numeric number...
833 (when (test letter) (advance OTHER nil))
836 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
838 ;;;; case hackery: These functions are stored in
839 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
840 ;;;; *PRINT-CASE* and READTABLE-CASE.
843 ;;; READTABLE-CASE *PRINT-CASE*
845 ;;; :DOWNCASE :DOWNCASE
847 (defun output-preserve-symbol (pname stream)
848 (declare (simple-string pname))
849 (write-string pname stream))
852 ;;; READTABLE-CASE *PRINT-CASE*
853 ;;; :UPCASE :DOWNCASE
854 (defun output-lowercase-symbol (pname stream)
855 (declare (simple-string pname))
856 (dotimes (index (length pname))
857 (let ((char (schar pname index)))
858 (write-char (char-downcase char) stream))))
861 ;;; READTABLE-CASE *PRINT-CASE*
862 ;;; :DOWNCASE :UPCASE
863 (defun output-uppercase-symbol (pname stream)
864 (declare (simple-string pname))
865 (dotimes (index (length pname))
866 (let ((char (schar pname index)))
867 (write-char (char-upcase char) stream))))
870 ;;; READTABLE-CASE *PRINT-CASE*
871 ;;; :UPCASE :CAPITALIZE
872 ;;; :DOWNCASE :CAPITALIZE
873 (defun output-capitalize-symbol (pname stream)
874 (declare (simple-string pname))
875 (let ((prev-not-alpha t)
876 (up (eq (readtable-case *readtable*) :upcase)))
877 (dotimes (i (length pname))
878 (let ((char (char pname i)))
880 (if (or prev-not-alpha (lower-case-p char))
882 (char-downcase char))
887 (setq prev-not-alpha (not (alpha-char-p char)))))))
890 ;;; READTABLE-CASE *PRINT-CASE*
892 (defun output-invert-symbol (pname stream)
893 (declare (simple-string pname))
896 (dotimes (i (length pname))
897 (let ((ch (schar pname i)))
898 (when (both-case-p ch)
899 (if (upper-case-p ch)
901 (setq all-upper nil)))))
902 (cond (all-upper (output-lowercase-symbol pname stream))
903 (all-lower (output-uppercase-symbol pname stream))
905 (write-string pname stream)))))
909 (let ((*readtable* (copy-readtable nil)))
910 (format t "READTABLE-CASE Input Symbol-name~@
911 ----------------------------------~%")
912 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
913 (setf (readtable-case *readtable*) readtable-case)
914 (dolist (input '("ZEBRA" "Zebra" "zebra"))
915 (format t "~&:~A~16T~A~24T~A"
916 (string-upcase readtable-case)
918 (symbol-name (read-from-string input)))))))
921 (let ((*readtable* (copy-readtable nil)))
922 (format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
923 --------------------------------------------------------~%")
924 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
925 (setf (readtable-case *readtable*) readtable-case)
926 (dolist (*print-case* '(:upcase :downcase :capitalize))
927 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|))
928 (format t "~&:~A~15T:~A~29T~A~42T~A~50T~A"
929 (string-upcase readtable-case)
930 (string-upcase *print-case*)
932 (prin1-to-string symbol)
933 (princ-to-string symbol)))))))
936 ;;;; recursive objects
938 (defun output-list (list stream)
939 (descend-into (stream)
940 (write-char #\( stream)
944 (punt-print-if-too-long length stream)
945 (output-object (pop list) stream)
948 (when (or (atom list)
949 (check-for-circularity list))
950 (write-string " . " stream)
951 (output-object list stream)
953 (write-char #\space stream)
955 (write-char #\) stream)))
957 (defun output-vector (vector stream)
958 (declare (vector vector))
959 (cond ((stringp vector)
960 (cond ((or *print-escape* *print-readably*)
961 (write-char #\" stream)
962 (quote-string vector stream)
963 (write-char #\" stream))
965 (write-string vector stream))))
966 ((not (or *print-array* *print-readably*))
967 (output-terse-array vector stream))
968 ((bit-vector-p vector)
969 (write-string "#*" stream)
970 (dovector (bit vector)
971 ;; (Don't use OUTPUT-OBJECT here, since this code
972 ;; has to work for all possible *PRINT-BASE* values.)
973 (write-char (if (zerop bit) #\0 #\1) stream)))
975 (when (and *print-readably*
976 (not (array-readably-printable-p array)))
977 (error 'print-not-readable :object vector))
978 (descend-into (stream)
979 (write-string "#(" stream)
980 (dotimes (i (length vector))
982 (write-char #\space stream))
983 (punt-print-if-too-long i stream)
984 (output-object (aref vector i) stream))
985 (write-string ")" stream)))))
987 ;;; This function outputs a string quoting characters sufficiently
988 ;;; so that someone can read it in again. Basically, put a slash in
989 ;;; front of an character satisfying NEEDS-SLASH-P.
990 (defun quote-string (string stream)
991 (macrolet ((needs-slash-p (char)
992 ;; KLUDGE: We probably should look at the readtable, but just do
993 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
994 `(or (char= ,char #\\)
996 (with-array-data ((data string) (start) (end (length string)))
997 (do ((index start (1+ index)))
999 (let ((char (schar data index)))
1000 (when (needs-slash-p char) (write-char #\\ stream))
1001 (write-char char stream))))))
1003 (defun array-readably-printable-p (array)
1004 (and (eq (array-element-type array) t)
1005 (let ((zero (position 0 (array-dimensions array)))
1006 (number (position 0 (array-dimensions array)
1007 :test (complement #'eql)
1009 (or (null zero) (null number) (> zero number)))))
1011 ;;; Output the printed representation of any array in either the #< or #A
1013 (defun output-array (array stream)
1014 (if (or *print-array* *print-readably*)
1015 (output-array-guts array stream)
1016 (output-terse-array array stream)))
1018 ;;; Output the abbreviated #< form of an array.
1019 (defun output-terse-array (array stream)
1020 (let ((*print-level* nil)
1021 (*print-length* nil))
1022 (print-unreadable-object (array stream :type t :identity t))))
1024 ;;; Output the readable #A form of an array.
1025 (defun output-array-guts (array stream)
1026 (when (and *print-readably*
1027 (not (array-readably-printable-p array)))
1028 (error 'print-not-readable :object array))
1029 (write-char #\# stream)
1030 (let ((*print-base* 10))
1031 (output-integer (array-rank array) stream))
1032 (write-char #\A stream)
1033 (with-array-data ((data array) (start) (end))
1034 (declare (ignore end))
1035 (sub-output-array-guts data (array-dimensions array) stream start)))
1037 (defun sub-output-array-guts (array dimensions stream index)
1038 (declare (type (simple-array * (*)) array) (fixnum index))
1039 (cond ((null dimensions)
1040 (output-object (aref array index) stream))
1042 (descend-into (stream)
1043 (write-char #\( stream)
1044 (let* ((dimension (car dimensions))
1045 (dimensions (cdr dimensions))
1046 (count (reduce #'* dimensions)))
1047 (dotimes (i dimension)
1049 (write-char #\space stream))
1050 (punt-print-if-too-long i stream)
1051 (sub-output-array-guts array dimensions stream index)
1052 (incf index count)))
1053 (write-char #\) stream)))))
1055 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
1056 ;;; use until CLOS is set up (at which time it will be replaced with
1057 ;;; the real generic function implementation)
1058 (defun print-object (instance stream)
1059 (default-structure-print instance stream *current-level-in-print*))
1061 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1063 (defun output-integer (integer stream)
1064 ;; FIXME: This UNLESS form should be pulled out into something like
1065 ;; (SANE-PRINT-BASE), along the lines of (SANE-PACKAGE) for the
1066 ;; *PACKAGE* variable.
1067 (unless (and (fixnump *print-base*)
1068 (< 1 *print-base* 37))
1069 (let ((obase *print-base*))
1070 (setq *print-base* 10.)
1071 (error "~A is not a reasonable value for *PRINT-BASE*." obase)))
1072 (when (and (not (= *print-base* 10.))
1074 ;; First print leading base information, if any.
1075 (write-char #\# stream)
1076 (write-char (case *print-base*
1080 (T (let ((fixbase *print-base*)
1083 (sub-output-integer fixbase stream))
1086 ;; Then output a minus sign if the number is negative, then output
1087 ;; the absolute value of the number.
1088 (cond ((bignump integer) (print-bignum integer stream))
1090 (write-char #\- stream)
1091 (sub-output-integer (- integer) stream))
1093 (sub-output-integer integer stream)))
1094 ;; Print any trailing base information, if any.
1095 (if (and (= *print-base* 10.) *print-radix*)
1096 (write-char #\. stream)))
1098 (defun sub-output-integer (integer stream)
1101 ;; Recurse until you have all the digits pushed on the stack.
1102 (if (not (zerop (multiple-value-setq (quotient remainder)
1103 (truncate integer *print-base*))))
1104 (sub-output-integer quotient stream))
1105 ;; Then as each recursive call unwinds, turn the digit (in remainder)
1106 ;; into a character and output the character.
1107 (write-char (code-char (if (and (> remainder 9.)
1108 (> *print-base* 10.))
1109 (+ (char-code #\A) (- remainder 10.))
1110 (+ (char-code #\0) remainder)))
1113 ;;;; bignum printing
1115 ;;; *BASE-POWER* holds the number that we keep dividing into the
1116 ;;; bignum for each *print-base*. We want this number as close to
1117 ;;; *most-positive-fixnum* as possible, i.e. (floor (log
1118 ;;; most-positive-fixnum *print-base*)).
1119 (defparameter *base-power* (make-array 37 :initial-element nil))
1121 ;;; *FIXNUM-POWER--1* holds the number of digits for each *PRINT-BASE*
1122 ;;; that fit in the corresponding *base-power*.
1123 (defparameter *fixnum-power--1* (make-array 37 :initial-element nil))
1125 ;;; Print the bignum to the stream. We first generate the correct
1126 ;;; value for *base-power* and *fixnum-power--1* if we have not
1127 ;;; already. Then we call bignum-print-aux to do the printing.
1128 (defun print-bignum (big stream)
1129 (unless (aref *base-power* *print-base*)
1130 (do ((power-1 -1 (1+ power-1))
1131 (new-divisor *print-base* (* new-divisor *print-base*))
1132 (divisor 1 new-divisor))
1133 ((not (fixnump new-divisor))
1134 (setf (aref *base-power* *print-base*) divisor)
1135 (setf (aref *fixnum-power--1* *print-base*) power-1))))
1136 (bignum-print-aux (cond ((minusp big)
1137 (write-char #\- stream)
1140 (aref *base-power* *print-base*)
1141 (aref *fixnum-power--1* *print-base*)
1145 (defun bignum-print-aux (big divisor power-1 stream)
1146 (multiple-value-bind (newbig fix) (truncate big divisor)
1147 (if (fixnump newbig)
1148 (sub-output-integer newbig stream)
1149 (bignum-print-aux newbig divisor power-1 stream))
1150 (do ((zeros power-1 (1- zeros))
1151 (base-power *print-base* (* base-power *print-base*)))
1153 (dotimes (i zeros) (write-char #\0 stream))
1154 (sub-output-integer fix stream)))))
1156 (defun output-ratio (ratio stream)
1158 (write-char #\# stream)
1160 (2 (write-char #\b stream))
1161 (8 (write-char #\o stream))
1162 (16 (write-char #\x stream))
1163 (t (write *print-base* :stream stream :radix nil :base 10)))
1164 (write-char #\r stream))
1165 (let ((*print-radix* nil))
1166 (output-integer (numerator ratio) stream)
1167 (write-char #\/ stream)
1168 (output-integer (denominator ratio) stream)))
1170 (defun output-complex (complex stream)
1171 (write-string "#C(" stream)
1172 (output-object (realpart complex) stream)
1173 (write-char #\space stream)
1174 (output-object (imagpart complex) stream)
1175 (write-char #\) stream))
1179 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1180 ;;; most of the work for all printing of floating point numbers in the
1181 ;;; printer and in FORMAT. It converts a floating point number to a
1182 ;;; string in a free or fixed format with no exponent. The
1183 ;;; interpretation of the arguments is as follows:
1185 ;;; X - The floating point number to convert, which must not be
1187 ;;; WIDTH - The preferred field width, used to determine the number
1188 ;;; of fraction digits to produce if the FDIGITS parameter
1189 ;;; is unspecified or NIL. If the non-fraction digits and the
1190 ;;; decimal point alone exceed this width, no fraction digits
1191 ;;; will be produced unless a non-NIL value of FDIGITS has been
1192 ;;; specified. Field overflow is not considerd an error at this
1194 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1195 ;;; trailing zeroes may be introduced as needed. May be
1196 ;;; unspecified or NIL, in which case as many digits as possible
1197 ;;; are generated, subject to the constraint that there are no
1198 ;;; trailing zeroes.
1199 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1200 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1201 ;;; and cannot lose precision.
1202 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1203 ;;; number of fraction digits which will be produced, regardless
1204 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1205 ;;; the ~E format directive to prevent complete loss of
1206 ;;; significance in the printed value due to a bogus choice of
1209 ;;; Most of the optional arguments are for the benefit for FORMAT and are not
1210 ;;; used by the printer.
1213 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1214 ;;; where the results have the following interpretation:
1216 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1217 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1218 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1220 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1222 ;;; POINT-POS - The position of the digit preceding the decimal
1223 ;;; point. Zero indicates point before first digit.
1225 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1226 ;;; accuracy. Specifically, the decimal number printed is the closest
1227 ;;; possible approximation to the true value of the binary number to
1228 ;;; be printed from among all decimal representations with the same
1229 ;;; number of digits. In free-format output, i.e. with the number of
1230 ;;; digits unconstrained, it is guaranteed that all the information is
1231 ;;; preserved, so that a properly- rounding reader can reconstruct the
1232 ;;; original binary number, bit-for-bit, from its printed decimal
1233 ;;; representation. Furthermore, only as many digits as necessary to
1234 ;;; satisfy this condition will be printed.
1236 ;;; FLOAT-STRING actually generates the digits for positive numbers.
1237 ;;; The algorithm is essentially that of algorithm Dragon4 in "How to
1238 ;;; Print Floating-Point Numbers Accurately" by Steele and White. The
1239 ;;; current (draft) version of this paper may be found in
1240 ;;; [CMUC]<steele>tradix.press. DO NOT EVEN THINK OF ATTEMPTING TO
1241 ;;; UNDERSTAND THIS CODE WITHOUT READING THE PAPER!
1243 (defvar *digits* "0123456789")
1245 (defun flonum-to-string (x &optional width fdigits scale fmin)
1247 ;; Zero is a special case which FLOAT-STRING cannot handle.
1249 (let ((s (make-string (1+ fdigits) :initial-element #\0)))
1250 (setf (schar s 0) #\.)
1251 (values s (length s) t (zerop fdigits) 0))
1252 (values "." 1 t t 0)))
1254 (multiple-value-bind (sig exp) (integer-decode-float x)
1255 (let* ((precision (float-precision x))
1256 (digits (float-digits x))
1257 (fudge (- digits precision))
1258 (width (if width (max width 1) nil)))
1259 (float-string (ash sig (- fudge)) (+ exp fudge) precision width
1260 fdigits scale fmin))))))
1262 (defun float-string (fraction exponent precision width fdigits scale fmin)
1263 (let ((r fraction) (s 1) (m- 1) (m+ 1) (k 0)
1264 (digits 0) (decpnt 0) (cutoff nil) (roundup nil) u low high
1265 (digit-string (make-array 50
1266 :element-type 'base-char
1269 ;; Represent fraction as r/s, error bounds as m+/s and m-/s.
1270 ;; Rational arithmetic avoids loss of precision in subsequent
1272 (cond ((> exponent 0)
1273 (setq r (ash fraction exponent))
1274 (setq m- (ash 1 exponent))
1277 (setq s (ash 1 (- exponent)))))
1278 ;; Adjust the error bounds m+ and m- for unequal gaps.
1279 (when (= fraction (ash 1 precision))
1280 (setq m+ (ash m+ 1))
1283 ;; Scale value by requested amount, and update error bounds.
1286 (let ((scale-factor (expt 10 (- scale))))
1287 (setq s (* s scale-factor)))
1288 (let ((scale-factor (expt 10 scale)))
1289 (setq r (* r scale-factor))
1290 (setq m+ (* m+ scale-factor))
1291 (setq m- (* m- scale-factor)))))
1292 ;; Scale r and s and compute initial k, the base 10 logarithm of r.
1294 ((>= r (ceiling s 10)))
1298 (setq m+ (* m+ 10)))
1301 ((< (+ (ash r 1) m+) (ash s 1)))
1304 ;; Determine number of fraction digits to generate.
1306 ;; Use specified number of fraction digits.
1307 (setq cutoff (- fdigits))
1308 ;;don't allow less than fmin fraction digits
1309 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin))))
1311 ;; Use as many fraction digits as width will permit but
1312 ;; force at least fmin digits even if width will be
1315 (setq cutoff (- 1 width))
1316 (setq cutoff (1+ (- k width))))
1317 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin)))))
1318 ;; If we decided to cut off digit generation before precision
1319 ;; has been exhausted, rounding the last digit may cause a carry
1320 ;; propagation. We can prevent this, preserving left-to-right
1321 ;; digit generation, with a few magical adjustments to m- and
1322 ;; m+. Of course, correct rounding is also preserved.
1323 (when (or fdigits width)
1324 (let ((a (- cutoff k))
1327 (dotimes (i a) (setq y (* y 10)))
1328 (dotimes (i (- a)) (setq y (ceiling y 10))))
1329 (setq m- (max y m-))
1330 (setq m+ (max y m+))
1331 (when (= m+ y) (setq roundup t))))
1332 (when (< (+ (ash r 1) m+) (ash s 1)) (return)))
1333 ;; Zero-fill before fraction if no integer part.
1335 (setq decpnt digits)
1336 (vector-push-extend #\. digit-string)
1338 (incf digits) (vector-push-extend #\0 digit-string)))
1339 ;; Generate the significant digits.
1343 (vector-push-extend #\. digit-string)
1344 (setq decpnt digits))
1345 (multiple-value-setq (u r) (truncate (* r 10) s))
1348 (setq low (< (ash r 1) m-))
1350 (setq high (>= (ash r 1) (- (ash s 1) m+)))
1351 (setq high (> (ash r 1) (- (ash s 1) m+))))
1352 ;; Stop when either precision is exhausted or we have printed as
1353 ;; many fraction digits as permitted.
1354 (when (or low high (and cutoff (<= k cutoff))) (return))
1355 (vector-push-extend (char *digits* u) digit-string)
1357 ;; If cutoff occurred before first digit, then no digits are
1358 ;; generated at all.
1359 (when (or (not cutoff) (>= k cutoff))
1360 ;; Last digit may need rounding
1361 (vector-push-extend (char *digits*
1362 (cond ((and low (not high)) u)
1363 ((and high (not low)) (1+ u))
1364 (t (if (<= (ash r 1) s) u (1+ u)))))
1367 ;; Zero-fill after integer part if no fraction.
1369 (dotimes (i k) (incf digits) (vector-push-extend #\0 digit-string))
1370 (vector-push-extend #\. digit-string)
1371 (setq decpnt digits))
1372 ;; Add trailing zeroes to pad fraction if fdigits specified.
1374 (dotimes (i (- fdigits (- digits decpnt)))
1376 (vector-push-extend #\0 digit-string)))
1378 (values digit-string (1+ digits) (= decpnt 0) (= decpnt digits) decpnt)))
1380 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1381 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1382 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1383 ;;; original number. There may be some loss of precision due the
1384 ;;; floating point representation. The scaling is always done with
1385 ;;; long float arithmetic, which helps printing of lesser precisions
1386 ;;; as well as avoiding generic arithmetic.
1388 ;;; When computing our initial scale factor using EXPT, we pull out
1389 ;;; part of the computation to avoid over/under flow. When
1390 ;;; denormalized, we must pull out a large factor, since there is more
1391 ;;; negative exponent range than positive range.
1392 (defun scale-exponent (original-x)
1393 (let* ((x (coerce original-x 'long-float)))
1394 (multiple-value-bind (sig exponent) (decode-float x)
1395 (declare (ignore sig))
1397 (values (float 0.0l0 original-x) 1)
1398 (let* ((ex (round (* exponent (log 2l0 10))))
1400 (if (float-denormalized-p x)
1402 (* x 1.0l16 (expt 10.0l0 (- (- ex) 16)))
1404 (* x 1.0l18 (expt 10.0l0 (- (- ex) 18)))
1405 (* x 10.0l0 (expt 10.0l0 (- (- ex) 1))))
1406 (/ x 10.0l0 (expt 10.0l0 (1- ex))))))
1407 (do ((d 10.0l0 (* d 10.0l0))
1411 (do ((m 10.0l0 (* m 10.0l0))
1415 (values (float z original-x) ex))))))))))
1417 ;;;; entry point for the float printer
1419 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1420 ;;; argument is printed free-format, in either exponential or
1421 ;;; non-exponential notation, depending on its magnitude.
1423 ;;; NOTE: When a number is to be printed in exponential format, it is
1424 ;;; scaled in floating point. Since precision may be lost in this
1425 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1426 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1427 ;;; extensive computations with integers of similar magnitude to that
1428 ;;; of the number being printed. For large exponents, the bignums
1429 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1430 ;;; fast and the exponent range is not too large, then it might become
1431 ;;; attractive to handle exponential notation with the same accuracy
1432 ;;; as non-exponential notation, using the method described in the
1433 ;;; Steele and White paper.
1435 ;;; Print the appropriate exponent marker for X and the specified exponent.
1436 (defun print-float-exponent (x exp stream)
1437 (declare (type float x) (type integer exp) (type stream stream))
1438 (let ((*print-radix* nil)
1439 (plusp (plusp exp)))
1440 (if (typep x *read-default-float-format*)
1442 (format stream "e~:[~;+~]~D" plusp exp))
1443 (format stream "~C~:[~;+~]~D"
1451 (defun output-float-infinity (x stream)
1452 (declare (float x) (stream stream))
1454 (write-string "#." stream))
1456 (error 'print-not-readable :object x))
1458 (write-string "#<" stream)))
1459 (write-string "SB-EXT:" stream)
1460 (write-string (symbol-name (float-format-name x)) stream)
1461 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1463 (write-string "INFINITY" stream)
1465 (write-string ">" stream)))
1467 (defun output-float-nan (x stream)
1468 (print-unreadable-object (x stream)
1469 (princ (float-format-name x) stream)
1470 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1471 (write-string " NaN" stream)))
1473 ;;; the function called by OUTPUT-OBJECT to handle floats
1474 (defun output-float (x stream)
1476 ((float-infinity-p x)
1477 (output-float-infinity x stream))
1479 (output-float-nan x stream))
1481 (let ((x (cond ((minusp (float-sign x))
1482 (write-char #\- stream)
1488 (write-string "0.0" stream)
1489 (print-float-exponent x 0 stream))
1491 (output-float-aux x stream (float 1/1000 x) (float 10000000 x))))))))
1492 (defun output-float-aux (x stream e-min e-max)
1493 (if (and (>= x e-min) (< x e-max))
1495 (multiple-value-bind (str len lpoint tpoint) (flonum-to-string x)
1496 (declare (ignore len))
1497 (when lpoint (write-char #\0 stream))
1498 (write-string str stream)
1499 (when tpoint (write-char #\0 stream))
1500 (print-float-exponent x 0 stream))
1501 ;; exponential format
1502 (multiple-value-bind (f ex) (scale-exponent x)
1503 (multiple-value-bind (str len lpoint tpoint)
1504 (flonum-to-string f nil nil 1)
1505 (declare (ignore len))
1506 (when lpoint (write-char #\0 stream))
1507 (write-string str stream)
1508 (when tpoint (write-char #\0 stream))
1509 ;; Subtract out scale factor of 1 passed to FLONUM-TO-STRING.
1510 (print-float-exponent x (1- ex) stream)))))
1512 ;;;; other leaf objects
1514 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1515 ;;; the character name or the character in the #\char format.
1516 (defun output-character (char stream)
1517 (if (or *print-escape* *print-readably*)
1518 (let ((name (char-name char)))
1519 (write-string "#\\" stream)
1521 (quote-string name stream)
1522 (write-char char stream)))
1523 (write-char char stream)))
1525 (defun output-sap (sap stream)
1526 (declare (type system-area-pointer sap))
1528 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1530 (print-unreadable-object (sap stream)
1531 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1533 (defun output-weak-pointer (weak-pointer stream)
1534 (declare (type weak-pointer weak-pointer))
1535 (print-unreadable-object (weak-pointer stream)
1536 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1538 (write-string "weak pointer: " stream)
1539 (write value :stream stream))
1541 (write-string "broken weak pointer" stream))))))
1543 (defun output-code-component (component stream)
1544 (print-unreadable-object (component stream :identity t)
1545 (let ((dinfo (%code-debug-info component)))
1546 (cond ((eq dinfo :bogus-lra)
1547 (write-string "bogus code object" stream))
1549 (write-string "code object" stream)
1551 (write-char #\space stream)
1552 (output-object (sb!c::debug-info-name dinfo) stream)))))))
1554 (defun output-lra (lra stream)
1555 (print-unreadable-object (lra stream :identity t)
1556 (write-string "return PC object" stream)))
1558 (defun output-fdefn (fdefn stream)
1559 (print-unreadable-object (fdefn stream)
1560 (write-string "FDEFINITION object for " stream)
1561 (output-object (fdefn-name fdefn) stream)))
1565 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1566 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1568 ;;; The definition here is a simple temporary placeholder. It will be
1569 ;;; overwritten by a smarter version (capable of calling generic
1570 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1571 (defun printed-as-clos-funcallable-standard-class (object stream)
1572 (declare (ignore object stream))
1575 (defun output-fun (object stream)
1576 (let* ((*print-length* 3) ; in case we have to..
1577 (*print-level* 3) ; ..print an interpreted function definition
1578 ;; FIXME: This find-the-function-name idiom ought to be
1579 ;; encapsulated in a function somewhere.
1580 (name (case (fun-subtype object)
1581 (#.sb!vm:closure-header-widetag "CLOSURE")
1582 (#.sb!vm:simple-fun-header-widetag (%simple-fun-name object))
1583 (t 'no-name-available)))
1584 (identified-by-name-p (and (symbolp name)
1586 (eq (fdefinition name) object))))
1587 (print-unreadable-object (object
1589 :identity (not identified-by-name-p))
1590 (prin1 'function stream)
1591 (unless (eq name 'no-name-available)
1592 (format stream " ~S" name)))))
1594 ;;;; catch-all for unknown things
1596 (defun output-random (object stream)
1597 (print-unreadable-object (object stream :identity t)
1598 (let ((lowtag (lowtag-of object)))
1600 (#.sb!vm:other-pointer-lowtag
1601 (let ((widetag (widetag-of object)))
1603 (#.sb!vm:value-cell-header-widetag
1604 (write-string "value cell " stream)
1605 (output-object (value-cell-ref object) stream))
1607 (write-string "unknown pointer object, widetag=" stream)
1608 (let ((*print-base* 16) (*print-radix* t))
1609 (output-integer widetag stream))))))
1610 ((#.sb!vm:fun-pointer-lowtag
1611 #.sb!vm:instance-pointer-lowtag
1612 #.sb!vm:list-pointer-lowtag)
1613 (write-string "unknown pointer object, lowtag=" stream)
1614 (let ((*print-base* 16) (*print-radix* t))
1615 (output-integer lowtag stream)))
1617 (case (widetag-of object)
1618 (#.sb!vm:unbound-marker-widetag
1619 (write-string "unbound marker" stream))
1621 (write-string "unknown immediate object, lowtag=" stream)
1622 (let ((*print-base* 2) (*print-radix* t))
1623 (output-integer lowtag stream))
1624 (write-string ", widetag=" stream)
1625 (let ((*print-base* 16) (*print-radix* t))
1626 (output-integer (widetag-of object) stream)))))))))