1 ;;;; This file implements the constraint propagation phase of the
2 ;;;; compiler, which uses global flow analysis to obtain dynamic type
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;; -- MV-BIND, :ASSIGNMENT
20 ;;; Note: The functions in this file that accept constraint sets are
21 ;;; actually receiving the constraint sets associated with nodes,
22 ;;; blocks, and lambda-vars. It might be make CP easier to understand
23 ;;; and work on if these functions traded in nodes, blocks, and
24 ;;; lambda-vars directly.
28 ;;; -- Constraint propagation badly interacts with bottom-up type
29 ;;; inference. Consider
31 ;;; (defun foo (n &aux (i 42))
32 ;;; (declare (optimize speed))
33 ;;; (declare (fixnum n)
34 ;;; #+nil (type (integer 0) i))
38 ;;; (when (>= i n) (go :exit))
43 ;;; In this case CP cannot even infer that I is of class INTEGER.
45 ;;; -- In the above example if we place the check after SETQ, CP will
46 ;;; fail to infer (< I FIXNUM): it does not understand that this
47 ;;; constraint follows from (TYPEP I (INTEGER 0 0)).
51 ;;; *CONSTRAINT-UNIVERSE* gets bound in IR1-PHASES to a fresh,
52 ;;; zero-length, non-zero-total-size vector-with-fill-pointer.
53 (declaim (type (and vector (not simple-vector)) *constraint-universe*))
54 (defvar *constraint-universe*)
56 (deftype constraint-y () '(or ctype lvar lambda-var constant))
58 (defstruct (constraint
59 (:include sset-element)
60 (:constructor make-constraint (number kind x y not-p))
62 ;; the kind of constraint we have:
65 ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is
66 ;; constrained to be of type Y.
69 ;; X is a lambda-var and Y is a CTYPE. The relation holds
70 ;; between X and some object of type Y.
73 ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT.
74 ;; The relation is asserted to hold.
75 (kind nil :type (member typep < > eql))
76 ;; The operands to the relation.
77 (x nil :type lambda-var)
78 (y nil :type constraint-y)
79 ;; If true, negates the sense of the constraint, so the relation
81 (not-p nil :type boolean))
83 ;;; Historically, CMUCL and SBCL have used a sparse set implementation
84 ;;; for which most operations are O(n) (see sset.lisp), but at the
85 ;;; cost of at least a full word of pointer for each constraint set
86 ;;; element. Using bit-vectors instead of pointer structures saves a
87 ;;; lot of space and thus GC time (particularly on 64-bit machines),
88 ;;; and saves time on copy, union, intersection, and difference
89 ;;; operations; but makes iteration slower. Circa September 2008,
90 ;;; switching to bit-vectors gave a modest (5-10%) improvement in real
91 ;;; compile time for most Lisp systems, and as much as 20-30% for some
92 ;;; particularly CP-dependent systems.
94 ;;; It's bad to leave commented code in files, but if some clever
95 ;;; person comes along and makes SSETs better than bit-vectors as sets
96 ;;; for constraint propagation, or if bit-vectors on some XC host
97 ;;; really lose compared to SSETs, here's the conset API as a wrapper
101 (deftype conset () 'sset)
102 (declaim (ftype (sfunction (conset) boolean) conset-empty))
103 (declaim (ftype (sfunction (conset) conset) copy-conset))
104 (declaim (ftype (sfunction (constraint conset) boolean) conset-member))
105 (declaim (ftype (sfunction (constraint conset) boolean) conset-adjoin))
106 (declaim (ftype (sfunction (conset conset) boolean) conset=))
107 (declaim (ftype (sfunction (conset conset) (values)) conset-union))
108 (declaim (ftype (sfunction (conset conset) (values)) conset-intersection))
109 (declaim (ftype (sfunction (conset conset) (values)) conset-difference))
110 (defun make-conset () (make-sset))
111 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
112 `(do-sset-elements (,constraint ,conset ,result) ,@body))
113 (defmacro do-conset-intersection
114 ((constraint conset1 conset2 &optional result) &body body)
115 `(do-conset-elements (,constraint ,conset1 ,result)
116 (when (conset-member ,constraint ,conset2)
118 (defun conset-empty (conset) (sset-empty conset))
119 (defun copy-conset (conset) (copy-sset conset))
120 (defun conset-member (constraint conset) (sset-member constraint conset))
121 (defun conset-adjoin (constraint conset) (sset-adjoin constraint conset))
122 (defun conset= (conset1 conset2) (sset= conset1 conset2))
123 ;; Note: CP doesn't ever care whether union, intersection, and
124 ;; difference change the first set. (This is an important degree of
125 ;; freedom, since some ways of implementing sets lose a great deal
126 ;; when these operations are required to track changes.)
127 (defun conset-union (conset1 conset2)
128 (sset-union conset1 conset2) (values))
129 (defun conset-intersection (conset1 conset2)
130 (sset-intersection conset1 conset2) (values))
131 (defun conset-difference (conset1 conset2)
132 (sset-difference conset1 conset2) (values)))
135 ;; This is performance critical for the compiler, and benefits
136 ;; from the following declarations. Probably you'll want to
137 ;; disable these declarations when debugging consets.
138 (declare #-sb-xc-host (optimize (speed 3) (safety 0) (space 0)))
139 (declaim (inline %constraint-number))
140 (defun %constraint-number (constraint)
141 (sset-element-number constraint))
143 (:constructor make-conset ())
144 (:copier %copy-conset))
146 ;; FIXME: make POWER-OF-TWO-CEILING available earlier?
147 (ash 1 (integer-length (1- (length *constraint-universe*))))
148 :element-type 'bit :initial-element 0)
149 :type simple-bit-vector)
150 ;; Bit-vectors win over lightweight hashes for copy, union,
151 ;; intersection, difference, but lose for iteration if you iterate
152 ;; over the whole vector. Tracking extrema helps a bit.
154 (max 0 :type fixnum))
156 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
157 (with-unique-names (vector index start end
159 #-sb-xc-host constraint-universe-end)
160 (let* ((constraint-universe #+sb-xc-host '*constraint-universe*
161 #-sb-xc-host (gensym))
163 #+sb-xc-host '(progn)
164 #-sb-xc-host `(with-array-data
165 ((,constraint-universe *constraint-universe*)
166 (,ignore 0) (,constraint-universe-end nil)
167 :check-fill-pointer t)
168 (declare (ignore ,ignore))
169 (aver (<= ,end ,constraint-universe-end)))))
170 `(let* ((,vector (conset-vector ,conset))
171 (,start (conset-min ,conset))
172 (,end (min (conset-max ,conset) (length ,vector))))
174 (do ((,index ,start (1+ ,index))) ((>= ,index ,end) ,result)
175 (when (plusp (sbit ,vector ,index))
176 (let ((,constraint (elt ,constraint-universe ,index)))
179 ;; Oddly, iterating just between the maximum of the two sets' minima
180 ;; and the minimum of the sets' maxima slowed down CP.
181 (defmacro do-conset-intersection
182 ((constraint conset1 conset2 &optional result) &body body)
183 `(do-conset-elements (,constraint ,conset1 ,result)
184 (when (conset-member ,constraint ,conset2)
187 (defun conset-empty (conset)
188 (or (= (conset-min conset) (conset-max conset))
189 ;; TODO: I bet FIND on bit-vectors can be optimized, if it
191 (not (find 1 (conset-vector conset)
192 :start (conset-min conset)
193 ;; By inspection, supplying :END here breaks the
194 ;; build with a "full call to
195 ;; DATA-VECTOR-REF-WITH-OFFSET" in the
196 ;; cross-compiler. If that should change, add
197 ;; :end (conset-max conset)
200 (defun copy-conset (conset)
201 (let ((ret (%copy-conset conset)))
202 (setf (conset-vector ret) (copy-seq (conset-vector conset)))
205 (defun %conset-grow (conset new-size)
206 (declare (index new-size))
207 (setf (conset-vector conset)
208 (replace (the simple-bit-vector
210 (ash 1 (integer-length (1- new-size)))
213 (the simple-bit-vector
214 (conset-vector conset)))))
216 (declaim (inline conset-grow))
217 (defun conset-grow (conset new-size)
218 (declare (index new-size))
219 (when (< (length (conset-vector conset)) new-size)
220 (%conset-grow conset new-size))
223 (defun conset-member (constraint conset)
224 (let ((number (%constraint-number constraint))
225 (vector (conset-vector conset)))
226 (when (< number (length vector))
227 (plusp (sbit vector number)))))
229 (defun conset-adjoin (constraint conset)
231 (not (conset-member constraint conset))
232 (let ((number (%constraint-number constraint)))
233 (conset-grow conset (1+ number))
234 (setf (sbit (conset-vector conset) number) 1)
235 (setf (conset-min conset) (min number (conset-min conset)))
236 (when (>= number (conset-max conset))
237 (setf (conset-max conset) (1+ number))))))
239 (defun conset= (conset1 conset2)
240 (let* ((vector1 (conset-vector conset1))
241 (vector2 (conset-vector conset2))
242 (length1 (length vector1))
243 (length2 (length vector2)))
244 (if (= length1 length2)
245 ;; When the lengths are the same, we can rely on EQUAL being
246 ;; nicely optimized on bit-vectors.
247 (equal vector1 vector2)
248 (multiple-value-bind (shorter longer)
249 (if (< length1 length2)
250 (values vector1 vector2)
251 (values vector2 vector1))
252 ;; FIXME: make MISMATCH fast on bit-vectors.
253 (dotimes (index (length shorter))
254 (when (/= (sbit vector1 index) (sbit vector2 index))
255 (return-from conset= nil)))
256 (if (find 1 longer :start (length shorter))
261 ((defconsetop (name bit-op)
262 `(defun ,name (conset-1 conset-2)
263 (declare (optimize (speed 3) (safety 0)))
264 (let* ((size-1 (length (conset-vector conset-1)))
265 (size-2 (length (conset-vector conset-2)))
266 (new-size (max size-1 size-2)))
267 (conset-grow conset-1 new-size)
268 (conset-grow conset-2 new-size))
269 (let ((vector1 (conset-vector conset-1))
270 (vector2 (conset-vector conset-2)))
271 (declare (simple-bit-vector vector1 vector2))
272 (setf (conset-vector conset-1) (,bit-op vector1 vector2 t))
273 ;; Update the extrema.
276 `(setf (conset-min conset-1)
277 (min (conset-min conset-1)
278 (conset-min conset-2))
279 (conset-max conset-1)
280 (max (conset-max conset-1)
281 (conset-max conset-2))))
282 ((conset-intersection)
283 `(let ((start (max (conset-min conset-1)
284 (conset-min conset-2)))
285 (end (min (conset-max conset-1)
286 (conset-max conset-2))))
287 (setf (conset-min conset-1)
290 (or (position 1 (conset-vector conset-1)
291 :start start :end end)
293 (conset-max conset-1)
298 1 (conset-vector conset-1)
299 :start start :end end :from-end t)))
304 `(setf (conset-min conset-1)
305 (or (position 1 (conset-vector conset-1)
306 :start (conset-min conset-1)
307 :end (conset-max conset-1))
309 (conset-max conset-1)
312 1 (conset-vector conset-1)
313 :start (conset-min conset-1)
314 :end (conset-max conset-1)
320 (defconsetop conset-union bit-ior)
321 (defconsetop conset-intersection bit-and)
322 (defconsetop conset-difference bit-andc2)))
324 (defun find-constraint (kind x y not-p)
325 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
328 (do-conset-elements (con (lambda-var-constraints x) nil)
329 (when (and (eq (constraint-kind con) kind)
330 (eq (constraint-not-p con) not-p)
331 (type= (constraint-y con) y))
334 (do-conset-elements (con (lambda-var-constraints x) nil)
335 (when (and (eq (constraint-kind con) kind)
336 (eq (constraint-not-p con) not-p)
337 (eq (constraint-y con) y))
340 (do-conset-elements (con (lambda-var-constraints x) nil)
341 (when (and (eq (constraint-kind con) kind)
342 (eq (constraint-not-p con) not-p)
343 (let ((cx (constraint-x con)))
350 ;;; Return a constraint for the specified arguments. We only create a
351 ;;; new constraint if there isn't already an equivalent old one,
352 ;;; guaranteeing that all equivalent constraints are EQ. This
353 ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set.
354 (defun find-or-create-constraint (kind x y not-p)
355 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
356 (or (find-constraint kind x y not-p)
357 (let ((new (make-constraint (length *constraint-universe*)
359 (vector-push-extend new *constraint-universe*
360 (* 2 (length *constraint-universe*)))
361 (conset-adjoin new (lambda-var-constraints x))
362 (when (lambda-var-p y)
363 (conset-adjoin new (lambda-var-constraints y)))
366 ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
367 ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
368 #!-sb-fluid (declaim (inline ok-ref-lambda-var))
369 (defun ok-ref-lambda-var (ref)
370 (declare (type ref ref))
371 (let ((leaf (ref-leaf ref)))
372 (when (and (lambda-var-p leaf)
373 (lambda-var-constraints leaf))
376 ;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
377 ;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
378 (defun ok-lvar-lambda-var (lvar constraints)
379 (declare (type lvar lvar))
380 (let ((use (lvar-uses lvar)))
382 (let ((lambda-var (ok-ref-lambda-var use)))
384 (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
385 (when (and constraint (conset-member constraint constraints))
388 (ok-lvar-lambda-var (cast-value use) constraints)))))
390 (defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
391 (once-only ((var var))
392 `(let ((,symbol ,var))
396 (do-conset-elements (con ,constraints ,result)
397 (let ((other (and (eq (constraint-kind con) 'eql)
398 (eq (constraint-not-p con) nil)
399 (cond ((eq ,var (constraint-x con))
401 ((eq ,var (constraint-y con))
407 (when (lambda-var-p ,symbol)
410 ;;;; Searching constraints
412 ;;; Add the indicated test constraint to BLOCK. We don't add the
413 ;;; constraint if the block has multiple predecessors, since it only
414 ;;; holds on this particular path.
415 (defun add-test-constraint (fun x y not-p constraints target)
416 (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
417 (add-eql-var-var-constraint x y constraints target))
419 (do-eql-vars (x (x constraints))
420 (let ((con (find-or-create-constraint fun x y not-p)))
421 (conset-adjoin con target)))))
424 ;;; Add complementary constraints to the consequent and alternative
425 ;;; blocks of IF. We do nothing if X is NIL.
426 (defun add-complement-constraints (fun x y not-p constraints
427 consequent-constraints
428 alternative-constraints)
430 (add-test-constraint fun x y not-p constraints
431 consequent-constraints)
432 (add-test-constraint fun x y (not not-p) constraints
433 alternative-constraints))
436 ;;; Add test constraints to the consequent and alternative blocks of
437 ;;; the test represented by USE.
438 (defun add-test-constraints (use if constraints)
439 (declare (type node use) (type cif if))
440 ;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
441 ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means that we
442 ;; can't guarantee that the optimization will be done, so we still
443 ;; need to avoid barfing on this case.
444 (unless (eq (if-consequent if) (if-alternative if))
445 (let ((consequent-constraints (make-conset))
446 (alternative-constraints (make-conset)))
447 (macrolet ((add (fun x y not-p)
448 `(add-complement-constraints ,fun ,x ,y ,not-p
450 consequent-constraints
451 alternative-constraints)))
454 (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
455 (specifier-type 'null) t))
457 (unless (eq (combination-kind use)
459 (let ((name (lvar-fun-name
460 (basic-combination-fun use)))
461 (args (basic-combination-args use)))
463 ((%typep %instance-typep)
464 (let ((type (second args)))
465 (when (constant-lvar-p type)
466 (let ((val (lvar-value type)))
468 (ok-lvar-lambda-var (first args) constraints)
471 (specifier-type val))
474 (let* ((arg1 (first args))
475 (var1 (ok-lvar-lambda-var arg1 constraints))
477 (var2 (ok-lvar-lambda-var arg2 constraints)))
478 ;; The code below assumes that the constant is the
479 ;; second argument in case of variable to constant
480 ;; comparision which is sometimes true (see source
481 ;; transformations for EQ, EQL and CHAR=). Fixing
482 ;; that would result in more constant substitutions
483 ;; which is not a universally good thing, thus the
484 ;; unnatural asymmetry of the tests.
487 (add-test-constraint 'typep var2 (lvar-type arg1)
489 consequent-constraints)))
491 (add 'eql var1 var2 nil))
492 ((constant-lvar-p arg2)
493 (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
496 (add-test-constraint 'typep var1 (lvar-type arg2)
498 consequent-constraints)))))
500 (let* ((arg1 (first args))
501 (var1 (ok-lvar-lambda-var arg1 constraints))
503 (var2 (ok-lvar-lambda-var arg2 constraints)))
505 (add name var1 (lvar-type arg2) nil))
507 (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
509 (let ((ptype (gethash name *backend-predicate-types*)))
511 (add 'typep (ok-lvar-lambda-var (first args) constraints)
513 (values consequent-constraints alternative-constraints))))
515 ;;;; Applying constraints
517 ;;; Return true if X is an integer NUMERIC-TYPE.
518 (defun integer-type-p (x)
519 (declare (type ctype x))
520 (and (numeric-type-p x)
521 (eq (numeric-type-class x) 'integer)
522 (eq (numeric-type-complexp x) :real)))
524 ;;; Given that an inequality holds on values of type X and Y, return a
525 ;;; new type for X. If GREATER is true, then X was greater than Y,
526 ;;; otherwise less. If OR-EQUAL is true, then the inequality was
527 ;;; inclusive, i.e. >=.
529 ;;; If GREATER (or not), then we max (or min) in Y's lower (or upper)
530 ;;; bound into X and return that result. If not OR-EQUAL, we can go
531 ;;; one greater (less) than Y's bound.
532 (defun constrain-integer-type (x y greater or-equal)
533 (declare (type numeric-type x y))
540 (if greater (numeric-type-low x) (numeric-type-high x))))
541 (let* ((x-bound (bound x))
542 (y-bound (exclude (bound y)))
543 (new-bound (cond ((not x-bound) y-bound)
544 ((not y-bound) x-bound)
545 (greater (max x-bound y-bound))
546 (t (min x-bound y-bound)))))
548 (modified-numeric-type x :low new-bound)
549 (modified-numeric-type x :high new-bound)))))
551 ;;; Return true if X is a float NUMERIC-TYPE.
552 (defun float-type-p (x)
553 (declare (type ctype x))
554 (and (numeric-type-p x)
555 (eq (numeric-type-class x) 'float)
556 (eq (numeric-type-complexp x) :real)))
558 ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers.
559 (defun constrain-float-type (x y greater or-equal)
560 (declare (type numeric-type x y))
561 (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE
563 (aver (eql (numeric-type-class x) 'float))
564 (aver (eql (numeric-type-class y) 'float))
565 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
567 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
568 (labels ((exclude (x)
576 (if greater (numeric-type-low x) (numeric-type-high x)))
581 (= (type-bound-number x) (type-bound-number ref)))
582 ;; X is tighter if REF is not an open bound and X is
583 (and (not (consp ref)) (consp x)))
585 (< (type-bound-number ref) (type-bound-number x)))
587 (> (type-bound-number ref) (type-bound-number x))))))
588 (let* ((x-bound (bound x))
589 (y-bound (exclude (bound y)))
590 (new-bound (cond ((not x-bound)
594 ((tighter-p y-bound x-bound)
599 (modified-numeric-type x :low new-bound)
600 (modified-numeric-type x :high new-bound)))))
602 ;;; Given the set of CONSTRAINTS for a variable and the current set of
603 ;;; restrictions from flow analysis IN, set the type for REF
605 (defun constrain-ref-type (ref constraints in)
606 (declare (type ref ref) (type conset constraints in))
607 ;; KLUDGE: The NOT-SET and NOT-FPZ here are so that we don't need to
608 ;; cons up endless union types when propagating large number of EQL
609 ;; constraints -- eg. from large CASE forms -- instead we just
610 ;; directly accumulate one XSET, and a set of fp zeroes, which we at
611 ;; the end turn into a MEMBER-TYPE.
613 ;; Since massive symbol cases are an especially atrocious pattern
614 ;; and the (NOT (MEMBER ...ton of symbols...)) will never turn into
615 ;; a more useful type, don't propagate their negation except for NIL
616 ;; unless SPEED > COMPILATION-SPEED.
617 (let ((res (single-value-type (node-derived-type ref)))
618 (constrain-symbols (policy ref (> speed compilation-speed)))
619 (not-set (alloc-xset))
621 (not-res *empty-type*)
622 (leaf (ref-leaf ref)))
626 (when (or constrain-symbols (null x) (not (symbolp x)))
627 (add-to-xset x not-set)))))
628 ;; KLUDGE: the implementations of DO-CONSET-INTERSECTION will
629 ;; probably run faster when the smaller set comes first, so
630 ;; don't change the order here.
631 (do-conset-intersection (con constraints in)
632 (let* ((x (constraint-x con))
633 (y (constraint-y con))
634 (not-p (constraint-not-p con))
635 (other (if (eq x leaf) y x))
636 (kind (constraint-kind con)))
640 (if (member-type-p other)
641 (mapc-member-type-members #'note-not other)
642 (setq not-res (type-union not-res other)))
643 (setq res (type-approx-intersection2 res other))))
645 (unless (lvar-p other)
646 (let ((other-type (leaf-type other)))
648 (when (and (constant-p other)
649 (member-type-p other-type))
650 (note-not (constant-value other)))
651 (let ((leaf-type (leaf-type leaf)))
653 ((or (constant-p other)
654 (and (leaf-refs other) ; protect from
656 (csubtypep other-type leaf-type)
657 (not (type= other-type leaf-type))))
658 (change-ref-leaf ref other)
659 (when (constant-p other) (return)))
661 (setq res (type-approx-intersection2
662 res other-type)))))))))
665 ((and (integer-type-p res) (integer-type-p y))
666 (let ((greater (eq kind '>)))
667 (let ((greater (if not-p (not greater) greater)))
669 (constrain-integer-type res y greater not-p)))))
670 ((and (float-type-p res) (float-type-p y))
671 (let ((greater (eq kind '>)))
672 (let ((greater (if not-p (not greater) greater)))
674 (constrain-float-type res y greater not-p)))))))))))
675 (cond ((and (if-p (node-dest ref))
676 (or (xset-member-p nil not-set)
677 (csubtypep (specifier-type 'null) not-res)))
678 (setf (node-derived-type ref) *wild-type*)
679 (change-ref-leaf ref (find-constant t)))
682 (type-union not-res (make-member-type :xset not-set :fp-zeroes not-fpz)))
683 (derive-node-type ref
684 (make-single-value-type
685 (or (type-difference res not-res)
687 (maybe-terminate-block ref nil))))
692 (defun maybe-add-eql-var-lvar-constraint (ref gen)
693 (let ((lvar (ref-lvar ref))
694 (leaf (ref-leaf ref)))
695 (when (and (lambda-var-p leaf) lvar)
696 (conset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
699 ;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
700 ;;; LVAR) ones - to all of the variables in the VARS list.
701 (defun inherit-constraints (vars from-var constraints target)
702 (do-conset-elements (con constraints)
703 ;; Constant substitution is controversial.
704 (unless (constant-p (constraint-y con))
706 (let ((eq-x (eq from-var (constraint-x con)))
707 (eq-y (eq from-var (constraint-y con))))
708 (when (or (and eq-x (not (lvar-p (constraint-y con))))
710 (conset-adjoin (find-or-create-constraint
711 (constraint-kind con)
712 (if eq-x var (constraint-x con))
713 (if eq-y var (constraint-y con))
714 (constraint-not-p con))
717 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
718 ;; inherit each other's constraints.
719 (defun add-eql-var-var-constraint (var1 var2 constraints
720 &optional (target constraints))
721 (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
722 (when (conset-adjoin con target)
723 (collect ((eql1) (eql2))
724 (do-eql-vars (var1 (var1 constraints))
726 (do-eql-vars (var2 (var2 constraints))
728 (inherit-constraints (eql1) var2 constraints target)
729 (inherit-constraints (eql2) var1 constraints target))
732 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
733 ;; LAMBDA-VAR if possible.
734 (defun maybe-add-eql-var-var-constraint (var lvar constraints
735 &optional (target constraints))
736 (declare (type lambda-var var) (type lvar lvar))
737 (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
739 (add-eql-var-var-constraint var lambda-var constraints target))))
741 ;;; Local propagation
742 ;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
744 ;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
745 ;;; a type constraint based on the new value type.
746 (declaim (ftype (function (cblock conset boolean)
748 constraint-propagate-in-block))
749 (defun constraint-propagate-in-block (block gen preprocess-refs-p)
750 (do-nodes (node lvar block)
753 (let ((fun (bind-lambda node)))
754 (when (eq (functional-kind fun) :let)
755 (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
756 for var in (lambda-vars fun)
757 and val in (combination-args call)
758 when (and val (lambda-var-constraints var))
759 do (let* ((type (lvar-type val))
760 (con (find-or-create-constraint 'typep var type
762 (conset-adjoin con gen))
763 (maybe-add-eql-var-var-constraint var val gen)))))
765 (when (ok-ref-lambda-var node)
766 (maybe-add-eql-var-lvar-constraint node gen)
767 (when preprocess-refs-p
768 (let* ((var (ref-leaf node))
769 (con (lambda-var-constraints var)))
770 (constrain-ref-type node con gen)))))
772 (let ((lvar (cast-value node)))
773 (let ((var (ok-lvar-lambda-var lvar gen)))
775 (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
776 (do-eql-vars (var (var gen))
777 (let ((con (find-or-create-constraint 'typep var atype nil)))
778 (conset-adjoin con gen))))))))
780 (binding* ((var (set-var node))
781 (nil (lambda-var-p var) :exit-if-null)
782 (cons (lambda-var-constraints var) :exit-if-null))
783 (conset-difference gen cons)
784 (let* ((type (single-value-type (node-derived-type node)))
785 (con (find-or-create-constraint 'typep var type nil)))
786 (conset-adjoin con gen))
787 (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
790 (defun constraint-propagate-if (block gen)
791 (let ((node (block-last block)))
793 (let ((use (lvar-uses (if-test node))))
795 (add-test-constraints use node gen))))))
797 ;;; Starting from IN compute OUT and (consequent/alternative
798 ;;; constraints if the block ends with and IF). Return the list of
799 ;;; successors that may need to be recomputed.
800 (defun find-block-type-constraints (block final-pass-p)
801 (declare (type cblock block))
802 (let ((gen (constraint-propagate-in-block
806 (copy-conset (block-in block)))
808 (setf (block-gen block) gen)
809 (multiple-value-bind (consequent-constraints alternative-constraints)
810 (constraint-propagate-if block gen)
811 (if consequent-constraints
812 (let* ((node (block-last block))
813 (old-consequent-constraints (if-consequent-constraints node))
814 (old-alternative-constraints (if-alternative-constraints node))
816 ;; Add the consequent and alternative constraints to GEN.
817 (cond ((conset-empty consequent-constraints)
818 (setf (if-consequent-constraints node) gen)
819 (setf (if-alternative-constraints node) gen))
821 (setf (if-consequent-constraints node) (copy-conset gen))
822 (conset-union (if-consequent-constraints node)
823 consequent-constraints)
824 (setf (if-alternative-constraints node) gen)
825 (conset-union (if-alternative-constraints node)
826 alternative-constraints)))
827 ;; Has the consequent been changed?
828 (unless (and old-consequent-constraints
829 (conset= (if-consequent-constraints node)
830 old-consequent-constraints))
831 (push (if-consequent node) succ))
832 ;; Has the alternative been changed?
833 (unless (and old-alternative-constraints
834 (conset= (if-alternative-constraints node)
835 old-alternative-constraints))
836 (push (if-alternative node) succ))
839 (unless (and (block-out block)
840 (conset= gen (block-out block)))
841 (setf (block-out block) gen)
842 (block-succ block))))))
844 ;;; Deliver the results of constraint propagation to REFs in BLOCK.
845 ;;; During this pass, we also do local constraint propagation by
846 ;;; adding in constraints as we see them during the pass through the
848 (defun use-result-constraints (block)
849 (declare (type cblock block))
850 (constraint-propagate-in-block block (block-in block) t))
852 ;;; Give an empty constraints set to any var that doesn't have one and
853 ;;; isn't a set closure var. Since a var that we previously rejected
854 ;;; looks identical to one that is new, so we optimistically keep
855 ;;; hoping that vars stop being closed over or lose their sets.
856 (defun init-var-constraints (component)
857 (declare (type component component))
858 (dolist (fun (component-lambdas component))
860 (dolist (var (lambda-vars x))
861 (unless (lambda-var-constraints var)
862 (when (or (null (lambda-var-sets var))
863 (not (closure-var-p var)))
864 (setf (lambda-var-constraints var) (make-conset)))))))
866 (dolist (let (lambda-lets fun))
869 ;;; Return the constraints that flow from PRED to SUCC. This is
870 ;;; BLOCK-OUT unless PRED ends with an IF and test constraints were
872 (defun block-out-for-successor (pred succ)
873 (declare (type cblock pred succ))
874 (let ((last (block-last pred)))
875 (or (when (if-p last)
876 (cond ((eq succ (if-consequent last))
877 (if-consequent-constraints last))
878 ((eq succ (if-alternative last))
879 (if-alternative-constraints last))))
882 (defun compute-block-in (block)
884 (dolist (pred (block-pred block))
885 ;; If OUT has not been calculated, assume it to be the universal
887 (let ((out (block-out-for-successor pred block)))
890 (conset-intersection in out)
891 (setq in (copy-conset out))))))
892 (or in (make-conset))))
894 (defun update-block-in (block)
895 (let ((in (compute-block-in block)))
896 (cond ((and (block-in block) (conset= in (block-in block)))
899 (setf (block-in block) in)))))
901 ;;; Return two lists: one of blocks that precede all loops and
902 ;;; therefore require only one constraint propagation pass and the
903 ;;; rest. This implementation does not find all such blocks.
905 ;;; A more complete implementation would be:
907 ;;; (do-blocks (block component)
908 ;;; (if (every #'(lambda (pred)
909 ;;; (or (member pred leading-blocks)
911 ;;; (block-pred block))
912 ;;; (push block leading-blocks)
913 ;;; (push block rest-of-blocks)))
915 ;;; Trailing blocks that succeed all loops could be found and handled
916 ;;; similarly. In practice though, these more complex solutions are
917 ;;; slightly worse performancewise.
918 (defun leading-component-blocks (component)
919 (declare (type component component))
920 (flet ((loopy-p (block)
921 (let ((n (block-number block)))
922 (dolist (pred (block-pred block))
923 (unless (< n (block-number pred))
925 (let ((leading-blocks ())
928 (do-blocks (block component)
929 (when (and (not seen-loop-p) (loopy-p block))
930 (setq seen-loop-p t))
932 (push block rest-of-blocks)
933 (push block leading-blocks)))
934 (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
936 ;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
937 ;;; a member already.
938 (defun nconc-new (obj list)
939 (do ((x list (cdr x))
943 (setf (cdr prev) (list obj))
946 (when (eql (car x) obj)
947 (return-from nconc-new list))))
949 (defun find-and-propagate-constraints (component)
950 (let ((blocks-to-process ()))
951 (flet ((enqueue (blocks)
952 (dolist (block blocks)
953 (setq blocks-to-process (nconc-new block blocks-to-process)))))
954 (multiple-value-bind (leading-blocks rest-of-blocks)
955 (leading-component-blocks component)
956 ;; Update every block once to account for changes in the
957 ;; IR1. The constraints of the lead blocks cannot be changed
958 ;; after the first pass so we might as well use them and skip
959 ;; USE-RESULT-CONSTRAINTS later.
960 (dolist (block leading-blocks)
961 (setf (block-in block) (compute-block-in block))
962 (find-block-type-constraints block t))
963 (setq blocks-to-process (copy-list rest-of-blocks))
964 ;; The rest of the blocks.
965 (dolist (block rest-of-blocks)
966 (aver (eq block (pop blocks-to-process)))
967 (setf (block-in block) (compute-block-in block))
968 (enqueue (find-block-type-constraints block nil)))
969 ;; Propagate constraints
970 (loop for block = (pop blocks-to-process)
972 (unless (eq block (component-tail component))
973 (when (update-block-in block)
974 (enqueue (find-block-type-constraints block nil)))))
977 (defun constraint-propagate (component)
978 (declare (type component component))
979 (init-var-constraints component)
981 (unless (block-out (component-head component))
982 (setf (block-out (component-head component)) (make-conset)))
984 (dolist (block (find-and-propagate-constraints component))
985 (unless (block-delete-p block)
986 (use-result-constraints block)))