3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably* nil
21 "If true, all objects will printed readably. If readable printing is
22 impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape* T
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base* 10.
33 "the output base for RATIONALs (including integers)")
34 (defvar *print-radix* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines* nil
59 "the maximum number of lines to print per object")
60 (defvar *print-right-margin* nil
62 "the position of the right margin in ems (for pretty-printing)")
63 (defvar *print-miser-width* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch* nil
71 "the pprint-dispatch-table that controls how to pretty-print objects")
73 (defmacro with-standard-io-syntax (&body body)
75 "Bind the reader and printer control variables to values that enable READ
76 to reliably read the results of PRINT. These values are:
77 *PACKAGE* the COMMON-LISP-USER package
87 *PRINT-MISER-WIDTH* NIL
91 *PRINT-RIGHT-MARGIN* NIL
93 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
96 *READTABLE* the standard readtable"
97 `(%with-standard-io-syntax (lambda () ,@body)))
99 (defun %with-standard-io-syntax (function)
100 (let ((*package* (find-package "COMMON-LISP-USER"))
103 (*print-case* :upcase)
110 (*print-miser-width* nil)
114 (*print-right-margin* nil)
116 (*read-default-float-format* 'single-float)
118 (*read-suppress* nil)
119 ;; FIXME: It doesn't seem like a good idea to expose our
120 ;; disaster-recovery *STANDARD-READTABLE* here. What if some
121 ;; enterprising user corrupts the disaster-recovery readtable
122 ;; by doing destructive readtable operations within
123 ;; WITH-STANDARD-IO-SYNTAX? Perhaps we should do a
124 ;; COPY-READTABLE? The consing would be unfortunate, though.
125 (*readtable* *standard-readtable*))
128 ;;;; routines to print objects
130 (defun write (object &key
131 ((:stream stream) *standard-output*)
132 ((:escape *print-escape*) *print-escape*)
133 ((:radix *print-radix*) *print-radix*)
134 ((:base *print-base*) *print-base*)
135 ((:circle *print-circle*) *print-circle*)
136 ((:pretty *print-pretty*) *print-pretty*)
137 ((:level *print-level*) *print-level*)
138 ((:length *print-length*) *print-length*)
139 ((:case *print-case*) *print-case*)
140 ((:array *print-array*) *print-array*)
141 ((:gensym *print-gensym*) *print-gensym*)
142 ((:readably *print-readably*) *print-readably*)
143 ((:right-margin *print-right-margin*)
144 *print-right-margin*)
145 ((:miser-width *print-miser-width*)
147 ((:lines *print-lines*) *print-lines*)
148 ((:pprint-dispatch *print-pprint-dispatch*)
149 *print-pprint-dispatch*))
151 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*"
152 (output-object object (out-synonym-of stream))
155 (defun prin1 (object &optional stream)
157 "Output a mostly READable printed representation of OBJECT on the specified
159 (let ((*print-escape* T))
160 (output-object object (out-synonym-of stream)))
163 (defun princ (object &optional stream)
165 "Output an aesthetic but not necessarily READable printed representation
166 of OBJECT on the specified STREAM."
167 (let ((*print-escape* NIL)
168 (*print-readably* NIL))
169 (output-object object (out-synonym-of stream)))
172 (defun print (object &optional stream)
174 "Output a newline, the mostly READable printed representation of OBJECT, and
175 space to the specified STREAM."
176 (let ((stream (out-synonym-of stream)))
178 (prin1 object stream)
179 (write-char #\space stream)
182 (defun pprint (object &optional stream)
184 "Prettily output OBJECT preceded by a newline."
185 (let ((*print-pretty* t)
187 (stream (out-synonym-of stream)))
189 (output-object object stream))
192 (defun write-to-string
194 ((:escape *print-escape*) *print-escape*)
195 ((:radix *print-radix*) *print-radix*)
196 ((:base *print-base*) *print-base*)
197 ((:circle *print-circle*) *print-circle*)
198 ((:pretty *print-pretty*) *print-pretty*)
199 ((:level *print-level*) *print-level*)
200 ((:length *print-length*) *print-length*)
201 ((:case *print-case*) *print-case*)
202 ((:array *print-array*) *print-array*)
203 ((:gensym *print-gensym*) *print-gensym*)
204 ((:readably *print-readably*) *print-readably*)
205 ((:right-margin *print-right-margin*) *print-right-margin*)
206 ((:miser-width *print-miser-width*) *print-miser-width*)
207 ((:lines *print-lines*) *print-lines*)
208 ((:pprint-dispatch *print-pprint-dispatch*)
209 *print-pprint-dispatch*))
211 "Return the printed representation of OBJECT as a string."
212 (stringify-object object))
214 (defun prin1-to-string (object)
216 "Return the printed representation of OBJECT as a string with
218 (stringify-object object t))
220 (defun princ-to-string (object)
222 "Return the printed representation of OBJECT as a string with
224 (stringify-object object nil))
226 ;;; This produces the printed representation of an object as a string.
227 ;;; The few ...-TO-STRING functions above call this.
228 (defvar *string-output-streams* ())
229 (defun stringify-object (object &optional (*print-escape* *print-escape*))
230 (let ((stream (if *string-output-streams*
231 (pop *string-output-streams*)
232 (make-string-output-stream))))
233 (setup-printer-state)
234 (output-object object stream)
236 (get-output-stream-string stream)
237 (push stream *string-output-streams*))))
239 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
241 ;;; guts of PRINT-UNREADABLE-OBJECT
242 (defun %print-unreadable-object (object stream type identity body)
243 (when *print-readably*
244 (error 'print-not-readable :object object))
245 (flet ((print-description ()
247 (write (type-of object) :stream stream :circle nil
248 :level nil :length nil)
249 (when (or body identity)
250 (write-char #\space stream)
251 (pprint-newline :fill stream)))
256 (write-char #\space stream)
257 (pprint-newline :fill stream))
258 (write-char #\{ stream)
259 (write (get-lisp-obj-address object) :stream stream
261 (write-char #\} stream))))
262 (cond ((print-pretty-on-stream-p stream)
263 ;; Since we're printing prettily on STREAM, format the
264 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
265 ;; not rebind the stream when it is already a pretty stream,
266 ;; so output from the body will go to the same stream.
267 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
268 (print-description)))
270 (write-string "#<" stream)
272 (write-char #\> stream))))
275 ;;;; circularity detection stuff
277 ;;; When *PRINT-CIRCLE* is T, this gets bound to a hash table that
278 ;;; (eventually) ends up with entries for every object printed. When
279 ;;; we are initially looking for circularities, we enter a T when we
280 ;;; find an object for the first time, and a 0 when we encounter an
281 ;;; object a second time around. When we are actually printing, the 0
282 ;;; entries get changed to the actual marker value when they are first
284 (defvar *circularity-hash-table* nil)
286 ;;; When NIL, we are just looking for circularities. After we have
287 ;;; found them all, this gets bound to 0. Then whenever we need a new
288 ;;; marker, it is incremented.
289 (defvar *circularity-counter* nil)
291 ;;; Check to see whether OBJECT is a circular reference, and return
292 ;;; something non-NIL if it is. If ASSIGN is T, then the number to use
293 ;;; in the #n= and #n# noise is assigned at this time.
294 ;;; If ASSIGN is true, reference bookkeeping will only be done for
295 ;;; existing entries, no new references will be recorded!
297 ;;; Note: CHECK-FOR-CIRCULARITY must be called *exactly* once with
298 ;;; ASSIGN true, or the circularity detection noise will get confused
299 ;;; about when to use #n= and when to use #n#. If this returns non-NIL
300 ;;; when ASSIGN is true, then you must call HANDLE-CIRCULARITY on it.
301 ;;; If CHECK-FOR-CIRCULARITY returns :INITIATE as the second value,
302 ;;; you need to initiate the circularity detection noise, e.g. bind
303 ;;; *CIRCULARITY-HASH-TABLE* and *CIRCULARITY-COUNTER* to suitable values
304 ;;; (see #'OUTPUT-OBJECT for an example).
305 (defun check-for-circularity (object &optional assign)
306 (cond ((null *print-circle*)
307 ;; Don't bother, nobody cares.
309 ((null *circularity-hash-table*)
310 (values nil :initiate))
311 ((null *circularity-counter*)
312 (ecase (gethash object *circularity-hash-table*)
315 (setf (gethash object *circularity-hash-table*) t)
316 ;; We need to keep looking.
320 (setf (gethash object *circularity-hash-table*) 0)
321 ;; It's a circular reference.
324 ;; It's a circular reference.
327 (let ((value (gethash object *circularity-hash-table*)))
330 ;; If NIL, we found an object that wasn't there the
331 ;; first time around. If T, this object appears exactly
332 ;; once. Either way, just print the thing without any
333 ;; special processing. Note: you might argue that
334 ;; finding a new object means that something is broken,
335 ;; but this can happen. If someone uses the ~@<...~:>
336 ;; format directive, it conses a new list each time
337 ;; though format (i.e. the &REST list), so we will have
342 (let ((value (incf *circularity-counter*)))
343 ;; first occurrence of this object: Set the counter.
344 (setf (gethash object *circularity-hash-table*) value)
348 ;; second or later occurrence
351 ;;; Handle the results of CHECK-FOR-CIRCULARITY. If this returns T then
352 ;;; you should go ahead and print the object. If it returns NIL, then
353 ;;; you should blow it off.
354 (defun handle-circularity (marker stream)
357 ;; Someone forgot to initiate circularity detection.
358 (let ((*print-circle* nil))
359 (error "trying to use CHECK-FOR-CIRCULARITY when ~
360 circularity checking isn't initiated")))
362 ;; It's a second (or later) reference to the object while we are
363 ;; just looking. So don't bother groveling it again.
366 (write-char #\# stream)
367 (let ((*print-base* 10) (*print-radix* nil))
368 (cond ((minusp marker)
369 (output-integer (- marker) stream)
370 (write-char #\# stream)
373 (output-integer marker stream)
374 (write-char #\= stream)
377 ;;;; OUTPUT-OBJECT -- the main entry point
379 ;;; the current pretty printer. This should be either a function that
380 ;;; takes two arguments (the object and the stream) or NIL to indicate
381 ;;; that there is no pretty printer installed.
382 (defvar *pretty-printer* nil)
384 ;;; Objects whose print representation identifies them EQLly don't
385 ;;; need to be checked for circularity.
386 (defun uniquely-identified-by-print-p (x)
390 (symbol-package x))))
392 ;;; Output OBJECT to STREAM observing all printer control variables.
393 (defun output-object (object stream)
394 (labels ((print-it (stream)
397 (funcall *pretty-printer* object stream)
398 (let ((*print-pretty* nil))
399 (output-ugly-object object stream)))
400 (output-ugly-object object stream)))
402 (multiple-value-bind (marker initiate)
403 (check-for-circularity object t)
404 ;; initialization of the circulation detect noise ...
405 (if (eq initiate :initiate)
406 (let ((*circularity-hash-table*
407 (make-hash-table :test 'eq)))
408 (check-it (make-broadcast-stream))
409 (let ((*circularity-counter* 0))
413 (when (handle-circularity marker stream)
415 (print-it stream))))))
416 (cond (;; Maybe we don't need to bother with circularity detection.
417 (or (not *print-circle*)
418 (uniquely-identified-by-print-p object))
420 (;; If we have already started circularity detection, this
421 ;; object might be a shared reference. If we have not, then
422 ;; if it is a compound object it might contain a circular
423 ;; reference to itself or multiple shared references.
424 (or *circularity-hash-table*
425 (compound-object-p object))
428 (print-it stream)))))
430 ;;; a hack to work around recurring gotchas with printing while
431 ;;; DEFGENERIC PRINT-OBJECT is being built
433 ;;; (hopefully will go away naturally when CLOS moves into cold init)
434 (defvar *print-object-is-disabled-p*)
436 ;;; Output OBJECT to STREAM observing all printer control variables
437 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
438 ;;; then the pretty printer will be used for any components of OBJECT,
439 ;;; just not for OBJECT itself.
440 (defun output-ugly-object (object stream)
442 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
443 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
444 ;; PRINT-OBJECT methods covering all classes. We deviate from this
445 ;; by using PRINT-OBJECT only when we print instance values. However,
446 ;; ANSI makes it hard to tell that we're deviating from this:
447 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
449 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
450 ;; a method on an external symbol in the CL package which is
451 ;; applicable to arg lists containing only direct instances of
452 ;; standardized classes.
453 ;; Thus, in order for the user to detect our sleaziness in conforming
454 ;; code, he has to do something relatively obscure like
455 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
457 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
458 ;; value (e.g. a Gray stream object).
459 ;; As long as no one comes up with a non-obscure way of detecting this
460 ;; sleaziness, fixing this nonconformity will probably have a low
461 ;; priority. -- WHN 2001-11-25
463 (output-integer object stream))
466 (output-symbol object stream)
467 (output-list object stream)))
469 (cond ((not (and (boundp '*print-object-is-disabled-p*)
470 *print-object-is-disabled-p*))
471 (print-object object stream))
472 ((typep object 'structure-object)
473 (default-structure-print object stream *current-level-in-print*))
475 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream))))
477 (unless (and (funcallable-instance-p object)
478 (printed-as-funcallable-standard-class object stream))
479 (output-fun object stream)))
481 (output-symbol object stream))
485 (output-integer object stream))
487 (output-float object stream))
489 (output-ratio object stream))
491 (output-ratio object stream))
493 (output-complex object stream))))
495 (output-character object stream))
497 (output-vector object stream))
499 (output-array object stream))
501 (output-sap object stream))
503 (output-weak-pointer object stream))
505 (output-lra object stream))
507 (output-code-component object stream))
509 (output-fdefn object stream))
511 (output-random object stream))))
515 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
516 ;;; time the printer was called
517 (defvar *previous-case* nil)
518 (defvar *previous-readtable-case* nil)
520 ;;; This variable contains the current definition of one of three
521 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
522 (defvar *internal-symbol-output-fun* nil)
524 ;;; This function sets the internal global symbol
525 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
526 ;;; the value of *PRINT-CASE*. See the manual for details. The print
527 ;;; buffer stream is also reset.
528 (defun setup-printer-state ()
529 (unless (and (eq *print-case* *previous-case*)
530 (eq (readtable-case *readtable*) *previous-readtable-case*))
531 (setq *previous-case* *print-case*)
532 (setq *previous-readtable-case* (readtable-case *readtable*))
533 (unless (member *print-case* '(:upcase :downcase :capitalize))
534 (setq *print-case* :upcase)
535 (error "invalid *PRINT-CASE* value: ~S" *previous-case*))
536 (unless (member *previous-readtable-case*
537 '(:upcase :downcase :invert :preserve))
538 (setf (readtable-case *readtable*) :upcase)
539 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case*))
541 (setq *internal-symbol-output-fun*
542 (case *previous-readtable-case*
545 (:upcase #'output-preserve-symbol)
546 (:downcase #'output-lowercase-symbol)
547 (:capitalize #'output-capitalize-symbol)))
550 (:upcase #'output-uppercase-symbol)
551 (:downcase #'output-preserve-symbol)
552 (:capitalize #'output-capitalize-symbol)))
553 (:preserve #'output-preserve-symbol)
554 (:invert #'output-invert-symbol)))))
556 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
557 ;;; and with any embedded |'s or \'s escaped.
558 (defun output-quoted-symbol-name (pname stream)
559 (write-char #\| stream)
560 (dotimes (index (length pname))
561 (let ((char (schar pname index)))
562 (when (or (char= char #\\) (char= char #\|))
563 (write-char #\\ stream))
564 (write-char char stream)))
565 (write-char #\| stream))
567 (defun output-symbol (object stream)
568 (if (or *print-escape* *print-readably*)
569 (let ((package (symbol-package object))
570 (name (symbol-name object)))
572 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
573 ;; requires that keywords be printed with preceding colons
574 ;; always, regardless of the value of *PACKAGE*.
575 ((eq package *keyword-package*)
576 (write-char #\: stream))
577 ;; Otherwise, if the symbol's home package is the current
578 ;; one, then a prefix is never necessary.
579 ((eq package (sane-package)))
580 ;; Uninterned symbols print with a leading #:.
582 (when (or *print-gensym* *print-readably*)
583 (write-string "#:" stream)))
585 (multiple-value-bind (symbol accessible)
586 (find-symbol name (sane-package))
587 ;; If we can find the symbol by looking it up, it need not
588 ;; be qualified. This can happen if the symbol has been
589 ;; inherited from a package other than its home package.
590 (unless (and accessible (eq symbol object))
591 (output-symbol-name (package-name package) stream)
592 (multiple-value-bind (symbol externalp)
593 (find-external-symbol name package)
594 (declare (ignore symbol))
596 (write-char #\: stream)
597 (write-string "::" stream)))))))
598 (output-symbol-name name stream))
599 (output-symbol-name (symbol-name object) stream nil)))
601 ;;; Output the string NAME as if it were a symbol name. In other
602 ;;; words, diddle its case according to *PRINT-CASE* and
604 (defun output-symbol-name (name stream &optional (maybe-quote t))
605 (declare (type simple-base-string name))
606 (setup-printer-state)
607 (if (and maybe-quote (symbol-quotep name))
608 (output-quoted-symbol-name name stream)
609 (funcall *internal-symbol-output-fun* name stream)))
611 ;;;; escaping symbols
613 ;;; When we print symbols we have to figure out if they need to be
614 ;;; printed with escape characters. This isn't a whole lot easier than
615 ;;; reading symbols in the first place.
617 ;;; For each character, the value of the corresponding element is a
618 ;;; fixnum with bits set corresponding to attributes that the
619 ;;; character has. At characters have at least one bit set, so we can
620 ;;; search for any character with a positive test.
621 (defvar *character-attributes*
622 (make-array char-code-limit
623 :element-type '(unsigned-byte 16)
625 (declaim (type (simple-array (unsigned-byte 16) (#.char-code-limit))
626 *character-attributes*))
628 ;;; constants which are a bit-mask for each interesting character attribute
629 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
630 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
631 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
632 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
633 (defconstant sign-attribute (ash 1 4)) ; +-
634 (defconstant extension-attribute (ash 1 5)) ; ^_
635 (defconstant dot-attribute (ash 1 6)) ; .
636 (defconstant slash-attribute (ash 1 7)) ; /
637 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
639 (eval-when (:compile-toplevel :load-toplevel :execute)
641 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
642 ;;; that don't need to be escaped (according to READTABLE-CASE.)
643 (defparameter *attribute-names*
644 `((number . number-attribute) (lowercase . lowercase-attribute)
645 (uppercase . uppercase-attribute) (letter . letter-attribute)
646 (sign . sign-attribute) (extension . extension-attribute)
647 (dot . dot-attribute) (slash . slash-attribute)
648 (other . other-attribute) (funny . funny-attribute)))
652 (flet ((set-bit (char bit)
653 (let ((code (char-code char)))
654 (setf (aref *character-attributes* code)
655 (logior bit (aref *character-attributes* code))))))
657 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
659 (set-bit char other-attribute))
662 (set-bit (digit-char i) number-attribute))
664 (do ((code (char-code #\A) (1+ code))
665 (end (char-code #\Z)))
667 (declare (fixnum code end))
668 (set-bit (code-char code) uppercase-attribute)
669 (set-bit (char-downcase (code-char code)) lowercase-attribute))
671 (set-bit #\- sign-attribute)
672 (set-bit #\+ sign-attribute)
673 (set-bit #\^ extension-attribute)
674 (set-bit #\_ extension-attribute)
675 (set-bit #\. dot-attribute)
676 (set-bit #\/ slash-attribute)
678 ;; Mark anything not explicitly allowed as funny.
679 (dotimes (i char-code-limit)
680 (when (zerop (aref *character-attributes* i))
681 (setf (aref *character-attributes* i) funny-attribute))))
683 ;;; For each character, the value of the corresponding element is the
684 ;;; lowest base in which that character is a digit.
685 (defvar *digit-bases*
686 (make-array char-code-limit
687 :element-type '(unsigned-byte 8)
688 :initial-element 36))
689 (declaim (type (simple-array (unsigned-byte 8) (#.char-code-limit))
693 (let ((char (digit-char i 36)))
694 (setf (aref *digit-bases* (char-code char)) i)))
696 ;;; A FSM-like thingie that determines whether a symbol is a potential
697 ;;; number or has evil characters in it.
698 (defun symbol-quotep (name)
699 (declare (simple-string name))
700 (macrolet ((advance (tag &optional (at-end t))
703 ,(if at-end '(go TEST-SIGN) '(return nil)))
704 (setq current (schar name index)
705 code (char-code current)
706 bits (aref attributes code))
709 (test (&rest attributes)
721 `(< (the fixnum (aref bases code)) base)))
723 (prog ((len (length name))
724 (attributes *character-attributes*)
725 (bases *digit-bases*)
728 (case (readtable-case *readtable*)
729 (:upcase uppercase-attribute)
730 (:downcase lowercase-attribute)
731 (t (logior lowercase-attribute uppercase-attribute))))
736 (declare (fixnum len base index bits code))
739 TEST-SIGN ; At end, see whether it is a sign...
740 (return (not (test sign)))
742 OTHER ; not potential number, see whether funny chars...
743 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
746 (do ((i (1- index) (1+ i)))
747 ((= i len) (return-from symbol-quotep nil))
748 (unless (zerop (logand (aref attributes (char-code (schar name i)))
750 (return-from symbol-quotep t))))
755 (advance LAST-DIGIT-ALPHA)
757 (when (test letter number other slash) (advance OTHER nil))
758 (when (char= current #\.) (advance DOT-FOUND))
759 (when (test sign extension) (advance START-STUFF nil))
762 DOT-FOUND ; leading dots...
763 (when (test letter) (advance START-DOT-MARKER nil))
764 (when (digitp) (advance DOT-DIGIT))
765 (when (test number other) (advance OTHER nil))
766 (when (test extension slash sign) (advance START-DOT-STUFF nil))
767 (when (char= current #\.) (advance DOT-FOUND))
770 START-STUFF ; leading stuff before any dot or digit
773 (advance LAST-DIGIT-ALPHA)
775 (when (test number other) (advance OTHER nil))
776 (when (test letter) (advance START-MARKER nil))
777 (when (char= current #\.) (advance START-DOT-STUFF nil))
778 (when (test sign extension slash) (advance START-STUFF nil))
781 START-MARKER ; number marker in leading stuff...
782 (when (test letter) (advance OTHER nil))
785 START-DOT-STUFF ; leading stuff containing dot without digit...
786 (when (test letter) (advance START-DOT-STUFF nil))
787 (when (digitp) (advance DOT-DIGIT))
788 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
789 (when (test number other) (advance OTHER nil))
792 START-DOT-MARKER ; number marker in leading stuff with dot..
793 ;; leading stuff containing dot without digit followed by letter...
794 (when (test letter) (advance OTHER nil))
797 DOT-DIGIT ; in a thing with dots...
798 (when (test letter) (advance DOT-MARKER))
799 (when (digitp) (advance DOT-DIGIT))
800 (when (test number other) (advance OTHER nil))
801 (when (test sign extension dot slash) (advance DOT-DIGIT))
804 DOT-MARKER ; number marker in number with dot...
805 (when (test letter) (advance OTHER nil))
808 LAST-DIGIT-ALPHA ; previous char is a letter digit...
809 (when (or (digitp) (test sign slash))
810 (advance ALPHA-DIGIT))
811 (when (test letter number other dot) (advance OTHER nil))
814 ALPHA-DIGIT ; seen a digit which is a letter...
815 (when (or (digitp) (test sign slash))
817 (advance LAST-DIGIT-ALPHA)
818 (advance ALPHA-DIGIT)))
819 (when (test letter) (advance ALPHA-MARKER))
820 (when (test number other dot) (advance OTHER nil))
823 ALPHA-MARKER ; number marker in number with alpha digit...
824 (when (test letter) (advance OTHER nil))
827 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
830 (advance ALPHA-DIGIT)
832 (when (test number other) (advance OTHER nil))
833 (when (test letter) (advance MARKER))
834 (when (test extension slash sign) (advance DIGIT))
835 (when (char= current #\.) (advance DOT-DIGIT))
838 MARKER ; number marker in a numeric number...
839 (when (test letter) (advance OTHER nil))
842 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
844 ;;;; case hackery: These functions are stored in
845 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
846 ;;;; *PRINT-CASE* and READTABLE-CASE.
849 ;;; READTABLE-CASE *PRINT-CASE*
851 ;;; :DOWNCASE :DOWNCASE
853 (defun output-preserve-symbol (pname stream)
854 (declare (simple-string pname))
855 (write-string pname stream))
858 ;;; READTABLE-CASE *PRINT-CASE*
859 ;;; :UPCASE :DOWNCASE
860 (defun output-lowercase-symbol (pname stream)
861 (declare (simple-string pname))
862 (dotimes (index (length pname))
863 (let ((char (schar pname index)))
864 (write-char (char-downcase char) stream))))
867 ;;; READTABLE-CASE *PRINT-CASE*
868 ;;; :DOWNCASE :UPCASE
869 (defun output-uppercase-symbol (pname stream)
870 (declare (simple-string pname))
871 (dotimes (index (length pname))
872 (let ((char (schar pname index)))
873 (write-char (char-upcase char) stream))))
876 ;;; READTABLE-CASE *PRINT-CASE*
877 ;;; :UPCASE :CAPITALIZE
878 ;;; :DOWNCASE :CAPITALIZE
879 (defun output-capitalize-symbol (pname stream)
880 (declare (simple-string pname))
881 (let ((prev-not-alpha t)
882 (up (eq (readtable-case *readtable*) :upcase)))
883 (dotimes (i (length pname))
884 (let ((char (char pname i)))
886 (if (or prev-not-alpha (lower-case-p char))
888 (char-downcase char))
893 (setq prev-not-alpha (not (alpha-char-p char)))))))
896 ;;; READTABLE-CASE *PRINT-CASE*
898 (defun output-invert-symbol (pname stream)
899 (declare (simple-string pname))
902 (dotimes (i (length pname))
903 (let ((ch (schar pname i)))
904 (when (both-case-p ch)
905 (if (upper-case-p ch)
907 (setq all-upper nil)))))
908 (cond (all-upper (output-lowercase-symbol pname stream))
909 (all-lower (output-uppercase-symbol pname stream))
911 (write-string pname stream)))))
915 (let ((*readtable* (copy-readtable nil)))
916 (format t "READTABLE-CASE Input Symbol-name~@
917 ----------------------------------~%")
918 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
919 (setf (readtable-case *readtable*) readtable-case)
920 (dolist (input '("ZEBRA" "Zebra" "zebra"))
921 (format t "~&:~A~16T~A~24T~A"
922 (string-upcase readtable-case)
924 (symbol-name (read-from-string input)))))))
927 (let ((*readtable* (copy-readtable nil)))
928 (format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
929 --------------------------------------------------------~%")
930 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
931 (setf (readtable-case *readtable*) readtable-case)
932 (dolist (*print-case* '(:upcase :downcase :capitalize))
933 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|))
934 (format t "~&:~A~15T:~A~29T~A~42T~A~50T~A"
935 (string-upcase readtable-case)
936 (string-upcase *print-case*)
938 (prin1-to-string symbol)
939 (princ-to-string symbol)))))))
942 ;;;; recursive objects
944 (defun output-list (list stream)
945 (descend-into (stream)
946 (write-char #\( stream)
950 (punt-print-if-too-long length stream)
951 (output-object (pop list) stream)
954 (when (or (atom list)
955 (check-for-circularity list))
956 (write-string " . " stream)
957 (output-object list stream)
959 (write-char #\space stream)
961 (write-char #\) stream)))
963 (defun output-vector (vector stream)
964 (declare (vector vector))
965 (cond ((stringp vector)
966 (cond ((or *print-escape* *print-readably*)
967 (write-char #\" stream)
968 (quote-string vector stream)
969 (write-char #\" stream))
971 (write-string vector stream))))
972 ((not (or *print-array* *print-readably*))
973 (output-terse-array vector stream))
974 ((bit-vector-p vector)
975 (write-string "#*" stream)
976 (dovector (bit vector)
977 ;; (Don't use OUTPUT-OBJECT here, since this code
978 ;; has to work for all possible *PRINT-BASE* values.)
979 (write-char (if (zerop bit) #\0 #\1) stream)))
981 (when (and *print-readably*
982 (not (eq (array-element-type vector) t)))
983 (error 'print-not-readable :object vector))
984 (descend-into (stream)
985 (write-string "#(" stream)
986 (dotimes (i (length vector))
988 (write-char #\space stream))
989 (punt-print-if-too-long i stream)
990 (output-object (aref vector i) stream))
991 (write-string ")" stream)))))
993 ;;; This function outputs a string quoting characters sufficiently
994 ;;; so that someone can read it in again. Basically, put a slash in
995 ;;; front of an character satisfying NEEDS-SLASH-P.
996 (defun quote-string (string stream)
997 (macrolet ((needs-slash-p (char)
998 ;; KLUDGE: We probably should look at the readtable, but just do
999 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
1000 `(or (char= ,char #\\)
1001 (char= ,char #\"))))
1002 (with-array-data ((data string) (start) (end (length string)))
1003 (do ((index start (1+ index)))
1005 (let ((char (schar data index)))
1006 (when (needs-slash-p char) (write-char #\\ stream))
1007 (write-char char stream))))))
1009 ;;; Output the printed representation of any array in either the #< or #A
1011 (defun output-array (array stream)
1012 (if (or *print-array* *print-readably*)
1013 (output-array-guts array stream)
1014 (output-terse-array array stream)))
1016 ;;; Output the abbreviated #< form of an array.
1017 (defun output-terse-array (array stream)
1018 (let ((*print-level* nil)
1019 (*print-length* nil))
1020 (print-unreadable-object (array stream :type t :identity t))))
1022 ;;; Output the readable #A form of an array.
1023 (defun output-array-guts (array stream)
1024 (when (and *print-readably*
1025 (not (eq (array-element-type array) t)))
1026 (error 'print-not-readable :object array))
1027 (write-char #\# stream)
1028 (let ((*print-base* 10))
1029 (output-integer (array-rank array) stream))
1030 (write-char #\A stream)
1031 (with-array-data ((data array) (start) (end))
1032 (declare (ignore end))
1033 (sub-output-array-guts data (array-dimensions array) stream start)))
1035 (defun sub-output-array-guts (array dimensions stream index)
1036 (declare (type (simple-array * (*)) array) (fixnum index))
1037 (cond ((null dimensions)
1038 (output-object (aref array index) stream))
1040 (descend-into (stream)
1041 (write-char #\( stream)
1042 (let* ((dimension (car dimensions))
1043 (dimensions (cdr dimensions))
1044 (count (reduce #'* dimensions)))
1045 (dotimes (i dimension)
1047 (write-char #\space stream))
1048 (punt-print-if-too-long i stream)
1049 (sub-output-array-guts array dimensions stream index)
1050 (incf index count)))
1051 (write-char #\) stream)))))
1053 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
1054 ;;; use until CLOS is set up (at which time it will be replaced with
1055 ;;; the real generic function implementation)
1056 (defun print-object (instance stream)
1057 (default-structure-print instance stream *current-level-in-print*))
1059 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1061 (defun output-integer (integer stream)
1062 ;; FIXME: This UNLESS form should be pulled out into something like
1063 ;; (SANE-PRINT-BASE), along the lines of (SANE-PACKAGE) for the
1064 ;; *PACKAGE* variable.
1065 (unless (and (fixnump *print-base*)
1066 (< 1 *print-base* 37))
1067 (let ((obase *print-base*))
1068 (setq *print-base* 10.)
1069 (error "~A is not a reasonable value for *PRINT-BASE*." obase)))
1070 (when (and (not (= *print-base* 10.))
1072 ;; First print leading base information, if any.
1073 (write-char #\# stream)
1074 (write-char (case *print-base*
1078 (T (let ((fixbase *print-base*)
1081 (sub-output-integer fixbase stream))
1084 ;; Then output a minus sign if the number is negative, then output
1085 ;; the absolute value of the number.
1086 (cond ((bignump integer) (print-bignum integer stream))
1088 (write-char #\- stream)
1089 (sub-output-integer (- integer) stream))
1091 (sub-output-integer integer stream)))
1092 ;; Print any trailing base information, if any.
1093 (if (and (= *print-base* 10.) *print-radix*)
1094 (write-char #\. stream)))
1096 (defun sub-output-integer (integer stream)
1099 ;; Recurse until you have all the digits pushed on the stack.
1100 (if (not (zerop (multiple-value-setq (quotient remainder)
1101 (truncate integer *print-base*))))
1102 (sub-output-integer quotient stream))
1103 ;; Then as each recursive call unwinds, turn the digit (in remainder)
1104 ;; into a character and output the character.
1105 (write-char (code-char (if (and (> remainder 9.)
1106 (> *print-base* 10.))
1107 (+ (char-code #\A) (- remainder 10.))
1108 (+ (char-code #\0) remainder)))
1111 ;;;; bignum printing
1113 ;;; *BASE-POWER* holds the number that we keep dividing into the
1114 ;;; bignum for each *print-base*. We want this number as close to
1115 ;;; *most-positive-fixnum* as possible, i.e. (floor (log
1116 ;;; most-positive-fixnum *print-base*)).
1117 (defparameter *base-power* (make-array 37 :initial-element nil))
1119 ;;; *FIXNUM-POWER--1* holds the number of digits for each *PRINT-BASE*
1120 ;;; that fit in the corresponding *base-power*.
1121 (defparameter *fixnum-power--1* (make-array 37 :initial-element nil))
1123 ;;; Print the bignum to the stream. We first generate the correct
1124 ;;; value for *base-power* and *fixnum-power--1* if we have not
1125 ;;; already. Then we call bignum-print-aux to do the printing.
1126 (defun print-bignum (big stream)
1127 (unless (aref *base-power* *print-base*)
1128 (do ((power-1 -1 (1+ power-1))
1129 (new-divisor *print-base* (* new-divisor *print-base*))
1130 (divisor 1 new-divisor))
1131 ((not (fixnump new-divisor))
1132 (setf (aref *base-power* *print-base*) divisor)
1133 (setf (aref *fixnum-power--1* *print-base*) power-1))))
1134 (bignum-print-aux (cond ((minusp big)
1135 (write-char #\- stream)
1138 (aref *base-power* *print-base*)
1139 (aref *fixnum-power--1* *print-base*)
1143 (defun bignum-print-aux (big divisor power-1 stream)
1144 (multiple-value-bind (newbig fix) (truncate big divisor)
1145 (if (fixnump newbig)
1146 (sub-output-integer newbig stream)
1147 (bignum-print-aux newbig divisor power-1 stream))
1148 (do ((zeros power-1 (1- zeros))
1149 (base-power *print-base* (* base-power *print-base*)))
1151 (dotimes (i zeros) (write-char #\0 stream))
1152 (sub-output-integer fix stream)))))
1154 (defun output-ratio (ratio stream)
1156 (write-char #\# stream)
1158 (2 (write-char #\b stream))
1159 (8 (write-char #\o stream))
1160 (16 (write-char #\x stream))
1161 (t (write *print-base* :stream stream :radix nil :base 10)))
1162 (write-char #\r stream))
1163 (let ((*print-radix* nil))
1164 (output-integer (numerator ratio) stream)
1165 (write-char #\/ stream)
1166 (output-integer (denominator ratio) stream)))
1168 (defun output-complex (complex stream)
1169 (write-string "#C(" stream)
1170 (output-object (realpart complex) stream)
1171 (write-char #\space stream)
1172 (output-object (imagpart complex) stream)
1173 (write-char #\) stream))
1177 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1178 ;;; most of the work for all printing of floating point numbers in the
1179 ;;; printer and in FORMAT. It converts a floating point number to a
1180 ;;; string in a free or fixed format with no exponent. The
1181 ;;; interpretation of the arguments is as follows:
1183 ;;; X - The floating point number to convert, which must not be
1185 ;;; WIDTH - The preferred field width, used to determine the number
1186 ;;; of fraction digits to produce if the FDIGITS parameter
1187 ;;; is unspecified or NIL. If the non-fraction digits and the
1188 ;;; decimal point alone exceed this width, no fraction digits
1189 ;;; will be produced unless a non-NIL value of FDIGITS has been
1190 ;;; specified. Field overflow is not considerd an error at this
1192 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1193 ;;; trailing zeroes may be introduced as needed. May be
1194 ;;; unspecified or NIL, in which case as many digits as possible
1195 ;;; are generated, subject to the constraint that there are no
1196 ;;; trailing zeroes.
1197 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1198 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1199 ;;; and cannot lose precision.
1200 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1201 ;;; number of fraction digits which will be produced, regardless
1202 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1203 ;;; the ~E format directive to prevent complete loss of
1204 ;;; significance in the printed value due to a bogus choice of
1207 ;;; Most of the optional arguments are for the benefit for FORMAT and are not
1208 ;;; used by the printer.
1211 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1212 ;;; where the results have the following interpretation:
1214 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1215 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1216 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1218 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1220 ;;; POINT-POS - The position of the digit preceding the decimal
1221 ;;; point. Zero indicates point before first digit.
1223 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1224 ;;; accuracy. Specifically, the decimal number printed is the closest
1225 ;;; possible approximation to the true value of the binary number to
1226 ;;; be printed from among all decimal representations with the same
1227 ;;; number of digits. In free-format output, i.e. with the number of
1228 ;;; digits unconstrained, it is guaranteed that all the information is
1229 ;;; preserved, so that a properly- rounding reader can reconstruct the
1230 ;;; original binary number, bit-for-bit, from its printed decimal
1231 ;;; representation. Furthermore, only as many digits as necessary to
1232 ;;; satisfy this condition will be printed.
1234 ;;; FLOAT-STRING actually generates the digits for positive numbers.
1235 ;;; The algorithm is essentially that of algorithm Dragon4 in "How to
1236 ;;; Print Floating-Point Numbers Accurately" by Steele and White. The
1237 ;;; current (draft) version of this paper may be found in
1238 ;;; [CMUC]<steele>tradix.press. DO NOT EVEN THINK OF ATTEMPTING TO
1239 ;;; UNDERSTAND THIS CODE WITHOUT READING THE PAPER!
1241 (defvar *digits* "0123456789")
1243 (defun flonum-to-string (x &optional width fdigits scale fmin)
1245 ;; Zero is a special case which FLOAT-STRING cannot handle.
1247 (let ((s (make-string (1+ fdigits) :initial-element #\0)))
1248 (setf (schar s 0) #\.)
1249 (values s (length s) t (zerop fdigits) 0))
1250 (values "." 1 t t 0)))
1252 (multiple-value-bind (sig exp) (integer-decode-float x)
1253 (let* ((precision (float-precision x))
1254 (digits (float-digits x))
1255 (fudge (- digits precision))
1256 (width (if width (max width 1) nil)))
1257 (float-string (ash sig (- fudge)) (+ exp fudge) precision width
1258 fdigits scale fmin))))))
1260 (defun float-string (fraction exponent precision width fdigits scale fmin)
1261 (let ((r fraction) (s 1) (m- 1) (m+ 1) (k 0)
1262 (digits 0) (decpnt 0) (cutoff nil) (roundup nil) u low high
1263 (digit-string (make-array 50
1264 :element-type 'base-char
1267 ;; Represent fraction as r/s, error bounds as m+/s and m-/s.
1268 ;; Rational arithmetic avoids loss of precision in subsequent
1270 (cond ((> exponent 0)
1271 (setq r (ash fraction exponent))
1272 (setq m- (ash 1 exponent))
1275 (setq s (ash 1 (- exponent)))))
1276 ;; Adjust the error bounds m+ and m- for unequal gaps.
1277 (when (= fraction (ash 1 precision))
1278 (setq m+ (ash m+ 1))
1281 ;; Scale value by requested amount, and update error bounds.
1284 (let ((scale-factor (expt 10 (- scale))))
1285 (setq s (* s scale-factor)))
1286 (let ((scale-factor (expt 10 scale)))
1287 (setq r (* r scale-factor))
1288 (setq m+ (* m+ scale-factor))
1289 (setq m- (* m- scale-factor)))))
1290 ;; Scale r and s and compute initial k, the base 10 logarithm of r.
1292 ((>= r (ceiling s 10)))
1296 (setq m+ (* m+ 10)))
1299 ((< (+ (ash r 1) m+) (ash s 1)))
1302 ;; Determine number of fraction digits to generate.
1304 ;; Use specified number of fraction digits.
1305 (setq cutoff (- fdigits))
1306 ;;don't allow less than fmin fraction digits
1307 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin))))
1309 ;; Use as many fraction digits as width will permit but
1310 ;; force at least fmin digits even if width will be
1313 (setq cutoff (- 1 width))
1314 (setq cutoff (1+ (- k width))))
1315 (if (and fmin (> cutoff (- fmin))) (setq cutoff (- fmin)))))
1316 ;; If we decided to cut off digit generation before precision
1317 ;; has been exhausted, rounding the last digit may cause a carry
1318 ;; propagation. We can prevent this, preserving left-to-right
1319 ;; digit generation, with a few magical adjustments to m- and
1320 ;; m+. Of course, correct rounding is also preserved.
1321 (when (or fdigits width)
1322 (let ((a (- cutoff k))
1325 (dotimes (i a) (setq y (* y 10)))
1326 (dotimes (i (- a)) (setq y (ceiling y 10))))
1327 (setq m- (max y m-))
1328 (setq m+ (max y m+))
1329 (when (= m+ y) (setq roundup t))))
1330 (when (< (+ (ash r 1) m+) (ash s 1)) (return)))
1331 ;; Zero-fill before fraction if no integer part.
1333 (setq decpnt digits)
1334 (vector-push-extend #\. digit-string)
1336 (incf digits) (vector-push-extend #\0 digit-string)))
1337 ;; Generate the significant digits.
1341 (vector-push-extend #\. digit-string)
1342 (setq decpnt digits))
1343 (multiple-value-setq (u r) (truncate (* r 10) s))
1346 (setq low (< (ash r 1) m-))
1348 (setq high (>= (ash r 1) (- (ash s 1) m+)))
1349 (setq high (> (ash r 1) (- (ash s 1) m+))))
1350 ;; Stop when either precision is exhausted or we have printed as
1351 ;; many fraction digits as permitted.
1352 (when (or low high (and cutoff (<= k cutoff))) (return))
1353 (vector-push-extend (char *digits* u) digit-string)
1355 ;; If cutoff occurred before first digit, then no digits are
1356 ;; generated at all.
1357 (when (or (not cutoff) (>= k cutoff))
1358 ;; Last digit may need rounding
1359 (vector-push-extend (char *digits*
1360 (cond ((and low (not high)) u)
1361 ((and high (not low)) (1+ u))
1362 (t (if (<= (ash r 1) s) u (1+ u)))))
1365 ;; Zero-fill after integer part if no fraction.
1367 (dotimes (i k) (incf digits) (vector-push-extend #\0 digit-string))
1368 (vector-push-extend #\. digit-string)
1369 (setq decpnt digits))
1370 ;; Add trailing zeroes to pad fraction if fdigits specified.
1372 (dotimes (i (- fdigits (- digits decpnt)))
1374 (vector-push-extend #\0 digit-string)))
1376 (values digit-string (1+ digits) (= decpnt 0) (= decpnt digits) decpnt)))
1378 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1379 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1380 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1381 ;;; original number. There may be some loss of precision due the
1382 ;;; floating point representation. The scaling is always done with
1383 ;;; long float arithmetic, which helps printing of lesser precisions
1384 ;;; as well as avoiding generic arithmetic.
1386 ;;; When computing our initial scale factor using EXPT, we pull out
1387 ;;; part of the computation to avoid over/under flow. When
1388 ;;; denormalized, we must pull out a large factor, since there is more
1389 ;;; negative exponent range than positive range.
1390 (defun scale-exponent (original-x)
1391 (let* ((x (coerce original-x 'long-float)))
1392 (multiple-value-bind (sig exponent) (decode-float x)
1393 (declare (ignore sig))
1395 (values (float 0.0l0 original-x) 1)
1396 (let* ((ex (round (* exponent (log 2l0 10))))
1398 (if (float-denormalized-p x)
1400 (* x 1.0l16 (expt 10.0l0 (- (- ex) 16)))
1402 (* x 1.0l18 (expt 10.0l0 (- (- ex) 18)))
1403 (* x 10.0l0 (expt 10.0l0 (- (- ex) 1))))
1404 (/ x 10.0l0 (expt 10.0l0 (1- ex))))))
1405 (do ((d 10.0l0 (* d 10.0l0))
1409 (do ((m 10.0l0 (* m 10.0l0))
1413 (values (float z original-x) ex))))))))))
1415 ;;;; entry point for the float printer
1417 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1418 ;;; argument is printed free-format, in either exponential or
1419 ;;; non-exponential notation, depending on its magnitude.
1421 ;;; NOTE: When a number is to be printed in exponential format, it is
1422 ;;; scaled in floating point. Since precision may be lost in this
1423 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1424 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1425 ;;; extensive computations with integers of similar magnitude to that
1426 ;;; of the number being printed. For large exponents, the bignums
1427 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1428 ;;; fast and the exponent range is not too large, then it might become
1429 ;;; attractive to handle exponential notation with the same accuracy
1430 ;;; as non-exponential notation, using the method described in the
1431 ;;; Steele and White paper.
1433 ;;; Print the appropriate exponent marker for X and the specified exponent.
1434 (defun print-float-exponent (x exp stream)
1435 (declare (type float x) (type integer exp) (type stream stream))
1436 (let ((*print-radix* nil)
1437 (plusp (plusp exp)))
1438 (if (typep x *read-default-float-format*)
1440 (format stream "e~:[~;+~]~D" plusp exp))
1441 (format stream "~C~:[~;+~]~D"
1449 (defun output-float-infinity (x stream)
1450 (declare (float x) (stream stream))
1452 (write-string "#." stream))
1454 (error 'print-not-readable :object x))
1456 (write-string "#<" stream)))
1457 (write-string "SB-EXT:" stream)
1458 (write-string (symbol-name (float-format-name x)) stream)
1459 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1461 (write-string "INFINITY" stream)
1463 (write-string ">" stream)))
1465 (defun output-float-nan (x stream)
1466 (print-unreadable-object (x stream)
1467 (princ (float-format-name x) stream)
1468 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1469 (write-string " NaN" stream)))
1471 ;;; the function called by OUTPUT-OBJECT to handle floats
1472 (defun output-float (x stream)
1474 ((float-infinity-p x)
1475 (output-float-infinity x stream))
1477 (output-float-nan x stream))
1479 (let ((x (cond ((minusp (float-sign x))
1480 (write-char #\- stream)
1486 (write-string "0.0" stream)
1487 (print-float-exponent x 0 stream))
1489 (output-float-aux x stream (float 1/1000 x) (float 10000000 x))))))))
1490 (defun output-float-aux (x stream e-min e-max)
1491 (if (and (>= x e-min) (< x e-max))
1493 (multiple-value-bind (str len lpoint tpoint) (flonum-to-string x)
1494 (declare (ignore len))
1495 (when lpoint (write-char #\0 stream))
1496 (write-string str stream)
1497 (when tpoint (write-char #\0 stream))
1498 (print-float-exponent x 0 stream))
1499 ;; exponential format
1500 (multiple-value-bind (f ex) (scale-exponent x)
1501 (multiple-value-bind (str len lpoint tpoint)
1502 (flonum-to-string f nil nil 1)
1503 (declare (ignore len))
1504 (when lpoint (write-char #\0 stream))
1505 (write-string str stream)
1506 (when tpoint (write-char #\0 stream))
1507 ;; Subtract out scale factor of 1 passed to FLONUM-TO-STRING.
1508 (print-float-exponent x (1- ex) stream)))))
1510 ;;;; other leaf objects
1512 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1513 ;;; the character name or the character in the #\char format.
1514 (defun output-character (char stream)
1515 (if (or *print-escape* *print-readably*)
1516 (let ((name (char-name char)))
1517 (write-string "#\\" stream)
1519 (quote-string name stream)
1520 (write-char char stream)))
1521 (write-char char stream)))
1523 (defun output-sap (sap stream)
1524 (declare (type system-area-pointer sap))
1526 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1528 (print-unreadable-object (sap stream)
1529 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1531 (defun output-weak-pointer (weak-pointer stream)
1532 (declare (type weak-pointer weak-pointer))
1533 (print-unreadable-object (weak-pointer stream)
1534 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1536 (write-string "weak pointer: " stream)
1537 (write value :stream stream))
1539 (write-string "broken weak pointer" stream))))))
1541 (defun output-code-component (component stream)
1542 (print-unreadable-object (component stream :identity t)
1543 (let ((dinfo (%code-debug-info component)))
1544 (cond ((eq dinfo :bogus-lra)
1545 (write-string "bogus code object" stream))
1547 (write-string "code object" stream)
1549 (write-char #\space stream)
1550 (output-object (sb!c::debug-info-name dinfo) stream)))))))
1552 (defun output-lra (lra stream)
1553 (print-unreadable-object (lra stream :identity t)
1554 (write-string "return PC object" stream)))
1556 (defun output-fdefn (fdefn stream)
1557 (print-unreadable-object (fdefn stream)
1558 (write-string "FDEFINITION object for " stream)
1559 (output-object (fdefn-name fdefn) stream)))
1563 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1564 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1566 ;;; The definition here is a simple temporary placeholder. It will be
1567 ;;; overwritten by a smarter version (capable of calling generic
1568 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1569 (defun printed-as-clos-funcallable-standard-class (object stream)
1570 (declare (ignore object stream))
1573 (defun output-fun (object stream)
1574 (let* ((*print-length* 3) ; in case we have to..
1575 (*print-level* 3) ; ..print an interpreted function definition
1576 ;; FIXME: This find-the-function-name idiom ought to be
1577 ;; encapsulated in a function somewhere.
1578 (name (case (fun-subtype object)
1579 (#.sb!vm:closure-header-widetag "CLOSURE")
1580 (#.sb!vm:simple-fun-header-widetag (%simple-fun-name object))
1581 (t 'no-name-available)))
1582 (identified-by-name-p (and (symbolp name)
1584 (eq (fdefinition name) object))))
1585 (print-unreadable-object (object
1587 :identity (not identified-by-name-p))
1588 (prin1 'function stream)
1589 (unless (eq name 'no-name-available)
1590 (format stream " ~S" name)))))
1592 ;;;; catch-all for unknown things
1594 (defun output-random (object stream)
1595 (print-unreadable-object (object stream :identity t)
1596 (let ((lowtag (lowtag-of object)))
1598 (#.sb!vm:other-pointer-lowtag
1599 (let ((widetag (widetag-of object)))
1601 (#.sb!vm:value-cell-header-widetag
1602 (write-string "value cell " stream)
1603 (output-object (value-cell-ref object) stream))
1605 (write-string "unknown pointer object, widetag=" stream)
1606 (let ((*print-base* 16) (*print-radix* t))
1607 (output-integer widetag stream))))))
1608 ((#.sb!vm:fun-pointer-lowtag
1609 #.sb!vm:instance-pointer-lowtag
1610 #.sb!vm:list-pointer-lowtag)
1611 (write-string "unknown pointer object, lowtag=" stream)
1612 (let ((*print-base* 16) (*print-radix* t))
1613 (output-integer lowtag stream)))
1615 (case (widetag-of object)
1616 (#.sb!vm:unbound-marker-widetag
1617 (write-string "unbound marker" stream))
1619 (write-string "unknown immediate object, lowtag=" stream)
1620 (let ((*print-base* 2) (*print-radix* t))
1621 (output-integer lowtag stream))
1622 (write-string ", widetag=" stream)
1623 (let ((*print-base* 16) (*print-radix* t))
1624 (output-integer (widetag-of object) stream)))))))))