1 ;;;; This file implements the constraint propagation phase of the
2 ;;;; compiler, which uses global flow analysis to obtain dynamic type
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;; -- MV-BIND, :ASSIGNMENT
20 ;;; Note: The functions in this file that accept constraint sets are
21 ;;; actually receiving the constraint sets associated with nodes,
22 ;;; blocks, and lambda-vars. It might be make CP easier to understand
23 ;;; and work on if these functions traded in nodes, blocks, and
24 ;;; lambda-vars directly.
28 ;;; -- Constraint propagation badly interacts with bottom-up type
29 ;;; inference. Consider
31 ;;; (defun foo (n &aux (i 42))
32 ;;; (declare (optimize speed))
33 ;;; (declare (fixnum n)
34 ;;; #+nil (type (integer 0) i))
38 ;;; (when (>= i n) (go :exit))
43 ;;; In this case CP cannot even infer that I is of class INTEGER.
45 ;;; -- In the above example if we place the check after SETQ, CP will
46 ;;; fail to infer (< I FIXNUM): it does not understand that this
47 ;;; constraint follows from (TYPEP I (INTEGER 0 0)).
51 ;;; *CONSTRAINT-UNIVERSE* gets bound in IR1-PHASES to a fresh,
52 ;;; zero-length, non-zero-total-size vector-with-fill-pointer.
53 (declaim (type (and vector (not simple-vector)) *constraint-universe*))
54 (defvar *constraint-universe*)
56 (deftype constraint-y () '(or ctype lvar lambda-var constant))
58 (defstruct (constraint
59 (:include sset-element)
60 (:constructor make-constraint (number kind x y not-p))
62 ;; the kind of constraint we have:
65 ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is
66 ;; constrained to be of type Y.
69 ;; X is a lambda-var and Y is a CTYPE. The relation holds
70 ;; between X and some object of type Y.
73 ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT.
74 ;; The relation is asserted to hold.
75 (kind nil :type (member typep < > eql))
76 ;; The operands to the relation.
77 (x nil :type lambda-var)
78 (y nil :type constraint-y)
79 ;; If true, negates the sense of the constraint, so the relation
81 (not-p nil :type boolean))
83 ;;; Historically, CMUCL and SBCL have used a sparse set implementation
84 ;;; for which most operations are O(n) (see sset.lisp), but at the
85 ;;; cost of at least a full word of pointer for each constraint set
86 ;;; element. Using bit-vectors instead of pointer structures saves a
87 ;;; lot of space and thus GC time (particularly on 64-bit machines),
88 ;;; and saves time on copy, union, intersection, and difference
89 ;;; operations; but makes iteration slower. Circa September 2008,
90 ;;; switching to bit-vectors gave a modest (5-10%) improvement in real
91 ;;; compile time for most Lisp systems, and as much as 20-30% for some
92 ;;; particularly CP-dependent systems.
94 ;;; It's bad to leave commented code in files, but if some clever
95 ;;; person comes along and makes SSETs better than bit-vectors as sets
96 ;;; for constraint propagation, or if bit-vectors on some XC host
97 ;;; really lose compared to SSETs, here's the conset API as a wrapper
101 (deftype conset () 'sset)
102 (declaim (ftype (sfunction (conset) boolean) conset-empty))
103 (declaim (ftype (sfunction (conset) conset) copy-conset))
104 (declaim (ftype (sfunction (constraint conset) boolean) conset-member))
105 (declaim (ftype (sfunction (constraint conset) boolean) conset-adjoin))
106 (declaim (ftype (sfunction (conset conset) boolean) conset=))
107 (declaim (ftype (sfunction (conset conset) (values)) conset-union))
108 (declaim (ftype (sfunction (conset conset) (values)) conset-intersection))
109 (declaim (ftype (sfunction (conset conset) (values)) conset-difference))
110 (defun make-conset () (make-sset))
111 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
112 `(do-sset-elements (,constraint ,conset ,result) ,@body))
113 (defmacro do-conset-intersection
114 ((constraint conset1 conset2 &optional result) &body body)
115 `(do-conset-elements (,constraint ,conset1 ,result)
116 (when (conset-member ,constraint ,conset2)
118 (defun conset-empty (conset) (sset-empty conset))
119 (defun copy-conset (conset) (copy-sset conset))
120 (defun conset-member (constraint conset) (sset-member constraint conset))
121 (defun conset-adjoin (constraint conset) (sset-adjoin constraint conset))
122 (defun conset= (conset1 conset2) (sset= conset1 conset2))
123 ;; Note: CP doesn't ever care whether union, intersection, and
124 ;; difference change the first set. (This is an important degree of
125 ;; freedom, since some ways of implementing sets lose a great deal
126 ;; when these operations are required to track changes.)
127 (defun conset-union (conset1 conset2)
128 (sset-union conset1 conset2) (values))
129 (defun conset-intersection (conset1 conset2)
130 (sset-intersection conset1 conset2) (values))
131 (defun conset-difference (conset1 conset2)
132 (sset-difference conset1 conset2) (values)))
135 ;; This is performance critical for the compiler, and benefits
136 ;; from the following declarations. Probably you'll want to
137 ;; disable these declarations when debugging consets.
138 (declare #-sb-xc-host (optimize (speed 3) (safety 0) (space 0)))
139 (declaim (inline %constraint-number))
140 (defun %constraint-number (constraint)
141 (sset-element-number constraint))
143 (:constructor make-conset ())
144 (:copier %copy-conset))
146 ;; FIXME: make POWER-OF-TWO-CEILING available earlier?
147 (ash 1 (integer-length (1- (length *constraint-universe*))))
148 :element-type 'bit :initial-element 0)
149 :type simple-bit-vector)
150 ;; Bit-vectors win over lightweight hashes for copy, union,
151 ;; intersection, difference, but lose for iteration if you iterate
152 ;; over the whole vector. Tracking extrema helps a bit.
154 (max 0 :type fixnum))
156 (defmacro do-conset-elements ((constraint conset &optional result) &body body)
157 (with-unique-names (vector index start end
159 #-sb-xc-host constraint-universe-end)
160 (let* ((constraint-universe #+sb-xc-host '*constraint-universe*
161 #-sb-xc-host (sb!xc:gensym "UNIVERSE"))
163 #+sb-xc-host '(progn)
164 #-sb-xc-host `(with-array-data
165 ((,constraint-universe *constraint-universe*)
166 (,ignore 0) (,constraint-universe-end nil)
167 :check-fill-pointer t)
168 (declare (ignore ,ignore))
169 (aver (<= ,end ,constraint-universe-end)))))
170 `(let* ((,vector (conset-vector ,conset))
171 (,start (conset-min ,conset))
172 (,end (min (conset-max ,conset) (length ,vector))))
174 (do ((,index ,start (1+ ,index))) ((>= ,index ,end) ,result)
175 (when (plusp (sbit ,vector ,index))
176 (let ((,constraint (elt ,constraint-universe ,index)))
179 ;; Oddly, iterating just between the maximum of the two sets' minima
180 ;; and the minimum of the sets' maxima slowed down CP.
181 (defmacro do-conset-intersection
182 ((constraint conset1 conset2 &optional result) &body body)
183 `(do-conset-elements (,constraint ,conset1 ,result)
184 (when (conset-member ,constraint ,conset2)
187 (defun conset-empty (conset)
188 (or (= (conset-min conset) (conset-max conset))
189 ;; TODO: I bet FIND on bit-vectors can be optimized, if it
191 (not (find 1 (conset-vector conset)
192 :start (conset-min conset)
193 ;; By inspection, supplying :END here breaks the
194 ;; build with a "full call to
195 ;; DATA-VECTOR-REF-WITH-OFFSET" in the
196 ;; cross-compiler. If that should change, add
197 ;; :end (conset-max conset)
200 (defun copy-conset (conset)
201 (let ((ret (%copy-conset conset)))
202 (setf (conset-vector ret) (copy-seq (conset-vector conset)))
205 (defun %conset-grow (conset new-size)
206 (declare (type index new-size))
207 (setf (conset-vector conset)
208 (replace (the simple-bit-vector
210 (ash 1 (integer-length (1- new-size)))
213 (the simple-bit-vector
214 (conset-vector conset)))))
216 (declaim (inline conset-grow))
217 (defun conset-grow (conset new-size)
218 (declare (type index new-size))
219 (when (< (length (conset-vector conset)) new-size)
220 (%conset-grow conset new-size))
223 (defun conset-member (constraint conset)
224 (let ((number (%constraint-number constraint))
225 (vector (conset-vector conset)))
226 (when (< number (length vector))
227 (plusp (sbit vector number)))))
229 (defun conset-adjoin (constraint conset)
231 (not (conset-member constraint conset))
232 (let ((number (%constraint-number constraint)))
233 (conset-grow conset (1+ number))
234 (setf (sbit (conset-vector conset) number) 1)
235 (setf (conset-min conset) (min number (conset-min conset)))
236 (when (>= number (conset-max conset))
237 (setf (conset-max conset) (1+ number))))))
239 (defun conset= (conset1 conset2)
240 (let* ((vector1 (conset-vector conset1))
241 (vector2 (conset-vector conset2))
242 (length1 (length vector1))
243 (length2 (length vector2)))
244 (if (= length1 length2)
245 ;; When the lengths are the same, we can rely on EQUAL being
246 ;; nicely optimized on bit-vectors.
247 (equal vector1 vector2)
248 (multiple-value-bind (shorter longer)
249 (if (< length1 length2)
250 (values vector1 vector2)
251 (values vector2 vector1))
252 ;; FIXME: make MISMATCH fast on bit-vectors.
253 (dotimes (index (length shorter))
254 (when (/= (sbit vector1 index) (sbit vector2 index))
255 (return-from conset= nil)))
256 (if (find 1 longer :start (length shorter))
261 ((defconsetop (name bit-op)
262 `(defun ,name (conset-1 conset-2)
263 (declare (optimize (speed 3) (safety 0)))
264 (let* ((size-1 (length (conset-vector conset-1)))
265 (size-2 (length (conset-vector conset-2)))
266 (new-size (max size-1 size-2)))
267 (conset-grow conset-1 new-size)
268 (conset-grow conset-2 new-size))
269 (let ((vector1 (conset-vector conset-1))
270 (vector2 (conset-vector conset-2)))
271 (declare (simple-bit-vector vector1 vector2))
272 (setf (conset-vector conset-1) (,bit-op vector1 vector2 t))
273 ;; Update the extrema.
276 `(setf (conset-min conset-1)
277 (min (conset-min conset-1)
278 (conset-min conset-2))
279 (conset-max conset-1)
280 (max (conset-max conset-1)
281 (conset-max conset-2))))
282 ((conset-intersection)
283 `(let ((start (max (conset-min conset-1)
284 (conset-min conset-2)))
285 (end (min (conset-max conset-1)
286 (conset-max conset-2))))
287 (setf (conset-min conset-1)
290 (or (position 1 (conset-vector conset-1)
291 :start start :end end)
293 (conset-max conset-1)
298 1 (conset-vector conset-1)
299 :start start :end end :from-end t)))
304 `(setf (conset-min conset-1)
305 (or (position 1 (conset-vector conset-1)
306 :start (conset-min conset-1)
307 :end (conset-max conset-1))
309 (conset-max conset-1)
312 1 (conset-vector conset-1)
313 :start (conset-min conset-1)
314 :end (conset-max conset-1)
320 (defconsetop conset-union bit-ior)
321 (defconsetop conset-intersection bit-and)
322 (defconsetop conset-difference bit-andc2)))
324 (defun find-constraint (kind x y not-p)
325 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
328 (do-conset-elements (con (lambda-var-constraints x) nil)
329 (when (and (eq (constraint-kind con) kind)
330 (eq (constraint-not-p con) not-p)
331 (type= (constraint-y con) y))
334 (do-conset-elements (con (lambda-var-constraints x) nil)
335 (when (and (eq (constraint-kind con) kind)
336 (eq (constraint-not-p con) not-p)
337 (eq (constraint-y con) y))
340 (do-conset-elements (con (lambda-var-constraints x) nil)
341 (when (and (eq (constraint-kind con) kind)
342 (eq (constraint-not-p con) not-p)
343 (let ((cx (constraint-x con)))
350 ;;; Return a constraint for the specified arguments. We only create a
351 ;;; new constraint if there isn't already an equivalent old one,
352 ;;; guaranteeing that all equivalent constraints are EQ. This
353 ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set.
354 (defun find-or-create-constraint (kind x y not-p)
355 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
356 (or (find-constraint kind x y not-p)
357 (let ((new (make-constraint (length *constraint-universe*)
359 (vector-push-extend new *constraint-universe*
360 (1+ (length *constraint-universe*)))
361 (conset-adjoin new (lambda-var-constraints x))
362 (when (lambda-var-p y)
363 (conset-adjoin new (lambda-var-constraints y)))
366 ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
367 ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
368 #!-sb-fluid (declaim (inline ok-ref-lambda-var))
369 (defun ok-ref-lambda-var (ref)
370 (declare (type ref ref))
371 (let ((leaf (ref-leaf ref)))
372 (when (and (lambda-var-p leaf)
373 (lambda-var-constraints leaf))
376 ;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
377 ;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
378 (defun ok-lvar-lambda-var (lvar constraints)
379 (declare (type lvar lvar))
380 (let ((use (lvar-uses lvar)))
382 (let ((lambda-var (ok-ref-lambda-var use)))
384 (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
385 (when (and constraint (conset-member constraint constraints))
388 (ok-lvar-lambda-var (cast-value use) constraints)))))
390 (defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
391 (once-only ((var var))
392 `(let ((,symbol ,var))
396 (do-conset-elements (con ,constraints ,result)
397 (let ((other (and (eq (constraint-kind con) 'eql)
398 (eq (constraint-not-p con) nil)
399 (cond ((eq ,var (constraint-x con))
401 ((eq ,var (constraint-y con))
407 (when (lambda-var-p ,symbol)
410 ;;;; Searching constraints
412 ;;; Add the indicated test constraint to BLOCK. We don't add the
413 ;;; constraint if the block has multiple predecessors, since it only
414 ;;; holds on this particular path.
415 (defun add-test-constraint (fun x y not-p constraints target)
416 (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
417 (add-eql-var-var-constraint x y constraints target))
419 (do-eql-vars (x (x constraints))
420 (let ((con (find-or-create-constraint fun x y not-p)))
421 (conset-adjoin con target)))))
424 ;;; Add complementary constraints to the consequent and alternative
425 ;;; blocks of IF. We do nothing if X is NIL.
426 (defun add-complement-constraints (fun x y not-p constraints
427 consequent-constraints
428 alternative-constraints)
430 (add-test-constraint fun x y not-p constraints
431 consequent-constraints)
432 (add-test-constraint fun x y (not not-p) constraints
433 alternative-constraints))
436 ;;; Add test constraints to the consequent and alternative blocks of
437 ;;; the test represented by USE.
438 (defun add-test-constraints (use if constraints)
439 (declare (type node use) (type cif if))
440 ;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
441 ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means that we
442 ;; can't guarantee that the optimization will be done, so we still
443 ;; need to avoid barfing on this case.
444 (unless (eq (if-consequent if) (if-alternative if))
445 (let ((consequent-constraints (make-conset))
446 (alternative-constraints (make-conset)))
447 (macrolet ((add (fun x y not-p)
448 `(add-complement-constraints ,fun ,x ,y ,not-p
450 consequent-constraints
451 alternative-constraints)))
454 (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
455 (specifier-type 'null) t))
457 (unless (eq (combination-kind use)
459 (let ((name (lvar-fun-name
460 (basic-combination-fun use)))
461 (args (basic-combination-args use)))
463 ((%typep %instance-typep)
464 (let ((type (second args)))
465 (when (constant-lvar-p type)
466 (let ((val (lvar-value type)))
468 (ok-lvar-lambda-var (first args) constraints)
471 (let ((*compiler-error-context* use))
472 (specifier-type val)))
475 (let* ((arg1 (first args))
476 (var1 (ok-lvar-lambda-var arg1 constraints))
478 (var2 (ok-lvar-lambda-var arg2 constraints)))
479 ;; The code below assumes that the constant is the
480 ;; second argument in case of variable to constant
481 ;; comparision which is sometimes true (see source
482 ;; transformations for EQ, EQL and CHAR=). Fixing
483 ;; that would result in more constant substitutions
484 ;; which is not a universally good thing, thus the
485 ;; unnatural asymmetry of the tests.
488 (add-test-constraint 'typep var2 (lvar-type arg1)
490 consequent-constraints)))
492 (add 'eql var1 var2 nil))
493 ((constant-lvar-p arg2)
494 (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
497 (add-test-constraint 'typep var1 (lvar-type arg2)
499 consequent-constraints)))))
501 (let* ((arg1 (first args))
502 (var1 (ok-lvar-lambda-var arg1 constraints))
504 (var2 (ok-lvar-lambda-var arg2 constraints)))
506 (add name var1 (lvar-type arg2) nil))
508 (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
510 (let ((ptype (gethash name *backend-predicate-types*)))
512 (add 'typep (ok-lvar-lambda-var (first args) constraints)
514 (values consequent-constraints alternative-constraints))))
516 ;;;; Applying constraints
518 ;;; Return true if X is an integer NUMERIC-TYPE.
519 (defun integer-type-p (x)
520 (declare (type ctype x))
521 (and (numeric-type-p x)
522 (eq (numeric-type-class x) 'integer)
523 (eq (numeric-type-complexp x) :real)))
525 ;;; Given that an inequality holds on values of type X and Y, return a
526 ;;; new type for X. If GREATER is true, then X was greater than Y,
527 ;;; otherwise less. If OR-EQUAL is true, then the inequality was
528 ;;; inclusive, i.e. >=.
530 ;;; If GREATER (or not), then we max (or min) in Y's lower (or upper)
531 ;;; bound into X and return that result. If not OR-EQUAL, we can go
532 ;;; one greater (less) than Y's bound.
533 (defun constrain-integer-type (x y greater or-equal)
534 (declare (type numeric-type x y))
541 (if greater (numeric-type-low x) (numeric-type-high x))))
542 (let* ((x-bound (bound x))
543 (y-bound (exclude (bound y)))
544 (new-bound (cond ((not x-bound) y-bound)
545 ((not y-bound) x-bound)
546 (greater (max x-bound y-bound))
547 (t (min x-bound y-bound)))))
549 (modified-numeric-type x :low new-bound)
550 (modified-numeric-type x :high new-bound)))))
552 ;;; Return true if X is a float NUMERIC-TYPE.
553 (defun float-type-p (x)
554 (declare (type ctype x))
555 (and (numeric-type-p x)
556 (eq (numeric-type-class x) 'float)
557 (eq (numeric-type-complexp x) :real)))
559 ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers.
560 (defun constrain-float-type (x y greater or-equal)
561 (declare (type numeric-type x y))
562 (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE
564 (aver (eql (numeric-type-class x) 'float))
565 (aver (eql (numeric-type-class y) 'float))
566 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
568 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
569 (labels ((exclude (x)
577 (if greater (numeric-type-low x) (numeric-type-high x)))
582 (= (type-bound-number x) (type-bound-number ref)))
583 ;; X is tighter if REF is not an open bound and X is
584 (and (not (consp ref)) (consp x)))
586 (< (type-bound-number ref) (type-bound-number x)))
588 (> (type-bound-number ref) (type-bound-number x))))))
589 (let* ((x-bound (bound x))
590 (y-bound (exclude (bound y)))
591 (new-bound (cond ((not x-bound)
595 ((tighter-p y-bound x-bound)
600 (modified-numeric-type x :low new-bound)
601 (modified-numeric-type x :high new-bound)))))
603 ;;; Given the set of CONSTRAINTS for a variable and the current set of
604 ;;; restrictions from flow analysis IN, set the type for REF
606 (defun constrain-ref-type (ref constraints in)
607 (declare (type ref ref) (type conset constraints in))
608 ;; KLUDGE: The NOT-SET and NOT-FPZ here are so that we don't need to
609 ;; cons up endless union types when propagating large number of EQL
610 ;; constraints -- eg. from large CASE forms -- instead we just
611 ;; directly accumulate one XSET, and a set of fp zeroes, which we at
612 ;; the end turn into a MEMBER-TYPE.
614 ;; Since massive symbol cases are an especially atrocious pattern
615 ;; and the (NOT (MEMBER ...ton of symbols...)) will never turn into
616 ;; a more useful type, don't propagate their negation except for NIL
617 ;; unless SPEED > COMPILATION-SPEED.
618 (let ((res (single-value-type (node-derived-type ref)))
619 (constrain-symbols (policy ref (> speed compilation-speed)))
620 (not-set (alloc-xset))
622 (not-res *empty-type*)
623 (leaf (ref-leaf ref)))
627 (when (or constrain-symbols (null x) (not (symbolp x)))
628 (add-to-xset x not-set)))))
629 ;; KLUDGE: the implementations of DO-CONSET-INTERSECTION will
630 ;; probably run faster when the smaller set comes first, so
631 ;; don't change the order here.
632 (do-conset-intersection (con constraints in)
633 (let* ((x (constraint-x con))
634 (y (constraint-y con))
635 (not-p (constraint-not-p con))
636 (other (if (eq x leaf) y x))
637 (kind (constraint-kind con)))
641 (if (member-type-p other)
642 (mapc-member-type-members #'note-not other)
643 (setq not-res (type-union not-res other)))
644 (setq res (type-approx-intersection2 res other))))
646 (unless (lvar-p other)
647 (let ((other-type (leaf-type other)))
649 (when (and (constant-p other)
650 (member-type-p other-type))
651 (note-not (constant-value other)))
652 (let ((leaf-type (leaf-type leaf)))
654 ((or (constant-p other)
655 (and (leaf-refs other) ; protect from
657 (csubtypep other-type leaf-type)
658 (not (type= other-type leaf-type))))
659 (change-ref-leaf ref other)
660 (when (constant-p other) (return)))
662 (setq res (type-approx-intersection2
663 res other-type)))))))))
666 ((and (integer-type-p res) (integer-type-p y))
667 (let ((greater (eq kind '>)))
668 (let ((greater (if not-p (not greater) greater)))
670 (constrain-integer-type res y greater not-p)))))
671 ((and (float-type-p res) (float-type-p y))
672 (let ((greater (eq kind '>)))
673 (let ((greater (if not-p (not greater) greater)))
675 (constrain-float-type res y greater not-p)))))))))))
676 (cond ((and (if-p (node-dest ref))
677 (or (xset-member-p nil not-set)
678 (csubtypep (specifier-type 'null) not-res)))
679 (setf (node-derived-type ref) *wild-type*)
680 (change-ref-leaf ref (find-constant t)))
683 (type-union not-res (make-member-type :xset not-set :fp-zeroes not-fpz)))
684 (derive-node-type ref
685 (make-single-value-type
686 (or (type-difference res not-res)
688 (maybe-terminate-block ref nil))))
693 (defun maybe-add-eql-var-lvar-constraint (ref gen)
694 (let ((lvar (ref-lvar ref))
695 (leaf (ref-leaf ref)))
696 (when (and (lambda-var-p leaf) lvar)
697 (conset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
700 ;;; Copy all CONSTRAINTS involving FROM-VAR - except the (EQL VAR
701 ;;; LVAR) ones - to all of the variables in the VARS list.
702 (defun inherit-constraints (vars from-var constraints target)
703 (do-conset-elements (con constraints)
704 ;; Constant substitution is controversial.
705 (unless (constant-p (constraint-y con))
707 (let ((eq-x (eq from-var (constraint-x con)))
708 (eq-y (eq from-var (constraint-y con))))
709 (when (or (and eq-x (not (lvar-p (constraint-y con))))
711 (conset-adjoin (find-or-create-constraint
712 (constraint-kind con)
713 (if eq-x var (constraint-x con))
714 (if eq-y var (constraint-y con))
715 (constraint-not-p con))
718 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
719 ;; inherit each other's constraints.
720 (defun add-eql-var-var-constraint (var1 var2 constraints
721 &optional (target constraints))
722 (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
723 (when (conset-adjoin con target)
724 (collect ((eql1) (eql2))
725 (do-eql-vars (var1 (var1 constraints))
727 (do-eql-vars (var2 (var2 constraints))
729 (inherit-constraints (eql1) var2 constraints target)
730 (inherit-constraints (eql2) var1 constraints target))
733 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
734 ;; LAMBDA-VAR if possible.
735 (defun maybe-add-eql-var-var-constraint (var lvar constraints
736 &optional (target constraints))
737 (declare (type lambda-var var) (type lvar lvar))
738 (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
740 (add-eql-var-var-constraint var lambda-var constraints target))))
742 ;;; Local propagation
743 ;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
745 ;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
746 ;;; a type constraint based on the new value type.
747 (declaim (ftype (function (cblock conset boolean)
749 constraint-propagate-in-block))
750 (defun constraint-propagate-in-block (block gen preprocess-refs-p)
751 (do-nodes (node lvar block)
754 (let ((fun (bind-lambda node)))
755 (when (eq (functional-kind fun) :let)
756 (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
757 for var in (lambda-vars fun)
758 and val in (combination-args call)
759 when (and val (lambda-var-constraints var))
760 do (let* ((type (lvar-type val))
761 (con (find-or-create-constraint 'typep var type
763 (conset-adjoin con gen))
764 (maybe-add-eql-var-var-constraint var val gen)))))
766 (when (ok-ref-lambda-var node)
767 (maybe-add-eql-var-lvar-constraint node gen)
768 (when preprocess-refs-p
769 (let* ((var (ref-leaf node))
770 (con (lambda-var-constraints var)))
771 (constrain-ref-type node con gen)))))
773 (let ((lvar (cast-value node)))
774 (let ((var (ok-lvar-lambda-var lvar gen)))
776 (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
777 (do-eql-vars (var (var gen))
778 (let ((con (find-or-create-constraint 'typep var atype nil)))
779 (conset-adjoin con gen))))))))
781 (binding* ((var (set-var node))
782 (nil (lambda-var-p var) :exit-if-null)
783 (cons (lambda-var-constraints var) :exit-if-null))
784 (conset-difference gen cons)
785 (let* ((type (single-value-type (node-derived-type node)))
786 (con (find-or-create-constraint 'typep var type nil)))
787 (conset-adjoin con gen))
788 (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
791 (defun constraint-propagate-if (block gen)
792 (let ((node (block-last block)))
794 (let ((use (lvar-uses (if-test node))))
796 (add-test-constraints use node gen))))))
798 ;;; Starting from IN compute OUT and (consequent/alternative
799 ;;; constraints if the block ends with and IF). Return the list of
800 ;;; successors that may need to be recomputed.
801 (defun find-block-type-constraints (block final-pass-p)
802 (declare (type cblock block))
803 (let ((gen (constraint-propagate-in-block
807 (copy-conset (block-in block)))
809 (setf (block-gen block) gen)
810 (multiple-value-bind (consequent-constraints alternative-constraints)
811 (constraint-propagate-if block gen)
812 (if consequent-constraints
813 (let* ((node (block-last block))
814 (old-consequent-constraints (if-consequent-constraints node))
815 (old-alternative-constraints (if-alternative-constraints node))
817 ;; Add the consequent and alternative constraints to GEN.
818 (cond ((conset-empty consequent-constraints)
819 (setf (if-consequent-constraints node) gen)
820 (setf (if-alternative-constraints node) gen))
822 (setf (if-consequent-constraints node) (copy-conset gen))
823 (conset-union (if-consequent-constraints node)
824 consequent-constraints)
825 (setf (if-alternative-constraints node) gen)
826 (conset-union (if-alternative-constraints node)
827 alternative-constraints)))
828 ;; Has the consequent been changed?
829 (unless (and old-consequent-constraints
830 (conset= (if-consequent-constraints node)
831 old-consequent-constraints))
832 (push (if-consequent node) succ))
833 ;; Has the alternative been changed?
834 (unless (and old-alternative-constraints
835 (conset= (if-alternative-constraints node)
836 old-alternative-constraints))
837 (push (if-alternative node) succ))
840 (unless (and (block-out block)
841 (conset= gen (block-out block)))
842 (setf (block-out block) gen)
843 (block-succ block))))))
845 ;;; Deliver the results of constraint propagation to REFs in BLOCK.
846 ;;; During this pass, we also do local constraint propagation by
847 ;;; adding in constraints as we see them during the pass through the
849 (defun use-result-constraints (block)
850 (declare (type cblock block))
851 (constraint-propagate-in-block block (block-in block) t))
853 ;;; Give an empty constraints set to any var that doesn't have one and
854 ;;; isn't a set closure var. Since a var that we previously rejected
855 ;;; looks identical to one that is new, so we optimistically keep
856 ;;; hoping that vars stop being closed over or lose their sets.
857 (defun init-var-constraints (component)
858 (declare (type component component))
859 (dolist (fun (component-lambdas component))
861 (dolist (var (lambda-vars x))
862 (unless (lambda-var-constraints var)
863 (when (or (null (lambda-var-sets var))
864 (not (closure-var-p var)))
865 (setf (lambda-var-constraints var) (make-conset)))))))
867 (dolist (let (lambda-lets fun))
870 ;;; Return the constraints that flow from PRED to SUCC. This is
871 ;;; BLOCK-OUT unless PRED ends with an IF and test constraints were
873 (defun block-out-for-successor (pred succ)
874 (declare (type cblock pred succ))
875 (let ((last (block-last pred)))
876 (or (when (if-p last)
877 (cond ((eq succ (if-consequent last))
878 (if-consequent-constraints last))
879 ((eq succ (if-alternative last))
880 (if-alternative-constraints last))))
883 (defun compute-block-in (block)
885 (dolist (pred (block-pred block))
886 ;; If OUT has not been calculated, assume it to be the universal
888 (let ((out (block-out-for-successor pred block)))
891 (conset-intersection in out)
892 (setq in (copy-conset out))))))
893 (or in (make-conset))))
895 (defun update-block-in (block)
896 (let ((in (compute-block-in block)))
897 (cond ((and (block-in block) (conset= in (block-in block)))
900 (setf (block-in block) in)))))
902 ;;; Return two lists: one of blocks that precede all loops and
903 ;;; therefore require only one constraint propagation pass and the
904 ;;; rest. This implementation does not find all such blocks.
906 ;;; A more complete implementation would be:
908 ;;; (do-blocks (block component)
909 ;;; (if (every #'(lambda (pred)
910 ;;; (or (member pred leading-blocks)
912 ;;; (block-pred block))
913 ;;; (push block leading-blocks)
914 ;;; (push block rest-of-blocks)))
916 ;;; Trailing blocks that succeed all loops could be found and handled
917 ;;; similarly. In practice though, these more complex solutions are
918 ;;; slightly worse performancewise.
919 (defun leading-component-blocks (component)
920 (declare (type component component))
921 (flet ((loopy-p (block)
922 (let ((n (block-number block)))
923 (dolist (pred (block-pred block))
924 (unless (< n (block-number pred))
926 (let ((leading-blocks ())
929 (do-blocks (block component)
930 (when (and (not seen-loop-p) (loopy-p block))
931 (setq seen-loop-p t))
933 (push block rest-of-blocks)
934 (push block leading-blocks)))
935 (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
937 ;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
938 ;;; a member already.
939 (defun nconc-new (obj list)
940 (do ((x list (cdr x))
944 (setf (cdr prev) (list obj))
947 (when (eql (car x) obj)
948 (return-from nconc-new list))))
950 (defun find-and-propagate-constraints (component)
951 (let ((blocks-to-process ()))
952 (flet ((enqueue (blocks)
953 (dolist (block blocks)
954 (setq blocks-to-process (nconc-new block blocks-to-process)))))
955 (multiple-value-bind (leading-blocks rest-of-blocks)
956 (leading-component-blocks component)
957 ;; Update every block once to account for changes in the
958 ;; IR1. The constraints of the lead blocks cannot be changed
959 ;; after the first pass so we might as well use them and skip
960 ;; USE-RESULT-CONSTRAINTS later.
961 (dolist (block leading-blocks)
962 (setf (block-in block) (compute-block-in block))
963 (find-block-type-constraints block t))
964 (setq blocks-to-process (copy-list rest-of-blocks))
965 ;; The rest of the blocks.
966 (dolist (block rest-of-blocks)
967 (aver (eq block (pop blocks-to-process)))
968 (setf (block-in block) (compute-block-in block))
969 (enqueue (find-block-type-constraints block nil)))
970 ;; Propagate constraints
971 (loop for block = (pop blocks-to-process)
973 (unless (eq block (component-tail component))
974 (when (update-block-in block)
975 (enqueue (find-block-type-constraints block nil)))))
978 (defun constraint-propagate (component)
979 (declare (type component component))
980 (init-var-constraints component)
982 (unless (block-out (component-head component))
983 (setf (block-out (component-head component)) (make-conset)))
985 (dolist (block (find-and-propagate-constraints component))
986 (unless (block-delete-p block)
987 (use-result-constraints block)))