1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let ((element-type-specifier (upgraded-element-type-specifier lvar)))
21 (if (eq element-type-specifier '*)
22 (give-up-ir1-transform
23 "upgraded array element type not known at compile time")
24 element-type-specifier)))
26 (defun upgraded-element-type-specifier (lvar)
27 (type-specifier (array-type-upgraded-element-type (lvar-type lvar))))
29 ;;; Array access functions return an object from the array, hence its type is
30 ;;; going to be the array upgraded element type. Secondary return value is the
31 ;;; known supertype of the upgraded-array-element-type, if if the exact
32 ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good
34 (defun array-type-upgraded-element-type (type)
36 ;; Note that this IF mightn't be satisfied even if the runtime
37 ;; value is known to be a subtype of some specialized ARRAY, because
38 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
39 ;; which are represented in the compiler as INTERSECTION-TYPE, not
42 (values (array-type-specialized-element-type type) nil))
43 ;; Deal with intersection types (bug #316078)
45 (let ((intersection-types (intersection-type-types type))
46 (element-type *wild-type*)
47 (element-supertypes nil))
48 (dolist (intersection-type intersection-types)
49 (multiple-value-bind (cur-type cur-supertype)
50 (array-type-upgraded-element-type intersection-type)
51 ;; According to ANSI, an array may have only one specialized
52 ;; element type - e.g. '(and (array foo) (array bar))
53 ;; is not a valid type unless foo and bar upgrade to the
56 ((eq cur-type *wild-type*)
58 ((eq element-type *wild-type*)
59 (setf element-type cur-type))
60 ((or (not (csubtypep cur-type element-type))
61 (not (csubtypep element-type cur-type)))
62 ;; At least two different element types where given, the array
63 ;; is valid iff they represent the same type.
65 ;; FIXME: TYPE-INTERSECTION already takes care of disjoint array
66 ;; types, so I believe this code should be unreachable. Maybe
67 ;; signal a warning / error instead?
68 (setf element-type *empty-type*)))
69 (push (or cur-supertype (type-*-to-t cur-type))
72 (when (and (eq *wild-type* element-type) element-supertypes)
73 (apply #'type-intersection element-supertypes)))))
75 (let ((union-types (union-type-types type))
77 (element-supertypes nil))
78 (dolist (union-type union-types)
79 (multiple-value-bind (cur-type cur-supertype)
80 (array-type-upgraded-element-type union-type)
82 ((eq element-type *wild-type*)
84 ((eq element-type nil)
85 (setf element-type cur-type))
86 ((or (eq cur-type *wild-type*)
87 ;; If each of the two following tests fail, it is not
88 ;; possible to determine the element-type of the array
89 ;; because more than one kind of element-type was provided
90 ;; like in '(or (array foo) (array bar)) although a
91 ;; supertype (or foo bar) may be provided as the second
92 ;; returned value returned. See also the KLUDGE below.
93 (not (csubtypep cur-type element-type))
94 (not (csubtypep element-type cur-type)))
95 (setf element-type *wild-type*)))
96 (push (or cur-supertype (type-*-to-t cur-type))
99 (when (eq *wild-type* element-type)
100 (apply #'type-union element-supertypes)))))
102 ;; KLUDGE: there is no good answer here, but at least
103 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
104 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
106 (values *wild-type* nil))))
108 (defun array-type-declared-element-type (type)
109 (if (array-type-p type)
110 (array-type-element-type type)
113 ;;; The ``new-value'' for array setters must fit in the array, and the
114 ;;; return type is going to be the same as the new-value for SETF
116 (defun assert-new-value-type (new-value array)
117 (let ((type (lvar-type array)))
118 (when (array-type-p type)
121 (array-type-specialized-element-type type)
122 (lexenv-policy (node-lexenv (lvar-dest new-value))))))
123 (lvar-type new-value))
125 ;;; Return true if ARG is NIL, or is a constant-lvar whose
126 ;;; value is NIL, false otherwise.
127 (defun unsupplied-or-nil (arg)
128 (declare (type (or lvar null) arg))
130 (and (constant-lvar-p arg)
131 (not (lvar-value arg)))))
133 (defun supplied-and-true (arg)
135 (constant-lvar-p arg)
139 ;;;; DERIVE-TYPE optimizers
141 ;;; Array operations that use a specific number of indices implicitly
142 ;;; assert that the array is of that rank.
143 (defun assert-array-rank (array rank)
146 (specifier-type `(array * ,(make-list rank :initial-element '*)))
147 (lexenv-policy (node-lexenv (lvar-dest array)))))
149 (defun derive-aref-type (array)
150 (multiple-value-bind (uaet other)
151 (array-type-upgraded-element-type (lvar-type array))
154 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
155 (assert-array-rank array (length indices))
158 (deftransform array-in-bounds-p ((array &rest subscripts))
160 (give-up-ir1-transform
161 "~@<lower array bounds unknown or negative and upper bounds not ~
164 (integerp x))) ; might be NIL or *
166 (let ((dimensions (array-type-dimensions-or-give-up
167 (lvar-conservative-type array))))
168 ;; shortcut for zero dimensions
169 (when (some (lambda (dim)
170 (and (bound-known-p dim) (zerop dim)))
173 ;; we first collect the subscripts LVARs' bounds and see whether
174 ;; we can already decide on the result of the optimization without
175 ;; even taking a look at the dimensions.
176 (flet ((subscript-bounds (subscript)
177 (let* ((type (lvar-type subscript))
178 (low (numeric-type-low type))
179 (high (numeric-type-high type)))
181 ((and (or (not (bound-known-p low)) (minusp low))
182 (or (not (bound-known-p high)) (not (minusp high))))
183 ;; can't be sure about the lower bound and the upper bound
184 ;; does not give us a definite clue either.
186 ((and (bound-known-p high) (minusp high))
187 (return nil)) ; definitely below lower bound (zero).
190 (let* ((subscripts-bounds (mapcar #'subscript-bounds subscripts))
191 (subscripts-lower-bound (mapcar #'car subscripts-bounds))
192 (subscripts-upper-bound (mapcar #'cdr subscripts-bounds))
194 (mapcar (lambda (low high dim)
196 ;; first deal with infinite bounds
197 ((some (complement #'bound-known-p) (list low high dim))
198 (when (and (bound-known-p dim) (bound-known-p low) (<= dim low))
200 ;; now we know all bounds
204 (aver (not (minusp low)))
208 subscripts-lower-bound
209 subscripts-upper-bound
211 (if (eql in-bounds (length dimensions))
215 (defoptimizer (aref derive-type) ((array &rest indices) node)
216 (assert-array-rank array (length indices))
217 (derive-aref-type array))
219 (defoptimizer (%aset derive-type) ((array &rest stuff))
220 (assert-array-rank array (1- (length stuff)))
221 (assert-new-value-type (car (last stuff)) array))
223 (macrolet ((define (name)
224 `(defoptimizer (,name derive-type) ((array index))
225 (derive-aref-type array))))
226 (define hairy-data-vector-ref)
227 (define hairy-data-vector-ref/check-bounds)
228 (define data-vector-ref))
231 (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset))
232 (derive-aref-type array))
234 (macrolet ((define (name)
235 `(defoptimizer (,name derive-type) ((array index new-value))
236 (assert-new-value-type new-value array))))
237 (define hairy-data-vector-set)
238 (define hairy-data-vector-set/check-bounds)
239 (define data-vector-set))
242 (defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value))
243 (assert-new-value-type new-value array))
245 ;;; Figure out the type of the data vector if we know the argument
247 (defun derive-%with-array-data/mumble-type (array)
248 (let ((atype (lvar-type array)))
249 (when (array-type-p atype)
251 `(simple-array ,(type-specifier
252 (array-type-specialized-element-type atype))
254 (defoptimizer (%with-array-data derive-type) ((array start end))
255 (derive-%with-array-data/mumble-type array))
256 (defoptimizer (%with-array-data/fp derive-type) ((array start end))
257 (derive-%with-array-data/mumble-type array))
259 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
260 (assert-array-rank array (length indices))
263 (defoptimizer (row-major-aref derive-type) ((array index))
264 (derive-aref-type array))
266 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
267 (assert-new-value-type new-value array))
269 (defoptimizer (make-array derive-type)
270 ((dims &key initial-element element-type initial-contents
271 adjustable fill-pointer displaced-index-offset displaced-to))
272 (let* ((simple (and (unsupplied-or-nil adjustable)
273 (unsupplied-or-nil displaced-to)
274 (unsupplied-or-nil fill-pointer)))
276 (or `(,(if simple 'simple-array 'array)
277 ,(cond ((not element-type) t)
278 ((constant-lvar-p element-type)
279 (let ((ctype (careful-specifier-type
280 (lvar-value element-type))))
282 ((or (null ctype) (unknown-type-p ctype)) '*)
283 (t (sb!xc:upgraded-array-element-type
284 (lvar-value element-type))))))
287 ,(cond ((constant-lvar-p dims)
288 (let* ((val (lvar-value dims))
289 (cdims (if (listp val) val (list val))))
293 ((csubtypep (lvar-type dims)
294 (specifier-type 'integer))
299 (if (and (not simple)
300 (or (supplied-and-true adjustable)
301 (supplied-and-true displaced-to)
302 (supplied-and-true fill-pointer)))
303 (careful-specifier-type `(and ,spec (not simple-array)))
304 (careful-specifier-type spec))))
308 ;;; Convert VECTOR into a MAKE-ARRAY.
309 (define-source-transform vector (&rest elements)
310 `(make-array ,(length elements) :initial-contents (list ,@elements)))
312 ;;; Just convert it into a MAKE-ARRAY.
313 (deftransform make-string ((length &key
314 (element-type 'character)
316 #.*default-init-char-form*)))
317 `(the simple-string (make-array (the index length)
318 :element-type element-type
319 ,@(when initial-element
320 '(:initial-element initial-element)))))
322 (defun rewrite-initial-contents (rank initial-contents env)
324 (if (and (consp initial-contents)
325 (member (car initial-contents) '(list vector sb!impl::backq-list)))
326 `(list ,@(mapcar (lambda (dim)
327 (rewrite-initial-contents (1- rank) dim env))
328 (cdr initial-contents)))
330 ;; This is the important bit: once we are past the level of
331 ;; :INITIAL-CONTENTS that relates to the array structure, reinline LIST
332 ;; and VECTOR so that nested DX isn't screwed up.
333 `(locally (declare (inline list vector))
336 ;;; Prevent open coding DIMENSION and :INITIAL-CONTENTS arguments, so that we
337 ;;; can pick them apart in the DEFTRANSFORMS, and transform '(3) style
338 ;;; dimensions to integer args directly.
339 (define-source-transform make-array (dimensions &rest keyargs &environment env)
340 (if (or (and (fun-lexically-notinline-p 'list)
341 (fun-lexically-notinline-p 'vector))
342 (oddp (length keyargs)))
344 (multiple-value-bind (new-dimensions rank)
345 (flet ((constant-dims (dimensions)
346 (let* ((dims (constant-form-value dimensions env))
347 (canon (if (listp dims) dims (list dims)))
348 (rank (length canon)))
349 (values (if (= rank 1)
350 (list 'quote (car canon))
353 (cond ((sb!xc:constantp dimensions env)
354 (constant-dims dimensions))
355 ((and (consp dimensions) (eq 'list dimensions))
356 (values dimensions (length (cdr dimensions))))
358 (values dimensions nil))))
359 (let ((initial-contents (getf keyargs :initial-contents)))
360 (when (and initial-contents rank)
361 (setf (getf keyargs :initial-contents)
362 (rewrite-initial-contents rank initial-contents env))))
363 `(locally (declare (notinline list vector))
364 (make-array ,new-dimensions ,@keyargs)))))
366 ;;; This baby is a bit of a monster, but it takes care of any MAKE-ARRAY
367 ;;; call which creates a vector with a known element type -- and tries
368 ;;; to do a good job with all the different ways it can happen.
369 (defun transform-make-array-vector (length element-type initial-element
370 initial-contents call)
371 (aver (or (not element-type) (constant-lvar-p element-type)))
372 (let* ((c-length (when (constant-lvar-p length)
373 (lvar-value length)))
374 (elt-spec (if element-type
375 (lvar-value element-type)
377 (elt-ctype (ir1-transform-specifier-type elt-spec))
378 (saetp (if (unknown-type-p elt-ctype)
379 (give-up-ir1-transform "~S is an unknown type: ~S"
380 :element-type elt-spec)
381 (find-saetp-by-ctype elt-ctype)))
382 (default-initial-element (sb!vm:saetp-initial-element-default saetp))
383 (n-bits (sb!vm:saetp-n-bits saetp))
384 (typecode (sb!vm:saetp-typecode saetp))
385 (n-pad-elements (sb!vm:saetp-n-pad-elements saetp))
388 (ceiling (* (+ c-length n-pad-elements) n-bits)
390 (let ((padded-length-form (if (zerop n-pad-elements)
392 `(+ length ,n-pad-elements))))
395 ((>= n-bits sb!vm:n-word-bits)
396 `(* ,padded-length-form
398 ,(the fixnum (/ n-bits sb!vm:n-word-bits))))
400 (let ((n-elements-per-word (/ sb!vm:n-word-bits n-bits)))
401 (declare (type index n-elements-per-word)) ; i.e., not RATIO
402 `(ceiling ,padded-length-form ,n-elements-per-word)))))))
404 `(simple-array ,(sb!vm:saetp-specifier saetp) (,(or c-length '*))))
406 `(truly-the ,result-spec
407 (allocate-vector ,typecode (the index length) ,n-words-form))))
408 (cond ((and initial-element initial-contents)
409 (abort-ir1-transform "Both ~S and ~S specified."
410 :initial-contents :initial-element))
411 ;; :INITIAL-CONTENTS (LIST ...), (VECTOR ...) and `(1 1 ,x) with a
413 ((and initial-contents c-length
414 (lvar-matches initial-contents
415 :fun-names '(list vector sb!impl::backq-list)
416 :arg-count c-length))
417 (let ((parameters (eliminate-keyword-args
418 call 1 '((:element-type element-type)
419 (:initial-contents initial-contents))))
420 (elt-vars (make-gensym-list c-length))
421 (lambda-list '(length)))
422 (splice-fun-args initial-contents :any c-length)
423 (dolist (p parameters)
426 (if (eq p 'initial-contents)
429 `(lambda ,lambda-list
430 (declare (type ,elt-spec ,@elt-vars)
431 (ignorable ,@lambda-list))
432 (truly-the ,result-spec
433 (initialize-vector ,alloc-form ,@elt-vars)))))
434 ;; constant :INITIAL-CONTENTS and LENGTH
435 ((and initial-contents c-length (constant-lvar-p initial-contents))
436 (let ((contents (lvar-value initial-contents)))
437 (unless (= c-length (length contents))
438 (abort-ir1-transform "~S has ~S elements, vector length is ~S."
439 :initial-contents (length contents) c-length))
440 (let ((parameters (eliminate-keyword-args
441 call 1 '((:element-type element-type)
442 (:initial-contents initial-contents)))))
443 `(lambda (length ,@parameters)
444 (declare (ignorable ,@parameters))
445 (truly-the ,result-spec
446 (initialize-vector ,alloc-form
447 ,@(map 'list (lambda (elt)
448 `(the ,elt-spec ',elt))
450 ;; any other :INITIAL-CONTENTS
452 (let ((parameters (eliminate-keyword-args
453 call 1 '((:element-type element-type)
454 (:initial-contents initial-contents)))))
455 `(lambda (length ,@parameters)
456 (declare (ignorable ,@parameters))
457 (unless (= length (length initial-contents))
458 (error "~S has ~S elements, vector length is ~S."
459 :initial-contents (length initial-contents) length))
460 (truly-the ,result-spec
461 (replace ,alloc-form initial-contents)))))
462 ;; :INITIAL-ELEMENT, not EQL to the default
463 ((and initial-element
464 (or (not (constant-lvar-p initial-element))
465 (not (eql default-initial-element (lvar-value initial-element)))))
466 (let ((parameters (eliminate-keyword-args
467 call 1 '((:element-type element-type)
468 (:initial-element initial-element))))
469 (init (if (constant-lvar-p initial-element)
470 (list 'quote (lvar-value initial-element))
472 `(lambda (length ,@parameters)
473 (declare (ignorable ,@parameters))
474 (truly-the ,result-spec
475 (fill ,alloc-form (the ,elt-spec ,init))))))
476 ;; just :ELEMENT-TYPE, or maybe with :INITIAL-ELEMENT EQL to the
480 (unless (ctypep default-initial-element elt-ctype)
481 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
482 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
483 ;; INITIAL-ELEMENT is not supplied, the consequences of later
484 ;; reading an uninitialized element of new-array are undefined,"
485 ;; so this could be legal code as long as the user plans to
486 ;; write before he reads, and if he doesn't we're free to do
487 ;; anything we like. But in case the user doesn't know to write
488 ;; elements before he reads elements (or to read manuals before
489 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
490 ;; didn't realize this.
492 (compiler-warn "~S ~S is not a ~S"
493 :initial-element default-initial-element
495 (compiler-style-warn "The default initial element ~S is not a ~S."
496 default-initial-element
498 (let ((parameters (eliminate-keyword-args
499 call 1 '((:element-type element-type)
500 (:initial-element initial-element)))))
501 `(lambda (length ,@parameters)
502 (declare (ignorable ,@parameters))
505 ;;; IMPORTANT: The order of these three MAKE-ARRAY forms matters: the least
506 ;;; specific must come first, otherwise suboptimal transforms will result for
509 (deftransform make-array ((dims &key initial-element element-type
510 adjustable fill-pointer)
512 (when (null initial-element)
513 (give-up-ir1-transform))
514 (let* ((eltype (cond ((not element-type) t)
515 ((not (constant-lvar-p element-type))
516 (give-up-ir1-transform
517 "ELEMENT-TYPE is not constant."))
519 (lvar-value element-type))))
520 (eltype-type (ir1-transform-specifier-type eltype))
521 (saetp (find-if (lambda (saetp)
522 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
523 sb!vm:*specialized-array-element-type-properties*))
524 (creation-form `(make-array dims
525 :element-type ',(type-specifier (sb!vm:saetp-ctype saetp))
527 '(:fill-pointer fill-pointer))
529 '(:adjustable adjustable)))))
532 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype))
534 (cond ((and (constant-lvar-p initial-element)
535 (eql (lvar-value initial-element)
536 (sb!vm:saetp-initial-element-default saetp)))
539 ;; error checking for target, disabled on the host because
540 ;; (CTYPE-OF #\Null) is not possible.
542 (when (constant-lvar-p initial-element)
543 (let ((value (lvar-value initial-element)))
545 ((not (ctypep value (sb!vm:saetp-ctype saetp)))
546 ;; this case will cause an error at runtime, so we'd
547 ;; better WARN about it now.
548 (warn 'array-initial-element-mismatch
549 :format-control "~@<~S is not a ~S (which is the ~
554 (type-specifier (sb!vm:saetp-ctype saetp))
555 'upgraded-array-element-type
557 ((not (ctypep value eltype-type))
558 ;; this case will not cause an error at runtime, but
559 ;; it's still worth STYLE-WARNing about.
560 (compiler-style-warn "~S is not a ~S."
562 `(let ((array ,creation-form))
563 (multiple-value-bind (vector)
564 (%data-vector-and-index array 0)
565 (fill vector (the ,(sb!vm:saetp-specifier saetp) initial-element)))
568 ;;; The list type restriction does not ensure that the result will be a
569 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
570 ;;; and displaced-to keywords ensures that it will be simple.
572 ;;; FIXME: should we generalize this transform to non-simple (though
573 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
574 ;;; deal with those? Maybe when the DEFTRANSFORM
575 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
577 (deftransform make-array ((dims &key
578 element-type initial-element initial-contents)
580 (:element-type (constant-arg *))
582 (:initial-contents *))
586 (when (lvar-matches dims :fun-names '(list) :arg-count 1)
587 (let ((length (car (splice-fun-args dims :any 1))))
588 (return-from make-array
589 (transform-make-array-vector length
594 (unless (constant-lvar-p dims)
595 (give-up-ir1-transform
596 "The dimension list is not constant; cannot open code array creation."))
597 (let ((dims (lvar-value dims)))
598 (unless (every #'integerp dims)
599 (give-up-ir1-transform
600 "The dimension list contains something other than an integer: ~S"
602 (if (= (length dims) 1)
603 `(make-array ',(car dims)
605 '(:element-type element-type))
606 ,@(when initial-element
607 '(:initial-element initial-element))
608 ,@(when initial-contents
609 '(:initial-contents initial-contents)))
610 (let* ((total-size (reduce #'* dims))
613 ,(cond ((null element-type) t)
614 ((and (constant-lvar-p element-type)
615 (ir1-transform-specifier-type
616 (lvar-value element-type)))
617 (sb!xc:upgraded-array-element-type
618 (lvar-value element-type)))
620 ,(make-list rank :initial-element '*))))
621 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank))
622 (data (make-array ,total-size
624 '(:element-type element-type))
625 ,@(when initial-element
626 '(:initial-element initial-element)))))
627 ,@(when initial-contents
628 ;; FIXME: This is could be open coded at least a bit too
629 `((sb!impl::fill-data-vector data ',dims initial-contents)))
630 (setf (%array-fill-pointer header) ,total-size)
631 (setf (%array-fill-pointer-p header) nil)
632 (setf (%array-available-elements header) ,total-size)
633 (setf (%array-data-vector header) data)
634 (setf (%array-displaced-p header) nil)
635 (setf (%array-displaced-from header) nil)
637 (mapcar (lambda (dim)
638 `(setf (%array-dimension header ,(incf axis))
641 (truly-the ,spec header)))))))
643 (deftransform make-array ((dims &key element-type initial-element initial-contents)
645 (:element-type (constant-arg *))
647 (:initial-contents *))
650 (transform-make-array-vector dims
656 ;;;; miscellaneous properties of arrays
658 ;;; Transforms for various array properties. If the property is know
659 ;;; at compile time because of a type spec, use that constant value.
661 ;;; Most of this logic may end up belonging in code/late-type.lisp;
662 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
663 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
665 (defun array-type-dimensions-or-give-up (type)
666 (labels ((maybe-array-type-dimensions (type)
669 (array-type-dimensions type))
671 (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions
672 (union-type-types type))))
673 (result (car types)))
674 (dolist (other (cdr types) result)
675 (unless (equal result other)
676 (give-up-ir1-transform
677 "~@<dimensions of arrays in union type ~S do not match~:@>"
678 (type-specifier type))))))
680 (let* ((types (remove nil (mapcar #'maybe-array-type-dimensions
681 (intersection-type-types type))))
682 (result (car types)))
683 (dolist (other (cdr types) result)
684 (unless (equal result other)
686 "~@<dimensions of arrays in intersection type ~S do not match~:@>"
687 (type-specifier type)))))))))
688 (or (maybe-array-type-dimensions type)
689 (give-up-ir1-transform
690 "~@<don't know how to extract array dimensions from type ~S~:@>"
691 (type-specifier type)))))
693 (defun conservative-array-type-complexp (type)
695 (array-type (array-type-complexp type))
697 (let ((types (union-type-types type)))
698 (aver (> (length types) 1))
699 (let ((result (conservative-array-type-complexp (car types))))
700 (dolist (type (cdr types) result)
701 (unless (eq (conservative-array-type-complexp type) result)
702 (return-from conservative-array-type-complexp :maybe))))))
703 ;; FIXME: intersection type
706 ;;; If we can tell the rank from the type info, use it instead.
707 (deftransform array-rank ((array))
708 (let ((array-type (lvar-type array)))
709 (let ((dims (array-type-dimensions-or-give-up array-type)))
712 ((eq t (array-type-complexp array-type))
713 '(%array-rank array))
715 `(if (array-header-p array)
719 ;;; If we know the dimensions at compile time, just use it. Otherwise,
720 ;;; if we can tell that the axis is in bounds, convert to
721 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
722 ;;; (if it's simple and a vector).
723 (deftransform array-dimension ((array axis)
725 (unless (constant-lvar-p axis)
726 (give-up-ir1-transform "The axis is not constant."))
727 ;; Dimensions may change thanks to ADJUST-ARRAY, so we need the
728 ;; conservative type.
729 (let ((array-type (lvar-conservative-type array))
730 (axis (lvar-value axis)))
731 (let ((dims (array-type-dimensions-or-give-up array-type)))
733 (give-up-ir1-transform
734 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
735 (unless (> (length dims) axis)
736 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
739 (let ((dim (nth axis dims)))
740 (cond ((integerp dim)
743 (ecase (conservative-array-type-complexp array-type)
745 '(%array-dimension array 0))
747 '(vector-length array))
749 `(if (array-header-p array)
750 (%array-dimension array axis)
751 (vector-length array)))))
753 '(%array-dimension array axis)))))))
755 ;;; If the length has been declared and it's simple, just return it.
756 (deftransform length ((vector)
757 ((simple-array * (*))))
758 (let ((type (lvar-type vector)))
759 (let ((dims (array-type-dimensions-or-give-up type)))
760 (unless (and (listp dims) (integerp (car dims)))
761 (give-up-ir1-transform
762 "Vector length is unknown, must call LENGTH at runtime."))
765 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
766 ;;; simple, it will extract the length slot from the vector. It it's
767 ;;; complex, it will extract the fill pointer slot from the array
769 (deftransform length ((vector) (vector))
770 '(vector-length vector))
772 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
773 ;;; compile-time constant.
774 (deftransform vector-length ((vector))
775 (let ((vtype (lvar-type vector)))
776 (let ((dim (first (array-type-dimensions-or-give-up vtype))))
778 (give-up-ir1-transform))
779 (when (conservative-array-type-complexp vtype)
780 (give-up-ir1-transform))
783 ;;; Again, if we can tell the results from the type, just use it.
784 ;;; Otherwise, if we know the rank, convert into a computation based
785 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
786 ;;; multiplications because we know that the total size must be an
788 (deftransform array-total-size ((array)
790 (let ((array-type (lvar-type array)))
791 (let ((dims (array-type-dimensions-or-give-up array-type)))
793 (give-up-ir1-transform "can't tell the rank at compile time"))
795 (do ((form 1 `(truly-the index
796 (* (array-dimension array ,i) ,form)))
798 ((= i (length dims)) form))
799 (reduce #'* dims)))))
801 ;;; Only complex vectors have fill pointers.
802 (deftransform array-has-fill-pointer-p ((array))
803 (let ((array-type (lvar-type array)))
804 (let ((dims (array-type-dimensions-or-give-up array-type)))
805 (if (and (listp dims) (not (= (length dims) 1)))
807 (ecase (conservative-array-type-complexp array-type)
813 (give-up-ir1-transform
814 "The array type is ambiguous; must call ~
815 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
817 ;;; Primitive used to verify indices into arrays. If we can tell at
818 ;;; compile-time or we are generating unsafe code, don't bother with
820 (deftransform %check-bound ((array dimension index) * * :node node)
821 (cond ((policy node (= insert-array-bounds-checks 0))
823 ((not (constant-lvar-p dimension))
824 (give-up-ir1-transform))
826 (let ((dim (lvar-value dimension)))
827 ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER?
828 `(the (integer 0 (,dim)) index)))))
832 ;;; This checks to see whether the array is simple and the start and
833 ;;; end are in bounds. If so, it proceeds with those values.
834 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
835 ;;; may be further optimized.
837 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
838 ;;; START-VAR and END-VAR to the start and end of the designated
839 ;;; portion of the data vector. SVALUE and EVALUE are any start and
840 ;;; end specified to the original operation, and are factored into the
841 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
842 ;;; offset of all displacements encountered, and does not include
845 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
846 ;;; forced to be inline, overriding the ordinary judgment of the
847 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
848 ;;; fairly picky about their arguments, figuring that if you haven't
849 ;;; bothered to get all your ducks in a row, you probably don't care
850 ;;; that much about speed anyway! But in some cases it makes sense to
851 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
852 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
853 ;;; sense to use FORCE-INLINE option in that case.
854 (def!macro with-array-data (((data-var array &key offset-var)
855 (start-var &optional (svalue 0))
856 (end-var &optional (evalue nil))
857 &key force-inline check-fill-pointer)
860 (once-only ((n-array array)
861 (n-svalue `(the index ,svalue))
862 (n-evalue `(the (or index null) ,evalue)))
863 (let ((check-bounds (policy env (plusp insert-array-bounds-checks))))
864 `(multiple-value-bind (,data-var
867 ,@(when offset-var `(,offset-var)))
868 (if (not (array-header-p ,n-array))
869 (let ((,n-array ,n-array))
870 (declare (type (simple-array * (*)) ,n-array))
871 ,(once-only ((n-len (if check-fill-pointer
873 `(array-total-size ,n-array)))
874 (n-end `(or ,n-evalue ,n-len)))
876 `(if (<= 0 ,n-svalue ,n-end ,n-len)
877 (values ,n-array ,n-svalue ,n-end 0)
878 ,(if check-fill-pointer
879 `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)
880 `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)))
881 `(values ,n-array ,n-svalue ,n-end 0))))
883 `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue
884 :check-bounds ,check-bounds
885 :check-fill-pointer ,check-fill-pointer)
886 (if check-fill-pointer
887 `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue)
888 `(%with-array-data ,n-array ,n-svalue ,n-evalue))))
891 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
892 ;;; DEFTRANSFORMs and DEFUNs.
893 (def!macro %with-array-data-macro (array
900 (with-unique-names (size defaulted-end data cumulative-offset)
901 `(let* ((,size ,(if check-fill-pointer
903 `(array-total-size ,array)))
904 (,defaulted-end (or ,end ,size)))
906 `((unless (<= ,start ,defaulted-end ,size)
907 ,(if check-fill-pointer
908 `(sequence-bounding-indices-bad-error ,array ,start ,end)
909 `(array-bounding-indices-bad-error ,array ,start ,end)))))
910 (do ((,data ,array (%array-data-vector ,data))
911 (,cumulative-offset 0
912 (+ ,cumulative-offset
913 (%array-displacement ,data))))
914 ((not (array-header-p ,data))
915 (values (the (simple-array ,element-type 1) ,data)
916 (the index (+ ,cumulative-offset ,start))
917 (the index (+ ,cumulative-offset ,defaulted-end))
918 (the index ,cumulative-offset)))
919 (declare (type index ,cumulative-offset))))))
921 (defun transform-%with-array-data/muble (array node check-fill-pointer)
922 (let ((element-type (upgraded-element-type-specifier-or-give-up array))
923 (type (lvar-type array))
924 (check-bounds (policy node (plusp insert-array-bounds-checks))))
925 (if (and (array-type-p type)
926 (not (array-type-complexp type))
927 (listp (array-type-dimensions type))
928 (not (null (cdr (array-type-dimensions type)))))
929 ;; If it's a simple multidimensional array, then just return
930 ;; its data vector directly rather than going through
931 ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate
932 ;; code that would use this currently, but we have encouraged
933 ;; users to use WITH-ARRAY-DATA and we may use it ourselves at
934 ;; some point in the future for optimized libraries or
937 `(let* ((data (truly-the (simple-array ,element-type (*))
938 (%array-data-vector array)))
940 (real-end (or end len)))
941 (unless (<= 0 start data-end lend)
942 (sequence-bounding-indices-bad-error array start end))
943 (values data 0 real-end 0))
944 `(let ((data (truly-the (simple-array ,element-type (*))
945 (%array-data-vector array))))
946 (values data 0 (or end (length data)) 0)))
947 `(%with-array-data-macro array start end
948 :check-fill-pointer ,check-fill-pointer
949 :check-bounds ,check-bounds
950 :element-type ,element-type))))
952 ;; It might very well be reasonable to allow general ARRAY here, I
953 ;; just haven't tried to understand the performance issues involved.
954 ;; -- WHN, and also CSR 2002-05-26
955 (deftransform %with-array-data ((array start end)
956 ((or vector simple-array) index (or index null) t)
959 :policy (> speed space))
960 "inline non-SIMPLE-vector-handling logic"
961 (transform-%with-array-data/muble array node nil))
962 (deftransform %with-array-data/fp ((array start end)
963 ((or vector simple-array) index (or index null) t)
966 :policy (> speed space))
967 "inline non-SIMPLE-vector-handling logic"
968 (transform-%with-array-data/muble array node t))
972 ;;; We convert all typed array accessors into AREF and %ASET with type
973 ;;; assertions on the array.
974 (macrolet ((define-bit-frob (reffer setter simplep)
976 (define-source-transform ,reffer (a &rest i)
977 `(aref (the (,',(if simplep 'simple-array 'array)
979 ,(mapcar (constantly '*) i))
981 (define-source-transform ,setter (a &rest i)
982 `(%aset (the (,',(if simplep 'simple-array 'array)
984 ,(cdr (mapcar (constantly '*) i)))
986 (define-bit-frob sbit %sbitset t)
987 (define-bit-frob bit %bitset nil))
988 (macrolet ((define-frob (reffer setter type)
990 (define-source-transform ,reffer (a i)
991 `(aref (the ,',type ,a) ,i))
992 (define-source-transform ,setter (a i v)
993 `(%aset (the ,',type ,a) ,i ,v)))))
994 (define-frob svref %svset simple-vector)
995 (define-frob schar %scharset simple-string)
996 (define-frob char %charset string))
998 (macrolet (;; This is a handy macro for computing the row-major index
999 ;; given a set of indices. We wrap each index with a call
1000 ;; to %CHECK-BOUND to ensure that everything works out
1001 ;; correctly. We can wrap all the interior arithmetic with
1002 ;; TRULY-THE INDEX because we know the resultant
1003 ;; row-major index must be an index.
1004 (with-row-major-index ((array indices index &optional new-value)
1006 `(let (n-indices dims)
1007 (dotimes (i (length ,indices))
1008 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
1009 (push (make-symbol (format nil "DIM-~D" i)) dims))
1010 (setf n-indices (nreverse n-indices))
1011 (setf dims (nreverse dims))
1012 `(lambda (,',array ,@n-indices
1013 ,@',(when new-value (list new-value)))
1014 (let* (,@(let ((,index -1))
1015 (mapcar (lambda (name)
1016 `(,name (array-dimension
1023 (do* ((dims dims (cdr dims))
1024 (indices n-indices (cdr indices))
1025 (last-dim nil (car dims))
1026 (form `(%check-bound ,',array
1038 ((null (cdr dims)) form)))))
1041 ;; Just return the index after computing it.
1042 (deftransform array-row-major-index ((array &rest indices))
1043 (with-row-major-index (array indices index)
1046 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
1047 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
1048 ;; expression for the row major index.
1049 (deftransform aref ((array &rest indices))
1050 (with-row-major-index (array indices index)
1051 (hairy-data-vector-ref array index)))
1053 (deftransform %aset ((array &rest stuff))
1054 (let ((indices (butlast stuff)))
1055 (with-row-major-index (array indices index new-value)
1056 (hairy-data-vector-set array index new-value)))))
1058 ;; For AREF of vectors we do the bounds checking in the callee. This
1059 ;; lets us do a significantly more efficient check for simple-arrays
1060 ;; without bloating the code. If we already know the type of the array
1061 ;; with sufficient precision, skip directly to DATA-VECTOR-REF.
1062 (deftransform aref ((array index) (t t) * :node node)
1063 (let* ((type (lvar-type array))
1064 (element-ctype (array-type-upgraded-element-type type)))
1066 ((and (array-type-p type)
1067 (null (array-type-complexp type))
1068 (not (eql element-ctype *wild-type*))
1069 (eql (length (array-type-dimensions type)) 1))
1070 (let* ((declared-element-ctype (array-type-declared-element-type type))
1072 `(data-vector-ref array
1073 (%check-bound array (array-dimension array 0) index))))
1074 (if (type= declared-element-ctype element-ctype)
1076 `(the ,(type-specifier declared-element-ctype) ,bare-form))))
1077 ((policy node (zerop insert-array-bounds-checks))
1078 `(hairy-data-vector-ref array index))
1079 (t `(hairy-data-vector-ref/check-bounds array index)))))
1081 (deftransform %aset ((array index new-value) (t t t) * :node node)
1082 (if (policy node (zerop insert-array-bounds-checks))
1083 `(hairy-data-vector-set array index new-value)
1084 `(hairy-data-vector-set/check-bounds array index new-value)))
1086 ;;; But if we find out later that there's some useful type information
1087 ;;; available, switch back to the normal one to give other transforms
1089 (macrolet ((define (name transform-to extra extra-type)
1090 (declare (ignore extra-type))
1091 `(deftransform ,name ((array index ,@extra))
1092 (let* ((type (lvar-type array))
1093 (element-type (array-type-upgraded-element-type type))
1094 (declared-type (array-type-declared-element-type type)))
1095 ;; If an element type has been declared, we want to
1096 ;; use that information it for type checking (even
1097 ;; if the access can't be optimized due to the array
1098 ;; not being simple).
1099 (when (and (eql element-type *wild-type*)
1100 ;; This type logic corresponds to the special
1101 ;; case for strings in HAIRY-DATA-VECTOR-REF
1102 ;; (generic/vm-tran.lisp)
1103 (not (csubtypep type (specifier-type 'simple-string))))
1104 (when (or (not (array-type-p type))
1105 ;; If it's a simple array, we might be able
1106 ;; to inline the access completely.
1107 (not (null (array-type-complexp type))))
1108 (give-up-ir1-transform
1109 "Upgraded element type of array is not known at compile time.")))
1111 ``(truly-the ,declared-type
1112 (,',transform-to array
1114 (array-dimension array 0)
1116 (the ,declared-type ,@',extra)))
1117 ``(the ,declared-type
1118 (,',transform-to array
1120 (array-dimension array 0)
1122 (define hairy-data-vector-ref/check-bounds
1123 hairy-data-vector-ref nil nil)
1124 (define hairy-data-vector-set/check-bounds
1125 hairy-data-vector-set (new-value) (*)))
1127 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
1128 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
1129 ;;; array total size.
1130 (deftransform row-major-aref ((array index))
1131 `(hairy-data-vector-ref array
1132 (%check-bound array (array-total-size array) index)))
1133 (deftransform %set-row-major-aref ((array index new-value))
1134 `(hairy-data-vector-set array
1135 (%check-bound array (array-total-size array) index)
1138 ;;;; bit-vector array operation canonicalization
1140 ;;;; We convert all bit-vector operations to have the result array
1141 ;;;; specified. This allows any result allocation to be open-coded,
1142 ;;;; and eliminates the need for any VM-dependent transforms to handle
1145 (macrolet ((def (fun)
1147 (deftransform ,fun ((bit-array-1 bit-array-2
1148 &optional result-bit-array)
1149 (bit-vector bit-vector &optional null) *
1150 :policy (>= speed space))
1151 `(,',fun bit-array-1 bit-array-2
1152 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1153 ;; If result is T, make it the first arg.
1154 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
1155 (bit-vector bit-vector (eql t)) *)
1156 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
1168 ;;; Similar for BIT-NOT, but there is only one arg...
1169 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
1170 (bit-vector &optional null) *
1171 :policy (>= speed space))
1172 '(bit-not bit-array-1
1173 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
1174 (deftransform bit-not ((bit-array-1 result-bit-array)
1175 (bit-vector (eql t)))
1176 '(bit-not bit-array-1 bit-array-1))
1178 ;;; Pick off some constant cases.
1179 (defoptimizer (array-header-p derive-type) ((array))
1180 (let ((type (lvar-type array)))
1181 (cond ((not (array-type-p type))
1182 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
1185 (let ((dims (array-type-dimensions type)))
1186 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
1188 (specifier-type 'null))
1189 ((and (listp dims) (/= (length dims) 1))
1190 ;; multi-dimensional array, will have a header
1191 (specifier-type '(eql t)))
1192 ((eql (array-type-complexp type) t)
1193 (specifier-type '(eql t)))