1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for LVAR, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (lvar)
20 (let* ((element-ctype (extract-upgraded-element-type lvar))
21 (element-type-specifier (type-specifier element-ctype)))
22 (if (eq element-type-specifier '*)
23 (give-up-ir1-transform
24 "upgraded array element type not known at compile time")
25 element-type-specifier)))
27 ;;; Array access functions return an object from the array, hence its type is
28 ;;; going to be the array upgraded element type. Secondary return value is the
29 ;;; known supertype of the upgraded-array-element-type, if if the exact
30 ;;; U-A-E-T is not known. (If it is NIL, the primary return value is as good
32 (defun extract-upgraded-element-type (array)
33 (let ((type (lvar-type array)))
35 ;; Note that this IF mightn't be satisfied even if the runtime
36 ;; value is known to be a subtype of some specialized ARRAY, because
37 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
38 ;; which are represented in the compiler as INTERSECTION-TYPE, not
41 (values (array-type-specialized-element-type type) nil))
42 ;; fix for bug #396. This type logic corresponds to the special case for
43 ;; strings in HAIRY-DATA-VECTOR-REF (generic/vm-tran.lisp)
44 ((csubtypep type (specifier-type 'string))
46 ((csubtypep type (specifier-type '(array character (*))))
47 (values (specifier-type 'character) nil))
49 ((csubtypep type (specifier-type '(array base-char (*))))
50 (values (specifier-type 'base-char) nil))
51 ((csubtypep type (specifier-type '(array nil (*))))
52 (values *empty-type* nil))
55 (values *wild-type* (specifier-type 'character)))))
57 ;; KLUDGE: there is no good answer here, but at least
58 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
59 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
61 (values *wild-type* nil)))))
63 (defun extract-declared-element-type (array)
64 (let ((type (lvar-type array)))
65 (if (array-type-p type)
66 (array-type-element-type type)
69 ;;; The ``new-value'' for array setters must fit in the array, and the
70 ;;; return type is going to be the same as the new-value for SETF
72 (defun assert-new-value-type (new-value array)
73 (let ((type (lvar-type array)))
74 (when (array-type-p type)
77 (array-type-specialized-element-type type)
78 (lexenv-policy (node-lexenv (lvar-dest new-value))))))
79 (lvar-type new-value))
81 (defun assert-array-complex (array)
84 (make-array-type :complexp t
85 :element-type *wild-type*)
86 (lexenv-policy (node-lexenv (lvar-dest array))))
89 ;;; Return true if ARG is NIL, or is a constant-lvar whose
90 ;;; value is NIL, false otherwise.
91 (defun unsupplied-or-nil (arg)
92 (declare (type (or lvar null) arg))
94 (and (constant-lvar-p arg)
95 (not (lvar-value arg)))))
97 ;;;; DERIVE-TYPE optimizers
99 ;;; Array operations that use a specific number of indices implicitly
100 ;;; assert that the array is of that rank.
101 (defun assert-array-rank (array rank)
104 (specifier-type `(array * ,(make-list rank :initial-element '*)))
105 (lexenv-policy (node-lexenv (lvar-dest array)))))
107 (defun derive-aref-type (array)
108 (multiple-value-bind (uaet other) (extract-upgraded-element-type array)
111 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
112 (assert-array-rank array (length indices))
115 (defoptimizer (aref derive-type) ((array &rest indices) node)
116 (assert-array-rank array (length indices))
117 (derive-aref-type array))
119 (defoptimizer (%aset derive-type) ((array &rest stuff))
120 (assert-array-rank array (1- (length stuff)))
121 (assert-new-value-type (car (last stuff)) array))
123 (macrolet ((define (name)
124 `(defoptimizer (,name derive-type) ((array index))
125 (derive-aref-type array))))
126 (define hairy-data-vector-ref)
127 (define hairy-data-vector-ref/check-bounds)
128 (define data-vector-ref))
131 (defoptimizer (data-vector-ref-with-offset derive-type) ((array index offset))
132 (derive-aref-type array))
134 (macrolet ((define (name)
135 `(defoptimizer (,name derive-type) ((array index new-value))
136 (assert-new-value-type new-value array))))
137 (define hairy-data-vector-set)
138 (define hairy-data-vector-set/check-bounds)
139 (define data-vector-set))
142 (defoptimizer (data-vector-set-with-offset derive-type) ((array index offset new-value))
143 (assert-new-value-type new-value array))
145 ;;; Figure out the type of the data vector if we know the argument
147 (defun derive-%with-array-data/mumble-type (array)
148 (let ((atype (lvar-type array)))
149 (when (array-type-p atype)
151 `(simple-array ,(type-specifier
152 (array-type-specialized-element-type atype))
154 (defoptimizer (%with-array-data derive-type) ((array start end))
155 (derive-%with-array-data/mumble-type array))
156 (defoptimizer (%with-array-data/fp derive-type) ((array start end))
157 (derive-%with-array-data/mumble-type array))
159 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
160 (assert-array-rank array (length indices))
163 (defoptimizer (row-major-aref derive-type) ((array index))
164 (derive-aref-type array))
166 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
167 (assert-new-value-type new-value array))
169 (defoptimizer (make-array derive-type)
170 ((dims &key initial-element element-type initial-contents
171 adjustable fill-pointer displaced-index-offset displaced-to))
172 (let ((simple (and (unsupplied-or-nil adjustable)
173 (unsupplied-or-nil displaced-to)
174 (unsupplied-or-nil fill-pointer))))
175 (or (careful-specifier-type
176 `(,(if simple 'simple-array 'array)
177 ,(cond ((not element-type) t)
178 ((constant-lvar-p element-type)
179 (let ((ctype (careful-specifier-type
180 (lvar-value element-type))))
182 ((or (null ctype) (unknown-type-p ctype)) '*)
183 (t (sb!xc:upgraded-array-element-type
184 (lvar-value element-type))))))
187 ,(cond ((constant-lvar-p dims)
188 (let* ((val (lvar-value dims))
189 (cdims (if (listp val) val (list val))))
193 ((csubtypep (lvar-type dims)
194 (specifier-type 'integer))
198 (specifier-type 'array))))
200 ;;; Complex array operations should assert that their array argument
201 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
202 (defoptimizer (fill-pointer derive-type) ((vector))
203 (assert-array-complex vector))
204 (defoptimizer (%set-fill-pointer derive-type) ((vector index))
205 (declare (ignorable index))
206 (assert-array-complex vector))
208 (defoptimizer (vector-push derive-type) ((object vector))
209 (declare (ignorable object))
210 (assert-array-complex vector))
211 (defoptimizer (vector-push-extend derive-type)
212 ((object vector &optional index))
213 (declare (ignorable object index))
214 (assert-array-complex vector))
215 (defoptimizer (vector-pop derive-type) ((vector))
216 (assert-array-complex vector))
220 ;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the
222 (define-source-transform vector (&rest elements)
223 (let ((len (length elements))
225 (once-only ((n-vec `(make-array ,len)))
227 ,@(mapcar (lambda (el)
228 (once-only ((n-val el))
229 `(locally (declare (optimize (safety 0)))
230 (setf (svref ,n-vec ,(incf n)) ,n-val))))
234 ;;; Just convert it into a MAKE-ARRAY.
235 (deftransform make-string ((length &key
236 (element-type 'character)
238 #.*default-init-char-form*)))
239 `(the simple-string (make-array (the index length)
240 :element-type element-type
241 ,@(when initial-element
242 '(:initial-element initial-element)))))
244 (deftransform make-array ((dims &key initial-element element-type
245 adjustable fill-pointer)
247 (when (null initial-element)
248 (give-up-ir1-transform))
249 (let* ((eltype (cond ((not element-type) t)
250 ((not (constant-lvar-p element-type))
251 (give-up-ir1-transform
252 "ELEMENT-TYPE is not constant."))
254 (lvar-value element-type))))
255 (eltype-type (ir1-transform-specifier-type eltype))
256 (saetp (find-if (lambda (saetp)
257 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
258 sb!vm:*specialized-array-element-type-properties*))
259 (creation-form `(make-array dims
260 :element-type ',(type-specifier (sb!vm:saetp-ctype saetp))
262 '(:fill-pointer fill-pointer))
264 '(:adjustable adjustable)))))
267 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype))
269 (cond ((and (constant-lvar-p initial-element)
270 (eql (lvar-value initial-element)
271 (sb!vm:saetp-initial-element-default saetp)))
274 ;; error checking for target, disabled on the host because
275 ;; (CTYPE-OF #\Null) is not possible.
277 (when (constant-lvar-p initial-element)
278 (let ((value (lvar-value initial-element)))
280 ((not (ctypep value (sb!vm:saetp-ctype saetp)))
281 ;; this case will cause an error at runtime, so we'd
282 ;; better WARN about it now.
283 (warn 'array-initial-element-mismatch
284 :format-control "~@<~S is not a ~S (which is the ~
289 (type-specifier (sb!vm:saetp-ctype saetp))
290 'upgraded-array-element-type
292 ((not (ctypep value eltype-type))
293 ;; this case will not cause an error at runtime, but
294 ;; it's still worth STYLE-WARNing about.
295 (compiler-style-warn "~S is not a ~S."
297 `(let ((array ,creation-form))
298 (multiple-value-bind (vector)
299 (%data-vector-and-index array 0)
300 (fill vector initial-element))
303 ;;; The integer type restriction on the length ensures that it will be
304 ;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and
305 ;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of
306 ;;; :INITIAL-ELEMENT relies on another transform to deal with that
307 ;;; kind of initialization efficiently.
308 (deftransform make-array ((length &key element-type)
310 (let* ((eltype (cond ((not element-type) t)
311 ((not (constant-lvar-p element-type))
312 (give-up-ir1-transform
313 "ELEMENT-TYPE is not constant."))
315 (lvar-value element-type))))
316 (len (if (constant-lvar-p length)
319 (eltype-type (ir1-transform-specifier-type eltype))
322 ,(if (unknown-type-p eltype-type)
323 (give-up-ir1-transform
324 "ELEMENT-TYPE is an unknown type: ~S" eltype)
325 (sb!xc:upgraded-array-element-type eltype))
327 (saetp (find-if (lambda (saetp)
328 (csubtypep eltype-type (sb!vm:saetp-ctype saetp)))
329 sb!vm:*specialized-array-element-type-properties*)))
331 (give-up-ir1-transform
332 "cannot open-code creation of ~S" result-type-spec))
334 (unless (ctypep (sb!vm:saetp-initial-element-default saetp) eltype-type)
335 ;; This situation arises e.g. in (MAKE-ARRAY 4 :ELEMENT-TYPE
336 ;; '(INTEGER 1 5)) ANSI's definition of MAKE-ARRAY says "If
337 ;; INITIAL-ELEMENT is not supplied, the consequences of later
338 ;; reading an uninitialized element of new-array are undefined,"
339 ;; so this could be legal code as long as the user plans to
340 ;; write before he reads, and if he doesn't we're free to do
341 ;; anything we like. But in case the user doesn't know to write
342 ;; elements before he reads elements (or to read manuals before
343 ;; he writes code:-), we'll signal a STYLE-WARNING in case he
344 ;; didn't realize this.
345 (compiler-style-warn "The default initial element ~S is not a ~S."
346 (sb!vm:saetp-initial-element-default saetp)
348 (let* ((n-bits-per-element (sb!vm:saetp-n-bits saetp))
349 (typecode (sb!vm:saetp-typecode saetp))
350 (n-pad-elements (sb!vm:saetp-n-pad-elements saetp))
351 (padded-length-form (if (zerop n-pad-elements)
353 `(+ length ,n-pad-elements)))
356 ((= n-bits-per-element 0) 0)
357 ((>= n-bits-per-element sb!vm:n-word-bits)
358 `(* ,padded-length-form
359 (the fixnum ; i.e., not RATIO
360 ,(/ n-bits-per-element sb!vm:n-word-bits))))
362 (let ((n-elements-per-word (/ sb!vm:n-word-bits
363 n-bits-per-element)))
364 (declare (type index n-elements-per-word)) ; i.e., not RATIO
365 `(ceiling ,padded-length-form ,n-elements-per-word))))))
367 `(truly-the ,result-type-spec
368 (allocate-vector ,typecode length ,n-words-form))
369 '((declare (type index length)))))))
371 ;;; The list type restriction does not ensure that the result will be a
372 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
373 ;;; and displaced-to keywords ensures that it will be simple.
375 ;;; FIXME: should we generalize this transform to non-simple (though
376 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
377 ;;; deal with those? Maybe when the DEFTRANSFORM
378 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
380 (deftransform make-array ((dims &key element-type)
382 (unless (or (null element-type) (constant-lvar-p element-type))
383 (give-up-ir1-transform
384 "The element-type is not constant; cannot open code array creation."))
385 (unless (constant-lvar-p dims)
386 (give-up-ir1-transform
387 "The dimension list is not constant; cannot open code array creation."))
388 (let ((dims (lvar-value dims)))
389 (unless (every #'integerp dims)
390 (give-up-ir1-transform
391 "The dimension list contains something other than an integer: ~S"
393 (if (= (length dims) 1)
394 `(make-array ',(car dims)
396 '(:element-type element-type)))
397 (let* ((total-size (reduce #'* dims))
400 ,(cond ((null element-type) t)
401 ((and (constant-lvar-p element-type)
402 (ir1-transform-specifier-type
403 (lvar-value element-type)))
404 (sb!xc:upgraded-array-element-type
405 (lvar-value element-type)))
407 ,(make-list rank :initial-element '*))))
408 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)))
409 (setf (%array-fill-pointer header) ,total-size)
410 (setf (%array-fill-pointer-p header) nil)
411 (setf (%array-available-elements header) ,total-size)
412 (setf (%array-data-vector header)
413 (make-array ,total-size
415 '(:element-type element-type))))
416 (setf (%array-displaced-p header) nil)
418 (mapcar (lambda (dim)
419 `(setf (%array-dimension header ,(incf axis))
422 (truly-the ,spec header))))))
424 ;;;; miscellaneous properties of arrays
426 ;;; Transforms for various array properties. If the property is know
427 ;;; at compile time because of a type spec, use that constant value.
429 ;;; Most of this logic may end up belonging in code/late-type.lisp;
430 ;;; however, here we also need the -OR-GIVE-UP for the transforms, and
431 ;;; maybe this is just too sloppy for actual type logic. -- CSR,
433 (defun array-type-dimensions-or-give-up (type)
435 (array-type (array-type-dimensions type))
437 (let ((types (union-type-types type)))
438 ;; there are at least two types, right?
439 (aver (> (length types) 1))
440 (let ((result (array-type-dimensions-or-give-up (car types))))
441 (dolist (type (cdr types) result)
442 (unless (equal (array-type-dimensions-or-give-up type) result)
443 (give-up-ir1-transform))))))
444 ;; FIXME: intersection type [e.g. (and (array * (*)) (satisfies foo)) ]
445 (t (give-up-ir1-transform))))
447 (defun conservative-array-type-complexp (type)
449 (array-type (array-type-complexp type))
451 (let ((types (union-type-types type)))
452 (aver (> (length types) 1))
453 (let ((result (conservative-array-type-complexp (car types))))
454 (dolist (type (cdr types) result)
455 (unless (eq (conservative-array-type-complexp type) result)
456 (return-from conservative-array-type-complexp :maybe))))))
457 ;; FIXME: intersection type
460 ;;; If we can tell the rank from the type info, use it instead.
461 (deftransform array-rank ((array))
462 (let ((array-type (lvar-type array)))
463 (let ((dims (array-type-dimensions-or-give-up array-type)))
464 (if (not (listp dims))
465 (give-up-ir1-transform
466 "The array rank is not known at compile time: ~S"
470 ;;; If we know the dimensions at compile time, just use it. Otherwise,
471 ;;; if we can tell that the axis is in bounds, convert to
472 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
473 ;;; (if it's simple and a vector).
474 (deftransform array-dimension ((array axis)
476 (unless (constant-lvar-p axis)
477 (give-up-ir1-transform "The axis is not constant."))
478 (let ((array-type (lvar-type array))
479 (axis (lvar-value axis)))
480 (let ((dims (array-type-dimensions-or-give-up array-type)))
482 (give-up-ir1-transform
483 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
484 (unless (> (length dims) axis)
485 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
488 (let ((dim (nth axis dims)))
489 (cond ((integerp dim)
492 (ecase (conservative-array-type-complexp array-type)
494 '(%array-dimension array 0))
498 (give-up-ir1-transform
499 "can't tell whether array is simple"))))
501 '(%array-dimension array axis)))))))
503 ;;; If the length has been declared and it's simple, just return it.
504 (deftransform length ((vector)
505 ((simple-array * (*))))
506 (let ((type (lvar-type vector)))
507 (let ((dims (array-type-dimensions-or-give-up type)))
508 (unless (and (listp dims) (integerp (car dims)))
509 (give-up-ir1-transform
510 "Vector length is unknown, must call LENGTH at runtime."))
513 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
514 ;;; simple, it will extract the length slot from the vector. It it's
515 ;;; complex, it will extract the fill pointer slot from the array
517 (deftransform length ((vector) (vector))
518 '(vector-length vector))
520 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
521 ;;; compile-time constant.
522 (deftransform vector-length ((vector))
523 (let ((vtype (lvar-type vector)))
524 (let ((dim (first (array-type-dimensions-or-give-up vtype))))
526 (give-up-ir1-transform))
527 (when (conservative-array-type-complexp vtype)
528 (give-up-ir1-transform))
531 ;;; Again, if we can tell the results from the type, just use it.
532 ;;; Otherwise, if we know the rank, convert into a computation based
533 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
534 ;;; multiplications because we know that the total size must be an
536 (deftransform array-total-size ((array)
538 (let ((array-type (lvar-type array)))
539 (let ((dims (array-type-dimensions-or-give-up array-type)))
541 (give-up-ir1-transform "can't tell the rank at compile time"))
543 (do ((form 1 `(truly-the index
544 (* (array-dimension array ,i) ,form)))
546 ((= i (length dims)) form))
547 (reduce #'* dims)))))
549 ;;; Only complex vectors have fill pointers.
550 (deftransform array-has-fill-pointer-p ((array))
551 (let ((array-type (lvar-type array)))
552 (let ((dims (array-type-dimensions-or-give-up array-type)))
553 (if (and (listp dims) (not (= (length dims) 1)))
555 (ecase (conservative-array-type-complexp array-type)
561 (give-up-ir1-transform
562 "The array type is ambiguous; must call ~
563 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
565 ;;; Primitive used to verify indices into arrays. If we can tell at
566 ;;; compile-time or we are generating unsafe code, don't bother with
568 (deftransform %check-bound ((array dimension index) * * :node node)
569 (cond ((policy node (= insert-array-bounds-checks 0))
571 ((not (constant-lvar-p dimension))
572 (give-up-ir1-transform))
574 (let ((dim (lvar-value dimension)))
575 ;; FIXME: Can SPEED > SAFETY weaken this check to INTEGER?
576 `(the (integer 0 (,dim)) index)))))
580 ;;; This checks to see whether the array is simple and the start and
581 ;;; end are in bounds. If so, it proceeds with those values.
582 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
583 ;;; may be further optimized.
585 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
586 ;;; START-VAR and END-VAR to the start and end of the designated
587 ;;; portion of the data vector. SVALUE and EVALUE are any start and
588 ;;; end specified to the original operation, and are factored into the
589 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
590 ;;; offset of all displacements encountered, and does not include
593 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
594 ;;; forced to be inline, overriding the ordinary judgment of the
595 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
596 ;;; fairly picky about their arguments, figuring that if you haven't
597 ;;; bothered to get all your ducks in a row, you probably don't care
598 ;;; that much about speed anyway! But in some cases it makes sense to
599 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
600 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
601 ;;; sense to use FORCE-INLINE option in that case.
602 (def!macro with-array-data (((data-var array &key offset-var)
603 (start-var &optional (svalue 0))
604 (end-var &optional (evalue nil))
605 &key force-inline check-fill-pointer)
608 (once-only ((n-array array)
609 (n-svalue `(the index ,svalue))
610 (n-evalue `(the (or index null) ,evalue)))
611 (let ((check-bounds (policy env (plusp insert-array-bounds-checks))))
612 `(multiple-value-bind (,data-var
615 ,@(when offset-var `(,offset-var)))
616 (if (not (array-header-p ,n-array))
617 (let ((,n-array ,n-array))
618 (declare (type (simple-array * (*)) ,n-array))
619 ,(once-only ((n-len (if check-fill-pointer
621 `(array-total-size ,n-array)))
622 (n-end `(or ,n-evalue ,n-len)))
624 `(if (<= 0 ,n-svalue ,n-end ,n-len)
625 (values ,n-array ,n-svalue ,n-end 0)
626 ,(if check-fill-pointer
627 `(sequence-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)
628 `(array-bounding-indices-bad-error ,n-array ,n-svalue ,n-evalue)))
629 `(values ,n-array ,n-svalue ,n-end 0))))
631 `(%with-array-data-macro ,n-array ,n-svalue ,n-evalue
632 :check-bounds ,check-bounds
633 :check-fill-pointer ,check-fill-pointer)
634 (if check-fill-pointer
635 `(%with-array-data/fp ,n-array ,n-svalue ,n-evalue)
636 `(%with-array-data ,n-array ,n-svalue ,n-evalue))))
639 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
640 ;;; DEFTRANSFORMs and DEFUNs.
641 (def!macro %with-array-data-macro (array
648 (with-unique-names (size defaulted-end data cumulative-offset)
649 `(let* ((,size ,(if check-fill-pointer
651 `(array-total-size ,array)))
652 (,defaulted-end (or ,end ,size)))
654 `((unless (<= ,start ,defaulted-end ,size)
655 ,(if check-fill-pointer
656 `(sequence-bounding-indices-bad-error ,array ,start ,end)
657 `(array-bounding-indices-bad-error ,array ,start ,end)))))
658 (do ((,data ,array (%array-data-vector ,data))
659 (,cumulative-offset 0
660 (+ ,cumulative-offset
661 (%array-displacement ,data))))
662 ((not (array-header-p ,data))
663 (values (the (simple-array ,element-type 1) ,data)
664 (the index (+ ,cumulative-offset ,start))
665 (the index (+ ,cumulative-offset ,defaulted-end))
666 (the index ,cumulative-offset)))
667 (declare (type index ,cumulative-offset))))))
669 (defun transform-%with-array-data/muble (array node check-fill-pointer)
670 (let ((element-type (upgraded-element-type-specifier-or-give-up array))
671 (type (lvar-type array))
672 (check-bounds (policy node (plusp insert-array-bounds-checks))))
673 (if (and (array-type-p type)
674 (not (array-type-complexp type))
675 (listp (array-type-dimensions type))
676 (not (null (cdr (array-type-dimensions type)))))
677 ;; If it's a simple multidimensional array, then just return
678 ;; its data vector directly rather than going through
679 ;; %WITH-ARRAY-DATA-MACRO. SBCL doesn't generally generate
680 ;; code that would use this currently, but we have encouraged
681 ;; users to use WITH-ARRAY-DATA and we may use it ourselves at
682 ;; some point in the future for optimized libraries or
685 `(let* ((data (truly-the (simple-array ,element-type (*))
686 (%array-data-vector array)))
688 (real-end (or end len)))
689 (unless (<= 0 start data-end lend)
690 (sequence-bounding-indices-bad-error array start end))
691 (values data 0 real-end 0))
692 `(let ((data (truly-the (simple-array ,element-type (*))
693 (%array-data-vector array))))
694 (values data 0 (or end (length data)) 0)))
695 `(%with-array-data-macro array start end
696 :check-fill-pointer ,check-fill-pointer
697 :check-bounds ,check-bounds
698 :element-type ,element-type))))
700 ;; It might very well be reasonable to allow general ARRAY here, I
701 ;; just haven't tried to understand the performance issues involved.
702 ;; -- WHN, and also CSR 2002-05-26
703 (deftransform %with-array-data ((array start end)
704 ((or vector simple-array) index (or index null) t)
707 :policy (> speed space))
708 "inline non-SIMPLE-vector-handling logic"
709 (transform-%with-array-data/muble array node nil))
710 (deftransform %with-array-data/fp ((array start end)
711 ((or vector simple-array) index (or index null) t)
714 :policy (> speed space))
715 "inline non-SIMPLE-vector-handling logic"
716 (transform-%with-array-data/muble array node t))
720 ;;; We convert all typed array accessors into AREF and %ASET with type
721 ;;; assertions on the array.
722 (macrolet ((define-bit-frob (reffer setter simplep)
724 (define-source-transform ,reffer (a &rest i)
725 `(aref (the (,',(if simplep 'simple-array 'array)
727 ,(mapcar (constantly '*) i))
729 (define-source-transform ,setter (a &rest i)
730 `(%aset (the (,',(if simplep 'simple-array 'array)
732 ,(cdr (mapcar (constantly '*) i)))
734 (define-bit-frob sbit %sbitset t)
735 (define-bit-frob bit %bitset nil))
736 (macrolet ((define-frob (reffer setter type)
738 (define-source-transform ,reffer (a i)
739 `(aref (the ,',type ,a) ,i))
740 (define-source-transform ,setter (a i v)
741 `(%aset (the ,',type ,a) ,i ,v)))))
742 (define-frob svref %svset simple-vector)
743 (define-frob schar %scharset simple-string)
744 (define-frob char %charset string))
746 (macrolet (;; This is a handy macro for computing the row-major index
747 ;; given a set of indices. We wrap each index with a call
748 ;; to %CHECK-BOUND to ensure that everything works out
749 ;; correctly. We can wrap all the interior arithmetic with
750 ;; TRULY-THE INDEX because we know the resultant
751 ;; row-major index must be an index.
752 (with-row-major-index ((array indices index &optional new-value)
754 `(let (n-indices dims)
755 (dotimes (i (length ,indices))
756 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
757 (push (make-symbol (format nil "DIM-~D" i)) dims))
758 (setf n-indices (nreverse n-indices))
759 (setf dims (nreverse dims))
760 `(lambda (,',array ,@n-indices
761 ,@',(when new-value (list new-value)))
762 (let* (,@(let ((,index -1))
763 (mapcar (lambda (name)
764 `(,name (array-dimension
771 (do* ((dims dims (cdr dims))
772 (indices n-indices (cdr indices))
773 (last-dim nil (car dims))
774 (form `(%check-bound ,',array
786 ((null (cdr dims)) form)))))
789 ;; Just return the index after computing it.
790 (deftransform array-row-major-index ((array &rest indices))
791 (with-row-major-index (array indices index)
794 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
795 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
796 ;; expression for the row major index.
797 (deftransform aref ((array &rest indices))
798 (with-row-major-index (array indices index)
799 (hairy-data-vector-ref array index)))
801 (deftransform %aset ((array &rest stuff))
802 (let ((indices (butlast stuff)))
803 (with-row-major-index (array indices index new-value)
804 (hairy-data-vector-set array index new-value)))))
806 ;; For AREF of vectors we do the bounds checking in the callee. This
807 ;; lets us do a significantly more efficient check for simple-arrays
808 ;; without bloating the code. If we already know the type of the array
809 ;; with sufficient precision, skip directly to DATA-VECTOR-REF.
810 (deftransform aref ((array index) (t t) * :node node)
811 (let* ((type (lvar-type array))
812 (element-ctype (extract-upgraded-element-type array)))
814 ((and (array-type-p type)
815 (null (array-type-complexp type))
816 (not (eql element-ctype *wild-type*))
817 (eql (length (array-type-dimensions type)) 1))
818 (let* ((declared-element-ctype (extract-declared-element-type array))
820 `(data-vector-ref array
821 (%check-bound array (array-dimension array 0) index))))
822 (if (type= declared-element-ctype element-ctype)
824 `(the ,(type-specifier declared-element-ctype) ,bare-form))))
825 ((policy node (zerop insert-array-bounds-checks))
826 `(hairy-data-vector-ref array index))
827 (t `(hairy-data-vector-ref/check-bounds array index)))))
829 (deftransform %aset ((array index new-value) (t t t) * :node node)
830 (if (policy node (zerop insert-array-bounds-checks))
831 `(hairy-data-vector-set array index new-value)
832 `(hairy-data-vector-set/check-bounds array index new-value)))
834 ;;; But if we find out later that there's some useful type information
835 ;;; available, switch back to the normal one to give other transforms
837 (macrolet ((define (name transform-to extra extra-type)
838 (declare (ignore extra-type))
839 `(deftransform ,name ((array index ,@extra))
840 (let ((type (lvar-type array))
841 (element-type (extract-upgraded-element-type array)))
842 ;; If an element type has been declared, we want to
843 ;; use that information it for type checking (even
844 ;; if the access can't be optimized due to the array
845 ;; not being simple).
846 (when (and (eql element-type *wild-type*)
847 ;; This type logic corresponds to the special
848 ;; case for strings in HAIRY-DATA-VECTOR-REF
849 ;; (generic/vm-tran.lisp)
850 (not (csubtypep type (specifier-type 'simple-string))))
851 (when (or (not (array-type-p type))
852 ;; If it's a simple array, we might be able
853 ;; to inline the access completely.
854 (not (null (array-type-complexp type))))
855 (give-up-ir1-transform
856 "Upgraded element type of array is not known at compile time."))))
857 `(,',transform-to array
859 (array-dimension array 0)
862 (define hairy-data-vector-ref/check-bounds
863 hairy-data-vector-ref nil nil)
864 (define hairy-data-vector-set/check-bounds
865 hairy-data-vector-set (new-value) (*)))
867 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
868 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
869 ;;; array total size.
870 (deftransform row-major-aref ((array index))
871 `(hairy-data-vector-ref array
872 (%check-bound array (array-total-size array) index)))
873 (deftransform %set-row-major-aref ((array index new-value))
874 `(hairy-data-vector-set array
875 (%check-bound array (array-total-size array) index)
878 ;;;; bit-vector array operation canonicalization
880 ;;;; We convert all bit-vector operations to have the result array
881 ;;;; specified. This allows any result allocation to be open-coded,
882 ;;;; and eliminates the need for any VM-dependent transforms to handle
885 (macrolet ((def (fun)
887 (deftransform ,fun ((bit-array-1 bit-array-2
888 &optional result-bit-array)
889 (bit-vector bit-vector &optional null) *
890 :policy (>= speed space))
891 `(,',fun bit-array-1 bit-array-2
892 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
893 ;; If result is T, make it the first arg.
894 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
895 (bit-vector bit-vector (eql t)) *)
896 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
908 ;;; Similar for BIT-NOT, but there is only one arg...
909 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
910 (bit-vector &optional null) *
911 :policy (>= speed space))
912 '(bit-not bit-array-1
913 (make-array (array-dimension bit-array-1 0) :element-type 'bit)))
914 (deftransform bit-not ((bit-array-1 result-bit-array)
915 (bit-vector (eql t)))
916 '(bit-not bit-array-1 bit-array-1))
918 ;;; Pick off some constant cases.
919 (defoptimizer (array-header-p derive-type) ((array))
920 (let ((type (lvar-type array)))
921 (cond ((not (array-type-p type))
922 ;; FIXME: use analogue of ARRAY-TYPE-DIMENSIONS-OR-GIVE-UP
925 (let ((dims (array-type-dimensions type)))
926 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
928 (specifier-type 'null))
929 ((and (listp dims) (/= (length dims) 1))
930 ;; multi-dimensional array, will have a header
931 (specifier-type '(eql t)))
932 ((eql (array-type-complexp type) t)
933 (specifier-type '(eql t)))