1 ;;;; This file implements the constraint propagation phase of the
2 ;;;; compiler, which uses global flow analysis to obtain dynamic type
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;; -- MV-BIND, :ASSIGNMENT
20 ;;; Note: The functions in this file that accept constraint sets are
21 ;;; actually receiving the constraint sets associated with nodes,
22 ;;; blocks, and lambda-vars. It might be make CP easier to understand
23 ;;; and work on if these functions traded in nodes, blocks, and
24 ;;; lambda-vars directly.
28 ;;; -- Constraint propagation badly interacts with bottom-up type
29 ;;; inference. Consider
31 ;;; (defun foo (n &aux (i 42))
32 ;;; (declare (optimize speed))
33 ;;; (declare (fixnum n)
34 ;;; #+nil (type (integer 0) i))
38 ;;; (when (>= i n) (go :exit))
43 ;;; In this case CP cannot even infer that I is of class INTEGER.
45 ;;; -- In the above example if we place the check after SETQ, CP will
46 ;;; fail to infer (< I FIXNUM): it does not understand that this
47 ;;; constraint follows from (TYPEP I (INTEGER 0 0)).
51 ;;; *CONSTRAINT-UNIVERSE* gets bound in IR1-PHASES to a fresh,
52 ;;; zero-length, non-zero-total-size vector-with-fill-pointer.
53 (declaim (type (and vector (not simple-vector)) *constraint-universe*))
54 (defvar *constraint-universe*)
56 (deftype constraint-y () '(or ctype lvar lambda-var constant))
58 (defstruct (constraint
59 (:include sset-element)
60 (:constructor make-constraint (number kind x y not-p))
62 ;; the kind of constraint we have:
65 ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is
66 ;; constrained to be of type Y.
69 ;; X is a lambda-var and Y is a CTYPE. The relation holds
70 ;; between X and some object of type Y.
73 ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT.
74 ;; The relation is asserted to hold.
75 (kind nil :type (member typep < > eql))
76 ;; The operands to the relation.
77 (x nil :type lambda-var)
78 (y nil :type constraint-y)
79 ;; If true, negates the sense of the constraint, so the relation
81 (not-p nil :type boolean))
83 ;;; Historically, CMUCL and SBCL have used a sparse set implementation
84 ;;; for which most operations are O(n) (see sset.lisp), but at the
85 ;;; cost of at least a full word of pointer for each constraint set
86 ;;; element. Using bit-vectors instead of pointer structures saves a
87 ;;; lot of space and thus GC time (particularly on 64-bit machines),
88 ;;; and saves time on copy, union, intersection, and difference
89 ;;; operations; but makes iteration slower. Circa September 2008,
90 ;;; switching to bit-vectors gave a modest (5-10%) improvement in real
91 ;;; compile time for most Lisp systems, and as much as 20-30% for some
92 ;;; particularly CP-dependent systems.
94 ;;; It's bad to leave commented code in files, but if some clever
95 ;;; person comes along and makes SSETs better than bit-vectors as sets
96 ;;; for constraint propagation, or if bit-vectors on some XC host
97 ;;; really lose compared to SSETs, here's the conset API as a wrapper
101 (deftype conset () 'sset)
102 (declaim (ftype (sfunction (conset) boolean) conset-empty))
103 (declaim (ftype (sfunction (conset) conset) copy-conset))
104 (declaim (ftype (sfunction (constraint conset) boolean) conset-member))
105 (declaim (ftype (sfunction (constraint conset) boolean) conset-adjoin))
106 (declaim (ftype (sfunction (conset conset) boolean) conset=))
107 (declaim (ftype (sfunction (conset conset) (values)) conset-union))
108 (declaim (ftype (sfunction (conset conset) (values)) conset-intersection))
109 (declaim (ftype (sfunction (conset conset) (values)) conset-difference))
110 (defun make-conset () (make-sset))
111 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
112 `(do-sset-elements (,constraint ,conset ,result) ,@body))
113 (defmacro do-conset-intersection
114 ((constraint conset1 conset2 &optional result) &body body)
115 `(do-conset-elements (,constraint ,conset1 ,result)
116 (when (conset-member ,constraint ,conset2)
118 (defun conset-empty (conset) (sset-empty conset))
119 (defun copy-conset (conset) (copy-sset conset))
120 (defun conset-member (constraint conset) (sset-member constraint conset))
121 (defun conset-adjoin (constraint conset) (sset-adjoin constraint conset))
122 (defun conset= (conset1 conset2) (sset= conset1 conset2))
123 ;; Note: CP doesn't ever care whether union, intersection, and
124 ;; difference change the first set. (This is an important degree of
125 ;; freedom, since some ways of implementing sets lose a great deal
126 ;; when these operations are required to track changes.)
127 (defun conset-union (conset1 conset2)
128 (sset-union conset1 conset2) (values))
129 (defun conset-intersection (conset1 conset2)
130 (sset-intersection conset1 conset2) (values))
131 (defun conset-difference (conset1 conset2)
132 (sset-difference conset1 conset2) (values)))
135 ;; This is performance critical for the compiler, and benefits
136 ;; from the following declarations. Probably you'll want to
137 ;; disable these declarations when debugging consets.
138 (declare #-sb-xc-host (optimize (speed 3) (safety 0) (space 0)))
139 (declaim (inline constraint-number))
140 (defun constraint-number (constraint)
141 (sset-element-number constraint))
143 (:constructor make-conset ())
144 (:copier %copy-conset))
146 ;; FIXME: make POWER-OF-TWO-CEILING available earlier?
147 (ash 1 (integer-length (1- (length *constraint-universe*))))
148 :element-type 'bit :initial-element 0)
149 :type simple-bit-vector)
150 ;; Bit-vectors win over lightweight hashes for copy, union,
151 ;; intersection, difference, but lose for iteration if you iterate
152 ;; over the whole vector. Tracking extrema helps a bit. Note
153 ;; that the CONSET-MIN is NIL when the set is known to be empty.
154 ;; CONSET-MAX is a normal end bounding index.
155 (min nil :type (or fixnum null))
156 (max 0 :type fixnum))
158 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
159 (with-unique-names (vector index start end
160 ignore constraint-universe-end)
161 (let* ((constraint-universe #+sb-xc-host '*constraint-universe*
162 #-sb-xc-host (gensym))
164 #+sb-xc-host '(progn)
165 #-sb-xc-host `(with-array-data
166 ((,constraint-universe *constraint-universe*)
167 (,ignore 0) (,constraint-universe-end nil)
168 :check-fill-pointer t)
169 (declare (ignore ,ignore))
170 (aver (<= ,end ,constraint-universe-end)))))
171 `(let* ((,vector (conset-vector ,conset))
172 (,start (or (conset-min ,conset) 0))
173 (,end (min (conset-max ,conset) (length ,vector))))
175 (do ((,index ,start (1+ ,index))) ((>= ,index ,end) ,result)
176 (when (plusp (sbit ,vector ,index))
177 (let ((,constraint (elt ,constraint-universe ,index)))
180 ;; Oddly, iterating just between the maximum of the two sets' minima
181 ;; and the minimum of the sets' maxima slowed down CP.
182 (defmacro do-conset-intersection
183 ((constraint conset1 conset2 &optional result) &body body)
184 `(do-conset-elements (,constraint ,conset1 ,result)
185 (when (conset-member ,constraint ,conset2)
188 (defun conset-empty (conset)
189 (or (null (conset-min conset))
190 ;; TODO: I bet FIND on bit-vectors can be optimized, if it
192 (not (find 1 (conset-vector conset)
193 :start (conset-min conset)
194 ;; By inspection, supplying :END here breaks the
195 ;; build with a "full call to
196 ;; DATA-VECTOR-REF-WITH-OFFSET" in the
197 ;; cross-compiler. If that should change, add
198 ;; :end (conset-max conset)
201 (defun copy-conset (conset)
202 (let ((ret (%copy-conset conset)))
203 (setf (conset-vector ret) (copy-seq (conset-vector conset)))
206 (defun %conset-grow (conset new-size)
207 (declare (index new-size))
208 (setf (conset-vector conset)
209 (replace (the simple-bit-vector
211 (ash 1 (integer-length (1- new-size)))
214 (the simple-bit-vector
215 (conset-vector conset)))))
217 (declaim (inline conset-grow))
218 (defun conset-grow (conset new-size)
219 (declare (index new-size))
220 (when (< (length (conset-vector conset)) new-size)
221 (%conset-grow conset new-size))
224 (defun conset-member (constraint conset)
225 (let ((number (constraint-number constraint))
226 (vector (conset-vector conset)))
227 (when (< number (length vector))
228 (plusp (sbit vector number)))))
230 (defun conset-adjoin (constraint conset)
232 (not (conset-member constraint conset))
233 (let ((number (constraint-number constraint)))
234 (conset-grow conset (1+ number))
235 (setf (sbit (conset-vector conset) number) 1)
236 (setf (conset-min conset) (min number (or (conset-min conset)
237 most-positive-fixnum)))
238 (when (>= number (conset-max conset))
239 (setf (conset-max conset) (1+ number))))))
241 (defun conset= (conset1 conset2)
242 (let* ((vector1 (conset-vector conset1))
243 (vector2 (conset-vector conset2))
244 (length1 (length vector1))
245 (length2 (length vector2)))
246 (if (= length1 length2)
247 ;; When the lengths are the same, we can rely on EQUAL being
248 ;; nicely optimized on bit-vectors.
249 (equal vector1 vector2)
250 (multiple-value-bind (shorter longer)
251 (if (< length1 length2)
252 (values vector1 vector2)
253 (values vector2 vector1))
254 ;; FIXME: make MISMATCH fast on bit-vectors.
255 (dotimes (index (length shorter))
256 (when (/= (sbit vector1 index) (sbit vector2 index))
257 (return-from conset= nil)))
258 (if (find 1 longer :start (length shorter))
263 ((defconsetop (name bit-op)
264 `(defun ,name (conset-1 conset-2)
265 (declare (optimize (speed 3) (safety 0)))
266 (let* ((size-1 (length (conset-vector conset-1)))
267 (size-2 (length (conset-vector conset-2)))
268 (new-size (max size-1 size-2)))
269 (conset-grow conset-1 new-size)
270 (conset-grow conset-2 new-size))
271 (let ((vector1 (conset-vector conset-1))
272 (vector2 (conset-vector conset-2)))
273 (declare (simple-bit-vector vector1 vector2))
274 (setf (conset-vector conset-1) (,bit-op vector1 vector2 t))
275 ;; Update the extrema.
276 (setf (conset-min conset-1)
279 `(min (or (conset-min conset-1)
280 most-positive-fixnum)
281 (or (conset-min conset-2)
282 most-positive-fixnum)))
283 ((conset-intersection)
284 `(let ((start (max (or (conset-min conset-1) 0)
285 (or (conset-min conset-2) 0)))
286 (end (min (conset-max conset-1)
287 (conset-max conset-1))))
290 (position 1 (conset-vector conset-1)
291 :start start :end end))))
293 `(position 1 (conset-vector conset-1)
294 :start (or (conset-min conset-1) 0)
295 :end (conset-max conset-1)
297 (conset-max conset-1)
300 `(max (conset-max conset-1)
301 (conset-max conset-2)))
302 ((conset-intersection)
303 `(let ((start (max (or (conset-min conset-1) 0)
304 (or (conset-min conset-2) 0)))
305 (end (let ((minimum-maximum
306 (min (conset-max conset-1)
307 (conset-max conset-2))))
308 (if (plusp minimum-maximum)
315 1 (conset-vector conset-1)
316 :start start :end end :from-end t)))
323 1 (conset-vector conset-1)
324 :start (or (conset-min conset-1) 0)
325 :end (conset-max conset-1)
331 (defconsetop conset-union bit-ior)
332 (defconsetop conset-intersection bit-and)
333 (defconsetop conset-difference bit-andc2)))
335 (defun find-constraint (kind x y not-p)
336 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
339 (do-conset-elements (con (lambda-var-constraints x) nil)
340 (when (and (eq (constraint-kind con) kind)
341 (eq (constraint-not-p con) not-p)
342 (type= (constraint-y con) y))
345 (do-conset-elements (con (lambda-var-constraints x) nil)
346 (when (and (eq (constraint-kind con) kind)
347 (eq (constraint-not-p con) not-p)
348 (eq (constraint-y con) y))
351 (do-conset-elements (con (lambda-var-constraints x) nil)
352 (when (and (eq (constraint-kind con) kind)
353 (eq (constraint-not-p con) not-p)
354 (let ((cx (constraint-x con)))
361 ;;; Return a constraint for the specified arguments. We only create a
362 ;;; new constraint if there isn't already an equivalent old one,
363 ;;; guaranteeing that all equivalent constraints are EQ. This
364 ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set.
365 (defun find-or-create-constraint (kind x y not-p)
366 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
367 (or (find-constraint kind x y not-p)
368 (let ((new (make-constraint (length *constraint-universe*)
370 (vector-push-extend new *constraint-universe*
371 (* 2 (length *constraint-universe*)))
372 (conset-adjoin new (lambda-var-constraints x))
373 (when (lambda-var-p y)
374 (conset-adjoin new (lambda-var-constraints y)))
377 ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
378 ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
379 #!-sb-fluid (declaim (inline ok-ref-lambda-var))
380 (defun ok-ref-lambda-var (ref)
381 (declare (type ref ref))
382 (let ((leaf (ref-leaf ref)))
383 (when (and (lambda-var-p leaf)
384 (lambda-var-constraints leaf))
387 ;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
388 ;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
389 (defun ok-lvar-lambda-var (lvar constraints)
390 (declare (type lvar lvar))
391 (let ((use (lvar-uses lvar)))
393 (let ((lambda-var (ok-ref-lambda-var use)))
395 (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
396 (when (and constraint (conset-member constraint constraints))
399 (ok-lvar-lambda-var (cast-value use) constraints)))))
401 (defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
402 (once-only ((var var))
403 `(let ((,symbol ,var))
407 (do-conset-elements (con ,constraints ,result)
408 (let ((other (and (eq (constraint-kind con) 'eql)
409 (eq (constraint-not-p con) nil)
410 (cond ((eq ,var (constraint-x con))
412 ((eq ,var (constraint-y con))
418 (when (lambda-var-p ,symbol)
421 ;;;; Searching constraints
423 ;;; Add the indicated test constraint to BLOCK. We don't add the
424 ;;; constraint if the block has multiple predecessors, since it only
425 ;;; holds on this particular path.
426 (defun add-test-constraint (fun x y not-p constraints target)
427 (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
428 (add-eql-var-var-constraint x y constraints target))
430 (do-eql-vars (x (x constraints))
431 (let ((con (find-or-create-constraint fun x y not-p)))
432 (conset-adjoin con target)))))
435 ;;; Add complementary constraints to the consequent and alternative
436 ;;; blocks of IF. We do nothing if X is NIL.
437 (defun add-complement-constraints (fun x y not-p constraints
438 consequent-constraints
439 alternative-constraints)
441 (add-test-constraint fun x y not-p constraints
442 consequent-constraints)
443 (add-test-constraint fun x y (not not-p) constraints
444 alternative-constraints))
447 ;;; Add test constraints to the consequent and alternative blocks of
448 ;;; the test represented by USE.
449 (defun add-test-constraints (use if constraints)
450 (declare (type node use) (type cif if))
451 ;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
452 ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means that we
453 ;; can't guarantee that the optimization will be done, so we still
454 ;; need to avoid barfing on this case.
455 (unless (eq (if-consequent if) (if-alternative if))
456 (let ((consequent-constraints (make-conset))
457 (alternative-constraints (make-conset)))
458 (macrolet ((add (fun x y not-p)
459 `(add-complement-constraints ,fun ,x ,y ,not-p
461 consequent-constraints
462 alternative-constraints)))
465 (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
466 (specifier-type 'null) t))
468 (unless (eq (combination-kind use)
470 (let ((name (lvar-fun-name
471 (basic-combination-fun use)))
472 (args (basic-combination-args use)))
474 ((%typep %instance-typep)
475 (let ((type (second args)))
476 (when (constant-lvar-p type)
477 (let ((val (lvar-value type)))
479 (ok-lvar-lambda-var (first args) constraints)
482 (specifier-type val))
485 (let* ((arg1 (first args))
486 (var1 (ok-lvar-lambda-var arg1 constraints))
488 (var2 (ok-lvar-lambda-var arg2 constraints)))
489 ;; The code below assumes that the constant is the
490 ;; second argument in case of variable to constant
491 ;; comparision which is sometimes true (see source
492 ;; transformations for EQ, EQL and CHAR=). Fixing
493 ;; that would result in more constant substitutions
494 ;; which is not a universally good thing, thus the
495 ;; unnatural asymmetry of the tests.
498 (add-test-constraint 'typep var2 (lvar-type arg1)
500 consequent-constraints)))
502 (add 'eql var1 var2 nil))
503 ((constant-lvar-p arg2)
504 (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
507 (add-test-constraint 'typep var1 (lvar-type arg2)
509 consequent-constraints)))))
511 (let* ((arg1 (first args))
512 (var1 (ok-lvar-lambda-var arg1 constraints))
514 (var2 (ok-lvar-lambda-var arg2 constraints)))
516 (add name var1 (lvar-type arg2) nil))
518 (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
520 (let ((ptype (gethash name *backend-predicate-types*)))
522 (add 'typep (ok-lvar-lambda-var (first args) constraints)
524 (values consequent-constraints alternative-constraints))))
526 ;;;; Applying constraints
528 ;;; Return true if X is an integer NUMERIC-TYPE.
529 (defun integer-type-p (x)
530 (declare (type ctype x))
531 (and (numeric-type-p x)
532 (eq (numeric-type-class x) 'integer)
533 (eq (numeric-type-complexp x) :real)))
535 ;;; Given that an inequality holds on values of type X and Y, return a
536 ;;; new type for X. If GREATER is true, then X was greater than Y,
537 ;;; otherwise less. If OR-EQUAL is true, then the inequality was
538 ;;; inclusive, i.e. >=.
540 ;;; If GREATER (or not), then we max (or min) in Y's lower (or upper)
541 ;;; bound into X and return that result. If not OR-EQUAL, we can go
542 ;;; one greater (less) than Y's bound.
543 (defun constrain-integer-type (x y greater or-equal)
544 (declare (type numeric-type x y))
551 (if greater (numeric-type-low x) (numeric-type-high x))))
552 (let* ((x-bound (bound x))
553 (y-bound (exclude (bound y)))
554 (new-bound (cond ((not x-bound) y-bound)
555 ((not y-bound) x-bound)
556 (greater (max x-bound y-bound))
557 (t (min x-bound y-bound)))))
559 (modified-numeric-type x :low new-bound)
560 (modified-numeric-type x :high new-bound)))))
562 ;;; Return true if X is a float NUMERIC-TYPE.
563 (defun float-type-p (x)
564 (declare (type ctype x))
565 (and (numeric-type-p x)
566 (eq (numeric-type-class x) 'float)
567 (eq (numeric-type-complexp x) :real)))
569 ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers.
570 (defun constrain-float-type (x y greater or-equal)
571 (declare (type numeric-type x y))
572 (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE
574 (aver (eql (numeric-type-class x) 'float))
575 (aver (eql (numeric-type-class y) 'float))
576 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
578 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
579 (labels ((exclude (x)
587 (if greater (numeric-type-low x) (numeric-type-high x)))
592 (= (type-bound-number x) (type-bound-number ref)))
593 ;; X is tighter if REF is not an open bound and X is
594 (and (not (consp ref)) (consp x)))
596 (< (type-bound-number ref) (type-bound-number x)))
598 (> (type-bound-number ref) (type-bound-number x))))))
599 (let* ((x-bound (bound x))
600 (y-bound (exclude (bound y)))
601 (new-bound (cond ((not x-bound)
605 ((tighter-p y-bound x-bound)
610 (modified-numeric-type x :low new-bound)
611 (modified-numeric-type x :high new-bound)))))
613 ;;; Given the set of CONSTRAINTS for a variable and the current set of
614 ;;; restrictions from flow analysis IN, set the type for REF
616 (defun constrain-ref-type (ref constraints in)
617 (declare (type ref ref) (type conset constraints in))
618 ;; KLUDGE: The NOT-SET and NOT-FPZ here are so that we don't need to
619 ;; cons up endless union types when propagating large number of EQL
620 ;; constraints -- eg. from large CASE forms -- instead we just
621 ;; directly accumulate one XSET, and a set of fp zeroes, which we at
622 ;; the end turn into a MEMBER-TYPE.
624 ;; Since massive symbol cases are an especially atrocious pattern
625 ;; and the (NOT (MEMBER ...ton of symbols...)) will never turn into
626 ;; a more useful type, don't propagate their negation except for NIL
627 ;; unless SPEED > COMPILATION-SPEED.
628 (let ((res (single-value-type (node-derived-type ref)))
629 (constrain-symbols (policy ref (> speed compilation-speed)))
630 (not-set (alloc-xset))
632 (not-res *empty-type*)
633 (leaf (ref-leaf ref)))
637 (when (or constrain-symbols (null x) (not (symbolp x)))
638 (add-to-xset x not-set)))))
639 ;; KLUDGE: the implementations of DO-CONSET-INTERSECTION will
640 ;; probably run faster when the smaller set comes first, so
641 ;; don't change the order here.
642 (do-conset-intersection (con constraints in)
643 (let* ((x (constraint-x con))
644 (y (constraint-y con))
645 (not-p (constraint-not-p con))
646 (other (if (eq x leaf) y x))
647 (kind (constraint-kind con)))
651 (if (member-type-p other)
652 (mapc-member-type-members #'note-not other)
653 (setq not-res (type-union not-res other)))
654 (setq res (type-approx-intersection2 res other))))
656 (unless (lvar-p other)
657 (let ((other-type (leaf-type other)))
659 (when (and (constant-p other)
660 (member-type-p other-type))
661 (note-not (constant-value other)))
662 (let ((leaf-type (leaf-type leaf)))
664 ((or (constant-p other)
665 (and (leaf-refs other) ; protect from
667 (csubtypep other-type leaf-type)
668 (not (type= other-type leaf-type))))
669 (change-ref-leaf ref other)
670 (when (constant-p other) (return)))
672 (setq res (type-approx-intersection2
673 res other-type)))))))))
676 ((and (integer-type-p res) (integer-type-p y))
677 (let ((greater (eq kind '>)))
678 (let ((greater (if not-p (not greater) greater)))
680 (constrain-integer-type res y greater not-p)))))
681 ((and (float-type-p res) (float-type-p y))
682 (let ((greater (eq kind '>)))
683 (let ((greater (if not-p (not greater) greater)))
685 (constrain-float-type res y greater not-p)))))))))))
686 (cond ((and (if-p (node-dest ref))
687 (or (xset-member-p nil not-set)
688 (csubtypep (specifier-type 'null) not-res)))
689 (setf (node-derived-type ref) *wild-type*)
690 (change-ref-leaf ref (find-constant t)))
693 (type-union not-res (make-member-type :xset not-set :fp-zeroes not-fpz)))
694 (derive-node-type ref
695 (make-single-value-type
696 (or (type-difference res not-res)
698 (maybe-terminate-block ref nil))))
703 (defun maybe-add-eql-var-lvar-constraint (ref gen)
704 (let ((lvar (ref-lvar ref))
705 (leaf (ref-leaf ref)))
706 (when (and (lambda-var-p leaf) lvar)
707 (conset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
710 ;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
711 ;;; LVAR) ones - to all of the variables in the VARS list.
712 (defun inherit-constraints (vars from-var constraints target)
713 (do-conset-elements (con constraints)
714 ;; Constant substitution is controversial.
715 (unless (constant-p (constraint-y con))
717 (let ((eq-x (eq from-var (constraint-x con)))
718 (eq-y (eq from-var (constraint-y con))))
719 (when (or (and eq-x (not (lvar-p (constraint-y con))))
721 (conset-adjoin (find-or-create-constraint
722 (constraint-kind con)
723 (if eq-x var (constraint-x con))
724 (if eq-y var (constraint-y con))
725 (constraint-not-p con))
728 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
729 ;; inherit each other's constraints.
730 (defun add-eql-var-var-constraint (var1 var2 constraints
731 &optional (target constraints))
732 (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
733 (when (conset-adjoin con target)
734 (collect ((eql1) (eql2))
735 (do-eql-vars (var1 (var1 constraints))
737 (do-eql-vars (var2 (var2 constraints))
739 (inherit-constraints (eql1) var2 constraints target)
740 (inherit-constraints (eql2) var1 constraints target))
743 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
744 ;; LAMBDA-VAR if possible.
745 (defun maybe-add-eql-var-var-constraint (var lvar constraints
746 &optional (target constraints))
747 (declare (type lambda-var var) (type lvar lvar))
748 (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
750 (add-eql-var-var-constraint var lambda-var constraints target))))
752 ;;; Local propagation
753 ;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
755 ;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
756 ;;; a type constraint based on the new value type.
757 (declaim (ftype (function (cblock conset boolean)
759 constraint-propagate-in-block))
760 (defun constraint-propagate-in-block (block gen preprocess-refs-p)
761 (do-nodes (node lvar block)
764 (let ((fun (bind-lambda node)))
765 (when (eq (functional-kind fun) :let)
766 (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
767 for var in (lambda-vars fun)
768 and val in (combination-args call)
769 when (and val (lambda-var-constraints var))
770 do (let* ((type (lvar-type val))
771 (con (find-or-create-constraint 'typep var type
773 (conset-adjoin con gen))
774 (maybe-add-eql-var-var-constraint var val gen)))))
776 (when (ok-ref-lambda-var node)
777 (maybe-add-eql-var-lvar-constraint node gen)
778 (when preprocess-refs-p
779 (let* ((var (ref-leaf node))
780 (con (lambda-var-constraints var)))
781 (constrain-ref-type node con gen)))))
783 (let ((lvar (cast-value node)))
784 (let ((var (ok-lvar-lambda-var lvar gen)))
786 (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
787 (do-eql-vars (var (var gen))
788 (let ((con (find-or-create-constraint 'typep var atype nil)))
789 (conset-adjoin con gen))))))))
791 (binding* ((var (set-var node))
792 (nil (lambda-var-p var) :exit-if-null)
793 (cons (lambda-var-constraints var) :exit-if-null))
794 (conset-difference gen cons)
795 (let* ((type (single-value-type (node-derived-type node)))
796 (con (find-or-create-constraint 'typep var type nil)))
797 (conset-adjoin con gen))
798 (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
801 (defun constraint-propagate-if (block gen)
802 (let ((node (block-last block)))
804 (let ((use (lvar-uses (if-test node))))
806 (add-test-constraints use node gen))))))
808 ;;; Starting from IN compute OUT and (consequent/alternative
809 ;;; constraints if the block ends with and IF). Return the list of
810 ;;; successors that may need to be recomputed.
811 (defun find-block-type-constraints (block final-pass-p)
812 (declare (type cblock block))
813 (let ((gen (constraint-propagate-in-block
817 (copy-conset (block-in block)))
819 (setf (block-gen block) gen)
820 (multiple-value-bind (consequent-constraints alternative-constraints)
821 (constraint-propagate-if block gen)
822 (if consequent-constraints
823 (let* ((node (block-last block))
824 (old-consequent-constraints (if-consequent-constraints node))
825 (old-alternative-constraints (if-alternative-constraints node))
827 ;; Add the consequent and alternative constraints to GEN.
828 (cond ((conset-empty consequent-constraints)
829 (setf (if-consequent-constraints node) gen)
830 (setf (if-alternative-constraints node) gen))
832 (setf (if-consequent-constraints node) (copy-conset gen))
833 (conset-union (if-consequent-constraints node)
834 consequent-constraints)
835 (setf (if-alternative-constraints node) gen)
836 (conset-union (if-alternative-constraints node)
837 alternative-constraints)))
838 ;; Has the consequent been changed?
839 (unless (and old-consequent-constraints
840 (conset= (if-consequent-constraints node)
841 old-consequent-constraints))
842 (push (if-consequent node) succ))
843 ;; Has the alternative been changed?
844 (unless (and old-alternative-constraints
845 (conset= (if-alternative-constraints node)
846 old-alternative-constraints))
847 (push (if-alternative node) succ))
850 (unless (and (block-out block)
851 (conset= gen (block-out block)))
852 (setf (block-out block) gen)
853 (block-succ block))))))
855 ;;; Deliver the results of constraint propagation to REFs in BLOCK.
856 ;;; During this pass, we also do local constraint propagation by
857 ;;; adding in constraints as we see them during the pass through the
859 (defun use-result-constraints (block)
860 (declare (type cblock block))
861 (constraint-propagate-in-block block (block-in block) t))
863 ;;; Give an empty constraints set to any var that doesn't have one and
864 ;;; isn't a set closure var. Since a var that we previously rejected
865 ;;; looks identical to one that is new, so we optimistically keep
866 ;;; hoping that vars stop being closed over or lose their sets.
867 (defun init-var-constraints (component)
868 (declare (type component component))
869 (dolist (fun (component-lambdas component))
871 (dolist (var (lambda-vars x))
872 (unless (lambda-var-constraints var)
873 (when (or (null (lambda-var-sets var))
874 (not (closure-var-p var)))
875 (setf (lambda-var-constraints var) (make-conset)))))))
877 (dolist (let (lambda-lets fun))
880 ;;; Return the constraints that flow from PRED to SUCC. This is
881 ;;; BLOCK-OUT unless PRED ends with and IF and test constraints were
883 (defun block-out-for-successor (pred succ)
884 (declare (type cblock pred succ))
885 (let ((last (block-last pred)))
886 (or (when (if-p last)
887 (cond ((eq succ (if-consequent last))
888 (if-consequent-constraints last))
889 ((eq succ (if-alternative last))
890 (if-alternative-constraints last))))
893 (defun compute-block-in (block)
895 (dolist (pred (block-pred block))
896 ;; If OUT has not been calculated, assume it to be the universal
898 (let ((out (block-out-for-successor pred block)))
901 (conset-intersection in out)
902 (setq in (copy-conset out))))))
903 (or in (make-conset))))
905 (defun update-block-in (block)
906 (let ((in (compute-block-in block)))
907 (cond ((and (block-in block) (conset= in (block-in block)))
910 (setf (block-in block) in)))))
912 ;;; Return two lists: one of blocks that precede all loops and
913 ;;; therefore require only one constraint propagation pass and the
914 ;;; rest. This implementation does not find all such blocks.
916 ;;; A more complete implementation would be:
918 ;;; (do-blocks (block component)
919 ;;; (if (every #'(lambda (pred)
920 ;;; (or (member pred leading-blocks)
922 ;;; (block-pred block))
923 ;;; (push block leading-blocks)
924 ;;; (push block rest-of-blocks)))
926 ;;; Trailing blocks that succeed all loops could be found and handled
927 ;;; similarly. In practice though, these more complex solutions are
928 ;;; slightly worse performancewise.
929 (defun leading-component-blocks (component)
930 (declare (type component component))
931 (flet ((loopy-p (block)
932 (let ((n (block-number block)))
933 (dolist (pred (block-pred block))
934 (unless (< n (block-number pred))
936 (let ((leading-blocks ())
939 (do-blocks (block component)
940 (when (and (not seen-loop-p) (loopy-p block))
941 (setq seen-loop-p t))
943 (push block rest-of-blocks)
944 (push block leading-blocks)))
945 (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
947 ;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
948 ;;; a member already.
949 (defun nconc-new (obj list)
950 (do ((x list (cdr x))
954 (setf (cdr prev) (list obj))
957 (when (eql (car x) obj)
958 (return-from nconc-new list))))
960 (defun find-and-propagate-constraints (component)
961 (let ((blocks-to-process ()))
962 (flet ((enqueue (blocks)
963 (dolist (block blocks)
964 (setq blocks-to-process (nconc-new block blocks-to-process)))))
965 (multiple-value-bind (leading-blocks rest-of-blocks)
966 (leading-component-blocks component)
967 ;; Update every block once to account for changes in the
968 ;; IR1. The constraints of the lead blocks cannot be changed
969 ;; after the first pass so we might as well use them and skip
970 ;; USE-RESULT-CONSTRAINTS later.
971 (dolist (block leading-blocks)
972 (setf (block-in block) (compute-block-in block))
973 (find-block-type-constraints block t))
974 (setq blocks-to-process (copy-list rest-of-blocks))
975 ;; The rest of the blocks.
976 (dolist (block rest-of-blocks)
977 (aver (eq block (pop blocks-to-process)))
978 (setf (block-in block) (compute-block-in block))
979 (enqueue (find-block-type-constraints block nil)))
980 ;; Propagate constraints
981 (loop for block = (pop blocks-to-process)
983 (unless (eq block (component-tail component))
984 (when (update-block-in block)
985 (enqueue (find-block-type-constraints block nil)))))
988 (defun constraint-propagate (component)
989 (declare (type component component))
990 (init-var-constraints component)
992 (unless (block-out (component-head component))
993 (setf (block-out (component-head component)) (make-conset)))
995 (dolist (block (find-and-propagate-constraints component))
996 (unless (block-delete-p block)
997 (use-result-constraints block)))