1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let* ((element-ctype (extract-upgraded-element-type lvar))
21 (element-type-specifier (type-specifier element-ctype)))
22 (if (eq element-type-specifier '*)
23 (give-up-ir1-transform
24 "upgraded array element type not known at compile time")
25 element-type-specifier)))
27 ;;; Array access functions return an object from the array, hence its
28 ;;; type is going to be the array upgraded element type.
29 (defun extract-upgraded-element-type (array)
30 (let ((type (lvar-type array)))
31 ;; Note that this IF mightn't be satisfied even if the runtime
32 ;; value is known to be a subtype of some specialized ARRAY, because
33 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
34 ;; which are represented in the compiler as INTERSECTION-TYPE, not
36 (if (array-type-p type)
37 (array-type-specialized-element-type type)
38 ;; KLUDGE: there is no good answer here, but at least
39 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
40 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
44 (defun extract-declared-element-type (array)
45 (let ((type (lvar-type array)))
46 (if (array-type-p type)
47 (array-type-element-type type)
50 ;;; The ``new-value'' for array setters must fit in the array, and the
51 ;;; return type is going to be the same as the new-value for SETF
53 (defun assert-new-value-type (new-value array)
54 (let ((type (lvar-type array)))
55 (when (array-type-p type)
58 (array-type-specialized-element-type type)
59 (lexenv-policy (node-lexenv (lvar-dest new-value))))))
60 (lvar-type new-value))
62 (defun assert-array-complex (array)
65 (make-array-type :complexp t
66 :element-type *wild-type*)
67 (lexenv-policy (node-lexenv (lvar-dest array))))
70 ;;; Return true if ARG is NIL, or is a constant-lvar whose
71 ;;; value is NIL, false otherwise.
72 (defun unsupplied-or-nil (arg)
73 (declare (type (or lvar null) arg))
75 (and (constant-lvar-p arg)
76 (not (lvar-value arg)))))
78 ;;;; DERIVE-TYPE optimizers
80 ;;; Array operations that use a specific number of indices implicitly
81 ;;; assert that the array is of that rank.
82 (defun assert-array-rank (array rank)
85 (specifier-type `(array * ,(make-list rank :initial-element '*)))
86 (lexenv-policy (node-lexenv (lvar-dest array)))))
88 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
89 (assert-array-rank array (length indices))
92 (defoptimizer (aref derive-type) ((array &rest indices) node)
93 (assert-array-rank array (length indices))
94 (extract-upgraded-element-type array))
96 (defoptimizer (%aset derive-type) ((array &rest stuff))
97 (assert-array-rank array (1- (length stuff)))
98 (assert-new-value-type (car (last stuff)) array))
100 (defoptimizer (hairy-data-vector-ref derive-type) ((array index))
101 (extract-upgraded-element-type array))
102 (defoptimizer (data-vector-ref derive-type) ((array index))
103 (extract-upgraded-element-type array))
105 (defoptimizer (data-vector-set derive-type) ((array index new-value))
106 (assert-new-value-type new-value array))
107 (defoptimizer (hairy-data-vector-set derive-type) ((array index new-value))
108 (assert-new-value-type new-value array))
110 ;;; Figure out the type of the data vector if we know the argument
112 (defoptimizer (%with-array-data derive-type) ((array start end))
113 (let ((atype (lvar-type array)))
114 (when (array-type-p atype)
116 `(simple-array ,(type-specifier
117 (array-type-specialized-element-type atype))
120 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
121 (assert-array-rank array (length indices))
124 (defoptimizer (row-major-aref derive-type) ((array index))
125 (extract-upgraded-element-type array))
127 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
128 (assert-new-value-type new-value array))
130 (defoptimizer (make-array derive-type)
131 ((dims &key initial-element element-type initial-contents
132 adjustable fill-pointer displaced-index-offset displaced-to))
133 (let ((simple (and (unsupplied-or-nil adjustable)
134 (unsupplied-or-nil displaced-to)
135 (unsupplied-or-nil fill-pointer))))
136 (or (careful-specifier-type
137 `(,(if simple 'simple-array 'array)
138 ,(cond ((not element-type) t)
139 ((constant-lvar-p element-type)
140 (let ((ctype (careful-specifier-type
141 (lvar-value element-type))))
143 ((or (null ctype) (unknown-type-p ctype)) '*)
144 (t (sb!xc:upgraded-array-element-type
145 (lvar-value element-type))))))
148 ,(cond ((constant-lvar-p dims)
149 (let* ((val (lvar-value dims))
150 (cdims (if (listp val) val (list val))))
154 ((csubtypep (lvar-type dims)
155 (specifier-type 'integer))
159 (specifier-type 'array))))
161 ;;; Complex array operations should assert that their array argument
162 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
163 (defoptimizer (fill-pointer derive-type) ((vector))
164 (assert-array-complex vector))
165 (defoptimizer (%set-fill-pointer derive-type) ((vector index))
166 (declare (ignorable index))
167 (assert-array-complex vector))
169 (defoptimizer (vector-push derive-type) ((object vector))
170 (declare (ignorable object))
171 (assert-array-complex vector))
172 (defoptimizer (vector-push-extend derive-type)
173 ((object vector &optional index))
174 (declare (ignorable object index))
175 (assert-array-complex vector))
176 (defoptimizer (vector-pop derive-type) ((vector))
177 (assert-array-complex vector))
181 ;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the
183 (define-source-transform vector (&rest elements)
184 (let ((len (length elements))
186 (once-only ((n-vec `(make-array ,len)))
188 ,@(mapcar (lambda (el)
189 (once-only ((n-val el))
190 `(locally (declare (optimize (safety 0)))
191 (setf (svref ,n-vec ,(incf n))
196 ;;; Just convert it into a MAKE-ARRAY.
197 (deftransform make-string ((length &key
198 (element-type 'character)
200 #.*default-init-char-form*)))
201 `(the simple-string (make-array (the index length)
202 :element-type element-type
203 ,@(when initial-element
204 '(:initial-element initial-element)))))
206 (deftransform make-array ((dims &key initial-element element-type
207 adjustable fill-pointer)
209 (when (null initial-element)
210 (give-up-ir1-transform))
211 (let* ((eltype (cond ((not element-type) t)
212 ((not (constant-lvar-p element-type))
213 (give-up-ir1-transform
214 "ELEMENT-TYPE is not constant."))
216 (lvar-value element-type))))
217 (eltype-type (ir1-transform-specifier-type eltype))
218 (saetp (find-if (lambda (saetp)
219 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
220 sb!vm:*specialized-array-element-type-properties*))
221 (creation-form `(make-array dims
222 :element-type ',(type-specifier (sb!vm:saetp-ctype saetp))
224 '(:fill-pointer fill-pointer))
226 '(:adjustable adjustable)))))
229 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype))
231 (cond ((and (constant-lvar-p initial-element)
232 (eql (lvar-value initial-element)
233 (sb!vm:saetp-initial-element-default saetp)))
236 ;; error checking for target, disabled on the host because
237 ;; (CTYPE-OF #\Null) is not possible.
239 (when (constant-lvar-p initial-element)
240 (let ((value (lvar-value initial-element)))
242 ((not (ctypep value (sb!vm:saetp-ctype saetp)))
243 ;; this case will cause an error at runtime, so we'd
244 ;; better WARN about it now.
245 (compiler-warn "~@<~S is not a ~S (which is the ~
246 UPGRADED-ARRAY-ELEMENT-TYPE of ~S).~@:>"
248 (type-specifier (sb!vm:saetp-ctype saetp))
250 ((not (ctypep value eltype-type))
251 ;; this case will not cause an error at runtime, but
252 ;; it's still worth STYLE-WARNing about.
253 (compiler-style-warn "~S is not a ~S."
255 `(let ((array ,creation-form))
256 (multiple-value-bind (vector)
257 (%data-vector-and-index array 0)
258 (fill vector initial-element))
261 ;;; The integer type restriction on the length ensures that it will be
262 ;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and
263 ;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of
264 ;;; :INITIAL-ELEMENT relies on another transform to deal with that
265 ;;; kind of initialization efficiently.
266 (deftransform make-array ((length &key element-type)
268 (let* ((eltype (cond ((not element-type) t)
269 ((not (constant-lvar-p element-type))
270 (give-up-ir1-transform
271 "ELEMENT-TYPE is not constant."))
273 (lvar-value element-type))))
274 (len (if (constant-lvar-p length)
277 (eltype-type (ir1-transform-specifier-type eltype))
280 ,(if (unknown-type-p eltype-type)
281 (give-up-ir1-transform
282 "ELEMENT-TYPE is an unknown type: ~S" eltype)
283 (sb!xc:upgraded-array-element-type eltype))
285 (saetp (find-if (lambda (saetp)
286 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
287 sb!vm:*specialized-array-element-type-properties*)))
289 (give-up-ir1-transform
290 "cannot open-code creation of ~S" result-type-spec))
292 (unless (csubtypep (ctype-of (sb!vm:saetp-initial-element-default saetp))
294 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
295 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
296 ;; INITIAL-ELEMENT is not supplied, the consequences of later
297 ;; reading an uninitialized element of new-array are undefined,"
298 ;; so this could be legal code as long as the user plans to
299 ;; write before he reads, and if he doesn't we're free to do
300 ;; anything we like. But in case the user doesn't know to write
301 ;; elements before he reads elements (or to read manuals before
302 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
303 ;; didn't realize this.
304 (compiler-style-warn "The default initial element ~S is not a ~S."
305 (sb!vm:saetp-initial-element-default saetp)
307 (let* ((n-bits-per-element (sb!vm:saetp-n-bits saetp))
308 (typecode (sb!vm:saetp-typecode saetp))
309 (n-pad-elements (sb!vm:saetp-n-pad-elements saetp))
310 (padded-length-form (if (zerop n-pad-elements)
312 `(+ length ,n-pad-elements)))
315 ((= n-bits-per-element 0) 0)
316 ((>= n-bits-per-element sb!vm:n-word-bits)
317 `(* ,padded-length-form
318 (the fixnum ; i.e., not RATIO
319 ,(/ n-bits-per-element sb!vm:n-word-bits))))
321 (let ((n-elements-per-word (/ sb!vm:n-word-bits
322 n-bits-per-element)))
323 (declare (type index n-elements-per-word)) ; i.e., not RATIO
324 `(ceiling ,padded-length-form ,n-elements-per-word))))))
326 `(truly-the ,result-type-spec
327 (allocate-vector ,typecode length ,n-words-form))
328 '((declare (type index length)))))))
330 ;;; The list type restriction does not ensure that the result will be a
331 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
332 ;;; and displaced-to keywords ensures that it will be simple.
334 ;;; FIXME: should we generalize this transform to non-simple (though
335 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
336 ;;; deal with those? Maybe when the DEFTRANSFORM
337 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
339 (deftransform make-array ((dims &key element-type)
341 (unless (or (null element-type) (constant-lvar-p element-type))
342 (give-up-ir1-transform
343 "The element-type is not constant; cannot open code array creation."))
344 (unless (constant-lvar-p dims)
345 (give-up-ir1-transform
346 "The dimension list is not constant; cannot open code array creation."))
347 (let ((dims (lvar-value dims)))
348 (unless (every #'integerp dims)
349 (give-up-ir1-transform
350 "The dimension list contains something other than an integer: ~S"
352 (if (= (length dims) 1)
353 `(make-array ',(car dims)
355 '(:element-type element-type)))
356 (let* ((total-size (reduce #'* dims))
359 ,(cond ((null element-type) t)
360 ((and (constant-lvar-p element-type)
361 (ir1-transform-specifier-type
362 (lvar-value element-type)))
363 (sb!xc:upgraded-array-element-type
364 (lvar-value element-type)))
366 ,(make-list rank :initial-element '*))))
367 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)))
368 (setf (%array-fill-pointer header) ,total-size)
369 (setf (%array-fill-pointer-p header) nil)
370 (setf (%array-available-elements header) ,total-size)
371 (setf (%array-data-vector header)
372 (make-array ,total-size
374 '(:element-type element-type))))
375 (setf (%array-displaced-p header) nil)
377 (mapcar (lambda (dim)
378 `(setf (%array-dimension header ,(incf axis))
381 (truly-the ,spec header))))))
383 ;;;; miscellaneous properties of arrays
385 ;;; Transforms for various array properties. If the property is know
386 ;;; at compile time because of a type spec, use that constant value.
388 ;;; If we can tell the rank from the type info, use it instead.
389 (deftransform array-rank ((array))
390 (let ((array-type (lvar-type array)))
391 (unless (array-type-p array-type)
392 (give-up-ir1-transform))
393 (let ((dims (array-type-dimensions array-type)))
394 (if (not (listp dims))
395 (give-up-ir1-transform
396 "The array rank is not known at compile time: ~S"
400 ;;; If we know the dimensions at compile time, just use it. Otherwise,
401 ;;; if we can tell that the axis is in bounds, convert to
402 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
403 ;;; (if it's simple and a vector).
404 (deftransform array-dimension ((array axis)
406 (unless (constant-lvar-p axis)
407 (give-up-ir1-transform "The axis is not constant."))
408 (let ((array-type (lvar-type array))
409 (axis (lvar-value axis)))
410 (unless (array-type-p array-type)
411 (give-up-ir1-transform))
412 (let ((dims (array-type-dimensions array-type)))
414 (give-up-ir1-transform
415 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
416 (unless (> (length dims) axis)
417 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
420 (let ((dim (nth axis dims)))
421 (cond ((integerp dim)
424 (ecase (array-type-complexp array-type)
426 '(%array-dimension array 0))
430 (give-up-ir1-transform
431 "can't tell whether array is simple"))))
433 '(%array-dimension array axis)))))))
435 ;;; If the length has been declared and it's simple, just return it.
436 (deftransform length ((vector)
437 ((simple-array * (*))))
438 (let ((type (lvar-type vector)))
439 (unless (array-type-p type)
440 (give-up-ir1-transform))
441 (let ((dims (array-type-dimensions type)))
442 (unless (and (listp dims) (integerp (car dims)))
443 (give-up-ir1-transform
444 "Vector length is unknown, must call LENGTH at runtime."))
447 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
448 ;;; simple, it will extract the length slot from the vector. It it's
449 ;;; complex, it will extract the fill pointer slot from the array
451 (deftransform length ((vector) (vector))
452 '(vector-length vector))
454 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
455 ;;; compile-time constant.
456 (deftransform vector-length ((vector))
457 (let ((vtype (lvar-type vector)))
458 (if (and (array-type-p vtype)
459 (not (array-type-complexp vtype)))
460 (let ((dim (first (array-type-dimensions vtype))))
461 (when (eq dim '*) (give-up-ir1-transform))
463 (give-up-ir1-transform))))
465 ;;; Again, if we can tell the results from the type, just use it.
466 ;;; Otherwise, if we know the rank, convert into a computation based
467 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
468 ;;; multiplications because we know that the total size must be an
470 (deftransform array-total-size ((array)
472 (let ((array-type (lvar-type array)))
473 (unless (array-type-p array-type)
474 (give-up-ir1-transform))
475 (let ((dims (array-type-dimensions array-type)))
477 (give-up-ir1-transform "can't tell the rank at compile time"))
479 (do ((form 1 `(truly-the index
480 (* (array-dimension array ,i) ,form)))
482 ((= i (length dims)) form))
483 (reduce #'* dims)))))
485 ;;; Only complex vectors have fill pointers.
486 (deftransform array-has-fill-pointer-p ((array))
487 (let ((array-type (lvar-type array)))
488 (unless (array-type-p array-type)
489 (give-up-ir1-transform))
490 (let ((dims (array-type-dimensions array-type)))
491 (if (and (listp dims) (not (= (length dims) 1)))
493 (ecase (array-type-complexp array-type)
499 (give-up-ir1-transform
500 "The array type is ambiguous; must call ~
501 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
503 ;;; Primitive used to verify indices into arrays. If we can tell at
504 ;;; compile-time or we are generating unsafe code, don't bother with
506 (deftransform %check-bound ((array dimension index) * * :node node)
507 (cond ((policy node (and (> speed safety) (= safety 0)))
509 ((not (constant-lvar-p dimension))
510 (give-up-ir1-transform))
512 (let ((dim (lvar-value dimension)))
513 `(the (integer 0 (,dim)) index)))))
517 ;;; This checks to see whether the array is simple and the start and
518 ;;; end are in bounds. If so, it proceeds with those values.
519 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
520 ;;; may be further optimized.
522 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
523 ;;; START-VAR and END-VAR to the start and end of the designated
524 ;;; portion of the data vector. SVALUE and EVALUE are any start and
525 ;;; end specified to the original operation, and are factored into the
526 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
527 ;;; offset of all displacements encountered, and does not include
530 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
531 ;;; forced to be inline, overriding the ordinary judgment of the
532 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
533 ;;; fairly picky about their arguments, figuring that if you haven't
534 ;;; bothered to get all your ducks in a row, you probably don't care
535 ;;; that much about speed anyway! But in some cases it makes sense to
536 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
537 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
538 ;;; sense to use FORCE-INLINE option in that case.
539 (def!macro with-array-data (((data-var array &key offset-var)
540 (start-var &optional (svalue 0))
541 (end-var &optional (evalue nil))
544 (once-only ((n-array array)
545 (n-svalue `(the index ,svalue))
546 (n-evalue `(the (or index null) ,evalue)))
547 `(multiple-value-bind (,data-var
550 ,@(when offset-var `(,offset-var)))
551 (if (not (array-header-p ,n-array))
552 (let ((,n-array ,n-array))
553 (declare (type (simple-array * (*)) ,n-array))
554 ,(once-only ((n-len `(length ,n-array))
555 (n-end `(or ,n-evalue ,n-len)))
556 `(if (<= ,n-svalue ,n-end ,n-len)
558 (values ,n-array ,n-svalue ,n-end 0)
559 (failed-%with-array-data ,n-array
562 (,(if force-inline '%with-array-data-macro '%with-array-data)
563 ,n-array ,n-svalue ,n-evalue))
566 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
567 ;;; DEFTRANSFORMs and DEFUNs.
568 (def!macro %with-array-data-macro (array
575 (with-unique-names (size defaulted-end data cumulative-offset)
576 `(let* ((,size (array-total-size ,array))
579 (unless (or ,unsafe? (<= ,end ,size))
581 `(error 'bounding-indices-bad-error
582 :datum (cons ,start ,end)
583 :expected-type `(cons (integer 0 ,',size)
584 (integer ,',start ,',size))
586 `(failed-%with-array-data ,array ,start ,end)))
589 (unless (or ,unsafe? (<= ,start ,defaulted-end))
591 `(error 'bounding-indices-bad-error
592 :datum (cons ,start ,end)
593 :expected-type `(cons (integer 0 ,',size)
594 (integer ,',start ,',size))
596 `(failed-%with-array-data ,array ,start ,end)))
597 (do ((,data ,array (%array-data-vector ,data))
598 (,cumulative-offset 0
599 (+ ,cumulative-offset
600 (%array-displacement ,data))))
601 ((not (array-header-p ,data))
602 (values (the (simple-array ,element-type 1) ,data)
603 (the index (+ ,cumulative-offset ,start))
604 (the index (+ ,cumulative-offset ,defaulted-end))
605 (the index ,cumulative-offset)))
606 (declare (type index ,cumulative-offset))))))
608 (deftransform %with-array-data ((array start end)
609 ;; It might very well be reasonable to
610 ;; allow general ARRAY here, I just
611 ;; haven't tried to understand the
612 ;; performance issues involved. --
613 ;; WHN, and also CSR 2002-05-26
614 ((or vector simple-array) index (or index null))
618 :policy (> speed space))
619 "inline non-SIMPLE-vector-handling logic"
620 (let ((element-type (upgraded-element-type-specifier-or-give-up array)))
621 `(%with-array-data-macro array start end
622 :unsafe? ,(policy node (= safety 0))
623 :element-type ,element-type)))
627 ;;; We convert all typed array accessors into AREF and %ASET with type
628 ;;; assertions on the array.
629 (macrolet ((define-frob (reffer setter type)
631 (define-source-transform ,reffer (a &rest i)
632 `(aref (the ,',type ,a) ,@i))
633 (define-source-transform ,setter (a &rest i)
634 `(%aset (the ,',type ,a) ,@i)))))
635 (define-frob sbit %sbitset (simple-array bit))
636 (define-frob bit %bitset (array bit)))
637 (macrolet ((define-frob (reffer setter type)
639 (define-source-transform ,reffer (a i)
640 `(aref (the ,',type ,a) ,i))
641 (define-source-transform ,setter (a i v)
642 `(%aset (the ,',type ,a) ,i ,v)))))
643 (define-frob svref %svset simple-vector)
644 (define-frob schar %scharset simple-string)
645 (define-frob char %charset string))
647 (macrolet (;; This is a handy macro for computing the row-major index
648 ;; given a set of indices. We wrap each index with a call
649 ;; to %CHECK-BOUND to ensure that everything works out
650 ;; correctly. We can wrap all the interior arithmetic with
651 ;; TRULY-THE INDEX because we know the the resultant
652 ;; row-major index must be an index.
653 (with-row-major-index ((array indices index &optional new-value)
655 `(let (n-indices dims)
656 (dotimes (i (length ,indices))
657 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
658 (push (make-symbol (format nil "DIM-~D" i)) dims))
659 (setf n-indices (nreverse n-indices))
660 (setf dims (nreverse dims))
661 `(lambda (,',array ,@n-indices
662 ,@',(when new-value (list new-value)))
663 (let* (,@(let ((,index -1))
664 (mapcar (lambda (name)
665 `(,name (array-dimension
672 (do* ((dims dims (cdr dims))
673 (indices n-indices (cdr indices))
674 (last-dim nil (car dims))
675 (form `(%check-bound ,',array
687 ((null (cdr dims)) form)))))
690 ;; Just return the index after computing it.
691 (deftransform array-row-major-index ((array &rest indices))
692 (with-row-major-index (array indices index)
695 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
696 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
697 ;; expression for the row major index.
698 (deftransform aref ((array &rest indices))
699 (with-row-major-index (array indices index)
700 (hairy-data-vector-ref array index)))
701 (deftransform %aset ((array &rest stuff))
702 (let ((indices (butlast stuff)))
703 (with-row-major-index (array indices index new-value)
704 (hairy-data-vector-set array index new-value)))))
706 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
707 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
708 ;;; array total size.
709 (deftransform row-major-aref ((array index))
710 `(hairy-data-vector-ref array
711 (%check-bound array (array-total-size array) index)))
712 (deftransform %set-row-major-aref ((array index new-value))
713 `(hairy-data-vector-set array
714 (%check-bound array (array-total-size array) index)
717 ;;;; bit-vector array operation canonicalization
719 ;;;; We convert all bit-vector operations to have the result array
720 ;;;; specified. This allows any result allocation to be open-coded,
721 ;;;; and eliminates the need for any VM-dependent transforms to handle
724 (macrolet ((def (fun)
726 (deftransform ,fun ((bit-array-1 bit-array-2
727 &optional result-bit-array)
728 (bit-vector bit-vector &optional null) *
729 :policy (>= speed space))
730 `(,',fun bit-array-1 bit-array-2
731 (make-array (length bit-array-1) :element-type 'bit)))
732 ;; If result is T, make it the first arg.
733 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
734 (bit-vector bit-vector (eql t)) *)
735 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
747 ;;; Similar for BIT-NOT, but there is only one arg...
748 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
749 (bit-vector &optional null) *
750 :policy (>= speed space))
751 '(bit-not bit-array-1
752 (make-array (length bit-array-1) :element-type 'bit)))
753 (deftransform bit-not ((bit-array-1 result-bit-array)
754 (bit-vector (eql t)))
755 '(bit-not bit-array-1 bit-array-1))
757 ;;; Pick off some constant cases.
758 (defoptimizer (array-header-p derive-type) ((array))
759 (let ((type (lvar-type array)))
760 (cond ((not (array-type-p type))
763 (let ((dims (array-type-dimensions type)))
764 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
766 (specifier-type 'null))
767 ((and (listp dims) (/= (length dims) 1))
768 ;; multi-dimensional array, will have a header
769 (specifier-type '(eql t)))