1 ;;;; array-specific optimizers and transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; utilities for optimizing array operations
16 ;;; Return UPGRADED-ARRAY-ELEMENT-TYPE for CONTINUATION, or do
17 ;;; GIVE-UP-IR1-TRANSFORM if the upgraded element type can't be
19 (defun upgraded-element-type-specifier-or-give-up (continuation)
20 (let* ((element-ctype (extract-upgraded-element-type continuation))
21 (element-type-specifier (type-specifier element-ctype)))
22 (if (eq element-type-specifier '*)
23 (give-up-ir1-transform
24 "upgraded array element type not known at compile time")
25 element-type-specifier)))
27 ;;; Array access functions return an object from the array, hence its
28 ;;; type is going to be the array upgraded element type.
29 (defun extract-upgraded-element-type (array)
30 (let ((type (continuation-type array)))
31 ;; Note that this IF mightn't be satisfied even if the runtime
32 ;; value is known to be a subtype of some specialized ARRAY, because
33 ;; we can have values declared e.g. (AND SIMPLE-VECTOR UNKNOWN-TYPE),
34 ;; which are represented in the compiler as INTERSECTION-TYPE, not
36 (if (array-type-p type)
37 (array-type-specialized-element-type type)
38 ;; KLUDGE: there is no good answer here, but at least
39 ;; *wild-type* won't cause HAIRY-DATA-VECTOR-{REF,SET} to be
40 ;; erroneously optimized (see generic/vm-tran.lisp) -- CSR,
44 ;;; The ``new-value'' for array setters must fit in the array, and the
45 ;;; return type is going to be the same as the new-value for SETF
47 (defun assert-new-value-type (new-value array)
48 (let ((type (continuation-type array)))
49 (when (array-type-p type)
50 (assert-continuation-type new-value
51 (array-type-specialized-element-type type))))
52 (continuation-type new-value))
54 (defun assert-array-complex (array)
55 (assert-continuation-type array
56 (make-array-type :complexp t
57 :element-type *wild-type*)))
59 ;;; Return true if ARG is NIL, or is a constant-continuation whose
60 ;;; value is NIL, false otherwise.
61 (defun unsupplied-or-nil (arg)
62 (declare (type (or continuation null) arg))
64 (and (constant-continuation-p arg)
65 (not (continuation-value arg)))))
67 ;;;; DERIVE-TYPE optimizers
69 ;;; Array operations that use a specific number of indices implicitly
70 ;;; assert that the array is of that rank.
71 (defun assert-array-rank (array rank)
72 (assert-continuation-type
74 (specifier-type `(array * ,(make-list rank :initial-element '*)))))
76 (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
77 (assert-array-rank array (length indices))
80 (defoptimizer (aref derive-type) ((array &rest indices) node)
81 (assert-array-rank array (length indices))
82 ;; If the node continuation has a single use then assert its type.
83 (let ((cont (node-cont node)))
84 (when (= (length (find-uses cont)) 1)
85 (assert-continuation-type cont (extract-upgraded-element-type array))))
86 (extract-upgraded-element-type array))
88 (defoptimizer (%aset derive-type) ((array &rest stuff))
89 (assert-array-rank array (1- (length stuff)))
90 (assert-new-value-type (car (last stuff)) array))
92 (defoptimizer (hairy-data-vector-ref derive-type) ((array index))
93 (extract-upgraded-element-type array))
94 (defoptimizer (data-vector-ref derive-type) ((array index))
95 (extract-upgraded-element-type array))
97 (defoptimizer (data-vector-set derive-type) ((array index new-value))
98 (assert-new-value-type new-value array))
99 (defoptimizer (hairy-data-vector-set derive-type) ((array index new-value))
100 (assert-new-value-type new-value array))
102 ;;; Figure out the type of the data vector if we know the argument
104 (defoptimizer (%with-array-data derive-type) ((array start end))
105 (let ((atype (continuation-type array)))
106 (when (array-type-p atype)
107 (values-specifier-type
108 `(values (simple-array ,(type-specifier
109 (array-type-specialized-element-type atype))
111 index index index)))))
113 (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
114 (assert-array-rank array (length indices))
117 (defoptimizer (row-major-aref derive-type) ((array index))
118 (extract-upgraded-element-type array))
120 (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
121 (assert-new-value-type new-value array))
123 (defoptimizer (make-array derive-type)
124 ((dims &key initial-element element-type initial-contents
125 adjustable fill-pointer displaced-index-offset displaced-to))
126 (let ((simple (and (unsupplied-or-nil adjustable)
127 (unsupplied-or-nil displaced-to)
128 (unsupplied-or-nil fill-pointer))))
129 (or (careful-specifier-type
130 `(,(if simple 'simple-array 'array)
131 ,(cond ((not element-type) t)
132 ((constant-continuation-p element-type)
133 (continuation-value element-type))
138 ((constant-continuation-p dims)
139 (let ((val (continuation-value dims)))
140 (if (listp val) val (list val))))
141 ((csubtypep (continuation-type dims)
142 (specifier-type 'integer))
146 (specifier-type 'array))))
148 ;;; Complex array operations should assert that their array argument
149 ;;; is complex. In SBCL, vectors with fill-pointers are complex.
150 (defoptimizer (fill-pointer derive-type) ((vector))
151 (assert-array-complex vector))
152 (defoptimizer (%set-fill-pointer derive-type) ((vector index))
153 (declare (ignorable index))
154 (assert-array-complex vector))
156 (defoptimizer (vector-push derive-type) ((object vector))
157 (declare (ignorable object))
158 (assert-array-complex vector))
159 (defoptimizer (vector-push-extend derive-type)
160 ((object vector &optional index))
161 (declare (ignorable object index))
162 (assert-array-complex vector))
163 (defoptimizer (vector-pop derive-type) ((vector))
164 (assert-array-complex vector))
168 ;;; Convert VECTOR into a MAKE-ARRAY followed by SETFs of all the
170 (define-source-transform vector (&rest elements)
171 (let ((len (length elements))
173 (once-only ((n-vec `(make-array ,len)))
175 ,@(mapcar (lambda (el)
176 (once-only ((n-val el))
177 `(locally (declare (optimize (safety 0)))
178 (setf (svref ,n-vec ,(incf n))
183 ;;; Just convert it into a MAKE-ARRAY.
184 (define-source-transform make-string (length &key
185 (element-type ''base-char)
187 '#.*default-init-char-form*))
188 `(make-array (the index ,length)
189 :element-type ,element-type
190 :initial-element ,initial-element))
192 (defstruct (specialized-array-element-type-properties
194 (:constructor !make-saetp (ctype
195 initial-element-default
201 ;; the element type, e.g. #<BUILT-IN-CLASS BASE-CHAR (sealed)> or
202 ;; #<SB-KERNEL:NUMERIC-TYPE (UNSIGNED-BYTE 4)>
203 (ctype (missing-arg) :type ctype :read-only t)
204 ;; what we get when the low-level vector-creation logic zeroes all
205 ;; the bits (which also serves as the default value of MAKE-ARRAY's
206 ;; :INITIAL-ELEMENT keyword)
207 (initial-element-default (missing-arg) :read-only t)
208 ;; how many bits per element
209 (n-bits (missing-arg) :type index :read-only t)
210 ;; the low-level type code
211 (typecode (missing-arg) :type index :read-only t)
212 ;; the number of extra elements we use at the end of the array for
213 ;; low level hackery (e.g., one element for arrays of BASE-CHAR,
214 ;; which is used for a fixed #\NULL so that when we call out to C
215 ;; we don't need to cons a new copy)
216 (n-pad-elements (missing-arg) :type index :read-only t))
218 (defparameter *specialized-array-element-type-properties*
221 (destructuring-bind (type-spec &rest rest) args
222 (let ((ctype (specifier-type type-spec)))
223 (apply #'!make-saetp ctype rest))))
224 `((base-char ,(code-char 0) 8 ,sb!vm:simple-string-widetag
225 ;; (SIMPLE-STRINGs are stored with an extra trailing
226 ;; #\NULL for convenience in calling out to C.)
228 (single-float 0.0f0 32 ,sb!vm:simple-array-single-float-widetag)
229 (double-float 0.0d0 64 ,sb!vm:simple-array-double-float-widetag)
230 #!+long-float (long-float 0.0L0 #!+x86 96 #!+sparc 128
231 ,sb!vm:simple-array-long-float-widetag)
232 (bit 0 1 ,sb!vm:simple-bit-vector-widetag)
233 ;; KLUDGE: The fact that these UNSIGNED-BYTE entries come
234 ;; before their SIGNED-BYTE partners is significant in the
235 ;; implementation of the compiler; some of the cross-compiler
236 ;; code (see e.g. COERCE-TO-SMALLEST-ELTYPE in
237 ;; src/compiler/debug-dump.lisp) attempts to create an array
238 ;; specialized on (UNSIGNED-BYTE FOO), where FOO could be 7;
239 ;; (UNSIGNED-BYTE 7) is SUBTYPEP (SIGNED-BYTE 8), so if we're
240 ;; not careful we could get the wrong specialized array when
241 ;; we try to FIND-IF, below. -- CSR, 2002-07-08
242 ((unsigned-byte 2) 0 2 ,sb!vm:simple-array-unsigned-byte-2-widetag)
243 ((unsigned-byte 4) 0 4 ,sb!vm:simple-array-unsigned-byte-4-widetag)
244 ((unsigned-byte 8) 0 8 ,sb!vm:simple-array-unsigned-byte-8-widetag)
245 ((unsigned-byte 16) 0 16 ,sb!vm:simple-array-unsigned-byte-16-widetag)
246 ((unsigned-byte 32) 0 32 ,sb!vm:simple-array-unsigned-byte-32-widetag)
247 ((signed-byte 8) 0 8 ,sb!vm:simple-array-signed-byte-8-widetag)
248 ((signed-byte 16) 0 16 ,sb!vm:simple-array-signed-byte-16-widetag)
249 ((signed-byte 30) 0 32 ,sb!vm:simple-array-signed-byte-30-widetag)
250 ((signed-byte 32) 0 32 ,sb!vm:simple-array-signed-byte-32-widetag)
251 ((complex single-float) #C(0.0f0 0.0f0) 64
252 ,sb!vm:simple-array-complex-single-float-widetag)
253 ((complex double-float) #C(0.0d0 0.0d0) 128
254 ,sb!vm:simple-array-complex-double-float-widetag)
255 #!+long-float ((complex long-float) #C(0.0L0 0.0L0)
256 #!+x86 192 #!+sparc 256
257 ,sb!vm:simple-array-complex-long-float-widetag)
258 (t 0 32 ,sb!vm:simple-vector-widetag))))
260 (deftransform make-array ((dims &key initial-element element-type
261 adjustable fill-pointer)
263 (when (null initial-element)
264 (give-up-ir1-transform))
265 (let* ((eltype (cond ((not element-type) t)
266 ((not (constant-continuation-p element-type))
267 (give-up-ir1-transform
268 "ELEMENT-TYPE is not constant."))
270 (continuation-value element-type))))
271 (eltype-type (ir1-transform-specifier-type eltype))
272 (saetp (find-if (lambda (saetp)
273 (csubtypep eltype-type (saetp-ctype saetp)))
274 *specialized-array-element-type-properties*))
275 (creation-form `(make-array dims :element-type ',eltype
277 '(:fill-pointer fill-pointer))
279 '(:adjustable adjustable)))))
282 (give-up-ir1-transform "ELEMENT-TYPE not found in *SAETP*: ~S" eltype))
284 (cond ((or (null initial-element)
285 (and (constant-continuation-p initial-element)
286 (eql (continuation-value initial-element)
287 (saetp-initial-element-default saetp))))
288 (unless (csubtypep (ctype-of (saetp-initial-element-default saetp))
290 ;; This situation arises e.g. in (MAKE-ARRAY 4
291 ;; :ELEMENT-TYPE '(INTEGER 1 5)) ANSI's definition of
292 ;; MAKE-ARRAY says "If INITIAL-ELEMENT is not supplied,
293 ;; the consequences of later reading an uninitialized
294 ;; element of new-array are undefined," so this could be
295 ;; legal code as long as the user plans to write before
296 ;; he reads, and if he doesn't we're free to do anything
297 ;; we like. But in case the user doesn't know to write
298 ;; elements before he reads elements (or to read manuals
299 ;; before he writes code:-), we'll signal a STYLE-WARNING
300 ;; in case he didn't realize this.
301 (compiler-note "The default initial element ~S is not a ~S."
302 (saetp-initial-element-default saetp)
306 `(let ((array ,creation-form))
307 (multiple-value-bind (vector)
308 (%data-vector-and-index array 0)
309 (fill vector initial-element))
312 ;;; The integer type restriction on the length ensures that it will be
313 ;;; a vector. The lack of :ADJUSTABLE, :FILL-POINTER, and
314 ;;; :DISPLACED-TO keywords ensures that it will be simple; the lack of
315 ;;; :INITIAL-ELEMENT relies on another transform to deal with that
316 ;;; kind of initialization efficiently.
317 (deftransform make-array ((length &key element-type)
319 (let* ((eltype (cond ((not element-type) t)
320 ((not (constant-continuation-p element-type))
321 (give-up-ir1-transform
322 "ELEMENT-TYPE is not constant."))
324 (continuation-value element-type))))
325 (len (if (constant-continuation-p length)
326 (continuation-value length)
328 (result-type-spec `(simple-array ,eltype (,len)))
329 (eltype-type (ir1-transform-specifier-type eltype))
330 (saetp (find-if (lambda (saetp)
331 (csubtypep eltype-type (saetp-ctype saetp)))
332 *specialized-array-element-type-properties*)))
334 (give-up-ir1-transform
335 "cannot open-code creation of ~S" result-type-spec))
337 (let* ((n-bits-per-element (saetp-n-bits saetp))
338 (typecode (saetp-typecode saetp))
339 (n-pad-elements (saetp-n-pad-elements saetp))
340 (padded-length-form (if (zerop n-pad-elements)
342 `(+ length ,n-pad-elements)))
344 (if (>= n-bits-per-element sb!vm:n-word-bits)
345 `(* ,padded-length-form
346 (the fixnum ; i.e., not RATIO
347 ,(/ n-bits-per-element sb!vm:n-word-bits)))
348 (let ((n-elements-per-word (/ sb!vm:n-word-bits
349 n-bits-per-element)))
350 (declare (type index n-elements-per-word)) ; i.e., not RATIO
351 `(ceiling ,padded-length-form ,n-elements-per-word)))))
353 `(truly-the ,result-type-spec
354 (allocate-vector ,typecode length ,n-words-form))
355 '((declare (type index length)))))))
357 ;;; The list type restriction does not ensure that the result will be a
358 ;;; multi-dimensional array. But the lack of adjustable, fill-pointer,
359 ;;; and displaced-to keywords ensures that it will be simple.
361 ;;; FIXME: should we generalize this transform to non-simple (though
362 ;;; non-displaced-to) arrays, given that we have %WITH-ARRAY-DATA to
363 ;;; deal with those? Maybe when the DEFTRANSFORM
364 ;;; %DATA-VECTOR-AND-INDEX in the VECTOR case problem is solved? --
366 (deftransform make-array ((dims &key element-type)
368 (unless (or (null element-type) (constant-continuation-p element-type))
369 (give-up-ir1-transform
370 "The element-type is not constant; cannot open code array creation."))
371 (unless (constant-continuation-p dims)
372 (give-up-ir1-transform
373 "The dimension list is not constant; cannot open code array creation."))
374 (let ((dims (continuation-value dims)))
375 (unless (every #'integerp dims)
376 (give-up-ir1-transform
377 "The dimension list contains something other than an integer: ~S"
379 (if (= (length dims) 1)
380 `(make-array ',(car dims)
382 '(:element-type element-type)))
383 (let* ((total-size (reduce #'* dims))
386 ,(cond ((null element-type) t)
387 ((constant-continuation-p element-type)
388 (continuation-value element-type))
390 ,(make-list rank :initial-element '*))))
391 `(let ((header (make-array-header sb!vm:simple-array-widetag ,rank)))
392 (setf (%array-fill-pointer header) ,total-size)
393 (setf (%array-fill-pointer-p header) nil)
394 (setf (%array-available-elements header) ,total-size)
395 (setf (%array-data-vector header)
396 (make-array ,total-size
398 '(:element-type element-type))))
399 (setf (%array-displaced-p header) nil)
401 (mapcar (lambda (dim)
402 `(setf (%array-dimension header ,(incf axis))
405 (truly-the ,spec header))))))
407 ;;;; miscellaneous properties of arrays
409 ;;; Transforms for various array properties. If the property is know
410 ;;; at compile time because of a type spec, use that constant value.
412 ;;; If we can tell the rank from the type info, use it instead.
413 (deftransform array-rank ((array))
414 (let ((array-type (continuation-type array)))
415 (unless (array-type-p array-type)
416 (give-up-ir1-transform))
417 (let ((dims (array-type-dimensions array-type)))
418 (if (not (listp dims))
419 (give-up-ir1-transform
420 "The array rank is not known at compile time: ~S"
424 ;;; If we know the dimensions at compile time, just use it. Otherwise,
425 ;;; if we can tell that the axis is in bounds, convert to
426 ;;; %ARRAY-DIMENSION (which just indirects the array header) or length
427 ;;; (if it's simple and a vector).
428 (deftransform array-dimension ((array axis)
430 (unless (constant-continuation-p axis)
431 (give-up-ir1-transform "The axis is not constant."))
432 (let ((array-type (continuation-type array))
433 (axis (continuation-value axis)))
434 (unless (array-type-p array-type)
435 (give-up-ir1-transform))
436 (let ((dims (array-type-dimensions array-type)))
438 (give-up-ir1-transform
439 "The array dimensions are unknown; must call ARRAY-DIMENSION at runtime."))
440 (unless (> (length dims) axis)
441 (abort-ir1-transform "The array has dimensions ~S, ~W is too large."
444 (let ((dim (nth axis dims)))
445 (cond ((integerp dim)
448 (ecase (array-type-complexp array-type)
450 '(%array-dimension array 0))
454 (give-up-ir1-transform
455 "can't tell whether array is simple"))))
457 '(%array-dimension array axis)))))))
459 ;;; If the length has been declared and it's simple, just return it.
460 (deftransform length ((vector)
461 ((simple-array * (*))))
462 (let ((type (continuation-type vector)))
463 (unless (array-type-p type)
464 (give-up-ir1-transform))
465 (let ((dims (array-type-dimensions type)))
466 (unless (and (listp dims) (integerp (car dims)))
467 (give-up-ir1-transform
468 "Vector length is unknown, must call LENGTH at runtime."))
471 ;;; All vectors can get their length by using VECTOR-LENGTH. If it's
472 ;;; simple, it will extract the length slot from the vector. It it's
473 ;;; complex, it will extract the fill pointer slot from the array
475 (deftransform length ((vector) (vector))
476 '(vector-length vector))
478 ;;; If a simple array with known dimensions, then VECTOR-LENGTH is a
479 ;;; compile-time constant.
480 (deftransform vector-length ((vector) ((simple-array * (*))))
481 (let ((vtype (continuation-type vector)))
482 (if (array-type-p vtype)
483 (let ((dim (first (array-type-dimensions vtype))))
484 (when (eq dim '*) (give-up-ir1-transform))
486 (give-up-ir1-transform))))
488 ;;; Again, if we can tell the results from the type, just use it.
489 ;;; Otherwise, if we know the rank, convert into a computation based
490 ;;; on array-dimension. We can wrap a TRULY-THE INDEX around the
491 ;;; multiplications because we know that the total size must be an
493 (deftransform array-total-size ((array)
495 (let ((array-type (continuation-type array)))
496 (unless (array-type-p array-type)
497 (give-up-ir1-transform))
498 (let ((dims (array-type-dimensions array-type)))
500 (give-up-ir1-transform "can't tell the rank at compile time"))
502 (do ((form 1 `(truly-the index
503 (* (array-dimension array ,i) ,form)))
505 ((= i (length dims)) form))
506 (reduce #'* dims)))))
508 ;;; Only complex vectors have fill pointers.
509 (deftransform array-has-fill-pointer-p ((array))
510 (let ((array-type (continuation-type array)))
511 (unless (array-type-p array-type)
512 (give-up-ir1-transform))
513 (let ((dims (array-type-dimensions array-type)))
514 (if (and (listp dims) (not (= (length dims) 1)))
516 (ecase (array-type-complexp array-type)
522 (give-up-ir1-transform
523 "The array type is ambiguous; must call ~
524 ARRAY-HAS-FILL-POINTER-P at runtime.")))))))
526 ;;; Primitive used to verify indices into arrays. If we can tell at
527 ;;; compile-time or we are generating unsafe code, don't bother with
529 (deftransform %check-bound ((array dimension index))
530 (unless (constant-continuation-p dimension)
531 (give-up-ir1-transform))
532 (let ((dim (continuation-value dimension)))
533 `(the (integer 0 ,dim) index)))
534 (deftransform %check-bound ((array dimension index) * *
535 :policy (and (> speed safety) (= safety 0)))
540 ;;; This checks to see whether the array is simple and the start and
541 ;;; end are in bounds. If so, it proceeds with those values.
542 ;;; Otherwise, it calls %WITH-ARRAY-DATA. Note that %WITH-ARRAY-DATA
543 ;;; may be further optimized.
545 ;;; Given any ARRAY, bind DATA-VAR to the array's data vector and
546 ;;; START-VAR and END-VAR to the start and end of the designated
547 ;;; portion of the data vector. SVALUE and EVALUE are any start and
548 ;;; end specified to the original operation, and are factored into the
549 ;;; bindings of START-VAR and END-VAR. OFFSET-VAR is the cumulative
550 ;;; offset of all displacements encountered, and does not include
553 ;;; When FORCE-INLINE is set, the underlying %WITH-ARRAY-DATA form is
554 ;;; forced to be inline, overriding the ordinary judgment of the
555 ;;; %WITH-ARRAY-DATA DEFTRANSFORMs. Ordinarily the DEFTRANSFORMs are
556 ;;; fairly picky about their arguments, figuring that if you haven't
557 ;;; bothered to get all your ducks in a row, you probably don't care
558 ;;; that much about speed anyway! But in some cases it makes sense to
559 ;;; do type testing inside %WITH-ARRAY-DATA instead of outside, and
560 ;;; the DEFTRANSFORM can't tell that that's going on, so it can make
561 ;;; sense to use FORCE-INLINE option in that case.
562 (def!macro with-array-data (((data-var array &key offset-var)
563 (start-var &optional (svalue 0))
564 (end-var &optional (evalue nil))
567 (once-only ((n-array array)
568 (n-svalue `(the index ,svalue))
569 (n-evalue `(the (or index null) ,evalue)))
570 `(multiple-value-bind (,data-var
573 ,@(when offset-var `(,offset-var)))
574 (if (not (array-header-p ,n-array))
575 (let ((,n-array ,n-array))
576 (declare (type (simple-array * (*)) ,n-array))
577 ,(once-only ((n-len `(length ,n-array))
578 (n-end `(or ,n-evalue ,n-len)))
579 `(if (<= ,n-svalue ,n-end ,n-len)
581 (values ,n-array ,n-svalue ,n-end 0)
582 (failed-%with-array-data ,n-array ,n-svalue ,n-evalue))))
583 (,(if force-inline '%with-array-data-macro '%with-array-data)
584 ,n-array ,n-svalue ,n-evalue))
587 ;;; This is the fundamental definition of %WITH-ARRAY-DATA, for use in
588 ;;; DEFTRANSFORMs and DEFUNs.
589 (def!macro %with-array-data-macro (array
596 (let ((size (gensym "SIZE-"))
597 (defaulted-end (gensym "DEFAULTED-END-"))
598 (data (gensym "DATA-"))
599 (cumulative-offset (gensym "CUMULATIVE-OFFSET-")))
600 `(let* ((,size (array-total-size ,array))
603 (unless (or ,unsafe? (<= ,end ,size))
605 `(error "End ~W is greater than total size ~W."
607 `(failed-%with-array-data ,array ,start ,end)))
610 (unless (or ,unsafe? (<= ,start ,defaulted-end))
612 `(error "Start ~W is greater than end ~W." ,start ,defaulted-end)
613 `(failed-%with-array-data ,array ,start ,end)))
614 (do ((,data ,array (%array-data-vector ,data))
615 (,cumulative-offset 0
616 (+ ,cumulative-offset
617 (%array-displacement ,data))))
618 ((not (array-header-p ,data))
619 (values (the (simple-array ,element-type 1) ,data)
620 (the index (+ ,cumulative-offset ,start))
621 (the index (+ ,cumulative-offset ,defaulted-end))
622 (the index ,cumulative-offset)))
623 (declare (type index ,cumulative-offset))))))
625 (deftransform %with-array-data ((array start end)
626 ;; It might very well be reasonable to
627 ;; allow general ARRAY here, I just
628 ;; haven't tried to understand the
629 ;; performance issues involved. --
630 ;; WHN, and also CSR 2002-05-26
631 ((or vector simple-array) index (or index null))
635 :policy (> speed space))
636 "inline non-SIMPLE-vector-handling logic"
637 (let ((element-type (upgraded-element-type-specifier-or-give-up array)))
638 `(%with-array-data-macro array start end
639 :unsafe? ,(policy node (= safety 0))
640 :element-type ,element-type)))
644 ;;; We convert all typed array accessors into AREF and %ASET with type
645 ;;; assertions on the array.
646 (macrolet ((define-frob (reffer setter type)
648 (define-source-transform ,reffer (a &rest i)
649 `(aref (the ,',type ,a) ,@i))
650 (define-source-transform ,setter (a &rest i)
651 `(%aset (the ,',type ,a) ,@i)))))
652 (define-frob svref %svset simple-vector)
653 (define-frob schar %scharset simple-string)
654 (define-frob char %charset string)
655 (define-frob sbit %sbitset (simple-array bit))
656 (define-frob bit %bitset (array bit)))
658 (macrolet (;; This is a handy macro for computing the row-major index
659 ;; given a set of indices. We wrap each index with a call
660 ;; to %CHECK-BOUND to ensure that everything works out
661 ;; correctly. We can wrap all the interior arithmetic with
662 ;; TRULY-THE INDEX because we know the the resultant
663 ;; row-major index must be an index.
664 (with-row-major-index ((array indices index &optional new-value)
666 `(let (n-indices dims)
667 (dotimes (i (length ,indices))
668 (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
669 (push (make-symbol (format nil "DIM-~D" i)) dims))
670 (setf n-indices (nreverse n-indices))
671 (setf dims (nreverse dims))
672 `(lambda (,',array ,@n-indices
673 ,@',(when new-value (list new-value)))
674 (let* (,@(let ((,index -1))
675 (mapcar (lambda (name)
676 `(,name (array-dimension
683 (do* ((dims dims (cdr dims))
684 (indices n-indices (cdr indices))
685 (last-dim nil (car dims))
686 (form `(%check-bound ,',array
698 ((null (cdr dims)) form)))))
701 ;; Just return the index after computing it.
702 (deftransform array-row-major-index ((array &rest indices))
703 (with-row-major-index (array indices index)
706 ;; Convert AREF and %ASET into a HAIRY-DATA-VECTOR-REF (or
707 ;; HAIRY-DATA-VECTOR-SET) with the set of indices replaced with the an
708 ;; expression for the row major index.
709 (deftransform aref ((array &rest indices))
710 (with-row-major-index (array indices index)
711 (hairy-data-vector-ref array index)))
712 (deftransform %aset ((array &rest stuff))
713 (let ((indices (butlast stuff)))
714 (with-row-major-index (array indices index new-value)
715 (hairy-data-vector-set array index new-value)))))
717 ;;; Just convert into a HAIRY-DATA-VECTOR-REF (or
718 ;;; HAIRY-DATA-VECTOR-SET) after checking that the index is inside the
719 ;;; array total size.
720 (deftransform row-major-aref ((array index))
721 `(hairy-data-vector-ref array
722 (%check-bound array (array-total-size array) index)))
723 (deftransform %set-row-major-aref ((array index new-value))
724 `(hairy-data-vector-set array
725 (%check-bound array (array-total-size array) index)
728 ;;;; bit-vector array operation canonicalization
730 ;;;; We convert all bit-vector operations to have the result array
731 ;;;; specified. This allows any result allocation to be open-coded,
732 ;;;; and eliminates the need for any VM-dependent transforms to handle
735 (macrolet ((def (fun)
737 (deftransform ,fun ((bit-array-1 bit-array-2
738 &optional result-bit-array)
739 (bit-vector bit-vector &optional null) *
740 :policy (>= speed space))
741 `(,',fun bit-array-1 bit-array-2
742 (make-array (length bit-array-1) :element-type 'bit)))
743 ;; If result is T, make it the first arg.
744 (deftransform ,fun ((bit-array-1 bit-array-2 result-bit-array)
745 (bit-vector bit-vector (member t)) *)
746 `(,',fun bit-array-1 bit-array-2 bit-array-1)))))
758 ;;; Similar for BIT-NOT, but there is only one arg...
759 (deftransform bit-not ((bit-array-1 &optional result-bit-array)
760 (bit-vector &optional null) *
761 :policy (>= speed space))
762 '(bit-not bit-array-1
763 (make-array (length bit-array-1) :element-type 'bit)))
764 (deftransform bit-not ((bit-array-1 result-bit-array)
765 (bit-vector (constant-arg t)))
766 '(bit-not bit-array-1 bit-array-1))
767 ;;; FIXME: What does (CONSTANT-ARG T) mean? Is it the same thing
768 ;;; as (CONSTANT-ARG (MEMBER T)), or does it mean any constant
771 ;;; Pick off some constant cases.
772 (deftransform array-header-p ((array) (array))
773 (let ((type (continuation-type array)))
774 (unless (array-type-p type)
775 (give-up-ir1-transform))
776 (let ((dims (array-type-dimensions type)))
777 (cond ((csubtypep type (specifier-type '(simple-array * (*))))
780 ((and (listp dims) (> (length dims) 1))
781 ;; multi-dimensional array, will have a header
784 (give-up-ir1-transform))))))