3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 ;;; FIXME: Many of these have nontrivial types, e.g. *PRINT-LEVEL*,
17 ;;; *PRINT-LENGTH*, and *PRINT-LINES* are (OR NULL UNSIGNED-BYTE).
19 (defvar *print-readably* nil
21 "If true, all objects will printed readably. If readable printing is
22 impossible, an error will be signalled. This overrides the value of
24 (defvar *print-escape* t
26 "Should we print in a reasonably machine-readable way? (possibly
27 overridden by *PRINT-READABLY*)")
28 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
30 "Should pretty printing be used?")
31 (defvar *print-base* 10.
33 "the output base for RATIONALs (including integers)")
34 (defvar *print-radix* nil
36 "Should base be verified when printing RATIONALs?")
37 (defvar *print-level* nil
39 "How many levels should be printed before abbreviating with \"#\"?")
40 (defvar *print-length* nil
42 "How many elements at any level should be printed before abbreviating
44 (defvar *print-circle* nil
46 "Should we use #n= and #n# notation to preserve uniqueness in general (and
47 circularity in particular) when printing?")
48 (defvar *print-case* :upcase
50 "What case should the printer should use default?")
51 (defvar *print-array* t
53 "Should the contents of arrays be printed?")
54 (defvar *print-gensym* t
56 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
57 (defvar *print-lines* nil
59 "the maximum number of lines to print per object")
60 (defvar *print-right-margin* nil
62 "the position of the right margin in ems (for pretty-printing)")
63 (defvar *print-miser-width* nil
65 "If the remaining space between the current column and the right margin
66 is less than this, then print using ``miser-style'' output. Miser
67 style conditional newlines are turned on, and all indentations are
68 turned off. If NIL, never use miser mode.")
69 (defvar *print-pprint-dispatch*)
71 (setf (fdocumentation '*print-pprint-dispatch* 'variable)
72 "the pprint-dispatch-table that controls how to pretty-print objects")
74 (defmacro with-standard-io-syntax (&body body)
76 "Bind the reader and printer control variables to values that enable READ
77 to reliably read the results of PRINT. These values are:
78 *PACKAGE* the COMMON-LISP-USER package
88 *PRINT-MISER-WIDTH* NIL
92 *PRINT-RIGHT-MARGIN* NIL
94 *READ-DEFAULT-FLOAT-FORMAT* SINGLE-FLOAT
97 *READTABLE* the standard readtable"
98 `(%with-standard-io-syntax (lambda () ,@body)))
100 (defun %with-standard-io-syntax (function)
101 (declare (type function function))
102 (let ((*package* (find-package "COMMON-LISP-USER"))
105 (*print-case* :upcase)
112 (*print-miser-width* nil)
116 (*print-right-margin* nil)
118 (*read-default-float-format* 'single-float)
120 (*read-suppress* nil)
121 ;; FIXME: It doesn't seem like a good idea to expose our
122 ;; disaster-recovery *STANDARD-READTABLE* here. What if some
123 ;; enterprising user corrupts the disaster-recovery readtable
124 ;; by doing destructive readtable operations within
125 ;; WITH-STANDARD-IO-SYNTAX? Perhaps we should do a
126 ;; COPY-READTABLE? The consing would be unfortunate, though.
127 (*readtable* *standard-readtable*))
130 ;;;; routines to print objects
132 (defun write (object &key
133 ((:stream stream) *standard-output*)
134 ((:escape *print-escape*) *print-escape*)
135 ((:radix *print-radix*) *print-radix*)
136 ((:base *print-base*) *print-base*)
137 ((:circle *print-circle*) *print-circle*)
138 ((:pretty *print-pretty*) *print-pretty*)
139 ((:level *print-level*) *print-level*)
140 ((:length *print-length*) *print-length*)
141 ((:case *print-case*) *print-case*)
142 ((:array *print-array*) *print-array*)
143 ((:gensym *print-gensym*) *print-gensym*)
144 ((:readably *print-readably*) *print-readably*)
145 ((:right-margin *print-right-margin*)
146 *print-right-margin*)
147 ((:miser-width *print-miser-width*)
149 ((:lines *print-lines*) *print-lines*)
150 ((:pprint-dispatch *print-pprint-dispatch*)
151 *print-pprint-dispatch*))
153 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*"
154 (output-object object (out-synonym-of stream))
157 (defun prin1 (object &optional stream)
159 "Output a mostly READable printed representation of OBJECT on the specified
161 (let ((*print-escape* t))
162 (output-object object (out-synonym-of stream)))
165 (defun princ (object &optional stream)
167 "Output an aesthetic but not necessarily READable printed representation
168 of OBJECT on the specified STREAM."
169 (let ((*print-escape* nil)
170 (*print-readably* nil))
171 (output-object object (out-synonym-of stream)))
174 (defun print (object &optional stream)
176 "Output a newline, the mostly READable printed representation of OBJECT, and
177 space to the specified STREAM."
178 (let ((stream (out-synonym-of stream)))
180 (prin1 object stream)
181 (write-char #\space stream)
184 (defun pprint (object &optional stream)
186 "Prettily output OBJECT preceded by a newline."
187 (let ((*print-pretty* t)
189 (stream (out-synonym-of stream)))
191 (output-object object stream))
194 (defun write-to-string
196 ((:escape *print-escape*) *print-escape*)
197 ((:radix *print-radix*) *print-radix*)
198 ((:base *print-base*) *print-base*)
199 ((:circle *print-circle*) *print-circle*)
200 ((:pretty *print-pretty*) *print-pretty*)
201 ((:level *print-level*) *print-level*)
202 ((:length *print-length*) *print-length*)
203 ((:case *print-case*) *print-case*)
204 ((:array *print-array*) *print-array*)
205 ((:gensym *print-gensym*) *print-gensym*)
206 ((:readably *print-readably*) *print-readably*)
207 ((:right-margin *print-right-margin*) *print-right-margin*)
208 ((:miser-width *print-miser-width*) *print-miser-width*)
209 ((:lines *print-lines*) *print-lines*)
210 ((:pprint-dispatch *print-pprint-dispatch*)
211 *print-pprint-dispatch*))
213 "Return the printed representation of OBJECT as a string."
214 (stringify-object object))
216 (defun prin1-to-string (object)
218 "Return the printed representation of OBJECT as a string with
220 (let ((*print-escape* t))
221 (stringify-object object)))
223 (defun princ-to-string (object)
225 "Return the printed representation of OBJECT as a string with
227 (let ((*print-escape* nil)
228 (*print-readably* nil))
229 (stringify-object object)))
231 ;;; This produces the printed representation of an object as a string.
232 ;;; The few ...-TO-STRING functions above call this.
233 (defun stringify-object (object)
234 (let ((stream (make-string-output-stream)))
235 (setup-printer-state)
236 (output-object object stream)
237 (get-output-stream-string stream)))
239 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
241 ;;; guts of PRINT-UNREADABLE-OBJECT
242 (defun %print-unreadable-object (object stream type identity body)
243 (declare (type (or null function) body))
244 (when *print-readably*
245 (error 'print-not-readable :object object))
246 (flet ((print-description ()
248 (write (type-of object) :stream stream :circle nil
249 :level nil :length nil)
250 (write-char #\space stream))
254 (when (or body (not type))
255 (write-char #\space stream))
256 (write-char #\{ stream)
257 (write (get-lisp-obj-address object) :stream stream
259 (write-char #\} stream))))
260 (cond ((print-pretty-on-stream-p stream)
261 ;; Since we're printing prettily on STREAM, format the
262 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
263 ;; not rebind the stream when it is already a pretty stream,
264 ;; so output from the body will go to the same stream.
265 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
266 (print-description)))
268 (write-string "#<" stream)
270 (write-char #\> stream))))
273 ;;;; OUTPUT-OBJECT -- the main entry point
275 ;;; Objects whose print representation identifies them EQLly don't
276 ;;; need to be checked for circularity.
277 (defun uniquely-identified-by-print-p (x)
281 (symbol-package x))))
283 ;;; Output OBJECT to STREAM observing all printer control variables.
284 (defun output-object (object stream)
285 (labels ((print-it (stream)
287 (sb!pretty:output-pretty-object object stream)
288 (output-ugly-object object stream)))
290 (multiple-value-bind (marker initiate)
291 (check-for-circularity object t)
292 (if (eq initiate :initiate)
293 (let ((*circularity-hash-table*
294 (make-hash-table :test 'eq)))
295 (check-it (make-broadcast-stream))
296 (let ((*circularity-counter* 0))
300 (when (handle-circularity marker stream)
302 (print-it stream))))))
303 (cond (;; Maybe we don't need to bother with circularity detection.
304 (or (not *print-circle*)
305 (uniquely-identified-by-print-p object))
307 (;; If we have already started circularity detection, this
308 ;; object might be a shared reference. If we have not, then
309 ;; if it is a compound object it might contain a circular
310 ;; reference to itself or multiple shared references.
311 (or *circularity-hash-table*
312 (compound-object-p object))
315 (print-it stream)))))
317 ;;; a hack to work around recurring gotchas with printing while
318 ;;; DEFGENERIC PRINT-OBJECT is being built
320 ;;; (hopefully will go away naturally when CLOS moves into cold init)
321 (defvar *print-object-is-disabled-p*)
323 ;;; Output OBJECT to STREAM observing all printer control variables
324 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
325 ;;; then the pretty printer will be used for any components of OBJECT,
326 ;;; just not for OBJECT itself.
327 (defun output-ugly-object (object stream)
329 ;; KLUDGE: The TYPECASE approach here is non-ANSI; the ANSI definition of
330 ;; PRINT-OBJECT says it provides printing and we're supposed to provide
331 ;; PRINT-OBJECT methods covering all classes. We deviate from this
332 ;; by using PRINT-OBJECT only when we print instance values. However,
333 ;; ANSI makes it hard to tell that we're deviating from this:
334 ;; (1) ANSI specifies that the user isn't supposed to call PRINT-OBJECT
336 ;; (2) ANSI (section 11.1.2.1.2) says it's undefined to define
337 ;; a method on an external symbol in the CL package which is
338 ;; applicable to arg lists containing only direct instances of
339 ;; standardized classes.
340 ;; Thus, in order for the user to detect our sleaziness in conforming
341 ;; code, he has to do something relatively obscure like
342 ;; (1) actually use tools like FIND-METHOD to look for PRINT-OBJECT
344 ;; (2) define a PRINT-OBJECT method which is specialized on the stream
345 ;; value (e.g. a Gray stream object).
346 ;; As long as no one comes up with a non-obscure way of detecting this
347 ;; sleaziness, fixing this nonconformity will probably have a low
348 ;; priority. -- WHN 2001-11-25
351 (output-symbol object stream)
352 (output-list object stream)))
354 (cond ((not (and (boundp '*print-object-is-disabled-p*)
355 *print-object-is-disabled-p*))
356 (print-object object stream))
357 ((typep object 'structure-object)
358 (default-structure-print object stream *current-level-in-print*))
360 (write-string "#<INSTANCE but not STRUCTURE-OBJECT>" stream))))
361 (funcallable-instance
363 ((not (and (boundp '*print-object-is-disabled-p*)
364 *print-object-is-disabled-p*))
365 (print-object object stream))
366 (t (output-fun object stream))))
368 (output-fun object stream))
370 (output-symbol object stream))
374 (output-integer object stream))
376 (output-float object stream))
378 (output-ratio object stream))
380 (output-ratio object stream))
382 (output-complex object stream))))
384 (output-character object stream))
386 (output-vector object stream))
388 (output-array object stream))
390 (output-sap object stream))
392 (output-weak-pointer object stream))
394 (output-lra object stream))
396 (output-code-component object stream))
398 (output-fdefn object stream))
400 (output-random object stream))))
404 ;;; values of *PRINT-CASE* and (READTABLE-CASE *READTABLE*) the last
405 ;;; time the printer was called
406 (defvar *previous-case* nil)
407 (defvar *previous-readtable-case* nil)
409 ;;; This variable contains the current definition of one of three
410 ;;; symbol printers. SETUP-PRINTER-STATE sets this variable.
411 (defvar *internal-symbol-output-fun* nil)
413 ;;; This function sets the internal global symbol
414 ;;; *INTERNAL-SYMBOL-OUTPUT-FUN* to the right function depending on
415 ;;; the value of *PRINT-CASE*. See the manual for details. The print
416 ;;; buffer stream is also reset.
417 (defun setup-printer-state ()
418 (unless (and (eq *print-case* *previous-case*)
419 (eq (readtable-case *readtable*) *previous-readtable-case*))
420 (setq *previous-case* *print-case*)
421 (setq *previous-readtable-case* (readtable-case *readtable*))
422 (unless (member *print-case* '(:upcase :downcase :capitalize))
423 (setq *print-case* :upcase)
424 (error "invalid *PRINT-CASE* value: ~S" *previous-case*))
425 (unless (member *previous-readtable-case*
426 '(:upcase :downcase :invert :preserve))
427 (setf (readtable-case *readtable*) :upcase)
428 (error "invalid READTABLE-CASE value: ~S" *previous-readtable-case*))
430 (setq *internal-symbol-output-fun*
431 (case *previous-readtable-case*
434 (:upcase #'output-preserve-symbol)
435 (:downcase #'output-lowercase-symbol)
436 (:capitalize #'output-capitalize-symbol)))
439 (:upcase #'output-uppercase-symbol)
440 (:downcase #'output-preserve-symbol)
441 (:capitalize #'output-capitalize-symbol)))
442 (:preserve #'output-preserve-symbol)
443 (:invert #'output-invert-symbol)))))
445 ;;; Output PNAME (a symbol-name or package-name) surrounded with |'s,
446 ;;; and with any embedded |'s or \'s escaped.
447 (defun output-quoted-symbol-name (pname stream)
448 (write-char #\| stream)
449 (dotimes (index (length pname))
450 (let ((char (schar pname index)))
451 (when (or (char= char #\\) (char= char #\|))
452 (write-char #\\ stream))
453 (write-char char stream)))
454 (write-char #\| stream))
456 (defun output-symbol (object stream)
457 (if (or *print-escape* *print-readably*)
458 (let ((package (symbol-package object))
459 (name (symbol-name object)))
461 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
462 ;; requires that keywords be printed with preceding colons
463 ;; always, regardless of the value of *PACKAGE*.
464 ((eq package *keyword-package*)
465 (write-char #\: stream))
466 ;; Otherwise, if the symbol's home package is the current
467 ;; one, then a prefix is never necessary.
468 ((eq package (sane-package)))
469 ;; Uninterned symbols print with a leading #:.
471 (when (or *print-gensym* *print-readably*)
472 (write-string "#:" stream)))
474 (multiple-value-bind (symbol accessible)
475 (find-symbol name (sane-package))
476 ;; If we can find the symbol by looking it up, it need not
477 ;; be qualified. This can happen if the symbol has been
478 ;; inherited from a package other than its home package.
479 (unless (and accessible (eq symbol object))
480 (output-symbol-name (package-name package) stream)
481 (multiple-value-bind (symbol externalp)
482 (find-external-symbol name package)
483 (declare (ignore symbol))
485 (write-char #\: stream)
486 (write-string "::" stream)))))))
487 (output-symbol-name name stream))
488 (output-symbol-name (symbol-name object) stream nil)))
490 ;;; Output the string NAME as if it were a symbol name. In other
491 ;;; words, diddle its case according to *PRINT-CASE* and
493 (defun output-symbol-name (name stream &optional (maybe-quote t))
494 (declare (type simple-string name))
495 (let ((*readtable* (if *print-readably* *standard-readtable* *readtable*)))
496 (setup-printer-state)
497 (if (and maybe-quote (symbol-quotep name))
498 (output-quoted-symbol-name name stream)
499 (funcall *internal-symbol-output-fun* name stream))))
501 ;;;; escaping symbols
503 ;;; When we print symbols we have to figure out if they need to be
504 ;;; printed with escape characters. This isn't a whole lot easier than
505 ;;; reading symbols in the first place.
507 ;;; For each character, the value of the corresponding element is a
508 ;;; fixnum with bits set corresponding to attributes that the
509 ;;; character has. At characters have at least one bit set, so we can
510 ;;; search for any character with a positive test.
511 (defvar *character-attributes*
512 (make-array 160 ; FIXME
513 :element-type '(unsigned-byte 16)
515 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
516 *character-attributes*))
518 ;;; constants which are a bit-mask for each interesting character attribute
519 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
520 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
521 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
522 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
523 (defconstant sign-attribute (ash 1 4)) ; +-
524 (defconstant extension-attribute (ash 1 5)) ; ^_
525 (defconstant dot-attribute (ash 1 6)) ; .
526 (defconstant slash-attribute (ash 1 7)) ; /
527 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
529 (eval-when (:compile-toplevel :load-toplevel :execute)
531 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
532 ;;; that don't need to be escaped (according to READTABLE-CASE.)
533 (defparameter *attribute-names*
534 `((number . number-attribute) (lowercase . lowercase-attribute)
535 (uppercase . uppercase-attribute) (letter . letter-attribute)
536 (sign . sign-attribute) (extension . extension-attribute)
537 (dot . dot-attribute) (slash . slash-attribute)
538 (other . other-attribute) (funny . funny-attribute)))
542 (flet ((set-bit (char bit)
543 (let ((code (char-code char)))
544 (setf (aref *character-attributes* code)
545 (logior bit (aref *character-attributes* code))))))
547 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
549 (set-bit char other-attribute))
552 (set-bit (digit-char i) number-attribute))
554 (do ((code (char-code #\A) (1+ code))
555 (end (char-code #\Z)))
557 (declare (fixnum code end))
558 (set-bit (code-char code) uppercase-attribute)
559 (set-bit (char-downcase (code-char code)) lowercase-attribute))
561 (set-bit #\- sign-attribute)
562 (set-bit #\+ sign-attribute)
563 (set-bit #\^ extension-attribute)
564 (set-bit #\_ extension-attribute)
565 (set-bit #\. dot-attribute)
566 (set-bit #\/ slash-attribute)
568 ;; Mark anything not explicitly allowed as funny.
569 (dotimes (i 160) ; FIXME
570 (when (zerop (aref *character-attributes* i))
571 (setf (aref *character-attributes* i) funny-attribute))))
573 ;;; For each character, the value of the corresponding element is the
574 ;;; lowest base in which that character is a digit.
575 (defvar *digit-bases*
576 (make-array 128 ; FIXME
577 :element-type '(unsigned-byte 8)
578 :initial-element 36))
579 (declaim (type (simple-array (unsigned-byte 8) (#.128)) ; FIXME
582 (let ((char (digit-char i 36)))
583 (setf (aref *digit-bases* (char-code char)) i)))
585 ;;; A FSM-like thingie that determines whether a symbol is a potential
586 ;;; number or has evil characters in it.
587 (defun symbol-quotep (name)
588 (declare (simple-string name))
589 (macrolet ((advance (tag &optional (at-end t))
592 ,(if at-end '(go TEST-SIGN) '(return nil)))
593 (setq current (schar name index)
594 code (char-code current)
596 ((< code 160) (aref attributes code))
597 ((upper-case-p current) uppercase-attribute)
598 ((lower-case-p current) lowercase-attribute)
599 (t other-attribute)))
602 (test (&rest attributes)
614 `(and (< code 128) ; FIXME
615 (< (the fixnum (aref bases code)) base))))
617 (prog ((len (length name))
618 (attributes *character-attributes*)
619 (bases *digit-bases*)
622 (case (readtable-case *readtable*)
623 (:upcase uppercase-attribute)
624 (:downcase lowercase-attribute)
625 (t (logior lowercase-attribute uppercase-attribute))))
630 (declare (fixnum len base index bits code))
633 TEST-SIGN ; At end, see whether it is a sign...
634 (return (not (test sign)))
636 OTHER ; not potential number, see whether funny chars...
637 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
640 (do ((i (1- index) (1+ i)))
641 ((= i len) (return-from symbol-quotep nil))
642 (unless (zerop (logand (let* ((char (schar name i))
643 (code (char-code char)))
645 ((< code 160) (aref attributes code))
646 ((upper-case-p char) uppercase-attribute)
647 ((lower-case-p char) lowercase-attribute)
648 (t other-attribute)))
650 (return-from symbol-quotep t))))
655 (advance LAST-DIGIT-ALPHA)
657 (when (test letter number other slash) (advance OTHER nil))
658 (when (char= current #\.) (advance DOT-FOUND))
659 (when (test sign extension) (advance START-STUFF nil))
662 DOT-FOUND ; leading dots...
663 (when (test letter) (advance START-DOT-MARKER nil))
664 (when (digitp) (advance DOT-DIGIT))
665 (when (test number other) (advance OTHER nil))
666 (when (test extension slash sign) (advance START-DOT-STUFF nil))
667 (when (char= current #\.) (advance DOT-FOUND))
670 START-STUFF ; leading stuff before any dot or digit
673 (advance LAST-DIGIT-ALPHA)
675 (when (test number other) (advance OTHER nil))
676 (when (test letter) (advance START-MARKER nil))
677 (when (char= current #\.) (advance START-DOT-STUFF nil))
678 (when (test sign extension slash) (advance START-STUFF nil))
681 START-MARKER ; number marker in leading stuff...
682 (when (test letter) (advance OTHER nil))
685 START-DOT-STUFF ; leading stuff containing dot without digit...
686 (when (test letter) (advance START-DOT-STUFF nil))
687 (when (digitp) (advance DOT-DIGIT))
688 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
689 (when (test number other) (advance OTHER nil))
692 START-DOT-MARKER ; number marker in leading stuff with dot..
693 ;; leading stuff containing dot without digit followed by letter...
694 (when (test letter) (advance OTHER nil))
697 DOT-DIGIT ; in a thing with dots...
698 (when (test letter) (advance DOT-MARKER))
699 (when (digitp) (advance DOT-DIGIT))
700 (when (test number other) (advance OTHER nil))
701 (when (test sign extension dot slash) (advance DOT-DIGIT))
704 DOT-MARKER ; number marker in number with dot...
705 (when (test letter) (advance OTHER nil))
708 LAST-DIGIT-ALPHA ; previous char is a letter digit...
709 (when (or (digitp) (test sign slash))
710 (advance ALPHA-DIGIT))
711 (when (test letter number other dot) (advance OTHER nil))
714 ALPHA-DIGIT ; seen a digit which is a letter...
715 (when (or (digitp) (test sign slash))
717 (advance LAST-DIGIT-ALPHA)
718 (advance ALPHA-DIGIT)))
719 (when (test letter) (advance ALPHA-MARKER))
720 (when (test number other dot) (advance OTHER nil))
723 ALPHA-MARKER ; number marker in number with alpha digit...
724 (when (test letter) (advance OTHER nil))
727 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
730 (advance ALPHA-DIGIT)
732 (when (test number other) (advance OTHER nil))
733 (when (test letter) (advance MARKER))
734 (when (test extension slash sign) (advance DIGIT))
735 (when (char= current #\.) (advance DOT-DIGIT))
738 MARKER ; number marker in a numeric number...
739 ;; ("What," you may ask, "is a 'number marker'?" It's something
740 ;; that a conforming implementation might use in number syntax.
741 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
742 (when (test letter) (advance OTHER nil))
745 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN*
747 ;;;; case hackery: These functions are stored in
748 ;;;; *INTERNAL-SYMBOL-OUTPUT-FUN* according to the values of
749 ;;;; *PRINT-CASE* and READTABLE-CASE.
752 ;;; READTABLE-CASE *PRINT-CASE*
754 ;;; :DOWNCASE :DOWNCASE
756 (defun output-preserve-symbol (pname stream)
757 (declare (simple-string pname))
758 (write-string pname stream))
761 ;;; READTABLE-CASE *PRINT-CASE*
762 ;;; :UPCASE :DOWNCASE
763 (defun output-lowercase-symbol (pname stream)
764 (declare (simple-string pname))
765 (dotimes (index (length pname))
766 (let ((char (schar pname index)))
767 (write-char (char-downcase char) stream))))
770 ;;; READTABLE-CASE *PRINT-CASE*
771 ;;; :DOWNCASE :UPCASE
772 (defun output-uppercase-symbol (pname stream)
773 (declare (simple-string pname))
774 (dotimes (index (length pname))
775 (let ((char (schar pname index)))
776 (write-char (char-upcase char) stream))))
779 ;;; READTABLE-CASE *PRINT-CASE*
780 ;;; :UPCASE :CAPITALIZE
781 ;;; :DOWNCASE :CAPITALIZE
782 (defun output-capitalize-symbol (pname stream)
783 (declare (simple-string pname))
784 (let ((prev-not-alphanum t)
785 (up (eq (readtable-case *readtable*) :upcase)))
786 (dotimes (i (length pname))
787 (let ((char (char pname i)))
789 (if (or prev-not-alphanum (lower-case-p char))
791 (char-downcase char))
792 (if prev-not-alphanum
796 (setq prev-not-alphanum (not (alphanumericp char)))))))
799 ;;; READTABLE-CASE *PRINT-CASE*
801 (defun output-invert-symbol (pname stream)
802 (declare (simple-string pname))
805 (dotimes (i (length pname))
806 (let ((ch (schar pname i)))
807 (when (both-case-p ch)
808 (if (upper-case-p ch)
810 (setq all-upper nil)))))
811 (cond (all-upper (output-lowercase-symbol pname stream))
812 (all-lower (output-uppercase-symbol pname stream))
814 (write-string pname stream)))))
818 (let ((*readtable* (copy-readtable nil)))
819 (format t "READTABLE-CASE Input Symbol-name~@
820 ----------------------------------~%")
821 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
822 (setf (readtable-case *readtable*) readtable-case)
823 (dolist (input '("ZEBRA" "Zebra" "zebra"))
824 (format t "~&:~A~16T~A~24T~A"
825 (string-upcase readtable-case)
827 (symbol-name (read-from-string input)))))))
830 (let ((*readtable* (copy-readtable nil)))
831 (format t "READTABLE-CASE *PRINT-CASE* Symbol-name Output Princ~@
832 --------------------------------------------------------~%")
833 (dolist (readtable-case '(:upcase :downcase :preserve :invert))
834 (setf (readtable-case *readtable*) readtable-case)
835 (dolist (*print-case* '(:upcase :downcase :capitalize))
836 (dolist (symbol '(|ZEBRA| |Zebra| |zebra|))
837 (format t "~&:~A~15T:~A~29T~A~42T~A~50T~A"
838 (string-upcase readtable-case)
839 (string-upcase *print-case*)
841 (prin1-to-string symbol)
842 (princ-to-string symbol)))))))
845 ;;;; recursive objects
847 (defun output-list (list stream)
848 (descend-into (stream)
849 (write-char #\( stream)
853 (punt-print-if-too-long length stream)
854 (output-object (pop list) stream)
857 (when (or (atom list)
858 (check-for-circularity list))
859 (write-string " . " stream)
860 (output-object list stream)
862 (write-char #\space stream)
864 (write-char #\) stream)))
866 (defun output-vector (vector stream)
867 (declare (vector vector))
868 (cond ((stringp vector)
869 (cond ((and *print-readably*
870 (not (eq (array-element-type vector)
873 (make-array 0 :element-type 'character))))))
874 (error 'print-not-readable :object vector))
875 ((or *print-escape* *print-readably*)
876 (write-char #\" stream)
877 (quote-string vector stream)
878 (write-char #\" stream))
880 (write-string vector stream))))
881 ((not (or *print-array* *print-readably*))
882 (output-terse-array vector stream))
883 ((bit-vector-p vector)
884 (write-string "#*" stream)
885 (dovector (bit vector)
886 ;; (Don't use OUTPUT-OBJECT here, since this code
887 ;; has to work for all possible *PRINT-BASE* values.)
888 (write-char (if (zerop bit) #\0 #\1) stream)))
890 (when (and *print-readably*
891 (not (array-readably-printable-p vector)))
892 (error 'print-not-readable :object vector))
893 (descend-into (stream)
894 (write-string "#(" stream)
895 (dotimes (i (length vector))
897 (write-char #\space stream))
898 (punt-print-if-too-long i stream)
899 (output-object (aref vector i) stream))
900 (write-string ")" stream)))))
902 ;;; This function outputs a string quoting characters sufficiently
903 ;;; so that someone can read it in again. Basically, put a slash in
904 ;;; front of an character satisfying NEEDS-SLASH-P.
905 (defun quote-string (string stream)
906 (macrolet ((needs-slash-p (char)
907 ;; KLUDGE: We probably should look at the readtable, but just do
908 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
909 `(or (char= ,char #\\)
911 (with-array-data ((data string) (start) (end (length string)))
912 (do ((index start (1+ index)))
914 (let ((char (schar data index)))
915 (when (needs-slash-p char) (write-char #\\ stream))
916 (write-char char stream))))))
918 (defun array-readably-printable-p (array)
919 (and (eq (array-element-type array) t)
920 (let ((zero (position 0 (array-dimensions array)))
921 (number (position 0 (array-dimensions array)
922 :test (complement #'eql)
924 (or (null zero) (null number) (> zero number)))))
926 ;;; Output the printed representation of any array in either the #< or #A
928 (defun output-array (array stream)
929 (if (or *print-array* *print-readably*)
930 (output-array-guts array stream)
931 (output-terse-array array stream)))
933 ;;; Output the abbreviated #< form of an array.
934 (defun output-terse-array (array stream)
935 (let ((*print-level* nil)
936 (*print-length* nil))
937 (print-unreadable-object (array stream :type t :identity t))))
939 ;;; Output the readable #A form of an array.
940 (defun output-array-guts (array stream)
941 (when (and *print-readably*
942 (not (array-readably-printable-p array)))
943 (error 'print-not-readable :object array))
944 (write-char #\# stream)
945 (let ((*print-base* 10)
947 (output-integer (array-rank array) stream))
948 (write-char #\A stream)
949 (with-array-data ((data array) (start) (end))
950 (declare (ignore end))
951 (sub-output-array-guts data (array-dimensions array) stream start)))
953 (defun sub-output-array-guts (array dimensions stream index)
954 (declare (type (simple-array * (*)) array) (fixnum index))
955 (cond ((null dimensions)
956 (output-object (aref array index) stream))
958 (descend-into (stream)
959 (write-char #\( stream)
960 (let* ((dimension (car dimensions))
961 (dimensions (cdr dimensions))
962 (count (reduce #'* dimensions)))
963 (dotimes (i dimension)
965 (write-char #\space stream))
966 (punt-print-if-too-long i stream)
967 (sub-output-array-guts array dimensions stream index)
969 (write-char #\) stream)))))
971 ;;; a trivial non-generic-function placeholder for PRINT-OBJECT, for
972 ;;; use until CLOS is set up (at which time it will be replaced with
973 ;;; the real generic function implementation)
974 (defun print-object (instance stream)
975 (default-structure-print instance stream *current-level-in-print*))
977 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
979 (defun %output-radix (base stream)
980 (write-char #\# stream)
981 (write-char (case base
985 (t (%output-reasonable-integer-in-base base 10 stream)
989 (defun %output-reasonable-integer-in-base (n base stream)
990 (multiple-value-bind (q r)
992 ;; Recurse until you have all the digits pushed on
995 (%output-reasonable-integer-in-base q base stream))
996 ;; Then as each recursive call unwinds, turn the
997 ;; digit (in remainder) into a character and output
1000 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r)
1003 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1004 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1005 ;;; always prior a GC to drop overly large bignums from the cache.
1007 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1008 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1009 (defvar *power-cache* nil)
1011 (defconstant +power-cache-integer-length-limit+ 2048)
1013 (defun scrub-power-cache ()
1014 (let ((cache *power-cache*))
1015 (dolist (cell cache)
1016 (let ((powers (cdr cell)))
1017 (declare (simple-vector powers))
1018 (let ((too-big (position-if
1020 (>= (integer-length x)
1021 +power-cache-integer-length-limit+))
1024 (setf (cdr cell) (subseq powers 0 too-big))))))
1025 ;; Since base 10 is overwhelmingly common, make sure it's at head.
1026 ;; Try to keep other bases in a hopefully sensible order as well.
1027 (if (eql 10 (caar cache))
1028 (setf *power-cache* cache)
1029 ;; If we modify the list destructively we need to copy it, otherwise
1030 ;; an alist lookup in progress might be screwed.
1031 (setf *power-cache* (sort (copy-list cache)
1033 (declare (fixnum a b))
1043 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1044 ;;; the vector holds integers for which
1045 ;;; (aref powers k) == (expt base (expt 2 k))
1047 (defun powers-for-base (base limit)
1048 (flet ((compute-powers (from)
1050 (do ((p from (* p p)))
1052 ;; We don't actually need this, but we also
1053 ;; prefer not to cons it up a second time...
1056 (nreverse powers))))
1057 ;; Grab a local reference so that we won't stuff consed at the
1058 ;; head by other threads -- or sorting by SCRUB-POWER-CACHE.
1059 (let ((cache *power-cache*))
1060 (let ((cell (assoc base cache)))
1062 (let* ((powers (cdr cell))
1063 (len (length powers))
1064 (max (svref powers (1- len))))
1068 (concatenate 'vector powers
1069 (compute-powers (* max max)))))
1070 (setf (cdr cell) new)
1072 (let ((powers (coerce (compute-powers base) 'vector)))
1073 ;; Add new base to head: SCRUB-POWER-CACHE will later
1074 ;; put it to a better place.
1075 (setf *power-cache* (acons base powers cache))
1078 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1079 (defun %output-huge-integer-in-base (n base stream)
1080 (declare (type bignum n) (type fixnum base))
1081 ;; POWER is a vector for which the following holds:
1082 ;; (aref power k) == (expt base (expt 2 k))
1083 (let* ((power (powers-for-base base n))
1084 (k-start (or (position-if (lambda (x) (> x n)) power)
1085 (bug "power-vector too short"))))
1086 (labels ((bisect (n k exactp)
1087 (declare (fixnum k))
1088 ;; N is the number to bisect
1089 ;; K on initial entry BASE^(2^K) > N
1090 ;; EXACTP is true if 2^K is the exact number of digits
1093 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1096 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1100 (multiple-value-bind (q r) (truncate n (aref power k))
1101 ;; EXACTP is NIL only at the head of the
1102 ;; initial number, as we don't know the number
1103 ;; of digits there, but we do know that it
1104 ;; doesn't get any leading zeros.
1106 (bisect r k (or exactp (plusp q))))))))
1107 (bisect n k-start nil))))
1109 (defun %output-integer-in-base (integer base stream)
1110 (when (minusp integer)
1111 (write-char #\- stream)
1112 (setf integer (- integer)))
1113 ;; The ideal cutoff point between these two algorithms is almost
1114 ;; certainly quite platform dependent: this gives 87 for 32 bit
1115 ;; SBCL, which is about right at least for x86/Darwin.
1116 (if (or (fixnump integer)
1117 (< (integer-length integer) (* 3 sb!vm:n-positive-fixnum-bits)))
1118 (%output-reasonable-integer-in-base integer base stream)
1119 (%output-huge-integer-in-base integer base stream)))
1121 (defun output-integer (integer stream)
1122 (let ((base *print-base*))
1123 (when (and (/= base 10) *print-radix*)
1124 (%output-radix base stream))
1125 (%output-integer-in-base integer base stream)
1126 (when (and *print-radix* (= base 10))
1127 (write-char #\. stream))))
1129 (defun output-ratio (ratio stream)
1130 (let ((base *print-base*))
1132 (%output-radix base stream))
1133 (%output-integer-in-base (numerator ratio) base stream)
1134 (write-char #\/ stream)
1135 (%output-integer-in-base (denominator ratio) base stream)))
1137 (defun output-complex (complex stream)
1138 (write-string "#C(" stream)
1139 ;; FIXME: Could this just be OUTPUT-NUMBER?
1140 (output-object (realpart complex) stream)
1141 (write-char #\space stream)
1142 (output-object (imagpart complex) stream)
1143 (write-char #\) stream))
1147 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1148 ;;; most of the work for all printing of floating point numbers in
1149 ;;; FORMAT. It converts a floating point number to a string in a free
1150 ;;; or fixed format with no exponent. The interpretation of the
1151 ;;; arguments is as follows:
1153 ;;; X - The floating point number to convert, which must not be
1155 ;;; WIDTH - The preferred field width, used to determine the number
1156 ;;; of fraction digits to produce if the FDIGITS parameter
1157 ;;; is unspecified or NIL. If the non-fraction digits and the
1158 ;;; decimal point alone exceed this width, no fraction digits
1159 ;;; will be produced unless a non-NIL value of FDIGITS has been
1160 ;;; specified. Field overflow is not considerd an error at this
1162 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1163 ;;; trailing zeroes may be introduced as needed. May be
1164 ;;; unspecified or NIL, in which case as many digits as possible
1165 ;;; are generated, subject to the constraint that there are no
1166 ;;; trailing zeroes.
1167 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1168 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1169 ;;; and cannot lose precision.
1170 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1171 ;;; number of fraction digits which will be produced, regardless
1172 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1173 ;;; the ~E format directive to prevent complete loss of
1174 ;;; significance in the printed value due to a bogus choice of
1178 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1179 ;;; where the results have the following interpretation:
1181 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1182 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1183 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1185 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1187 ;;; POINT-POS - The position of the digit preceding the decimal
1188 ;;; point. Zero indicates point before first digit.
1190 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1191 ;;; accuracy. Specifically, the decimal number printed is the closest
1192 ;;; possible approximation to the true value of the binary number to
1193 ;;; be printed from among all decimal representations with the same
1194 ;;; number of digits. In free-format output, i.e. with the number of
1195 ;;; digits unconstrained, it is guaranteed that all the information is
1196 ;;; preserved, so that a properly- rounding reader can reconstruct the
1197 ;;; original binary number, bit-for-bit, from its printed decimal
1198 ;;; representation. Furthermore, only as many digits as necessary to
1199 ;;; satisfy this condition will be printed.
1201 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1202 ;;; see below for comments.
1204 (defun flonum-to-string (x &optional width fdigits scale fmin)
1205 (declare (type float x))
1206 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1207 ;; possibly-negative X.
1210 ;; Zero is a special case which FLOAT-STRING cannot handle.
1212 (let ((s (make-string (1+ fdigits) :initial-element #\0)))
1213 (setf (schar s 0) #\.)
1214 (values s (length s) t (zerop fdigits) 0))
1215 (values "." 1 t t 0)))
1217 (multiple-value-bind (e string)
1219 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1221 (if (and width (> width 1))
1222 (let ((w (multiple-value-list
1226 (if (and scale (minusp scale))
1229 (f (multiple-value-list
1230 (flonum-to-digits x (- (+ (or fmin 0)
1231 (if scale scale 0)))))))
1233 ((>= (length (cadr w)) (length (cadr f)))
1235 (t (values-list f))))
1236 (flonum-to-digits x)))
1237 (let ((e (+ e (or scale 0)))
1238 (stream (make-string-output-stream)))
1241 (write-string string stream :end (min (length string)
1243 (dotimes (i (- e (length string)))
1244 (write-char #\0 stream))
1245 (write-char #\. stream)
1246 (write-string string stream :start (min (length
1249 (dotimes (i (- fdigits
1251 (min (length string) e))))
1252 (write-char #\0 stream))))
1254 (write-string "." stream)
1256 (write-char #\0 stream))
1257 (write-string string stream)
1259 (dotimes (i (+ fdigits e (- (length string))))
1260 (write-char #\0 stream)))))
1261 (let ((string (get-output-stream-string stream)))
1262 (values string (length string)
1263 (char= (char string 0) #\.)
1264 (char= (char string (1- (length string))) #\.)
1265 (position #\. string))))))))
1267 ;;; implementation of figure 1 from Burger and Dybvig, 1996. As the
1268 ;;; implementation of the Dragon from Classic CMUCL (and previously in
1269 ;;; SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN THINK OF
1270 ;;; ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE PAPER!",
1271 ;;; and in this case we have to add that even reading the paper might
1272 ;;; not bring immediate illumination as CSR has attempted to turn
1273 ;;; idiomatic Scheme into idiomatic Lisp.
1275 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1276 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1277 ;;; an improved algorithm, but CSR ran out of energy.
1279 ;;; possible extension for the enthusiastic: printing floats in bases
1280 ;;; other than base 10.
1281 (defconstant single-float-min-e
1282 (nth-value 1 (decode-float least-positive-single-float)))
1283 (defconstant double-float-min-e
1284 (nth-value 1 (decode-float least-positive-double-float)))
1286 (defconstant long-float-min-e
1287 (nth-value 1 (decode-float least-positive-long-float)))
1289 (defun flonum-to-digits (v &optional position relativep)
1290 (let ((print-base 10) ; B
1292 (float-digits (float-digits v)) ; p
1293 (digit-characters "0123456789")
1296 (single-float single-float-min-e)
1297 (double-float double-float-min-e)
1299 (long-float long-float-min-e))))
1300 (multiple-value-bind (f e)
1301 (integer-decode-float v)
1302 (let (;; FIXME: these even tests assume normal IEEE rounding
1303 ;; mode. I wonder if we should cater for non-normal?
1306 (with-push-char (:element-type base-char)
1307 (labels ((scale (r s m+ m-)
1309 (s s (* s print-base)))
1310 ((not (or (> (+ r m+) s)
1311 (and high-ok (= (+ r m+) s))))
1313 (r r (* r print-base))
1314 (m+ m+ (* m+ print-base))
1315 (m- m- (* m- print-base)))
1316 ((not (or (< (* (+ r m+) print-base) s)
1318 (= (* (+ r m+) print-base) s))))
1319 (values k (generate r s m+ m-)))))))
1320 (generate (r s m+ m-)
1324 (setf (values d r) (truncate (* r print-base) s))
1325 (setf m+ (* m+ print-base))
1326 (setf m- (* m- print-base))
1327 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1328 (setf tc2 (or (> (+ r m+) s)
1329 (and high-ok (= (+ r m+) s))))
1332 (push-char (char digit-characters d))
1336 ((and (not tc1) tc2) (1+ d))
1337 ((and tc1 (not tc2)) d)
1339 (if (< (* r 2) s) d (1+ d))))))
1340 (push-char (char digit-characters d))
1341 (return-from generate (get-pushed-string))))))
1345 (let* ((be (expt float-radix e))
1346 (be1 (* be float-radix)))
1347 (if (/= f (expt float-radix (1- float-digits)))
1357 (/= f (expt float-radix (1- float-digits))))
1359 s (* (expt float-radix (- e)) 2)
1362 (setf r (* f float-radix 2)
1363 s (* (expt float-radix (- 1 e)) 2)
1368 (aver (> position 0))
1370 ;; running out of letters here
1371 (l 1 (* l print-base)))
1372 ((>= (* s l) (+ r m+))
1374 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1375 (* s (expt print-base k)))
1376 (setf position (- k position))
1377 (setf position (- k position 1))))))
1378 (let ((low (max m- (/ (* s (expt print-base position)) 2)))
1379 (high (max m+ (/ (* s (expt print-base position)) 2))))
1386 (values r s m+ m-))))
1387 (multiple-value-bind (r s m+ m-) (initialize)
1388 (scale r s m+ m-))))))))
1390 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1391 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1392 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1393 ;;; original number. There may be some loss of precision due the
1394 ;;; floating point representation. The scaling is always done with
1395 ;;; long float arithmetic, which helps printing of lesser precisions
1396 ;;; as well as avoiding generic arithmetic.
1398 ;;; When computing our initial scale factor using EXPT, we pull out
1399 ;;; part of the computation to avoid over/under flow. When
1400 ;;; denormalized, we must pull out a large factor, since there is more
1401 ;;; negative exponent range than positive range.
1403 (eval-when (:compile-toplevel :execute)
1404 (setf *read-default-float-format*
1405 #!+long-float 'long-float #!-long-float 'double-float))
1406 (defun scale-exponent (original-x)
1407 (let* ((x (coerce original-x 'long-float)))
1408 (multiple-value-bind (sig exponent) (decode-float x)
1409 (declare (ignore sig))
1411 (values (float 0.0e0 original-x) 1)
1412 (let* ((ex (locally (declare (optimize (safety 0)))
1414 (round (* exponent (log 2e0 10))))))
1416 (if (float-denormalized-p x)
1418 (* x 1.0e16 (expt 10.0e0 (- (- ex) 16)))
1420 (* x 1.0e18 (expt 10.0e0 (- (- ex) 18)))
1421 (* x 10.0e0 (expt 10.0e0 (- (- ex) 1))))
1422 (/ x 10.0e0 (expt 10.0e0 (1- ex))))))
1423 (do ((d 10.0e0 (* d 10.0e0))
1427 (do ((m 10.0e0 (* m 10.0e0))
1431 (values (float z original-x) ex))
1432 (declare (long-float m) (integer ex))))
1433 (declare (long-float d))))))))
1434 (eval-when (:compile-toplevel :execute)
1435 (setf *read-default-float-format* 'single-float))
1437 ;;;; entry point for the float printer
1439 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1440 ;;; argument is printed free-format, in either exponential or
1441 ;;; non-exponential notation, depending on its magnitude.
1443 ;;; NOTE: When a number is to be printed in exponential format, it is
1444 ;;; scaled in floating point. Since precision may be lost in this
1445 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1446 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1447 ;;; extensive computations with integers of similar magnitude to that
1448 ;;; of the number being printed. For large exponents, the bignums
1449 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1450 ;;; fast and the exponent range is not too large, then it might become
1451 ;;; attractive to handle exponential notation with the same accuracy
1452 ;;; as non-exponential notation, using the method described in the
1453 ;;; Steele and White paper.
1455 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1456 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1457 ;;; probably (a) implement the optimizations suggested by Burger and
1458 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1459 ;;; fixed-format printing.
1461 ;;; Print the appropriate exponent marker for X and the specified exponent.
1462 (defun print-float-exponent (x exp stream)
1463 (declare (type float x) (type integer exp) (type stream stream))
1464 (let ((*print-radix* nil))
1465 (if (typep x *read-default-float-format*)
1467 (format stream "e~D" exp))
1468 (format stream "~C~D"
1476 (defun output-float-infinity (x stream)
1477 (declare (float x) (stream stream))
1479 (write-string "#." stream))
1481 (error 'print-not-readable :object x))
1483 (write-string "#<" stream)))
1484 (write-string "SB-EXT:" stream)
1485 (write-string (symbol-name (float-format-name x)) stream)
1486 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1488 (write-string "INFINITY" stream)
1490 (write-string ">" stream)))
1492 (defun output-float-nan (x stream)
1493 (print-unreadable-object (x stream)
1494 (princ (float-format-name x) stream)
1495 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1496 (write-string " NaN" stream)))
1498 ;;; the function called by OUTPUT-OBJECT to handle floats
1499 (defun output-float (x stream)
1501 ((float-infinity-p x)
1502 (output-float-infinity x stream))
1504 (output-float-nan x stream))
1506 (let ((x (cond ((minusp (float-sign x))
1507 (write-char #\- stream)
1513 (write-string "0.0" stream)
1514 (print-float-exponent x 0 stream))
1516 (output-float-aux x stream -3 8)))))))
1518 (defun output-float-aux (x stream e-min e-max)
1519 (multiple-value-bind (e string)
1520 (flonum-to-digits x)
1525 (write-string string stream :end (min (length string) e))
1526 (dotimes (i (- e (length string)))
1527 (write-char #\0 stream))
1528 (write-char #\. stream)
1529 (write-string string stream :start (min (length string) e))
1530 (when (<= (length string) e)
1531 (write-char #\0 stream))
1532 (print-float-exponent x 0 stream))
1534 (write-string "0." stream)
1536 (write-char #\0 stream))
1537 (write-string string stream)
1538 (print-float-exponent x 0 stream))))
1539 (t (write-string string stream :end 1)
1540 (write-char #\. stream)
1541 (write-string string stream :start 1)
1542 (print-float-exponent x (1- e) stream)))))
1544 ;;;; other leaf objects
1546 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1547 ;;; the character name or the character in the #\char format.
1548 (defun output-character (char stream)
1549 (if (or *print-escape* *print-readably*)
1550 (let ((graphicp (and (graphic-char-p char)
1551 (standard-char-p char)))
1552 (name (char-name char)))
1553 (write-string "#\\" stream)
1554 (if (and name (not graphicp))
1555 (quote-string name stream)
1556 (write-char char stream)))
1557 (write-char char stream)))
1559 (defun output-sap (sap stream)
1560 (declare (type system-area-pointer sap))
1562 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1564 (print-unreadable-object (sap stream)
1565 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1567 (defun output-weak-pointer (weak-pointer stream)
1568 (declare (type weak-pointer weak-pointer))
1569 (print-unreadable-object (weak-pointer stream)
1570 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1572 (write-string "weak pointer: " stream)
1573 (write value :stream stream))
1575 (write-string "broken weak pointer" stream))))))
1577 (defun output-code-component (component stream)
1578 (print-unreadable-object (component stream :identity t)
1579 (let ((dinfo (%code-debug-info component)))
1580 (cond ((eq dinfo :bogus-lra)
1581 (write-string "bogus code object" stream))
1583 (write-string "code object" stream)
1585 (write-char #\space stream)
1586 (output-object (sb!c::debug-info-name dinfo) stream)))))))
1588 (defun output-lra (lra stream)
1589 (print-unreadable-object (lra stream :identity t)
1590 (write-string "return PC object" stream)))
1592 (defun output-fdefn (fdefn stream)
1593 (print-unreadable-object (fdefn stream)
1594 (write-string "FDEFINITION object for " stream)
1595 (output-object (fdefn-name fdefn) stream)))
1599 ;;; Output OBJECT as using PRINT-OBJECT if it's a
1600 ;;; FUNCALLABLE-STANDARD-CLASS, or return NIL otherwise.
1602 ;;; The definition here is a simple temporary placeholder. It will be
1603 ;;; overwritten by a smarter version (capable of calling generic
1604 ;;; PRINT-OBJECT when appropriate) when CLOS is installed.
1605 (defun printed-as-funcallable-standard-class (object stream)
1606 (declare (ignore object stream))
1609 (defun output-fun (object stream)
1610 (let* ((*print-length* 3) ; in case we have to..
1611 (*print-level* 3) ; ..print an interpreted function definition
1612 (name (%fun-name object))
1613 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
1614 (eq (fdefinition name) object))))
1615 (print-unreadable-object (object stream :identity (not proper-name-p))
1616 (format stream "~:[FUNCTION~;CLOSURE~]~@[ ~S~]"
1620 ;;;; catch-all for unknown things
1622 (defun output-random (object stream)
1623 (print-unreadable-object (object stream :identity t)
1624 (let ((lowtag (lowtag-of object)))
1626 (#.sb!vm:other-pointer-lowtag
1627 (let ((widetag (widetag-of object)))
1629 (#.sb!vm:value-cell-header-widetag
1630 (write-string "value cell " stream)
1631 (output-object (value-cell-ref object) stream))
1633 (write-string "unknown pointer object, widetag=" stream)
1634 (let ((*print-base* 16) (*print-radix* t))
1635 (output-integer widetag stream))))))
1636 ((#.sb!vm:fun-pointer-lowtag
1637 #.sb!vm:instance-pointer-lowtag
1638 #.sb!vm:list-pointer-lowtag)
1639 (write-string "unknown pointer object, lowtag=" stream)
1640 (let ((*print-base* 16) (*print-radix* t))
1641 (output-integer lowtag stream)))
1643 (case (widetag-of object)
1644 (#.sb!vm:unbound-marker-widetag
1645 (write-string "unbound marker" stream))
1647 (write-string "unknown immediate object, lowtag=" stream)
1648 (let ((*print-base* 2) (*print-radix* t))
1649 (output-integer lowtag stream))
1650 (write-string ", widetag=" stream)
1651 (let ((*print-base* 16) (*print-radix* t))
1652 (output-integer (widetag-of object) stream)))))))))