1 ;;;; This file contains floating-point-specific transforms, and may be
2 ;;;; somewhat implementation-dependent in its assumptions of what the
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 (defknown %single-float (real) single-float (movable foldable flushable))
19 (defknown %double-float (real) double-float (movable foldable flushable))
21 (deftransform float ((n f) (* single-float) *)
24 (deftransform float ((n f) (* double-float) *)
27 (deftransform float ((n) *)
32 (deftransform %single-float ((n) (single-float) *)
35 (deftransform %double-float ((n) (double-float) *)
39 (macrolet ((frob (fun type)
40 `(deftransform random ((num &optional state)
41 (,type &optional *) *)
42 "Use inline float operations."
43 '(,fun num (or state *random-state*)))))
44 (frob %random-single-float single-float)
45 (frob %random-double-float double-float))
47 ;;; Mersenne Twister RNG
49 ;;; FIXME: It's unpleasant to have RANDOM functionality scattered
50 ;;; through the code this way. It would be nice to move this into the
51 ;;; same file as the other RANDOM definitions.
52 (deftransform random ((num &optional state)
53 ((integer 1 #.(expt 2 sb!vm::n-word-bits)) &optional *))
54 ;; FIXME: I almost conditionalized this as #!+sb-doc. Find some way
55 ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM
56 ;; to let me scan for places that I made this mistake and didn't
58 "use inline (UNSIGNED-BYTE 32) operations"
59 (let ((type (lvar-type num))
60 (limit (expt 2 sb!vm::n-word-bits))
61 (random-chunk (ecase sb!vm::n-word-bits
63 (64 'sb!kernel::big-random-chunk))))
64 (if (numeric-type-p type)
65 (let ((num-high (numeric-type-high (lvar-type num))))
67 (cond ((constant-lvar-p num)
68 ;; Check the worst case sum absolute error for the
69 ;; random number expectations.
70 (let ((rem (rem limit num-high)))
71 (unless (< (/ (* 2 rem (- num-high rem))
73 (expt 2 (- sb!kernel::random-integer-extra-bits)))
74 (give-up-ir1-transform
75 "The random number expectations are inaccurate."))
76 (if (= num-high limit)
77 `(,random-chunk (or state *random-state*))
79 `(rem (,random-chunk (or state *random-state*)) num)
81 ;; Use multiplication, which is faster.
82 `(values (sb!bignum::%multiply
83 (,random-chunk (or state *random-state*))
85 ((> num-high random-fixnum-max)
86 (give-up-ir1-transform
87 "The range is too large to ensure an accurate result."))
90 `(values (sb!bignum::%multiply
91 (,random-chunk (or state *random-state*))
94 `(rem (,random-chunk (or state *random-state*)) num))))
95 ;; KLUDGE: a relatively conservative treatment, but better
96 ;; than a bug (reported by PFD sbcl-devel towards the end of
98 '(rem (random-chunk (or state *random-state*)) num))))
102 (defknown make-single-float ((signed-byte 32)) single-float
103 (movable foldable flushable))
105 (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float
106 (movable foldable flushable))
108 (defknown single-float-bits (single-float) (signed-byte 32)
109 (movable foldable flushable))
111 (defknown double-float-high-bits (double-float) (signed-byte 32)
112 (movable foldable flushable))
114 (defknown double-float-low-bits (double-float) (unsigned-byte 32)
115 (movable foldable flushable))
117 (deftransform float-sign ((float &optional float2)
118 (single-float &optional single-float) *)
120 (let ((temp (gensym)))
121 `(let ((,temp (abs float2)))
122 (if (minusp (single-float-bits float)) (- ,temp) ,temp)))
123 '(if (minusp (single-float-bits float)) -1f0 1f0)))
125 (deftransform float-sign ((float &optional float2)
126 (double-float &optional double-float) *)
128 (let ((temp (gensym)))
129 `(let ((,temp (abs float2)))
130 (if (minusp (double-float-high-bits float)) (- ,temp) ,temp)))
131 '(if (minusp (double-float-high-bits float)) -1d0 1d0)))
133 ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT
135 (defknown decode-single-float (single-float)
136 (values single-float single-float-exponent (single-float -1f0 1f0))
137 (movable foldable flushable))
139 (defknown decode-double-float (double-float)
140 (values double-float double-float-exponent (double-float -1d0 1d0))
141 (movable foldable flushable))
143 (defknown integer-decode-single-float (single-float)
144 (values single-float-significand single-float-int-exponent (integer -1 1))
145 (movable foldable flushable))
147 (defknown integer-decode-double-float (double-float)
148 (values double-float-significand double-float-int-exponent (integer -1 1))
149 (movable foldable flushable))
151 (defknown scale-single-float (single-float integer) single-float
152 (movable foldable flushable))
154 (defknown scale-double-float (double-float integer) double-float
155 (movable foldable flushable))
157 (deftransform decode-float ((x) (single-float) *)
158 '(decode-single-float x))
160 (deftransform decode-float ((x) (double-float) *)
161 '(decode-double-float x))
163 (deftransform integer-decode-float ((x) (single-float) *)
164 '(integer-decode-single-float x))
166 (deftransform integer-decode-float ((x) (double-float) *)
167 '(integer-decode-double-float x))
169 (deftransform scale-float ((f ex) (single-float *) *)
170 (if (and #!+x86 t #!-x86 nil
171 (csubtypep (lvar-type ex)
172 (specifier-type '(signed-byte 32))))
173 '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float)
174 '(scale-single-float f ex)))
176 (deftransform scale-float ((f ex) (double-float *) *)
177 (if (and #!+x86 t #!-x86 nil
178 (csubtypep (lvar-type ex)
179 (specifier-type '(signed-byte 32))))
181 '(scale-double-float f ex)))
183 ;;; What is the CROSS-FLOAT-INFINITY-KLUDGE?
185 ;;; SBCL's own implementation of floating point supports floating
186 ;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and
187 ;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this
188 ;;; floating point support. Thus, we have to avoid running it on the
189 ;;; cross-compilation host, since we're not guaranteed that the
190 ;;; cross-compilation host will support floating point infinities.
192 ;;; If we wanted to live dangerously, we could conditionalize the code
193 ;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation
194 ;;; host happened to be SBCL, we'd be able to run the infinity-using
196 ;;; * SBCL itself gets built with more complete optimization.
198 ;;; * You get a different SBCL depending on what your cross-compilation
200 ;;; So far the pros and cons seem seem to be mostly academic, since
201 ;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't
202 ;;; actually important in compiling SBCL itself. If this changes, then
203 ;;; we have to decide:
204 ;;; * Go for simplicity, leaving things as they are.
205 ;;; * Go for performance at the expense of conceptual clarity,
206 ;;; using #+(OR SBCL SB-XC) and otherwise leaving the build
208 ;;; * Go for performance at the expense of build time, using
209 ;;; #+(OR SBCL SB-XC) and also making SBCL do not just
210 ;;; make-host-1.sh and make-host-2.sh, but a third step
211 ;;; make-host-3.sh where it builds itself under itself. (Such a
212 ;;; 3-step build process could also help with other things, e.g.
213 ;;; using specialized arrays to represent debug information.)
214 ;;; * Rewrite the code so that it doesn't depend on unportable
215 ;;; floating point infinities.
217 ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds
218 ;;; are computed for the result, if possible.
219 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
222 (defun scale-float-derive-type-aux (f ex same-arg)
223 (declare (ignore same-arg))
224 (flet ((scale-bound (x n)
225 ;; We need to be a bit careful here and catch any overflows
226 ;; that might occur. We can ignore underflows which become
230 (scale-float (type-bound-number x) n)
231 (floating-point-overflow ()
234 (when (and (numeric-type-p f) (numeric-type-p ex))
235 (let ((f-lo (numeric-type-low f))
236 (f-hi (numeric-type-high f))
237 (ex-lo (numeric-type-low ex))
238 (ex-hi (numeric-type-high ex))
241 (when (and f-hi ex-hi)
242 (setf new-hi (scale-bound f-hi ex-hi)))
243 (when (and f-lo ex-lo)
244 (setf new-lo (scale-bound f-lo ex-lo)))
245 (make-numeric-type :class (numeric-type-class f)
246 :format (numeric-type-format f)
250 (defoptimizer (scale-single-float derive-type) ((f ex))
251 (two-arg-derive-type f ex #'scale-float-derive-type-aux
252 #'scale-single-float t))
253 (defoptimizer (scale-double-float derive-type) ((f ex))
254 (two-arg-derive-type f ex #'scale-float-derive-type-aux
255 #'scale-double-float t))
257 ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the
258 ;;; FLOAT function return the correct ranges if the input has some
259 ;;; defined range. Quite useful if we want to convert some type of
260 ;;; bounded integer into a float.
263 (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX")))
265 (defun ,aux-name (num)
266 ;; When converting a number to a float, the limits are
268 (let* ((lo (bound-func (lambda (x)
270 (numeric-type-low num)))
271 (hi (bound-func (lambda (x)
273 (numeric-type-high num))))
274 (specifier-type `(,',type ,(or lo '*) ,(or hi '*)))))
276 (defoptimizer (,fun derive-type) ((num))
277 (one-arg-derive-type num #',aux-name #',fun))))))
278 (frob %single-float single-float)
279 (frob %double-float double-float))
284 ;;; Do some stuff to recognize when the loser is doing mixed float and
285 ;;; rational arithmetic, or different float types, and fix it up. If
286 ;;; we don't, he won't even get so much as an efficiency note.
287 (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node)
288 `(,(lvar-fun-name (basic-combination-fun node))
290 (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node)
291 `(,(lvar-fun-name (basic-combination-fun node))
294 (dolist (x '(+ * / -))
295 (%deftransform x '(function (rational float) *) #'float-contagion-arg1)
296 (%deftransform x '(function (float rational) *) #'float-contagion-arg2))
298 (dolist (x '(= < > + * / -))
299 (%deftransform x '(function (single-float double-float) *)
300 #'float-contagion-arg1)
301 (%deftransform x '(function (double-float single-float) *)
302 #'float-contagion-arg2))
304 ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in
305 ;;; general float rational args to comparison, since Common Lisp
306 ;;; semantics says we are supposed to compare as rationals, but we can
307 ;;; do it for any rational that has a precise representation as a
308 ;;; float (such as 0).
309 (macrolet ((frob (op)
310 `(deftransform ,op ((x y) (float rational) *)
311 "open-code FLOAT to RATIONAL comparison"
312 (unless (constant-lvar-p y)
313 (give-up-ir1-transform
314 "The RATIONAL value isn't known at compile time."))
315 (let ((val (lvar-value y)))
316 (unless (eql (rational (float val)) val)
317 (give-up-ir1-transform
318 "~S doesn't have a precise float representation."
320 `(,',op x (float y x)))))
325 ;;;; irrational derive-type methods
327 ;;; Derive the result to be float for argument types in the
328 ;;; appropriate domain.
329 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
330 (dolist (stuff '((asin (real -1.0 1.0))
331 (acos (real -1.0 1.0))
333 (atanh (real -1.0 1.0))
335 (destructuring-bind (name type) stuff
336 (let ((type (specifier-type type)))
337 (setf (fun-info-derive-type (fun-info-or-lose name))
339 (declare (type combination call))
340 (when (csubtypep (lvar-type
341 (first (combination-args call)))
343 (specifier-type 'float)))))))
345 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
346 (defoptimizer (log derive-type) ((x &optional y))
347 (when (and (csubtypep (lvar-type x)
348 (specifier-type '(real 0.0)))
350 (csubtypep (lvar-type y)
351 (specifier-type '(real 0.0)))))
352 (specifier-type 'float)))
354 ;;;; irrational transforms
356 (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick)
357 (double-float) double-float
358 (movable foldable flushable))
360 (defknown (%sin %cos %tanh %sin-quick %cos-quick)
361 (double-float) (double-float -1.0d0 1.0d0)
362 (movable foldable flushable))
364 (defknown (%asin %atan)
366 (double-float #.(coerce (- (/ pi 2)) 'double-float)
367 #.(coerce (/ pi 2) 'double-float))
368 (movable foldable flushable))
371 (double-float) (double-float 0.0d0 #.(coerce pi 'double-float))
372 (movable foldable flushable))
375 (double-float) (double-float 1.0d0)
376 (movable foldable flushable))
378 (defknown (%acosh %exp %sqrt)
379 (double-float) (double-float 0.0d0)
380 (movable foldable flushable))
383 (double-float) (double-float -1d0)
384 (movable foldable flushable))
387 (double-float double-float) (double-float 0d0)
388 (movable foldable flushable))
391 (double-float double-float) double-float
392 (movable foldable flushable))
395 (double-float double-float)
396 (double-float #.(coerce (- pi) 'double-float)
397 #.(coerce pi 'double-float))
398 (movable foldable flushable))
401 (double-float double-float) double-float
402 (movable foldable flushable))
405 (double-float (signed-byte 32)) double-float
406 (movable foldable flushable))
409 (double-float) double-float
410 (movable foldable flushable))
412 (macrolet ((def (name prim rtype)
414 (deftransform ,name ((x) (single-float) ,rtype)
415 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
416 (deftransform ,name ((x) (double-float) ,rtype)
420 (def sqrt %sqrt float)
421 (def asin %asin float)
422 (def acos %acos float)
428 (def acosh %acosh float)
429 (def atanh %atanh float))
431 ;;; The argument range is limited on the x86 FP trig. functions. A
432 ;;; post-test can detect a failure (and load a suitable result), but
433 ;;; this test is avoided if possible.
434 (macrolet ((def (name prim prim-quick)
435 (declare (ignorable prim-quick))
437 (deftransform ,name ((x) (single-float) *)
438 #!+x86 (cond ((csubtypep (lvar-type x)
439 (specifier-type '(single-float
440 (#.(- (expt 2f0 64)))
442 `(coerce (,',prim-quick (coerce x 'double-float))
446 "unable to avoid inline argument range check~@
447 because the argument range (~S) was not within 2^64"
448 (type-specifier (lvar-type x)))
449 `(coerce (,',prim (coerce x 'double-float)) 'single-float)))
450 #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
451 (deftransform ,name ((x) (double-float) *)
452 #!+x86 (cond ((csubtypep (lvar-type x)
453 (specifier-type '(double-float
454 (#.(- (expt 2d0 64)))
459 "unable to avoid inline argument range check~@
460 because the argument range (~S) was not within 2^64"
461 (type-specifier (lvar-type x)))
463 #!-x86 `(,',prim x)))))
464 (def sin %sin %sin-quick)
465 (def cos %cos %cos-quick)
466 (def tan %tan %tan-quick))
468 (deftransform atan ((x y) (single-float single-float) *)
469 `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float))
471 (deftransform atan ((x y) (double-float double-float) *)
474 (deftransform expt ((x y) ((single-float 0f0) single-float) *)
475 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
477 (deftransform expt ((x y) ((double-float 0d0) double-float) *)
479 (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *)
480 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
482 (deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *)
483 `(%pow x (coerce y 'double-float)))
485 ;;; ANSI says log with base zero returns zero.
486 (deftransform log ((x y) (float float) float)
487 '(if (zerop y) y (/ (log x) (log y))))
489 ;;; Handle some simple transformations.
491 (deftransform abs ((x) ((complex double-float)) double-float)
492 '(%hypot (realpart x) (imagpart x)))
494 (deftransform abs ((x) ((complex single-float)) single-float)
495 '(coerce (%hypot (coerce (realpart x) 'double-float)
496 (coerce (imagpart x) 'double-float))
499 (deftransform phase ((x) ((complex double-float)) double-float)
500 '(%atan2 (imagpart x) (realpart x)))
502 (deftransform phase ((x) ((complex single-float)) single-float)
503 '(coerce (%atan2 (coerce (imagpart x) 'double-float)
504 (coerce (realpart x) 'double-float))
507 (deftransform phase ((x) ((float)) float)
508 '(if (minusp (float-sign x))
512 ;;; The number is of type REAL.
513 (defun numeric-type-real-p (type)
514 (and (numeric-type-p type)
515 (eq (numeric-type-complexp type) :real)))
517 ;;; Coerce a numeric type bound to the given type while handling
518 ;;; exclusive bounds.
519 (defun coerce-numeric-bound (bound type)
522 (list (coerce (car bound) type))
523 (coerce bound type))))
525 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
528 ;;;; optimizers for elementary functions
530 ;;;; These optimizers compute the output range of the elementary
531 ;;;; function, based on the domain of the input.
533 ;;; Generate a specifier for a complex type specialized to the same
534 ;;; type as the argument.
535 (defun complex-float-type (arg)
536 (declare (type numeric-type arg))
537 (let* ((format (case (numeric-type-class arg)
538 ((integer rational) 'single-float)
539 (t (numeric-type-format arg))))
540 (float-type (or format 'float)))
541 (specifier-type `(complex ,float-type))))
543 ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float
544 ;;; should be the right kind of float. Allow bounds for the float
546 (defun float-or-complex-float-type (arg &optional lo hi)
547 (declare (type numeric-type arg))
548 (let* ((format (case (numeric-type-class arg)
549 ((integer rational) 'single-float)
550 (t (numeric-type-format arg))))
551 (float-type (or format 'float))
552 (lo (coerce-numeric-bound lo float-type))
553 (hi (coerce-numeric-bound hi float-type)))
554 (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*))
555 (complex ,float-type)))))
559 (eval-when (:compile-toplevel :execute)
560 ;; So the problem with this hack is that it's actually broken. If
561 ;; the host does not have long floats, then setting *R-D-F-F* to
562 ;; LONG-FLOAT doesn't actually buy us anything. FIXME.
563 (setf *read-default-float-format*
564 #!+long-float 'long-float #!-long-float 'double-float))
565 ;;; Test whether the numeric-type ARG is within in domain specified by
566 ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to
568 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
569 (defun domain-subtypep (arg domain-low domain-high)
570 (declare (type numeric-type arg)
571 (type (or real null) domain-low domain-high))
572 (let* ((arg-lo (numeric-type-low arg))
573 (arg-lo-val (type-bound-number arg-lo))
574 (arg-hi (numeric-type-high arg))
575 (arg-hi-val (type-bound-number arg-hi)))
576 ;; Check that the ARG bounds are correctly canonicalized.
577 (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo)
578 (minusp (float-sign arg-lo-val)))
579 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo)
580 (setq arg-lo 0e0 arg-lo-val arg-lo))
581 (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi)
582 (plusp (float-sign arg-hi-val)))
583 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi)
584 (setq arg-hi (ecase *read-default-float-format*
585 (double-float (load-time-value (make-unportable-float :double-float-negative-zero)))
587 (long-float (load-time-value (make-unportable-float :long-float-negative-zero))))
589 (flet ((fp-neg-zero-p (f) ; Is F -0.0?
590 (and (floatp f) (zerop f) (minusp (float-sign f))))
591 (fp-pos-zero-p (f) ; Is F +0.0?
592 (and (floatp f) (zerop f) (plusp (float-sign f)))))
593 (and (or (null domain-low)
594 (and arg-lo (>= arg-lo-val domain-low)
595 (not (and (fp-pos-zero-p domain-low)
596 (fp-neg-zero-p arg-lo)))))
597 (or (null domain-high)
598 (and arg-hi (<= arg-hi-val domain-high)
599 (not (and (fp-neg-zero-p domain-high)
600 (fp-pos-zero-p arg-hi)))))))))
601 (eval-when (:compile-toplevel :execute)
602 (setf *read-default-float-format* 'single-float))
604 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
607 ;;; Handle monotonic functions of a single variable whose domain is
608 ;;; possibly part of the real line. ARG is the variable, FCN is the
609 ;;; function, and DOMAIN is a specifier that gives the (real) domain
610 ;;; of the function. If ARG is a subset of the DOMAIN, we compute the
611 ;;; bounds directly. Otherwise, we compute the bounds for the
612 ;;; intersection between ARG and DOMAIN, and then append a complex
613 ;;; result, which occurs for the parts of ARG not in the DOMAIN.
615 ;;; Negative and positive zero are considered distinct within
616 ;;; DOMAIN-LOW and DOMAIN-HIGH.
618 ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we
619 ;;; can't compute the bounds using FCN.
620 (defun elfun-derive-type-simple (arg fcn domain-low domain-high
621 default-low default-high
622 &optional (increasingp t))
623 (declare (type (or null real) domain-low domain-high))
626 (cond ((eq (numeric-type-complexp arg) :complex)
627 (make-numeric-type :class (numeric-type-class arg)
628 :format (numeric-type-format arg)
630 ((numeric-type-real-p arg)
631 ;; The argument is real, so let's find the intersection
632 ;; between the argument and the domain of the function.
633 ;; We compute the bounds on the intersection, and for
634 ;; everything else, we return a complex number of the
636 (multiple-value-bind (intersection difference)
637 (interval-intersection/difference (numeric-type->interval arg)
643 ;; Process the intersection.
644 (let* ((low (interval-low intersection))
645 (high (interval-high intersection))
646 (res-lo (or (bound-func fcn (if increasingp low high))
648 (res-hi (or (bound-func fcn (if increasingp high low))
650 (format (case (numeric-type-class arg)
651 ((integer rational) 'single-float)
652 (t (numeric-type-format arg))))
653 (bound-type (or format 'float))
658 :low (coerce-numeric-bound res-lo bound-type)
659 :high (coerce-numeric-bound res-hi bound-type))))
660 ;; If the ARG is a subset of the domain, we don't
661 ;; have to worry about the difference, because that
663 (if (or (null difference)
664 ;; Check whether the arg is within the domain.
665 (domain-subtypep arg domain-low domain-high))
668 (specifier-type `(complex ,bound-type))))))
670 ;; No intersection so the result must be purely complex.
671 (complex-float-type arg)))))
673 (float-or-complex-float-type arg default-low default-high))))))
676 ((frob (name domain-low domain-high def-low-bnd def-high-bnd
677 &key (increasingp t))
678 (let ((num (gensym)))
679 `(defoptimizer (,name derive-type) ((,num))
683 (elfun-derive-type-simple arg #',name
684 ,domain-low ,domain-high
685 ,def-low-bnd ,def-high-bnd
688 ;; These functions are easy because they are defined for the whole
690 (frob exp nil nil 0 nil)
691 (frob sinh nil nil nil nil)
692 (frob tanh nil nil -1 1)
693 (frob asinh nil nil nil nil)
695 ;; These functions are only defined for part of the real line. The
696 ;; condition selects the desired part of the line.
697 (frob asin -1d0 1d0 (- (/ pi 2)) (/ pi 2))
698 ;; Acos is monotonic decreasing, so we need to swap the function
699 ;; values at the lower and upper bounds of the input domain.
700 (frob acos -1d0 1d0 0 pi :increasingp nil)
701 (frob acosh 1d0 nil nil nil)
702 (frob atanh -1d0 1d0 -1 1)
703 ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that
705 (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil))
707 ;;; Compute bounds for (expt x y). This should be easy since (expt x
708 ;;; y) = (exp (* y (log x))). However, computations done this way
709 ;;; have too much roundoff. Thus we have to do it the hard way.
710 (defun safe-expt (x y)
712 (when (< (abs y) 10000)
717 ;;; Handle the case when x >= 1.
718 (defun interval-expt-> (x y)
719 (case (sb!c::interval-range-info y 0d0)
721 ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is
722 ;; obviously non-negative. We just have to be careful for
723 ;; infinite bounds (given by nil).
724 (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x))
725 (type-bound-number (sb!c::interval-low y))))
726 (hi (safe-expt (type-bound-number (sb!c::interval-high x))
727 (type-bound-number (sb!c::interval-high y)))))
728 (list (sb!c::make-interval :low (or lo 1) :high hi))))
730 ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is
731 ;; obviously [0, 1]. However, underflow (nil) means 0 is the
733 (let ((lo (safe-expt (type-bound-number (sb!c::interval-high x))
734 (type-bound-number (sb!c::interval-low y))))
735 (hi (safe-expt (type-bound-number (sb!c::interval-low x))
736 (type-bound-number (sb!c::interval-high y)))))
737 (list (sb!c::make-interval :low (or lo 0) :high (or hi 1)))))
739 ;; Split the interval in half.
740 (destructuring-bind (y- y+)
741 (sb!c::interval-split 0 y t)
742 (list (interval-expt-> x y-)
743 (interval-expt-> x y+))))))
745 ;;; Handle the case when x <= 1
746 (defun interval-expt-< (x y)
747 (case (sb!c::interval-range-info x 0d0)
749 ;; The case of 0 <= x <= 1 is easy
750 (case (sb!c::interval-range-info y)
752 ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is
753 ;; obviously [0, 1]. We just have to be careful for infinite bounds
755 (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x))
756 (type-bound-number (sb!c::interval-high y))))
757 (hi (safe-expt (type-bound-number (sb!c::interval-high x))
758 (type-bound-number (sb!c::interval-low y)))))
759 (list (sb!c::make-interval :low (or lo 0) :high (or hi 1)))))
761 ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is
762 ;; obviously [1, inf].
763 (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x))
764 (type-bound-number (sb!c::interval-low y))))
765 (lo (safe-expt (type-bound-number (sb!c::interval-high x))
766 (type-bound-number (sb!c::interval-high y)))))
767 (list (sb!c::make-interval :low (or lo 1) :high hi))))
769 ;; Split the interval in half
770 (destructuring-bind (y- y+)
771 (sb!c::interval-split 0 y t)
772 (list (interval-expt-< x y-)
773 (interval-expt-< x y+))))))
775 ;; The case where x <= 0. Y MUST be an INTEGER for this to work!
776 ;; The calling function must insure this! For now we'll just
777 ;; return the appropriate unbounded float type.
778 (list (sb!c::make-interval :low nil :high nil)))
780 (destructuring-bind (neg pos)
781 (interval-split 0 x t t)
782 (list (interval-expt-< neg y)
783 (interval-expt-< pos y))))))
785 ;;; Compute bounds for (expt x y).
786 (defun interval-expt (x y)
787 (case (interval-range-info x 1)
790 (interval-expt-> x y))
793 (interval-expt-< x y))
795 (destructuring-bind (left right)
796 (interval-split 1 x t t)
797 (list (interval-expt left y)
798 (interval-expt right y))))))
800 (defun fixup-interval-expt (bnd x-int y-int x-type y-type)
801 (declare (ignore x-int))
802 ;; Figure out what the return type should be, given the argument
803 ;; types and bounds and the result type and bounds.
804 (cond ((csubtypep x-type (specifier-type 'integer))
805 ;; an integer to some power
806 (case (numeric-type-class y-type)
808 ;; Positive integer to an integer power is either an
809 ;; integer or a rational.
810 (let ((lo (or (interval-low bnd) '*))
811 (hi (or (interval-high bnd) '*)))
812 (if (and (interval-low y-int)
813 (>= (type-bound-number (interval-low y-int)) 0))
814 (specifier-type `(integer ,lo ,hi))
815 (specifier-type `(rational ,lo ,hi)))))
817 ;; Positive integer to rational power is either a rational
818 ;; or a single-float.
819 (let* ((lo (interval-low bnd))
820 (hi (interval-high bnd))
822 (floor (type-bound-number lo))
825 (ceiling (type-bound-number hi))
828 (bound-func #'float lo)
831 (bound-func #'float hi)
833 (specifier-type `(or (rational ,int-lo ,int-hi)
834 (single-float ,f-lo, f-hi)))))
836 ;; A positive integer to a float power is a float.
837 (modified-numeric-type y-type
838 :low (interval-low bnd)
839 :high (interval-high bnd)))
841 ;; A positive integer to a number is a number (for now).
842 (specifier-type 'number))))
843 ((csubtypep x-type (specifier-type 'rational))
844 ;; a rational to some power
845 (case (numeric-type-class y-type)
847 ;; A positive rational to an integer power is always a rational.
848 (specifier-type `(rational ,(or (interval-low bnd) '*)
849 ,(or (interval-high bnd) '*))))
851 ;; A positive rational to rational power is either a rational
852 ;; or a single-float.
853 (let* ((lo (interval-low bnd))
854 (hi (interval-high bnd))
856 (floor (type-bound-number lo))
859 (ceiling (type-bound-number hi))
862 (bound-func #'float lo)
865 (bound-func #'float hi)
867 (specifier-type `(or (rational ,int-lo ,int-hi)
868 (single-float ,f-lo, f-hi)))))
870 ;; A positive rational to a float power is a float.
871 (modified-numeric-type y-type
872 :low (interval-low bnd)
873 :high (interval-high bnd)))
875 ;; A positive rational to a number is a number (for now).
876 (specifier-type 'number))))
877 ((csubtypep x-type (specifier-type 'float))
878 ;; a float to some power
879 (case (numeric-type-class y-type)
880 ((or integer rational)
881 ;; A positive float to an integer or rational power is
885 :format (numeric-type-format x-type)
886 :low (interval-low bnd)
887 :high (interval-high bnd)))
889 ;; A positive float to a float power is a float of the
893 :format (float-format-max (numeric-type-format x-type)
894 (numeric-type-format y-type))
895 :low (interval-low bnd)
896 :high (interval-high bnd)))
898 ;; A positive float to a number is a number (for now)
899 (specifier-type 'number))))
901 ;; A number to some power is a number.
902 (specifier-type 'number))))
904 (defun merged-interval-expt (x y)
905 (let* ((x-int (numeric-type->interval x))
906 (y-int (numeric-type->interval y)))
907 (mapcar (lambda (type)
908 (fixup-interval-expt type x-int y-int x y))
909 (flatten-list (interval-expt x-int y-int)))))
911 (defun expt-derive-type-aux (x y same-arg)
912 (declare (ignore same-arg))
913 (cond ((or (not (numeric-type-real-p x))
914 (not (numeric-type-real-p y)))
915 ;; Use numeric contagion if either is not real.
916 (numeric-contagion x y))
917 ((csubtypep y (specifier-type 'integer))
918 ;; A real raised to an integer power is well-defined.
919 (merged-interval-expt x y))
920 ;; A real raised to a non-integral power can be a float or a
922 ((or (csubtypep x (specifier-type '(rational 0)))
923 (csubtypep x (specifier-type '(float (0d0)))))
924 ;; But a positive real to any power is well-defined.
925 (merged-interval-expt x y))
926 ((and (csubtypep x (specifier-type 'rational))
927 (csubtypep x (specifier-type 'rational)))
928 ;; A rational to the power of a rational could be a rational
929 ;; or a possibly-complex single float
930 (specifier-type '(or rational single-float (complex single-float))))
932 ;; a real to some power. The result could be a real or a
934 (float-or-complex-float-type (numeric-contagion x y)))))
936 (defoptimizer (expt derive-type) ((x y))
937 (two-arg-derive-type x y #'expt-derive-type-aux #'expt))
939 ;;; Note we must assume that a type including 0.0 may also include
940 ;;; -0.0 and thus the result may be complex -infinity + i*pi.
941 (defun log-derive-type-aux-1 (x)
942 (elfun-derive-type-simple x #'log 0d0 nil nil nil))
944 (defun log-derive-type-aux-2 (x y same-arg)
945 (let ((log-x (log-derive-type-aux-1 x))
946 (log-y (log-derive-type-aux-1 y))
947 (accumulated-list nil))
948 ;; LOG-X or LOG-Y might be union types. We need to run through
949 ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't.
950 (dolist (x-type (prepare-arg-for-derive-type log-x))
951 (dolist (y-type (prepare-arg-for-derive-type log-y))
952 (push (/-derive-type-aux x-type y-type same-arg) accumulated-list)))
953 (apply #'type-union (flatten-list accumulated-list))))
955 (defoptimizer (log derive-type) ((x &optional y))
957 (two-arg-derive-type x y #'log-derive-type-aux-2 #'log)
958 (one-arg-derive-type x #'log-derive-type-aux-1 #'log)))
960 (defun atan-derive-type-aux-1 (y)
961 (elfun-derive-type-simple y #'atan nil nil (- (/ pi 2)) (/ pi 2)))
963 (defun atan-derive-type-aux-2 (y x same-arg)
964 (declare (ignore same-arg))
965 ;; The hard case with two args. We just return the max bounds.
966 (let ((result-type (numeric-contagion y x)))
967 (cond ((and (numeric-type-real-p x)
968 (numeric-type-real-p y))
969 (let* (;; FIXME: This expression for FORMAT seems to
970 ;; appear multiple times, and should be factored out.
971 (format (case (numeric-type-class result-type)
972 ((integer rational) 'single-float)
973 (t (numeric-type-format result-type))))
974 (bound-format (or format 'float)))
975 (make-numeric-type :class 'float
978 :low (coerce (- pi) bound-format)
979 :high (coerce pi bound-format))))
981 ;; The result is a float or a complex number
982 (float-or-complex-float-type result-type)))))
984 (defoptimizer (atan derive-type) ((y &optional x))
986 (two-arg-derive-type y x #'atan-derive-type-aux-2 #'atan)
987 (one-arg-derive-type y #'atan-derive-type-aux-1 #'atan)))
989 (defun cosh-derive-type-aux (x)
990 ;; We note that cosh x = cosh |x| for all real x.
991 (elfun-derive-type-simple
992 (if (numeric-type-real-p x)
993 (abs-derive-type-aux x)
995 #'cosh nil nil 0 nil))
997 (defoptimizer (cosh derive-type) ((num))
998 (one-arg-derive-type num #'cosh-derive-type-aux #'cosh))
1000 (defun phase-derive-type-aux (arg)
1001 (let* ((format (case (numeric-type-class arg)
1002 ((integer rational) 'single-float)
1003 (t (numeric-type-format arg))))
1004 (bound-type (or format 'float)))
1005 (cond ((numeric-type-real-p arg)
1006 (case (interval-range-info (numeric-type->interval arg) 0.0)
1008 ;; The number is positive, so the phase is 0.
1009 (make-numeric-type :class 'float
1012 :low (coerce 0 bound-type)
1013 :high (coerce 0 bound-type)))
1015 ;; The number is always negative, so the phase is pi.
1016 (make-numeric-type :class 'float
1019 :low (coerce pi bound-type)
1020 :high (coerce pi bound-type)))
1022 ;; We can't tell. The result is 0 or pi. Use a union
1025 (make-numeric-type :class 'float
1028 :low (coerce 0 bound-type)
1029 :high (coerce 0 bound-type))
1030 (make-numeric-type :class 'float
1033 :low (coerce pi bound-type)
1034 :high (coerce pi bound-type))))))
1036 ;; We have a complex number. The answer is the range -pi
1037 ;; to pi. (-pi is included because we have -0.)
1038 (make-numeric-type :class 'float
1041 :low (coerce (- pi) bound-type)
1042 :high (coerce pi bound-type))))))
1044 (defoptimizer (phase derive-type) ((num))
1045 (one-arg-derive-type num #'phase-derive-type-aux #'phase))
1049 (deftransform realpart ((x) ((complex rational)) *)
1050 '(sb!kernel:%realpart x))
1051 (deftransform imagpart ((x) ((complex rational)) *)
1052 '(sb!kernel:%imagpart x))
1054 ;;; Make REALPART and IMAGPART return the appropriate types. This
1055 ;;; should help a lot in optimized code.
1056 (defun realpart-derive-type-aux (type)
1057 (let ((class (numeric-type-class type))
1058 (format (numeric-type-format type)))
1059 (cond ((numeric-type-real-p type)
1060 ;; The realpart of a real has the same type and range as
1062 (make-numeric-type :class class
1065 :low (numeric-type-low type)
1066 :high (numeric-type-high type)))
1068 ;; We have a complex number. The result has the same type
1069 ;; as the real part, except that it's real, not complex,
1071 (make-numeric-type :class class
1074 :low (numeric-type-low type)
1075 :high (numeric-type-high type))))))
1076 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1077 (defoptimizer (realpart derive-type) ((num))
1078 (one-arg-derive-type num #'realpart-derive-type-aux #'realpart))
1079 (defun imagpart-derive-type-aux (type)
1080 (let ((class (numeric-type-class type))
1081 (format (numeric-type-format type)))
1082 (cond ((numeric-type-real-p type)
1083 ;; The imagpart of a real has the same type as the input,
1084 ;; except that it's zero.
1085 (let ((bound-format (or format class 'real)))
1086 (make-numeric-type :class class
1089 :low (coerce 0 bound-format)
1090 :high (coerce 0 bound-format))))
1092 ;; We have a complex number. The result has the same type as
1093 ;; the imaginary part, except that it's real, not complex,
1095 (make-numeric-type :class class
1098 :low (numeric-type-low type)
1099 :high (numeric-type-high type))))))
1100 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1101 (defoptimizer (imagpart derive-type) ((num))
1102 (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart))
1104 (defun complex-derive-type-aux-1 (re-type)
1105 (if (numeric-type-p re-type)
1106 (make-numeric-type :class (numeric-type-class re-type)
1107 :format (numeric-type-format re-type)
1108 :complexp (if (csubtypep re-type
1109 (specifier-type 'rational))
1112 :low (numeric-type-low re-type)
1113 :high (numeric-type-high re-type))
1114 (specifier-type 'complex)))
1116 (defun complex-derive-type-aux-2 (re-type im-type same-arg)
1117 (declare (ignore same-arg))
1118 (if (and (numeric-type-p re-type)
1119 (numeric-type-p im-type))
1120 ;; Need to check to make sure numeric-contagion returns the
1121 ;; right type for what we want here.
1123 ;; Also, what about rational canonicalization, like (complex 5 0)
1124 ;; is 5? So, if the result must be complex, we make it so.
1125 ;; If the result might be complex, which happens only if the
1126 ;; arguments are rational, we make it a union type of (or
1127 ;; rational (complex rational)).
1128 (let* ((element-type (numeric-contagion re-type im-type))
1129 (rat-result-p (csubtypep element-type
1130 (specifier-type 'rational))))
1132 (type-union element-type
1134 `(complex ,(numeric-type-class element-type))))
1135 (make-numeric-type :class (numeric-type-class element-type)
1136 :format (numeric-type-format element-type)
1137 :complexp (if rat-result-p
1140 (specifier-type 'complex)))
1142 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1143 (defoptimizer (complex derive-type) ((re &optional im))
1145 (two-arg-derive-type re im #'complex-derive-type-aux-2 #'complex)
1146 (one-arg-derive-type re #'complex-derive-type-aux-1 #'complex)))
1148 ;;; Define some transforms for complex operations. We do this in lieu
1149 ;;; of complex operation VOPs.
1150 (macrolet ((frob (type)
1153 (deftransform %negate ((z) ((complex ,type)) *)
1154 '(complex (%negate (realpart z)) (%negate (imagpart z))))
1155 ;; complex addition and subtraction
1156 (deftransform + ((w z) ((complex ,type) (complex ,type)) *)
1157 '(complex (+ (realpart w) (realpart z))
1158 (+ (imagpart w) (imagpart z))))
1159 (deftransform - ((w z) ((complex ,type) (complex ,type)) *)
1160 '(complex (- (realpart w) (realpart z))
1161 (- (imagpart w) (imagpart z))))
1162 ;; Add and subtract a complex and a real.
1163 (deftransform + ((w z) ((complex ,type) real) *)
1164 '(complex (+ (realpart w) z) (imagpart w)))
1165 (deftransform + ((z w) (real (complex ,type)) *)
1166 '(complex (+ (realpart w) z) (imagpart w)))
1167 ;; Add and subtract a real and a complex number.
1168 (deftransform - ((w z) ((complex ,type) real) *)
1169 '(complex (- (realpart w) z) (imagpart w)))
1170 (deftransform - ((z w) (real (complex ,type)) *)
1171 '(complex (- z (realpart w)) (- (imagpart w))))
1172 ;; Multiply and divide two complex numbers.
1173 (deftransform * ((x y) ((complex ,type) (complex ,type)) *)
1174 '(let* ((rx (realpart x))
1178 (complex (- (* rx ry) (* ix iy))
1179 (+ (* rx iy) (* ix ry)))))
1180 (deftransform / ((x y) ((complex ,type) (complex ,type)) *)
1181 '(let* ((rx (realpart x))
1185 (if (> (abs ry) (abs iy))
1186 (let* ((r (/ iy ry))
1187 (dn (* ry (+ 1 (* r r)))))
1188 (complex (/ (+ rx (* ix r)) dn)
1189 (/ (- ix (* rx r)) dn)))
1190 (let* ((r (/ ry iy))
1191 (dn (* iy (+ 1 (* r r)))))
1192 (complex (/ (+ (* rx r) ix) dn)
1193 (/ (- (* ix r) rx) dn))))))
1194 ;; Multiply a complex by a real or vice versa.
1195 (deftransform * ((w z) ((complex ,type) real) *)
1196 '(complex (* (realpart w) z) (* (imagpart w) z)))
1197 (deftransform * ((z w) (real (complex ,type)) *)
1198 '(complex (* (realpart w) z) (* (imagpart w) z)))
1199 ;; Divide a complex by a real.
1200 (deftransform / ((w z) ((complex ,type) real) *)
1201 '(complex (/ (realpart w) z) (/ (imagpart w) z)))
1202 ;; conjugate of complex number
1203 (deftransform conjugate ((z) ((complex ,type)) *)
1204 '(complex (realpart z) (- (imagpart z))))
1206 (deftransform cis ((z) ((,type)) *)
1207 '(complex (cos z) (sin z)))
1209 (deftransform = ((w z) ((complex ,type) (complex ,type)) *)
1210 '(and (= (realpart w) (realpart z))
1211 (= (imagpart w) (imagpart z))))
1212 (deftransform = ((w z) ((complex ,type) real) *)
1213 '(and (= (realpart w) z) (zerop (imagpart w))))
1214 (deftransform = ((w z) (real (complex ,type)) *)
1215 '(and (= (realpart z) w) (zerop (imagpart z)))))))
1218 (frob double-float))
1220 ;;; Here are simple optimizers for SIN, COS, and TAN. They do not
1221 ;;; produce a minimal range for the result; the result is the widest
1222 ;;; possible answer. This gets around the problem of doing range
1223 ;;; reduction correctly but still provides useful results when the
1224 ;;; inputs are union types.
1225 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1227 (defun trig-derive-type-aux (arg domain fcn
1228 &optional def-lo def-hi (increasingp t))
1231 (cond ((eq (numeric-type-complexp arg) :complex)
1232 (make-numeric-type :class (numeric-type-class arg)
1233 :format (numeric-type-format arg)
1234 :complexp :complex))
1235 ((numeric-type-real-p arg)
1236 (let* ((format (case (numeric-type-class arg)
1237 ((integer rational) 'single-float)
1238 (t (numeric-type-format arg))))
1239 (bound-type (or format 'float)))
1240 ;; If the argument is a subset of the "principal" domain
1241 ;; of the function, we can compute the bounds because
1242 ;; the function is monotonic. We can't do this in
1243 ;; general for these periodic functions because we can't
1244 ;; (and don't want to) do the argument reduction in
1245 ;; exactly the same way as the functions themselves do
1247 (if (csubtypep arg domain)
1248 (let ((res-lo (bound-func fcn (numeric-type-low arg)))
1249 (res-hi (bound-func fcn (numeric-type-high arg))))
1251 (rotatef res-lo res-hi))
1255 :low (coerce-numeric-bound res-lo bound-type)
1256 :high (coerce-numeric-bound res-hi bound-type)))
1260 :low (and def-lo (coerce def-lo bound-type))
1261 :high (and def-hi (coerce def-hi bound-type))))))
1263 (float-or-complex-float-type arg def-lo def-hi))))))
1265 (defoptimizer (sin derive-type) ((num))
1266 (one-arg-derive-type
1269 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1270 (trig-derive-type-aux
1272 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1277 (defoptimizer (cos derive-type) ((num))
1278 (one-arg-derive-type
1281 ;; Derive the bounds if the arg is in [0, pi].
1282 (trig-derive-type-aux arg
1283 (specifier-type `(float 0d0 ,pi))
1289 (defoptimizer (tan derive-type) ((num))
1290 (one-arg-derive-type
1293 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1294 (trig-derive-type-aux arg
1295 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1300 ;;; CONJUGATE always returns the same type as the input type.
1302 ;;; FIXME: ANSI allows any subtype of REAL for the components of COMPLEX.
1303 ;;; So what if the input type is (COMPLEX (SINGLE-FLOAT 0 1))?
1304 (defoptimizer (conjugate derive-type) ((num))
1307 (defoptimizer (cis derive-type) ((num))
1308 (one-arg-derive-type num
1310 (sb!c::specifier-type
1311 `(complex ,(or (numeric-type-format arg) 'float))))
1316 ;;;; TRUNCATE, FLOOR, CEILING, and ROUND
1318 (macrolet ((define-frobs (fun ufun)
1320 (defknown ,ufun (real) integer (movable foldable flushable))
1321 (deftransform ,fun ((x &optional by)
1323 (constant-arg (member 1))))
1324 '(let ((res (,ufun x)))
1325 (values res (- x res)))))))
1326 (define-frobs truncate %unary-truncate)
1327 (define-frobs round %unary-round))
1329 ;;; Convert (TRUNCATE x y) to the obvious implementation. We only want
1330 ;;; this when under certain conditions and let the generic TRUNCATE
1331 ;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y
1332 ;;; should be removed by other DEFTRANSFORMs.)
1333 (deftransform truncate ((x &optional y)
1334 (float &optional (or float integer)))
1335 (let ((defaulted-y (if y 'y 1)))
1336 `(let ((res (%unary-truncate (/ x ,defaulted-y))))
1337 (values res (- x (* ,defaulted-y res))))))
1339 (deftransform floor ((number &optional divisor)
1340 (float &optional (or integer float)))
1341 (let ((defaulted-divisor (if divisor 'divisor 1)))
1342 `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor)
1343 (if (and (not (zerop rem))
1344 (if (minusp ,defaulted-divisor)
1347 (values (1- tru) (+ rem ,defaulted-divisor))
1348 (values tru rem)))))
1350 (deftransform ceiling ((number &optional divisor)
1351 (float &optional (or integer float)))
1352 (let ((defaulted-divisor (if divisor 'divisor 1)))
1353 `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor)
1354 (if (and (not (zerop rem))
1355 (if (minusp ,defaulted-divisor)
1358 (values (1+ tru) (- rem ,defaulted-divisor))
1359 (values tru rem)))))
1361 (defknown %unary-ftruncate (real) float (movable foldable flushable))
1362 (defknown %unary-ftruncate/single (single-float) single-float
1363 (movable foldable flushable))
1364 (defknown %unary-ftruncate/double (double-float) double-float
1365 (movable foldable flushable))
1367 (defun %unary-ftruncate/single (x)
1368 (declare (type single-float x))
1369 (declare (optimize speed (safety 0)))
1370 (let* ((bits (single-float-bits x))
1371 (exp (ldb sb!vm:single-float-exponent-byte bits))
1372 (biased (the single-float-exponent
1373 (- exp sb!vm:single-float-bias))))
1374 (declare (type (signed-byte 32) bits))
1376 ((= exp sb!vm:single-float-normal-exponent-max) x)
1377 ((<= biased 0) (* x 0f0))
1378 ((>= biased (float-digits x)) x)
1380 (let ((frac-bits (- (float-digits x) biased)))
1381 (setf bits (logandc2 bits (- (ash 1 frac-bits) 1)))
1382 (make-single-float bits))))))
1384 (defun %unary-ftruncate/double (x)
1385 (declare (type double-float x))
1386 (declare (optimize speed (safety 0)))
1387 (let* ((high (double-float-high-bits x))
1388 (low (double-float-low-bits x))
1389 (exp (ldb sb!vm:double-float-exponent-byte high))
1390 (biased (the double-float-exponent
1391 (- exp sb!vm:double-float-bias))))
1392 (declare (type (signed-byte 32) high)
1393 (type (unsigned-byte 32) low))
1395 ((= exp sb!vm:double-float-normal-exponent-max) x)
1396 ((<= biased 0) (* x 0d0))
1397 ((>= biased (float-digits x)) x)
1399 (let ((frac-bits (- (float-digits x) biased)))
1400 (cond ((< frac-bits 32)
1401 (setf low (logandc2 low (- (ash 1 frac-bits) 1))))
1404 (setf high (logandc2 high (- (ash 1 (- frac-bits 32)) 1)))))
1405 (make-double-float high low))))))
1408 ((def (float-type fun)
1409 `(deftransform %unary-ftruncate ((x) (,float-type))
1411 (def single-float %unary-ftruncate/single)
1412 (def double-float %unary-ftruncate/double))