1.0.4.39: get rid of hardcoded mutex and spinlock slot indexes
[sbcl.git] / src / code / room.lisp
1 ;;;; heap-grovelling memory usage stuff
2
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
11
12 (in-package "SB!VM")
13 \f
14 ;;;; type format database
15
16 (eval-when (:compile-toplevel :load-toplevel :execute)
17   (def!struct (room-info (:make-load-form-fun just-dump-it-normally))
18     ;; the name of this type
19     (name nil :type symbol)
20     ;; kind of type (how we determine length)
21     (kind (missing-arg)
22           :type (member :lowtag :fixed :header :vector
23                         :string :code :closure :instance))
24     ;; length if fixed-length, shift amount for element size if :VECTOR
25     (length nil :type (or fixnum null))))
26
27 (eval-when (:compile-toplevel :execute)
28
29 (defvar *meta-room-info* (make-array 256 :initial-element nil))
30
31 (dolist (obj *primitive-objects*)
32   (let ((widetag (primitive-object-widetag obj))
33         (lowtag (primitive-object-lowtag obj))
34         (name (primitive-object-name obj))
35         (variable (primitive-object-variable-length-p obj))
36         (size (primitive-object-size obj)))
37     (cond
38      ((not lowtag))
39      (;; KLUDGE described in dan_b message "Another one for the
40       ;; collection [bug 108]" (sbcl-devel 2004-01-22)
41       ;;
42       ;; In a freshly started SBCL 0.8.7.20ish, (TIME (ROOM T))  causes
43       ;;   debugger invoked on a SB-INT:BUG in thread 5911:
44       ;;     failed AVER: "(SAP= CURRENT END)"
45       ;; [WHN: Similar things happened on one but not the other of my
46       ;; machines when I just run ROOM a lot in a loop.]
47       ;;
48       ;; This appears to be due to my [DB] abuse of the primitive
49       ;; object macros to define a thread object that shares a lowtag
50       ;; with fixnums and has no widetag: it looks like the code that
51       ;; generates *META-ROOM-INFO* infers from this that even fixnums
52       ;; are thread-sized - probably undesirable.
53       ;;
54       ;; This [the fix; the EQL NAME 'THREAD clause here] is more in the
55       ;; nature of a workaround than a really good fix. I'm not sure
56       ;; what a really good fix is: I /think/ it's probably to remove
57       ;; the :LOWTAG option in DEFINE-PRIMITIVE-OBJECT THREAD, then teach
58       ;; genesis to generate the necessary OBJECT_SLOT_OFFSET macros
59       ;; for assembly source in the runtime/genesis/*.h files.
60       (eql name 'thread))
61      ((not widetag)
62       (let ((info (make-room-info :name name
63                                   :kind :lowtag))
64             (lowtag (symbol-value lowtag)))
65         (declare (fixnum lowtag))
66         (dotimes (i 32)
67           (setf (svref *meta-room-info* (logior lowtag (ash i 3))) info))))
68      (variable)
69      (t
70       (setf (svref *meta-room-info* (symbol-value widetag))
71             (make-room-info :name name
72                             :kind :fixed
73                             :length size))))))
74
75 (dolist (code (list #!+sb-unicode complex-character-string-widetag
76                     complex-base-string-widetag simple-array-widetag
77                     complex-bit-vector-widetag complex-vector-widetag
78                     complex-array-widetag complex-vector-nil-widetag))
79   (setf (svref *meta-room-info* code)
80         (make-room-info :name 'array-header
81                         :kind :header)))
82
83 (setf (svref *meta-room-info* bignum-widetag)
84       (make-room-info :name 'bignum
85                       :kind :header))
86
87 (setf (svref *meta-room-info* closure-header-widetag)
88       (make-room-info :name 'closure
89                       :kind :closure))
90
91 (dolist (stuff '((simple-bit-vector-widetag . -3)
92                  (simple-vector-widetag . 2)
93                  (simple-array-unsigned-byte-2-widetag . -2)
94                  (simple-array-unsigned-byte-4-widetag . -1)
95                  (simple-array-unsigned-byte-7-widetag . 0)
96                  (simple-array-unsigned-byte-8-widetag . 0)
97                  (simple-array-unsigned-byte-15-widetag . 1)
98                  (simple-array-unsigned-byte-16-widetag . 1)
99                  (simple-array-unsigned-byte-31-widetag . 2)
100                  (simple-array-unsigned-byte-32-widetag . 2)
101                  (simple-array-unsigned-byte-60-widetag . 3)
102                  (simple-array-unsigned-byte-63-widetag . 3)
103                  (simple-array-unsigned-byte-64-widetag . 3)
104                  (simple-array-signed-byte-8-widetag . 0)
105                  (simple-array-signed-byte-16-widetag . 1)
106                  (simple-array-unsigned-byte-29-widetag . 2)
107                  (simple-array-signed-byte-30-widetag . 2)
108                  (simple-array-signed-byte-32-widetag . 2)
109                  (simple-array-signed-byte-61-widetag . 3)
110                  (simple-array-signed-byte-64-widetag . 3)
111                  (simple-array-single-float-widetag . 2)
112                  (simple-array-double-float-widetag . 3)
113                  (simple-array-complex-single-float-widetag . 3)
114                  (simple-array-complex-double-float-widetag . 4)))
115   (let* ((name (car stuff))
116          (size (cdr stuff))
117          (sname (string name)))
118     (when (boundp name)
119       (setf (svref *meta-room-info* (symbol-value name))
120             (make-room-info :name (intern (subseq sname
121                                                   0
122                                                   (mismatch sname "-WIDETAG"
123                                                             :from-end t)))
124                             :kind :vector
125                             :length size)))))
126
127 (setf (svref *meta-room-info* simple-base-string-widetag)
128       (make-room-info :name 'simple-base-string
129                       :kind :string
130                       :length 0))
131
132 #!+sb-unicode
133 (setf (svref *meta-room-info* simple-character-string-widetag)
134       (make-room-info :name 'simple-character-string
135                       :kind :string
136                       :length 2))
137
138 (setf (svref *meta-room-info* simple-array-nil-widetag)
139       (make-room-info :name 'simple-array-nil
140                       :kind :fixed
141                       :length 2))
142
143 (setf (svref *meta-room-info* code-header-widetag)
144       (make-room-info :name 'code
145                       :kind :code))
146
147 (setf (svref *meta-room-info* instance-header-widetag)
148       (make-room-info :name 'instance
149                       :kind :instance))
150
151 ) ; EVAL-WHEN
152
153 (defparameter *room-info* '#.*meta-room-info*)
154 (deftype spaces () '(member :static :dynamic :read-only))
155 \f
156 ;;;; MAP-ALLOCATED-OBJECTS
157
158 ;;; Since they're represented as counts of words, we should never
159 ;;; need bignums to represent these:
160 (declaim (type fixnum
161                *static-space-free-pointer*
162                *read-only-space-free-pointer*))
163
164 (defun space-bounds (space)
165   (declare (type spaces space))
166   (ecase space
167     (:static
168      (values (int-sap static-space-start)
169              (int-sap (* *static-space-free-pointer* n-word-bytes))))
170     (:read-only
171      (values (int-sap read-only-space-start)
172              (int-sap (* *read-only-space-free-pointer* n-word-bytes))))
173     (:dynamic
174      (values (int-sap (current-dynamic-space-start))
175              (dynamic-space-free-pointer)))))
176
177 ;;; Return the total number of bytes used in SPACE.
178 (defun space-bytes (space)
179   (multiple-value-bind (start end) (space-bounds space)
180     (- (sap-int end) (sap-int start))))
181
182 ;;; Round SIZE (in bytes) up to the next dualword (eight byte) boundary.
183 #!-sb-fluid (declaim (inline round-to-dualword))
184 (defun round-to-dualword (size)
185   (declare (fixnum size))
186   (logand (the fixnum (+ size lowtag-mask)) (lognot lowtag-mask)))
187
188 ;;; Return the total size of a vector in bytes, including any pad.
189 #!-sb-fluid (declaim (inline vector-total-size))
190 (defun vector-total-size (obj info)
191   (let ((shift (room-info-length info))
192         (len (+ (length (the (simple-array * (*)) obj))
193                 (ecase (room-info-kind info)
194                   (:vector 0)
195                   (:string 1)))))
196     (round-to-dualword
197      (+ (* vector-data-offset n-word-bytes)
198         (if (minusp shift)
199             (ash (+ len (1- (ash 1 (- shift))))
200                  shift)
201             (ash len shift))))))
202
203 ;;; Access to the GENCGC page table for better precision in
204 ;;; MAP-ALLOCATED-OBJECTS
205 #!+gencgc
206 (progn
207   (define-alien-type (struct page)
208       (struct page
209               (start long)
210               ;; On platforms with small enough GC pages, this field
211               ;; will be a short. On platforms with larger ones, it'll
212               ;; be an int.
213               (bytes-used (unsigned
214                            #.(if (typep sb!vm:gencgc-page-size
215                                         '(unsigned-byte 16))
216                                  16
217                                  32)))
218               (flags (unsigned 8))
219               (gen (signed 8))))
220   (declaim (inline find-page-index))
221   (define-alien-routine "find_page_index" long (index long))
222   (define-alien-variable "page_table" (* (struct page))))
223
224 ;;; Iterate over all the objects allocated in SPACE, calling FUN with
225 ;;; the object, the object's type code, and the object's total size in
226 ;;; bytes, including any header and padding.
227 #!-sb-fluid (declaim (maybe-inline map-allocated-objects))
228 (defun map-allocated-objects (fun space)
229   (declare (type function fun) (type spaces space))
230   (without-gcing
231    (multiple-value-bind (start end) (space-bounds space)
232      (declare (type system-area-pointer start end))
233      (declare (optimize (speed 3)))
234      (let ((current start)
235            #!+gencgc (skip-tests-until-addr 0))
236        (labels ((maybe-finish-mapping ()
237                   (unless (sap< current end)
238                     (aver (sap= current end))
239                     (return-from map-allocated-objects)))
240                 ;; GENCGC doesn't allocate linearly, which means that the
241                 ;; dynamic space can contain large blocks zeros that get
242                 ;; accounted as conses in ROOM (and slow down other
243                 ;; applications of MAP-ALLOCATED-OBJECTS). To fix this
244                 ;; check the GC page structure for the current address.
245                 ;; If the page is free or the address is beyond the page-
246                 ;; internal allocation offset (bytes-used) skip to the
247                 ;; next page immediately.
248                 (maybe-skip-page ()
249                   #!+gencgc
250                   (when (eq space :dynamic)
251                     (loop with page-mask = #.(1- sb!vm:gencgc-page-size)
252                           for addr of-type sb!vm:word = (sap-int current)
253                           while (>= addr skip-tests-until-addr)
254                           do
255                           ;; For some reason binding PAGE with LET
256                           ;; conses like mad (but gives no compiler notes...)
257                           ;; Work around the problem with SYMBOL-MACROLET
258                           ;; instead of trying to figure out the real
259                           ;; issue. -- JES, 2005-05-17
260                           (symbol-macrolet
261                               ((page (deref page-table
262                                             (find-page-index addr))))
263                             ;; Don't we have any nicer way to access C struct
264                             ;; bitfields?
265                             (let ((alloc-flag (ldb (byte 3 2)
266                                                    (slot page 'flags)))
267                                   (bytes-used (slot page 'bytes-used)))
268                               ;; If the page is not free and the current
269                               ;; pointer is still below the allocation offset
270                               ;; of the page
271                               (when (and (not (zerop alloc-flag))
272                                          (<= (logand page-mask addr)
273                                              bytes-used))
274                                 ;; Don't bother testing again until we
275                                 ;; get past that allocation offset
276                                 (setf skip-tests-until-addr
277                                       (+ (logandc2 addr page-mask)
278                                          (the fixnum bytes-used)))
279                                 ;; And then continue with the scheduled
280                                 ;; mapping
281                                 (return-from maybe-skip-page))
282                               ;; Move CURRENT to start of next page
283                               (setf current (int-sap (+ (logandc2 addr page-mask)
284                                                         sb!vm:gencgc-page-size)))
285                               (maybe-finish-mapping)))))))
286          (declare (inline maybe-finish-mapping maybe-skip-page))
287          (loop
288              (maybe-finish-mapping)
289              (maybe-skip-page)
290            (let* ((header (sap-ref-word current 0))
291                   (header-widetag (logand header #xFF))
292                   (info (svref *room-info* header-widetag)))
293              (cond
294                ((or (not info)
295                     (eq (room-info-kind info) :lowtag))
296                 (let ((size (* cons-size n-word-bytes)))
297                   (funcall fun
298                            (make-lisp-obj (logior (sap-int current)
299                                                   list-pointer-lowtag))
300                            list-pointer-lowtag
301                            size)
302                   (setq current (sap+ current size))))
303                ((eql header-widetag closure-header-widetag)
304                 (let* ((obj (make-lisp-obj (logior (sap-int current)
305                                                    fun-pointer-lowtag)))
306                        (size (round-to-dualword
307                               (* (the fixnum (1+ (get-closure-length obj)))
308                                  n-word-bytes))))
309                   (funcall fun obj header-widetag size)
310                   (setq current (sap+ current size))))
311                ((eq (room-info-kind info) :instance)
312                 (let* ((obj (make-lisp-obj
313                              (logior (sap-int current) instance-pointer-lowtag)))
314                        (size (round-to-dualword
315                               (* (+ (%instance-length obj) 1) n-word-bytes))))
316                   (declare (fixnum size))
317                   (funcall fun obj header-widetag size)
318                   (aver (zerop (logand size lowtag-mask)))
319                   (setq current (sap+ current size))))
320                (t
321                 (let* ((obj (make-lisp-obj
322                              (logior (sap-int current) other-pointer-lowtag)))
323                        (size (ecase (room-info-kind info)
324                                (:fixed
325                                 (aver (or (eql (room-info-length info)
326                                                (1+ (get-header-data obj)))
327                                           (floatp obj)
328                                           (simple-array-nil-p obj)))
329                                 (round-to-dualword
330                                  (* (room-info-length info) n-word-bytes)))
331                                ((:vector :string)
332                                 (vector-total-size obj info))
333                                (:header
334                                 (round-to-dualword
335                                  (* (1+ (get-header-data obj)) n-word-bytes)))
336                                (:code
337                                 (+ (the fixnum
338                                      (* (get-header-data obj) n-word-bytes))
339                                    (round-to-dualword
340                                     (* (the fixnum (%code-code-size obj))
341                                        n-word-bytes)))))))
342                   (declare (fixnum size))
343                   (funcall fun obj header-widetag size)
344                   (aver (zerop (logand size lowtag-mask)))
345                   (setq current (sap+ current size))))))))))))
346
347 \f
348 ;;;; MEMORY-USAGE
349
350 ;;; Return a list of 3-lists (bytes object type-name) for the objects
351 ;;; allocated in Space.
352 (defun type-breakdown (space)
353   (let ((sizes (make-array 256 :initial-element 0 :element-type 'fixnum))
354         (counts (make-array 256 :initial-element 0 :element-type 'fixnum)))
355     (map-allocated-objects
356      (lambda (obj type size)
357        (declare (fixnum size) (optimize (speed 3)) (ignore obj))
358        (incf (aref sizes type) size)
359        (incf (aref counts type)))
360      space)
361
362     (let ((totals (make-hash-table :test 'eq)))
363       (dotimes (i 256)
364         (let ((total-count (aref counts i)))
365           (unless (zerop total-count)
366             (let* ((total-size (aref sizes i))
367                    (name (room-info-name (aref *room-info* i)))
368                    (found (gethash name totals)))
369               (cond (found
370                      (incf (first found) total-size)
371                      (incf (second found) total-count))
372                     (t
373                      (setf (gethash name totals)
374                            (list total-size total-count name))))))))
375
376       (collect ((totals-list))
377         (maphash (lambda (k v)
378                    (declare (ignore k))
379                    (totals-list v))
380                  totals)
381         (sort (totals-list) #'> :key #'first)))))
382
383 ;;; Handle the summary printing for MEMORY-USAGE. Totals is a list of lists
384 ;;; (space-name . totals-for-space), where totals-for-space is the list
385 ;;; returned by TYPE-BREAKDOWN.
386 (defun print-summary (spaces totals)
387   (let ((summary (make-hash-table :test 'eq)))
388     (dolist (space-total totals)
389       (dolist (total (cdr space-total))
390         (push (cons (car space-total) total)
391               (gethash (third total) summary))))
392
393     (collect ((summary-totals))
394       (maphash (lambda (k v)
395                  (declare (ignore k))
396                  (let ((sum 0))
397                    (declare (fixnum sum))
398                    (dolist (space-total v)
399                      (incf sum (first (cdr space-total))))
400                    (summary-totals (cons sum v))))
401                summary)
402
403       (format t "~2&Summary of spaces: ~(~{~A ~}~)~%" spaces)
404       (let ((summary-total-bytes 0)
405             (summary-total-objects 0))
406         (declare (fixnum summary-total-bytes summary-total-objects))
407         (dolist (space-totals
408                  (mapcar #'cdr (sort (summary-totals) #'> :key #'car)))
409           (let ((total-objects 0)
410                 (total-bytes 0)
411                 name)
412             (declare (fixnum total-objects total-bytes))
413             (collect ((spaces))
414               (dolist (space-total space-totals)
415                 (let ((total (cdr space-total)))
416                   (setq name (third total))
417                   (incf total-bytes (first total))
418                   (incf total-objects (second total))
419                   (spaces (cons (car space-total) (first total)))))
420               (format t "~%~A:~%    ~:D bytes, ~:D object~:P"
421                       name total-bytes total-objects)
422               (dolist (space (spaces))
423                 (format t ", ~W% ~(~A~)"
424                         (round (* (cdr space) 100) total-bytes)
425                         (car space)))
426               (format t ".~%")
427               (incf summary-total-bytes total-bytes)
428               (incf summary-total-objects total-objects))))
429         (format t "~%Summary total:~%    ~:D bytes, ~:D objects.~%"
430                 summary-total-bytes summary-total-objects)))))
431
432 ;;; Report object usage for a single space.
433 (defun report-space-total (space-total cutoff)
434   (declare (list space-total) (type (or single-float null) cutoff))
435   (format t "~2&Breakdown for ~(~A~) space:~%" (car space-total))
436   (let* ((types (cdr space-total))
437          (total-bytes (reduce #'+ (mapcar #'first types)))
438          (total-objects (reduce #'+ (mapcar #'second types)))
439          (cutoff-point (if cutoff
440                            (truncate (* (float total-bytes) cutoff))
441                            0))
442          (reported-bytes 0)
443          (reported-objects 0))
444     (declare (fixnum total-objects total-bytes cutoff-point reported-objects
445                      reported-bytes))
446     (loop for (bytes objects name) in types do
447       (when (<= bytes cutoff-point)
448         (format t "  ~10:D bytes for ~9:D other object~2:*~P.~%"
449                 (- total-bytes reported-bytes)
450                 (- total-objects reported-objects))
451         (return))
452       (incf reported-bytes bytes)
453       (incf reported-objects objects)
454       (format t "  ~10:D bytes for ~9:D ~(~A~) object~2:*~P.~%"
455               bytes objects name))
456     (format t "  ~10:D bytes for ~9:D ~(~A~) object~2:*~P (space total.)~%"
457             total-bytes total-objects (car space-total))))
458
459 ;;; Print information about the heap memory in use. PRINT-SPACES is a
460 ;;; list of the spaces to print detailed information for.
461 ;;; COUNT-SPACES is a list of the spaces to scan. For either one, T
462 ;;; means all spaces (i.e. :STATIC, :DYNAMIC and :READ-ONLY.) If
463 ;;; PRINT-SUMMARY is true, then summary information will be printed.
464 ;;; The defaults print only summary information for dynamic space. If
465 ;;; true, CUTOFF is a fraction of the usage in a report below which
466 ;;; types will be combined as OTHER.
467 (defun memory-usage (&key print-spaces (count-spaces '(:dynamic))
468                           (print-summary t) cutoff)
469   (declare (type (or single-float null) cutoff))
470   (let* ((spaces (if (eq count-spaces t)
471                      '(:static :dynamic :read-only)
472                      count-spaces))
473          (totals (mapcar (lambda (space)
474                            (cons space (type-breakdown space)))
475                          spaces)))
476
477     (dolist (space-total totals)
478       (when (or (eq print-spaces t)
479                 (member (car space-total) print-spaces))
480         (report-space-total space-total cutoff)))
481
482     (when print-summary (print-summary spaces totals)))
483
484   (values))
485 \f
486 ;;; Print info about how much code and no-ops there are in SPACE.
487 (defun count-no-ops (space)
488   (declare (type spaces space))
489   (let ((code-words 0)
490         (no-ops 0)
491         (total-bytes 0))
492     (declare (fixnum code-words no-ops)
493              (type unsigned-byte total-bytes))
494     (map-allocated-objects
495      (lambda (obj type size)
496        (declare (fixnum size))
497        (when (eql type code-header-widetag)
498          (incf total-bytes size)
499          (let ((words (truly-the fixnum (%code-code-size obj)))
500                (sap (truly-the system-area-pointer
501                                (%primitive code-instructions obj))))
502            (incf code-words words)
503            (dotimes (i words)
504              (when (zerop (sap-ref-word sap (* i n-word-bytes)))
505                (incf no-ops))))))
506      space)
507
508     (format t
509             "~:D code-object bytes, ~:D code words, with ~:D no-ops (~D%).~%"
510             total-bytes code-words no-ops
511             (round (* no-ops 100) code-words)))
512
513   (values))
514 \f
515 (defun descriptor-vs-non-descriptor-storage (&rest spaces)
516   (let ((descriptor-words 0)
517         (non-descriptor-headers 0)
518         (non-descriptor-bytes 0))
519     (declare (type unsigned-byte descriptor-words non-descriptor-headers
520                    non-descriptor-bytes))
521     (dolist (space (or spaces '(:read-only :static :dynamic)))
522       (declare (inline map-allocated-objects))
523       (map-allocated-objects
524        (lambda (obj type size)
525          (declare (fixnum size))
526          (case type
527            (#.code-header-widetag
528             (let ((inst-words (truly-the fixnum (%code-code-size obj))))
529               (declare (type fixnum inst-words))
530               (incf non-descriptor-bytes (* inst-words n-word-bytes))
531               (incf descriptor-words
532                     (- (truncate size n-word-bytes) inst-words))))
533            ((#.bignum-widetag
534              #.single-float-widetag
535              #.double-float-widetag
536              #.simple-base-string-widetag
537              #!+sb-unicode #.simple-character-string-widetag
538              #.simple-array-nil-widetag
539              #.simple-bit-vector-widetag
540              #.simple-array-unsigned-byte-2-widetag
541              #.simple-array-unsigned-byte-4-widetag
542              #.simple-array-unsigned-byte-8-widetag
543              #.simple-array-unsigned-byte-16-widetag
544              #.simple-array-unsigned-byte-32-widetag
545              #.simple-array-signed-byte-8-widetag
546              #.simple-array-signed-byte-16-widetag
547              ; #.simple-array-signed-byte-30-widetag
548              #.simple-array-signed-byte-32-widetag
549              #.simple-array-single-float-widetag
550              #.simple-array-double-float-widetag
551              #.simple-array-complex-single-float-widetag
552              #.simple-array-complex-double-float-widetag)
553             (incf non-descriptor-headers)
554             (incf non-descriptor-bytes (- size n-word-bytes)))
555            ((#.list-pointer-lowtag
556              #.instance-pointer-lowtag
557              #.ratio-widetag
558              #.complex-widetag
559              #.simple-array-widetag
560              #.simple-vector-widetag
561              #.complex-base-string-widetag
562              #.complex-vector-nil-widetag
563              #.complex-bit-vector-widetag
564              #.complex-vector-widetag
565              #.complex-array-widetag
566              #.closure-header-widetag
567              #.funcallable-instance-header-widetag
568              #.value-cell-header-widetag
569              #.symbol-header-widetag
570              #.sap-widetag
571              #.weak-pointer-widetag
572              #.instance-header-widetag)
573             (incf descriptor-words (truncate size n-word-bytes)))
574            (t
575             (error "bogus widetag: ~W" type))))
576        space))
577     (format t "~:D words allocated for descriptor objects.~%"
578             descriptor-words)
579     (format t "~:D bytes data/~:D words header for non-descriptor objects.~%"
580             non-descriptor-bytes non-descriptor-headers)
581     (values)))
582 \f
583 ;;; Print a breakdown by instance type of all the instances allocated
584 ;;; in SPACE. If TOP-N is true, print only information for the
585 ;;; TOP-N types with largest usage.
586 (defun instance-usage (space &key (top-n 15))
587   (declare (type spaces space) (type (or fixnum null) top-n))
588   (format t "~2&~@[Top ~W ~]~(~A~) instance types:~%" top-n space)
589   (let ((totals (make-hash-table :test 'eq))
590         (total-objects 0)
591         (total-bytes 0))
592     (declare (fixnum total-objects total-bytes))
593     (map-allocated-objects
594      (lambda (obj type size)
595        (declare (fixnum size) (optimize (speed 3)))
596        (when (eql type instance-header-widetag)
597          (incf total-objects)
598          (incf total-bytes size)
599          (let* ((classoid (layout-classoid (%instance-ref obj 0)))
600                 (found (gethash classoid totals)))
601            (cond (found
602                   (incf (the fixnum (car found)))
603                   (incf (the fixnum (cdr found)) size))
604                  (t
605                   (setf (gethash classoid totals) (cons 1 size)))))))
606      space)
607
608     (collect ((totals-list))
609       (maphash (lambda (classoid what)
610                  (totals-list (cons (prin1-to-string
611                                      (classoid-proper-name classoid))
612                                     what)))
613                totals)
614       (let ((sorted (sort (totals-list) #'> :key #'cddr))
615             (printed-bytes 0)
616             (printed-objects 0))
617         (declare (fixnum printed-bytes printed-objects))
618         (dolist (what (if top-n
619                           (subseq sorted 0 (min (length sorted) top-n))
620                           sorted))
621           (let ((bytes (cddr what))
622                 (objects (cadr what)))
623             (incf printed-bytes bytes)
624             (incf printed-objects objects)
625             (format t "  ~A: ~:D bytes, ~:D object~:P.~%" (car what)
626                     bytes objects)))
627
628         (let ((residual-objects (- total-objects printed-objects))
629               (residual-bytes (- total-bytes printed-bytes)))
630           (unless (zerop residual-objects)
631             (format t "  Other types: ~:D bytes, ~:D object~:P.~%"
632                     residual-bytes residual-objects))))
633
634       (format t "  ~:(~A~) instance total: ~:D bytes, ~:D object~:P.~%"
635               space total-bytes total-objects)))
636
637   (values))
638 \f
639 ;;;; PRINT-ALLOCATED-OBJECTS
640
641 (defun print-allocated-objects (space &key (percent 0) (pages 5)
642                                       type larger smaller count
643                                       (stream *standard-output*))
644   (declare (type (integer 0 99) percent) (type index pages)
645            (type stream stream) (type spaces space)
646            (type (or index null) type larger smaller count))
647   (multiple-value-bind (start-sap end-sap) (space-bounds space)
648     (let* ((space-start (sap-int start-sap))
649            (space-end (sap-int end-sap))
650            (space-size (- space-end space-start))
651            (pagesize (sb!sys:get-page-size))
652            (start (+ space-start (round (* space-size percent) 100)))
653            (printed-conses (make-hash-table :test 'eq))
654            (pages-so-far 0)
655            (count-so-far 0)
656            (last-page 0))
657       (declare (type (unsigned-byte 32) last-page start)
658                (fixnum pages-so-far count-so-far pagesize))
659       (labels ((note-conses (x)
660                  (unless (or (atom x) (gethash x printed-conses))
661                    (setf (gethash x printed-conses) t)
662                    (note-conses (car x))
663                    (note-conses (cdr x)))))
664         (map-allocated-objects
665          (lambda (obj obj-type size)
666            (let ((addr (get-lisp-obj-address obj)))
667              (when (>= addr start)
668                (when (if count
669                          (> count-so-far count)
670                          (> pages-so-far pages))
671                  (return-from print-allocated-objects (values)))
672
673                (unless count
674                  (let ((this-page (* (the (values (unsigned-byte 32) t)
675                                        (truncate addr pagesize))
676                                      pagesize)))
677                    (declare (type (unsigned-byte 32) this-page))
678                    (when (/= this-page last-page)
679                      (when (< pages-so-far pages)
680                        ;; FIXME: What is this? (ERROR "Argh..")? or
681                        ;; a warning? or code that can be removed
682                        ;; once the system is stable? or what?
683                        (format stream "~2&**** Page ~W, address ~X:~%"
684                                pages-so-far addr))
685                      (setq last-page this-page)
686                      (incf pages-so-far))))
687
688                (when (and (or (not type) (eql obj-type type))
689                           (or (not smaller) (<= size smaller))
690                           (or (not larger) (>= size larger)))
691                  (incf count-so-far)
692                  (case type
693                    (#.code-header-widetag
694                     (let ((dinfo (%code-debug-info obj)))
695                       (format stream "~&Code object: ~S~%"
696                               (if dinfo
697                                   (sb!c::compiled-debug-info-name dinfo)
698                                   "No debug info."))))
699                    (#.symbol-header-widetag
700                     (format stream "~&~S~%" obj))
701                    (#.list-pointer-lowtag
702                     (unless (gethash obj printed-conses)
703                       (note-conses obj)
704                       (let ((*print-circle* t)
705                             (*print-level* 5)
706                             (*print-length* 10))
707                         (format stream "~&~S~%" obj))))
708                    (t
709                     (fresh-line stream)
710                     (let ((str (write-to-string obj :level 5 :length 10
711                                                 :pretty nil)))
712                       (unless (eql type instance-header-widetag)
713                         (format stream "~S: " (type-of obj)))
714                       (format stream "~A~%"
715                               (subseq str 0 (min (length str) 60))))))))))
716          space))))
717   (values))
718 \f
719 ;;;; LIST-ALLOCATED-OBJECTS, LIST-REFERENCING-OBJECTS
720
721 (defvar *ignore-after* nil)
722
723 (defun valid-obj (space x)
724   (or (not (eq space :dynamic))
725       ;; this test looks bogus if the allocator doesn't work linearly,
726       ;; which I suspect is the case for GENCGC.  -- CSR, 2004-06-29
727       (< (get-lisp-obj-address x) (get-lisp-obj-address *ignore-after*))))
728
729 (defun maybe-cons (space x stuff)
730   (if (valid-obj space x)
731       (cons x stuff)
732       stuff))
733
734 (defun list-allocated-objects (space &key type larger smaller count
735                                      test)
736   (declare (type spaces space)
737            (type (or index null) larger smaller type count)
738            (type (or function null) test)
739            (inline map-allocated-objects))
740   (unless *ignore-after*
741     (setq *ignore-after* (cons 1 2)))
742   (collect ((counted 0 1+))
743     (let ((res ()))
744       (map-allocated-objects
745        (lambda (obj obj-type size)
746          (when (and (or (not type) (eql obj-type type))
747                     (or (not smaller) (<= size smaller))
748                     (or (not larger) (>= size larger))
749                     (or (not test) (funcall test obj)))
750            (setq res (maybe-cons space obj res))
751            (when (and count (>= (counted) count))
752              (return-from list-allocated-objects res))))
753        space)
754       res)))
755
756 (defun map-referencing-objects (fun space object)
757   (declare (type spaces space) (inline map-allocated-objects))
758   (unless *ignore-after*
759     (setq *ignore-after* (cons 1 2)))
760   (flet ((maybe-call (fun obj)
761            (when (valid-obj space obj)
762              (funcall fun obj))))
763     (map-allocated-objects
764      (lambda (obj obj-type size)
765        (declare (ignore obj-type size))
766        (typecase obj
767          (cons
768           (when (or (eq (car obj) object)
769                     (eq (cdr obj) object))
770             (maybe-call fun obj)))
771          (instance
772           (dotimes (i (%instance-length obj))
773             (when (eq (%instance-ref obj i) object)
774               (maybe-call fun obj)
775               (return))))
776          (code-component
777           (let ((length (get-header-data obj)))
778             (do ((i code-constants-offset (1+ i)))
779                 ((= i length))
780               (when (eq (code-header-ref obj i) object)
781                 (maybe-call fun obj)
782                 (return)))))
783          (simple-vector
784           (dotimes (i (length obj))
785             (when (eq (svref obj i) object)
786               (maybe-call fun obj)
787               (return))))
788          (symbol
789           (when (or (eq (symbol-name obj) object)
790                     (eq (symbol-package obj) object)
791                     (eq (symbol-plist obj) object)
792                     (eq (symbol-value obj) object))
793             (maybe-call fun obj)))))
794      space)))
795
796 (defun list-referencing-objects (space object)
797   (collect ((res))
798     (map-referencing-objects
799      (lambda (obj) (res obj)) space object)
800     (res)))