1 ;;;; This file implements the constraint propagation phase of the
2 ;;;; compiler, which uses global flow analysis to obtain dynamic type
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;; -- MV-BIND, :ASSIGNMENT
22 ;;; -- Constraint propagation badly interacts with bottom-up type
23 ;;; inference. Consider
25 ;;; (defun foo (n &aux (i 42))
26 ;;; (declare (optimize speed))
27 ;;; (declare (fixnum n)
28 ;;; #+nil (type (integer 0) i))
32 ;;; (when (>= i n) (go :exit))
37 ;;; In this case CP cannot even infer that I is of class INTEGER.
39 ;;; -- In the above example if we place the check after SETQ, CP will
40 ;;; fail to infer (< I FIXNUM): it does not understand that this
41 ;;; constraint follows from (TYPEP I (INTEGER 0 0)).
45 (deftype constraint-y () '(or ctype lvar lambda-var constant))
47 (defstruct (constraint
48 (:include sset-element)
49 (:constructor make-constraint (number kind x y not-p))
51 ;; the kind of constraint we have:
54 ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is
55 ;; constrained to be of type Y.
58 ;; X is a lambda-var and Y is a CTYPE. The relation holds
59 ;; between X and some object of type Y.
62 ;; X is a LAMBDA-VAR and Y is a LVAR, a LAMBDA-VAR or a CONSTANT.
63 ;; The relation is asserted to hold.
64 (kind nil :type (member typep < > eql))
65 ;; The operands to the relation.
66 (x nil :type lambda-var)
67 (y nil :type constraint-y)
68 ;; If true, negates the sense of the constraint, so the relation
70 (not-p nil :type boolean))
72 (defvar *constraint-number*)
73 (declaim (type (integer 0) *constraint-number*))
75 (defun find-constraint (kind x y not-p)
76 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
79 (do-sset-elements (con (lambda-var-constraints x) nil)
80 (when (and (eq (constraint-kind con) kind)
81 (eq (constraint-not-p con) not-p)
82 (type= (constraint-y con) y))
85 (do-sset-elements (con (lambda-var-constraints x) nil)
86 (when (and (eq (constraint-kind con) kind)
87 (eq (constraint-not-p con) not-p)
88 (eq (constraint-y con) y))
91 (do-sset-elements (con (lambda-var-constraints x) nil)
92 (when (and (eq (constraint-kind con) kind)
93 (eq (constraint-not-p con) not-p)
94 (let ((cx (constraint-x con)))
101 ;;; Return a constraint for the specified arguments. We only create a
102 ;;; new constraint if there isn't already an equivalent old one,
103 ;;; guaranteeing that all equivalent constraints are EQ. This
104 ;;; shouldn't be called on LAMBDA-VARs with no CONSTRAINTS set.
105 (defun find-or-create-constraint (kind x y not-p)
106 (declare (type lambda-var x) (type constraint-y y) (type boolean not-p))
107 (or (find-constraint kind x y not-p)
108 (let ((new (make-constraint (incf *constraint-number*) kind x y not-p)))
109 (sset-adjoin new (lambda-var-constraints x))
110 (when (lambda-var-p y)
111 (sset-adjoin new (lambda-var-constraints y)))
114 ;;; If REF is to a LAMBDA-VAR with CONSTRAINTs (i.e. we can do flow
115 ;;; analysis on it), then return the LAMBDA-VAR, otherwise NIL.
116 #!-sb-fluid (declaim (inline ok-ref-lambda-var))
117 (defun ok-ref-lambda-var (ref)
118 (declare (type ref ref))
119 (let ((leaf (ref-leaf ref)))
120 (when (and (lambda-var-p leaf)
121 (lambda-var-constraints leaf))
124 ;;; See if LVAR's single USE is a REF to a LAMBDA-VAR and they are EQL
125 ;;; according to CONSTRAINTS. Return LAMBDA-VAR if so.
126 (defun ok-lvar-lambda-var (lvar constraints)
127 (declare (type lvar lvar))
128 (let ((use (lvar-uses lvar)))
130 (let ((lambda-var (ok-ref-lambda-var use)))
132 (let ((constraint (find-constraint 'eql lambda-var lvar nil)))
133 (when (and constraint (sset-member constraint constraints))
136 (ok-lvar-lambda-var (cast-value use) constraints)))))
138 (defmacro do-eql-vars ((symbol (var constraints) &optional result) &body body)
139 (once-only ((var var))
140 `(let ((,symbol ,var))
144 (do-sset-elements (con ,constraints ,result)
145 (let ((other (and (eq (constraint-kind con) 'eql)
146 (eq (constraint-not-p con) nil)
147 (cond ((eq ,var (constraint-x con))
149 ((eq ,var (constraint-y con))
155 (when (lambda-var-p ,symbol)
158 ;;;; Searching constraints
160 ;;; Add the indicated test constraint to BLOCK. We don't add the
161 ;;; constraint if the block has multiple predecessors, since it only
162 ;;; holds on this particular path.
163 (defun add-test-constraint (fun x y not-p constraints target)
164 (cond ((and (eq 'eql fun) (lambda-var-p y) (not not-p))
165 (add-eql-var-var-constraint x y constraints target))
167 (do-eql-vars (x (x constraints))
168 (let ((con (find-or-create-constraint fun x y not-p)))
169 (sset-adjoin con target)))))
172 ;;; Add complementary constraints to the consequent and alternative
173 ;;; blocks of IF. We do nothing if X is NIL.
174 (defun add-complement-constraints (if fun x y not-p constraints
175 consequent-constraints
176 alternative-constraints)
178 ;; Note: Even if we do (IF test exp exp) => (PROGN test exp)
179 ;; optimization, the *MAX-OPTIMIZE-ITERATIONS* cutoff means
180 ;; that we can't guarantee that the optimization will be
181 ;; done, so we still need to avoid barfing on this case.
182 (not (eq (if-consequent if)
183 (if-alternative if))))
184 (add-test-constraint fun x y not-p constraints
185 consequent-constraints)
186 (add-test-constraint fun x y (not not-p) constraints
187 alternative-constraints))
190 ;;; Add test constraints to the consequent and alternative blocks of
191 ;;; the test represented by USE.
192 (defun add-test-constraints (use if constraints)
193 (declare (type node use) (type cif if))
194 (let ((consequent-constraints (make-sset))
195 (alternative-constraints (make-sset)))
196 (macrolet ((add (fun x y not-p)
197 `(add-complement-constraints if ,fun ,x ,y ,not-p
199 consequent-constraints
200 alternative-constraints)))
203 (add 'typep (ok-lvar-lambda-var (ref-lvar use) constraints)
204 (specifier-type 'null) t))
206 (unless (eq (combination-kind use)
208 (let ((name (lvar-fun-name
209 (basic-combination-fun use)))
210 (args (basic-combination-args use)))
212 ((%typep %instance-typep)
213 (let ((type (second args)))
214 (when (constant-lvar-p type)
215 (let ((val (lvar-value type)))
216 (add 'typep (ok-lvar-lambda-var (first args) constraints)
219 (specifier-type val))
222 (let* ((var1 (ok-lvar-lambda-var (first args) constraints))
224 (var2 (ok-lvar-lambda-var arg2 constraints)))
227 (add 'eql var1 var2 nil))
228 ((constant-lvar-p arg2)
229 (add 'eql var1 (ref-leaf (principal-lvar-use arg2))
232 (let* ((arg1 (first args))
233 (var1 (ok-lvar-lambda-var arg1 constraints))
235 (var2 (ok-lvar-lambda-var arg2 constraints)))
237 (add name var1 (lvar-type arg2) nil))
239 (add (if (eq name '<) '> '<) var2 (lvar-type arg1) nil))))
241 (let ((ptype (gethash name *backend-predicate-types*)))
243 (add 'typep (ok-lvar-lambda-var (first args) constraints)
245 (values consequent-constraints alternative-constraints)))
247 ;;;; Applying constraints
249 ;;; Return true if X is an integer NUMERIC-TYPE.
250 (defun integer-type-p (x)
251 (declare (type ctype x))
252 (and (numeric-type-p x)
253 (eq (numeric-type-class x) 'integer)
254 (eq (numeric-type-complexp x) :real)))
256 ;;; Given that an inequality holds on values of type X and Y, return a
257 ;;; new type for X. If GREATER is true, then X was greater than Y,
258 ;;; otherwise less. If OR-EQUAL is true, then the inequality was
259 ;;; inclusive, i.e. >=.
261 ;;; If GREATER (or not), then we max (or min) in Y's lower (or upper)
262 ;;; bound into X and return that result. If not OR-EQUAL, we can go
263 ;;; one greater (less) than Y's bound.
264 (defun constrain-integer-type (x y greater or-equal)
265 (declare (type numeric-type x y))
272 (if greater (numeric-type-low x) (numeric-type-high x))))
273 (let* ((x-bound (bound x))
274 (y-bound (exclude (bound y)))
275 (new-bound (cond ((not x-bound) y-bound)
276 ((not y-bound) x-bound)
277 (greater (max x-bound y-bound))
278 (t (min x-bound y-bound)))))
280 (modified-numeric-type x :low new-bound)
281 (modified-numeric-type x :high new-bound)))))
283 ;;; Return true if X is a float NUMERIC-TYPE.
284 (defun float-type-p (x)
285 (declare (type ctype x))
286 (and (numeric-type-p x)
287 (eq (numeric-type-class x) 'float)
288 (eq (numeric-type-complexp x) :real)))
290 ;;; Exactly the same as CONSTRAIN-INTEGER-TYPE, but for float numbers.
291 (defun constrain-float-type (x y greater or-equal)
292 (declare (type numeric-type x y))
293 (declare (ignorable x y greater or-equal)) ; for CROSS-FLOAT-INFINITY-KLUDGE
295 (aver (eql (numeric-type-class x) 'float))
296 (aver (eql (numeric-type-class y) 'float))
297 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
299 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
300 (labels ((exclude (x)
312 (if greater (numeric-type-low x) (numeric-type-high x)))
313 (max-lower-bound (x y)
314 ;; Both X and Y are not null. Find the max.
315 (let ((res (max (type-bound-number x) (type-bound-number y))))
316 ;; An open lower bound is greater than a close
317 ;; lower bound because the open bound doesn't
318 ;; contain the bound, so choose an open lower
320 (set-bound res (or (consp x) (consp y)))))
321 (min-upper-bound (x y)
322 ;; Same as above, but for the min of upper bounds
323 ;; Both X and Y are not null. Find the min.
324 (let ((res (min (type-bound-number x) (type-bound-number y))))
325 ;; An open upper bound is less than a closed
326 ;; upper bound because the open bound doesn't
327 ;; contain the bound, so choose an open lower
329 (set-bound res (or (consp x) (consp y))))))
330 (let* ((x-bound (bound x))
331 (y-bound (exclude (bound y)))
332 (new-bound (cond ((not x-bound)
337 (max-lower-bound x-bound y-bound))
339 (min-upper-bound x-bound y-bound)))))
341 (modified-numeric-type x :low new-bound)
342 (modified-numeric-type x :high new-bound)))))
344 ;;; Given the set of CONSTRAINTS for a variable and the current set of
345 ;;; restrictions from flow analysis IN, set the type for REF
347 (defun constrain-ref-type (ref constraints in)
348 (declare (type ref ref) (type sset constraints in))
349 (let ((var-cons (copy-sset constraints)))
350 (sset-intersection var-cons in)
351 (let ((res (single-value-type (node-derived-type ref)))
352 (not-res *empty-type*)
353 (leaf (ref-leaf ref)))
354 (do-sset-elements (con var-cons)
355 (let* ((x (constraint-x con))
356 (y (constraint-y con))
357 (not-p (constraint-not-p con))
358 (other (if (eq x leaf) y x))
359 (kind (constraint-kind con)))
363 (setq not-res (type-union not-res other))
364 (setq res (type-approx-intersection2 res other))))
366 (unless (lvar-p other)
367 (let ((other-type (leaf-type other)))
369 (when (and (constant-p other)
370 (member-type-p other-type))
371 (setq not-res (type-union not-res other-type)))
372 (let ((leaf-type (leaf-type leaf)))
374 ((or (constant-p other)
375 (and (leaf-refs other) ; protect from
377 (csubtypep other-type leaf-type)
378 (not (type= other-type leaf-type))))
379 (change-ref-leaf ref other)
380 (when (constant-p other) (return)))
382 (setq res (type-approx-intersection2
383 res other-type)))))))))
386 ((and (integer-type-p res) (integer-type-p y))
387 (let ((greater (eq kind '>)))
388 (let ((greater (if not-p (not greater) greater)))
390 (constrain-integer-type res y greater not-p)))))
391 ((and (float-type-p res) (float-type-p y))
392 (let ((greater (eq kind '>)))
393 (let ((greater (if not-p (not greater) greater)))
395 (constrain-float-type res y greater not-p))))))))))
396 (cond ((and (if-p (node-dest ref))
397 (csubtypep (specifier-type 'null) not-res))
398 (setf (node-derived-type ref) *wild-type*)
399 (change-ref-leaf ref (find-constant t)))
401 (derive-node-type ref
402 (make-single-value-type
403 (or (type-difference res not-res)
405 (maybe-terminate-block ref nil)))))
411 (defun maybe-add-eql-var-lvar-constraint (ref gen)
412 (let ((lvar (ref-lvar ref))
413 (leaf (ref-leaf ref)))
414 (when (and (lambda-var-p leaf) lvar)
415 (sset-adjoin (find-or-create-constraint 'eql leaf lvar nil)
418 ;;; Copy all CONSTRAINTS involving FROM-VAR to VAR except the (EQL VAR
420 (defun inherit-constraints (var from-var constraints target)
421 (do-sset-elements (con constraints)
422 (let ((eq-x (eq from-var (constraint-x con)))
423 (eq-y (eq from-var (constraint-y con))))
424 ;; Constant substitution is controversial.
425 (unless (constant-p (constraint-y con))
426 (when (or (and eq-x (not (lvar-p (constraint-y con))))
428 (sset-adjoin (find-or-create-constraint
429 (constraint-kind con)
430 (if eq-x var (constraint-x con))
431 (if eq-y var (constraint-y con))
432 (constraint-not-p con))
435 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR1 and VAR2 and
436 ;; inherit each other's constraints.
437 (defun add-eql-var-var-constraint (var1 var2 constraints
438 &optional (target constraints))
439 (let ((con (find-or-create-constraint 'eql var1 var2 nil)))
440 (when (sset-adjoin con target)
441 (do-eql-vars (var2 (var2 constraints))
442 (inherit-constraints var1 var2 constraints target))
443 (do-eql-vars (var1 (var1 constraints))
444 (inherit-constraints var1 var2 constraints target))
447 ;; Add an (EQL LAMBDA-VAR LAMBDA-VAR) constraint on VAR and LVAR's
448 ;; LAMBDA-VAR if possible.
449 (defun maybe-add-eql-var-var-constraint (var lvar constraints
450 &optional (target constraints))
451 (declare (type lambda-var var) (type lvar lvar))
452 (let ((lambda-var (ok-lvar-lambda-var lvar constraints)))
454 (add-eql-var-var-constraint var lambda-var constraints target))))
456 ;;; Local propagation
457 ;;; -- [TODO: For any LAMBDA-VAR ref with a type check, add that
459 ;;; -- For any LAMBDA-VAR set, delete all constraints on that var; add
460 ;;; a type constraint based on the new value type.
461 (declaim (ftype (function (cblock sset
462 &key (:ref-preprocessor (or null function))
463 (:set-preprocessor (or null function)))
465 constraint-propagate-in-block))
466 (defun constraint-propagate-in-block
467 (block gen &key ref-preprocessor set-preprocessor)
469 (do-nodes (node lvar block)
472 (let ((fun (bind-lambda node)))
473 (when (eq (functional-kind fun) :let)
474 (loop with call = (lvar-dest (node-lvar (first (lambda-refs fun))))
475 for var in (lambda-vars fun)
476 and val in (combination-args call)
477 when (and val (lambda-var-constraints var))
478 do (let* ((type (lvar-type val))
479 (con (find-or-create-constraint 'typep var type
481 (sset-adjoin con gen))
482 (maybe-add-eql-var-var-constraint var val gen)))))
484 (when (ok-ref-lambda-var node)
485 (maybe-add-eql-var-lvar-constraint node gen)
486 (when ref-preprocessor
487 (funcall ref-preprocessor node gen))))
489 (let ((lvar (cast-value node)))
490 (let ((var (ok-lvar-lambda-var lvar gen)))
492 (let ((atype (single-value-type (cast-derived-type node)))) ;FIXME
493 (do-eql-vars (var (var gen))
494 (let ((con (find-or-create-constraint 'typep var atype nil)))
495 (sset-adjoin con gen))))))))
497 (binding* ((var (set-var node))
498 (nil (lambda-var-p var) :exit-if-null)
499 (cons (lambda-var-constraints var) :exit-if-null))
500 (when set-preprocessor
501 (funcall set-preprocessor var))
502 (sset-difference gen cons)
503 (let* ((type (single-value-type (node-derived-type node)))
504 (con (find-or-create-constraint 'typep var type nil)))
505 (sset-adjoin con gen))
506 (maybe-add-eql-var-var-constraint var (set-value node) gen)))))
510 (defun constraint-propagate-if (block gen)
511 (let ((node (block-last block)))
513 (let ((use (lvar-uses (if-test node))))
515 (add-test-constraints use node gen))))))
517 (defun constrain-node (node cons)
518 (let* ((var (ref-leaf node))
519 (con (lambda-var-constraints var)))
520 (constrain-ref-type node con cons)))
522 ;;; Starting from IN compute OUT and (consequent/alternative
523 ;;; constraints if the block ends with and IF). Return the list of
524 ;;; successors that may need to be recomputed.
525 (defun find-block-type-constraints (block &key final-pass-p)
526 (declare (type cblock block))
527 (let ((gen (constraint-propagate-in-block
531 (copy-sset (block-in block)))
532 :ref-preprocessor (if final-pass-p #'constrain-node nil))))
533 (setf (block-gen block) gen)
534 (multiple-value-bind (consequent-constraints alternative-constraints)
535 (constraint-propagate-if block gen)
536 (if consequent-constraints
537 (let* ((node (block-last block))
538 (old-consequent-constraints (if-consequent-constraints node))
539 (old-alternative-constraints (if-alternative-constraints node))
541 ;; Add the consequent and alternative constraints to GEN.
542 (cond ((sset-empty consequent-constraints)
543 (setf (if-consequent-constraints node) gen)
544 (setf (if-alternative-constraints node) gen))
546 (setf (if-consequent-constraints node) (copy-sset gen))
547 (sset-union (if-consequent-constraints node)
548 consequent-constraints)
549 (setf (if-alternative-constraints node) gen)
550 (sset-union (if-alternative-constraints node)
551 alternative-constraints)))
552 ;; Has the consequent been changed?
553 (unless (and old-consequent-constraints
554 (sset= (if-consequent-constraints node)
555 old-consequent-constraints))
556 (push (if-consequent node) succ))
557 ;; Has the alternative been changed?
558 (unless (and old-alternative-constraints
559 (sset= (if-alternative-constraints node)
560 old-alternative-constraints))
561 (push (if-alternative node) succ))
564 (unless (and (block-out block)
565 (sset= gen (block-out block)))
566 (setf (block-out block) gen)
567 (block-succ block))))))
569 ;;; Deliver the results of constraint propagation to REFs in BLOCK.
570 ;;; During this pass, we also do local constraint propagation by
571 ;;; adding in constraints as we see them during the pass through the
573 (defun use-result-constraints (block)
574 (declare (type cblock block))
575 (constraint-propagate-in-block block (block-in block)
576 :ref-preprocessor #'constrain-node))
578 ;;; Give an empty constraints set to any var that doesn't have one and
579 ;;; isn't a set closure var. Since a var that we previously rejected
580 ;;; looks identical to one that is new, so we optimistically keep
581 ;;; hoping that vars stop being closed over or lose their sets.
582 (defun init-var-constraints (component)
583 (declare (type component component))
584 (dolist (fun (component-lambdas component))
586 (dolist (var (lambda-vars x))
587 (unless (lambda-var-constraints var)
588 (when (or (null (lambda-var-sets var))
589 (not (closure-var-p var)))
590 (setf (lambda-var-constraints var) (make-sset)))))))
592 (dolist (let (lambda-lets fun))
595 ;;; Return the constraints that flow from PRED to SUCC. This is
596 ;;; BLOCK-OUT unless PRED ends with and IF and test constraints were
598 (defun block-out-for-successor (pred succ)
599 (declare (type cblock pred succ))
600 (let ((last (block-last pred)))
601 (or (when (if-p last)
602 (cond ((eq succ (if-consequent last))
603 (if-consequent-constraints last))
604 ((eq succ (if-alternative last))
605 (if-alternative-constraints last))))
608 (defun compute-block-in (block)
610 (dolist (pred (block-pred block))
611 ;; If OUT has not been calculated, assume it to be the universal
613 (let ((out (block-out-for-successor pred block)))
616 (sset-intersection in out)
617 (setq in (copy-sset out))))))
618 (or in (make-sset))))
620 (defun update-block-in (block)
621 (let ((in (compute-block-in block)))
622 (cond ((and (block-in block) (sset= in (block-in block)))
625 (setf (block-in block) in)))))
627 ;;; Return two lists: one of blocks that precede all loops and
628 ;;; therefore require only one constraint propagation pass and the
629 ;;; rest. This implementation does not find all such blocks.
631 ;;; A more complete implementation would be:
633 ;;; (do-blocks (block component)
634 ;;; (if (every #'(lambda (pred)
635 ;;; (or (member pred leading-blocks)
637 ;;; (block-pred block))
638 ;;; (push block leading-blocks)
639 ;;; (push block rest-of-blocks)))
641 ;;; Trailing blocks that succeed all loops could be found and handled
642 ;;; similarly. In practice though, these more complex solutions are
643 ;;; slightly worse performancewise.
644 (defun leading-component-blocks (component)
645 (declare (type component component))
646 (flet ((loopy-p (block)
647 (let ((n (block-number block)))
648 (dolist (pred (block-pred block))
649 (unless (< n (block-number pred))
651 (let ((leading-blocks ())
654 (do-blocks (block component)
655 (when (and (not seen-loop-p) (loopy-p block))
656 (setq seen-loop-p t))
658 (push block rest-of-blocks)
659 (push block leading-blocks)))
660 (values (nreverse leading-blocks) (nreverse rest-of-blocks)))))
662 ;;; Append OBJ to the end of LIST as if by NCONC but only if it is not
663 ;;; a member already.
664 (defun nconc-new (obj list)
665 (do ((x list (cdr x))
669 (setf (cdr prev) (list obj))
672 (when (eql (car x) obj)
673 (return-from nconc-new list))))
675 (defun find-and-propagate-constraints (component)
676 (let ((blocks-to-process ()))
677 (flet ((enqueue (blocks)
678 (dolist (block blocks)
679 (setq blocks-to-process (nconc-new block blocks-to-process)))))
680 (multiple-value-bind (leading-blocks rest-of-blocks)
681 (leading-component-blocks component)
682 ;; Update every block once to account for changes in the
683 ;; IR1. The constraints of the lead blocks cannot be changed
684 ;; after the first pass so we might as well use them and skip
685 ;; USE-RESULT-CONSTRAINTS later.
686 (dolist (block leading-blocks)
687 (setf (block-in block) (compute-block-in block))
688 (find-block-type-constraints block :final-pass-p t))
689 (setq blocks-to-process (copy-list rest-of-blocks))
690 ;; The rest of the blocks.
691 (dolist (block rest-of-blocks)
692 (aver (eq block (pop blocks-to-process)))
693 (setf (block-in block) (compute-block-in block))
694 (enqueue (find-block-type-constraints block)))
695 ;; Propagate constraints
696 (loop for block = (pop blocks-to-process)
698 (unless (eq block (component-tail component))
699 (when (update-block-in block)
700 (enqueue (find-block-type-constraints block)))))
703 (defun constraint-propagate (component)
704 (declare (type component component))
705 (init-var-constraints component)
707 (unless (block-out (component-head component))
708 (setf (block-out (component-head component)) (make-sset)))
710 (dolist (block (find-and-propagate-constraints component))
711 (unless (block-delete-p block)
712 (use-result-constraints block)))