1 ;;;; This file implements the constraint propagation phase of the
2 ;;;; compiler, which uses global flow analysis to obtain dynamic type
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;; -- MV-BIND, :ASSIGNMENT
22 ;;; -- Constraint propagation badly interacts with bottom-up type
23 ;;; inference. Consider
25 ;;; (defun foo (n &aux (i 42))
26 ;;; (declare (optimize speed))
27 ;;; (declare (fixnum n)
28 ;;; #+nil (type (integer 0) i))
32 ;;; (when (>= i n) (go :exit))
37 ;;; In this case CP cannot even infer that I is of class INTEGER.
39 ;;; -- In the above example if we place the check after SETQ, CP will
40 ;;; fail to infer (< I FIXNUM): it does not understand that this
41 ;;; constraint follows from (TYPEP I (INTEGER 0 0)).
45 (deftype constraint-y () '(or ctype lvar lambda-var constant))
47 (defstruct (constraint
48 (:include sset-element)
49 (:constructor make-constraint (number kind x y not-p))
51 ;; the kind of constraint we have:
54 ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is
55 ;; constrained to be of type Y.
58 ;; X is a lambda-var and Y is a CTYPE. The relation holds
59 ;; between X and some object of type Y.
62 ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT.
63 ;; The relation is asserted to hold.
64 (kind nil :type (member typep < > eql))
65 ;; The operands to the relation.
66 (x nil :type lambda-var)
67 (y nil :type constraint-y)
68 ;; If true, negates the sense of the constraint, so the relation
70 (not-p nil :type boolean))
72 (defvar *constraint-number*)
73 (declaim (type (integer 0) *constraint-number*))
75 (defun find-constraint (kind x y not-p)
76 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
79 (do-sset-elements (con (lambda-var-constraints x) nil)
80 (when (and (eq (constraint-kind con) kind)
81 (eq (constraint-not-p con) not-p)
82 (type= (constraint-y con) y))
85 (do-sset-elements (con (lambda-var-constraints x) nil)
86 (when (and (eq (constraint-kind con) kind)
87 (eq (constraint-not-p con) not-p)
88 (eq (constraint-y con) y))
91 (do-sset-elements (con (lambda-var-constraints x) nil)
92 (when (and (eq (constraint-kind con) kind)
93 (eq (constraint-not-p con) not-p)
94 (let ((cx (constraint-x con)))
101 ;;; Return a constraint for the specified arguments. We only create a
102 ;;; new constraint if there isn't already an equivalent old one,
103 ;;; guaranteeing that all equivalent constraints are EQ. This
104 ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set.
105 (defun find-or-create-constraint (kind x y not-p)
106 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
107 (or (find-constraint kind x y not-p)
108 (let ((new (make-constraint (incf *constraint-number*) kind x y not-p)))
109 (sset-adjoin new (lambda-var-constraints x))
110 (when (lambda-var-p y)
111 (sset-adjoin new (lambda-var-constraints y)))
114 ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
115 ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
116 #!-sb-fluid (declaim (inline ok-ref-lambda-var))
117 (defun ok-ref-lambda-var (ref)
118 (declare (type ref ref))
119 (let ((leaf (ref-leaf ref)))
120 (when (and (lambda-var-p leaf)
121 (lambda-var-constraints leaf))
124 ;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
125 ;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
126 (defun ok-lvar-lambda-var (lvar constraints)
127 (declare (type lvar lvar))
128 (let ((use (lvar-uses lvar)))
130 (let ((lambda-var (ok-ref-lambda-var use)))
132 (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
133 (when (and constraint (sset-member constraint constraints))
136 (ok-lvar-lambda-var (cast-value use) constraints)))))
138 (defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
139 (once-only ((var var))
140 `(let ((,symbol ,var))
144 (do-sset-elements (con ,constraints ,result)
145 (let ((other (and (eq (constraint-kind con) 'eql)
146 (eq (constraint-not-p con) nil)
147 (cond ((eq ,var (constraint-x con))
149 ((eq ,var (constraint-y con))
155 (when (lambda-var-p ,symbol)
158 ;;;; Searching constraints
160 ;;; Add the indicated test constraint to BLOCK. We don't add the
161 ;;; constraint if the block has multiple predecessors, since it only
162 ;;; holds on this particular path.
163 (defun add-test-constraint (fun x y not-p constraints target)
164 (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
165 (add-eql-var-var-constraint x y constraints target))
167 (do-eql-vars (x (x constraints))
168 (let ((con (find-or-create-constraint fun x y not-p)))
169 (sset-adjoin con target)))))
172 ;;; Add complementary constraints to the consequent and alternative
173 ;;; blocks of IF. We do nothing if X is NIL.
174 (defun add-complement-constraints (fun x y not-p constraints
175 consequent-constraints
176 alternative-constraints)
178 (add-test-constraint fun x y not-p constraints
179 consequent-constraints)
180 (add-test-constraint fun x y (not not-p) constraints
181 alternative-constraints))
184 ;;; Add test constraints to the consequent and alternative blocks of
185 ;;; the test represented by USE.
186 (defun add-test-constraints (use if constraints)
187 (declare (type node use) (type cif if))
188 ;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
189 ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means that we
190 ;; can't guarantee that the optimization will be done, so we still
191 ;; need to avoid barfing on this case.
192 (unless (eq (if-consequent if) (if-alternative if))
193 (let ((consequent-constraints (make-sset))
194 (alternative-constraints (make-sset)))
195 (macrolet ((add (fun x y not-p)
196 `(add-complement-constraints ,fun ,x ,y ,not-p
198 consequent-constraints
199 alternative-constraints)))
202 (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
203 (specifier-type 'null) t))
205 (unless (eq (combination-kind use)
207 (let ((name (lvar-fun-name
208 (basic-combination-fun use)))
209 (args (basic-combination-args use)))
211 ((%typep %instance-typep)
212 (let ((type (second args)))
213 (when (constant-lvar-p type)
214 (let ((val (lvar-value type)))
216 (ok-lvar-lambda-var (first args) constraints)
219 (specifier-type val))
222 (let* ((arg1 (first args))
223 (var1 (ok-lvar-lambda-var arg1 constraints))
225 (var2 (ok-lvar-lambda-var arg2 constraints)))
226 ;; The code below assumes that the constant is the
227 ;; second argument in case of variable to constant
228 ;; comparision which is sometimes true (see source
229 ;; transformations for EQ, EQL and CHAR=). Fixing
230 ;; that would result in more constant substitutions
231 ;; which is not a universally good thing, thus the
232 ;; unnatural asymmetry of the tests.
235 (add-test-constraint 'typep var2 (lvar-type arg1)
237 consequent-constraints)))
239 (add 'eql var1 var2 nil))
240 ((constant-lvar-p arg2)
241 (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
244 (add-test-constraint 'typep var1 (lvar-type arg2)
246 consequent-constraints)))))
248 (let* ((arg1 (first args))
249 (var1 (ok-lvar-lambda-var arg1 constraints))
251 (var2 (ok-lvar-lambda-var arg2 constraints)))
253 (add name var1 (lvar-type arg2) nil))
255 (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
257 (let ((ptype (gethash name *backend-predicate-types*)))
259 (add 'typep (ok-lvar-lambda-var (first args) constraints)
261 (values consequent-constraints alternative-constraints))))
263 ;;;; Applying constraints
265 ;;; Return true if X is an integer NUMERIC-TYPE.
266 (defun integer-type-p (x)
267 (declare (type ctype x))
268 (and (numeric-type-p x)
269 (eq (numeric-type-class x) 'integer)
270 (eq (numeric-type-complexp x) :real)))
272 ;;; Given that an inequality holds on values of type X and Y, return a
273 ;;; new type for X. If GREATER is true, then X was greater than Y,
274 ;;; otherwise less. If OR-EQUAL is true, then the inequality was
275 ;;; inclusive, i.e. >=.
277 ;;; If GREATER (or not), then we max (or min) in Y's lower (or upper)
278 ;;; bound into X and return that result. If not OR-EQUAL, we can go
279 ;;; one greater (less) than Y's bound.
280 (defun constrain-integer-type (x y greater or-equal)
281 (declare (type numeric-type x y))
288 (if greater (numeric-type-low x) (numeric-type-high x))))
289 (let* ((x-bound (bound x))
290 (y-bound (exclude (bound y)))
291 (new-bound (cond ((not x-bound) y-bound)
292 ((not y-bound) x-bound)
293 (greater (max x-bound y-bound))
294 (t (min x-bound y-bound)))))
296 (modified-numeric-type x :low new-bound)
297 (modified-numeric-type x :high new-bound)))))
299 ;;; Return true if X is a float NUMERIC-TYPE.
300 (defun float-type-p (x)
301 (declare (type ctype x))
302 (and (numeric-type-p x)
303 (eq (numeric-type-class x) 'float)
304 (eq (numeric-type-complexp x) :real)))
306 ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers.
307 (defun constrain-float-type (x y greater or-equal)
308 (declare (type numeric-type x y))
309 (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE
311 (aver (eql (numeric-type-class x) 'float))
312 (aver (eql (numeric-type-class y) 'float))
313 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
315 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
316 (labels ((exclude (x)
324 (if greater (numeric-type-low x) (numeric-type-high x)))
329 (= (type-bound-number x) (type-bound-number ref)))
330 ;; X is tighter if REF is not an open bound and X is
331 (and (not (consp ref)) (consp x)))
333 (< (type-bound-number ref) (type-bound-number x)))
335 (> (type-bound-number ref) (type-bound-number x))))))
336 (let* ((x-bound (bound x))
337 (y-bound (exclude (bound y)))
338 (new-bound (cond ((not x-bound)
342 ((tighter-p y-bound x-bound)
347 (modified-numeric-type x :low new-bound)
348 (modified-numeric-type x :high new-bound)))))
350 ;;; Given the set of CONSTRAINTS for a variable and the current set of
351 ;;; restrictions from flow analysis IN, set the type for REF
353 (defun constrain-ref-type (ref constraints in)
354 (declare (type ref ref) (type sset constraints in))
355 ;; KLUDGE: The NOT-SET and NOT-FPZ here are so that we don't need to
356 ;; cons up endless union types when propagating large number of EQL
357 ;; constraints -- eg. from large CASE forms -- instead we just
358 ;; directly accumulate one XSET, and a set of fp zeroes, which we at
359 ;; the end turn into a MEMBER-TYPE.
361 ;; Since massive symbol cases are an especially atrocious pattern
362 ;; and the (NOT (MEMBER ...ton of symbols...)) will never turn into
363 ;; a more useful type, don't propagate their negation except for NIL
364 ;; unless SPEED > COMPILATION-SPEED.
365 (let ((res (single-value-type (node-derived-type ref)))
366 (constrain-symbols (policy ref (> speed compilation-speed)))
367 (not-set (alloc-xset))
369 (not-res *empty-type*)
370 (leaf (ref-leaf ref)))
374 (when (or constrain-symbols (null x) (not (symbolp x)))
375 (add-to-xset x not-set)))))
376 (do-sset-elements (con constraints)
377 (when (sset-member con in)
378 (let* ((x (constraint-x con))
379 (y (constraint-y con))
380 (not-p (constraint-not-p con))
381 (other (if (eq x leaf) y x))
382 (kind (constraint-kind con)))
386 (if (member-type-p other)
387 (mapc-member-type-members #'note-not other)
388 (setq not-res (type-union not-res other)))
389 (setq res (type-approx-intersection2 res other))))
391 (unless (lvar-p other)
392 (let ((other-type (leaf-type other)))
394 (when (and (constant-p other)
395 (member-type-p other-type))
396 (note-not (constant-value other)))
397 (let ((leaf-type (leaf-type leaf)))
399 ((or (constant-p other)
400 (and (leaf-refs other) ; protect from
402 (csubtypep other-type leaf-type)
403 (not (type= other-type leaf-type))))
404 (change-ref-leaf ref other)
405 (when (constant-p other) (return)))
407 (setq res (type-approx-intersection2
408 res other-type)))))))))
411 ((and (integer-type-p res) (integer-type-p y))
412 (let ((greater (eq kind '>)))
413 (let ((greater (if not-p (not greater) greater)))
415 (constrain-integer-type res y greater not-p)))))
416 ((and (float-type-p res) (float-type-p y))
417 (let ((greater (eq kind '>)))
418 (let ((greater (if not-p (not greater) greater)))
420 (constrain-float-type res y greater not-p))))))))))))
421 (cond ((and (if-p (node-dest ref))
422 (or (xset-member-p nil not-set)
423 (csubtypep (specifier-type 'null) not-res)))
424 (setf (node-derived-type ref) *wild-type*)
425 (change-ref-leaf ref (find-constant t)))
428 (type-union not-res (make-member-type :xset not-set :fp-zeroes not-fpz)))
429 (derive-node-type ref
430 (make-single-value-type
431 (or (type-difference res not-res)
433 (maybe-terminate-block ref nil))))
438 (defun maybe-add-eql-var-lvar-constraint (ref gen)
439 (let ((lvar (ref-lvar ref))
440 (leaf (ref-leaf ref)))
441 (when (and (lambda-var-p leaf) lvar)
442 (sset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
445 ;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
446 ;;; LVAR) ones - to all of the variables in the VARS list.
447 (defun inherit-constraints (vars from-var constraints target)
448 (do-sset-elements (con constraints)
449 ;; Constant substitution is controversial.
450 (unless (constant-p (constraint-y con))
452 (let ((eq-x (eq from-var (constraint-x con)))
453 (eq-y (eq from-var (constraint-y con))))
454 (when (or (and eq-x (not (lvar-p (constraint-y con))))
456 (sset-adjoin (find-or-create-constraint
457 (constraint-kind con)
458 (if eq-x var (constraint-x con))
459 (if eq-y var (constraint-y con))
460 (constraint-not-p con))
463 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
464 ;; inherit each other's constraints.
465 (defun add-eql-var-var-constraint (var1 var2 constraints
466 &optional (target constraints))
467 (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
468 (when (sset-adjoin con target)
469 (collect ((eql1) (eql2))
470 (do-eql-vars (var1 (var1 constraints))
472 (do-eql-vars (var2 (var2 constraints))
474 (inherit-constraints (eql1) var2 constraints target)
475 (inherit-constraints (eql2) var1 constraints target))
478 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
479 ;; LAMBDA-VAR if possible.
480 (defun maybe-add-eql-var-var-constraint (var lvar constraints
481 &optional (target constraints))
482 (declare (type lambda-var var) (type lvar lvar))
483 (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
485 (add-eql-var-var-constraint var lambda-var constraints target))))
487 ;;; Local propagation
488 ;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
490 ;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
491 ;;; a type constraint based on the new value type.
492 (declaim (ftype (function (cblock sset
493 &key (:ref-preprocessor (or null function))
494 (:set-preprocessor (or null function)))
496 constraint-propagate-in-block))
497 (defun constraint-propagate-in-block (block gen &key
498 ref-preprocessor set-preprocessor)
499 (do-nodes (node lvar block)
502 (let ((fun (bind-lambda node)))
503 (when (eq (functional-kind fun) :let)
504 (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
505 for var in (lambda-vars fun)
506 and val in (combination-args call)
507 when (and val (lambda-var-constraints var))
508 do (let* ((type (lvar-type val))
509 (con (find-or-create-constraint 'typep var type
511 (sset-adjoin con gen))
512 (maybe-add-eql-var-var-constraint var val gen)))))
514 (when (ok-ref-lambda-var node)
515 (maybe-add-eql-var-lvar-constraint node gen)
516 (when ref-preprocessor
517 (funcall ref-preprocessor node gen))))
519 (let ((lvar (cast-value node)))
520 (let ((var (ok-lvar-lambda-var lvar gen)))
522 (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
523 (do-eql-vars (var (var gen))
524 (let ((con (find-or-create-constraint 'typep var atype nil)))
525 (sset-adjoin con gen))))))))
527 (binding* ((var (set-var node))
528 (nil (lambda-var-p var) :exit-if-null)
529 (cons (lambda-var-constraints var) :exit-if-null))
530 (when set-preprocessor
531 (funcall set-preprocessor var))
532 (sset-difference gen cons)
533 (let* ((type (single-value-type (node-derived-type node)))
534 (con (find-or-create-constraint 'typep var type nil)))
535 (sset-adjoin con gen))
536 (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
539 (defun constraint-propagate-if (block gen)
540 (let ((node (block-last block)))
542 (let ((use (lvar-uses (if-test node))))
544 (add-test-constraints use node gen))))))
546 (defun constrain-node (node cons)
547 (let* ((var (ref-leaf node))
548 (con (lambda-var-constraints var)))
549 (constrain-ref-type node con cons)))
551 ;;; Starting from IN compute OUT and (consequent/alternative
552 ;;; constraints if the block ends with and IF). Return the list of
553 ;;; successors that may need to be recomputed.
554 (defun find-block-type-constraints (block &key final-pass-p)
555 (declare (type cblock block))
556 (let ((gen (constraint-propagate-in-block
560 (copy-sset (block-in block)))
561 :ref-preprocessor (if final-pass-p #'constrain-node nil))))
562 (setf (block-gen block) gen)
563 (multiple-value-bind (consequent-constraints alternative-constraints)
564 (constraint-propagate-if block gen)
565 (if consequent-constraints
566 (let* ((node (block-last block))
567 (old-consequent-constraints (if-consequent-constraints node))
568 (old-alternative-constraints (if-alternative-constraints node))
570 ;; Add the consequent and alternative constraints to GEN.
571 (cond ((sset-empty consequent-constraints)
572 (setf (if-consequent-constraints node) gen)
573 (setf (if-alternative-constraints node) gen))
575 (setf (if-consequent-constraints node) (copy-sset gen))
576 (sset-union (if-consequent-constraints node)
577 consequent-constraints)
578 (setf (if-alternative-constraints node) gen)
579 (sset-union (if-alternative-constraints node)
580 alternative-constraints)))
581 ;; Has the consequent been changed?
582 (unless (and old-consequent-constraints
583 (sset= (if-consequent-constraints node)
584 old-consequent-constraints))
585 (push (if-consequent node) succ))
586 ;; Has the alternative been changed?
587 (unless (and old-alternative-constraints
588 (sset= (if-alternative-constraints node)
589 old-alternative-constraints))
590 (push (if-alternative node) succ))
593 (unless (and (block-out block)
594 (sset= gen (block-out block)))
595 (setf (block-out block) gen)
596 (block-succ block))))))
598 ;;; Deliver the results of constraint propagation to REFs in BLOCK.
599 ;;; During this pass, we also do local constraint propagation by
600 ;;; adding in constraints as we see them during the pass through the
602 (defun use-result-constraints (block)
603 (declare (type cblock block))
604 (constraint-propagate-in-block block (block-in block)
605 :ref-preprocessor #'constrain-node))
607 ;;; Give an empty constraints set to any var that doesn't have one and
608 ;;; isn't a set closure var. Since a var that we previously rejected
609 ;;; looks identical to one that is new, so we optimistically keep
610 ;;; hoping that vars stop being closed over or lose their sets.
611 (defun init-var-constraints (component)
612 (declare (type component component))
613 (dolist (fun (component-lambdas component))
615 (dolist (var (lambda-vars x))
616 (unless (lambda-var-constraints var)
617 (when (or (null (lambda-var-sets var))
618 (not (closure-var-p var)))
619 (setf (lambda-var-constraints var) (make-sset)))))))
621 (dolist (let (lambda-lets fun))
624 ;;; Return the constraints that flow from PRED to SUCC. This is
625 ;;; BLOCK-OUT unless PRED ends with and IF and test constraints were
627 (defun block-out-for-successor (pred succ)
628 (declare (type cblock pred succ))
629 (let ((last (block-last pred)))
630 (or (when (if-p last)
631 (cond ((eq succ (if-consequent last))
632 (if-consequent-constraints last))
633 ((eq succ (if-alternative last))
634 (if-alternative-constraints last))))
637 (defun compute-block-in (block)
639 (dolist (pred (block-pred block))
640 ;; If OUT has not been calculated, assume it to be the universal
642 (let ((out (block-out-for-successor pred block)))
645 (sset-intersection in out)
646 (setq in (copy-sset out))))))
647 (or in (make-sset))))
649 (defun update-block-in (block)
650 (let ((in (compute-block-in block)))
651 (cond ((and (block-in block) (sset= in (block-in block)))
654 (setf (block-in block) in)))))
656 ;;; Return two lists: one of blocks that precede all loops and
657 ;;; therefore require only one constraint propagation pass and the
658 ;;; rest. This implementation does not find all such blocks.
660 ;;; A more complete implementation would be:
662 ;;; (do-blocks (block component)
663 ;;; (if (every #'(lambda (pred)
664 ;;; (or (member pred leading-blocks)
666 ;;; (block-pred block))
667 ;;; (push block leading-blocks)
668 ;;; (push block rest-of-blocks)))
670 ;;; Trailing blocks that succeed all loops could be found and handled
671 ;;; similarly. In practice though, these more complex solutions are
672 ;;; slightly worse performancewise.
673 (defun leading-component-blocks (component)
674 (declare (type component component))
675 (flet ((loopy-p (block)
676 (let ((n (block-number block)))
677 (dolist (pred (block-pred block))
678 (unless (< n (block-number pred))
680 (let ((leading-blocks ())
683 (do-blocks (block component)
684 (when (and (not seen-loop-p) (loopy-p block))
685 (setq seen-loop-p t))
687 (push block rest-of-blocks)
688 (push block leading-blocks)))
689 (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
691 ;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
692 ;;; a member already.
693 (defun nconc-new (obj list)
694 (do ((x list (cdr x))
698 (setf (cdr prev) (list obj))
701 (when (eql (car x) obj)
702 (return-from nconc-new list))))
704 (defun find-and-propagate-constraints (component)
705 (let ((blocks-to-process ()))
706 (flet ((enqueue (blocks)
707 (dolist (block blocks)
708 (setq blocks-to-process (nconc-new block blocks-to-process)))))
709 (multiple-value-bind (leading-blocks rest-of-blocks)
710 (leading-component-blocks component)
711 ;; Update every block once to account for changes in the
712 ;; IR1. The constraints of the lead blocks cannot be changed
713 ;; after the first pass so we might as well use them and skip
714 ;; USE-RESULT-CONSTRAINTS later.
715 (dolist (block leading-blocks)
716 (setf (block-in block) (compute-block-in block))
717 (find-block-type-constraints block :final-pass-p t))
718 (setq blocks-to-process (copy-list rest-of-blocks))
719 ;; The rest of the blocks.
720 (dolist (block rest-of-blocks)
721 (aver (eq block (pop blocks-to-process)))
722 (setf (block-in block) (compute-block-in block))
723 (enqueue (find-block-type-constraints block)))
724 ;; Propagate constraints
725 (loop for block = (pop blocks-to-process)
727 (unless (eq block (component-tail component))
728 (when (update-block-in block)
729 (enqueue (find-block-type-constraints block)))))
732 (defun constraint-propagate (component)
733 (declare (type component component))
734 (init-var-constraints component)
736 (unless (block-out (component-head component))
737 (setf (block-out (component-head component)) (make-sset)))
739 (dolist (block (find-and-propagate-constraints component))
740 (unless (block-delete-p block)
741 (use-result-constraints block)))