1 ;;;; This file contains floating-point-specific transforms, and may be
2 ;;;; somewhat implementation-dependent in its assumptions of what the
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 (defknown %single-float (real) single-float (movable foldable))
19 (defknown %double-float (real) double-float (movable foldable))
21 (deftransform float ((n f) (* single-float) *)
24 (deftransform float ((n f) (* double-float) *)
27 (deftransform float ((n) *)
32 (deftransform %single-float ((n) (single-float) *)
35 (deftransform %double-float ((n) (double-float) *)
39 (macrolet ((frob (fun type)
40 `(deftransform random ((num &optional state)
41 (,type &optional *) *)
42 "Use inline float operations."
43 '(,fun num (or state *random-state*)))))
44 (frob %random-single-float single-float)
45 (frob %random-double-float double-float))
47 ;;; Mersenne Twister RNG
49 ;;; FIXME: It's unpleasant to have RANDOM functionality scattered
50 ;;; through the code this way. It would be nice to move this into the
51 ;;; same file as the other RANDOM definitions.
52 (deftransform random ((num &optional state)
53 ((integer 1 #.(expt 2 sb!vm::n-word-bits)) &optional *))
54 ;; FIXME: I almost conditionalized this as #!+sb-doc. Find some way
55 ;; of automatically finding #!+sb-doc in proximity to DEFTRANSFORM
56 ;; to let me scan for places that I made this mistake and didn't
58 "use inline (UNSIGNED-BYTE 32) operations"
59 (let ((type (lvar-type num))
60 (limit (expt 2 sb!vm::n-word-bits))
61 (random-chunk (ecase sb!vm::n-word-bits
63 (64 'sb!kernel::big-random-chunk))))
64 (if (numeric-type-p type)
65 (let ((num-high (numeric-type-high (lvar-type num))))
67 (cond ((constant-lvar-p num)
68 ;; Check the worst case sum absolute error for the
69 ;; random number expectations.
70 (let ((rem (rem limit num-high)))
71 (unless (< (/ (* 2 rem (- num-high rem))
73 (expt 2 (- sb!kernel::random-integer-extra-bits)))
74 (give-up-ir1-transform
75 "The random number expectations are inaccurate."))
76 (if (= num-high limit)
77 `(,random-chunk (or state *random-state*))
79 `(rem (,random-chunk (or state *random-state*)) num)
81 ;; Use multiplication, which is faster.
82 `(values (sb!bignum::%multiply
83 (,random-chunk (or state *random-state*))
85 ((> num-high random-fixnum-max)
86 (give-up-ir1-transform
87 "The range is too large to ensure an accurate result."))
90 `(values (sb!bignum::%multiply
91 (,random-chunk (or state *random-state*))
94 `(rem (,random-chunk (or state *random-state*)) num))))
95 ;; KLUDGE: a relatively conservative treatment, but better
96 ;; than a bug (reported by PFD sbcl-devel towards the end of
98 '(rem (random-chunk (or state *random-state*)) num))))
102 (defknown make-single-float ((signed-byte 32)) single-float
103 (movable foldable flushable))
105 (defknown make-double-float ((signed-byte 32) (unsigned-byte 32)) double-float
106 (movable foldable flushable))
108 (defknown single-float-bits (single-float) (signed-byte 32)
109 (movable foldable flushable))
111 (defknown double-float-high-bits (double-float) (signed-byte 32)
112 (movable foldable flushable))
114 (defknown double-float-low-bits (double-float) (unsigned-byte 32)
115 (movable foldable flushable))
117 (deftransform float-sign ((float &optional float2)
118 (single-float &optional single-float) *)
120 (let ((temp (gensym)))
121 `(let ((,temp (abs float2)))
122 (if (minusp (single-float-bits float)) (- ,temp) ,temp)))
123 '(if (minusp (single-float-bits float)) -1f0 1f0)))
125 (deftransform float-sign ((float &optional float2)
126 (double-float &optional double-float) *)
128 (let ((temp (gensym)))
129 `(let ((,temp (abs float2)))
130 (if (minusp (double-float-high-bits float)) (- ,temp) ,temp)))
131 '(if (minusp (double-float-high-bits float)) -1d0 1d0)))
133 ;;;; DECODE-FLOAT, INTEGER-DECODE-FLOAT, and SCALE-FLOAT
135 (defknown decode-single-float (single-float)
136 (values single-float single-float-exponent (single-float -1f0 1f0))
137 (movable foldable flushable))
139 (defknown decode-double-float (double-float)
140 (values double-float double-float-exponent (double-float -1d0 1d0))
141 (movable foldable flushable))
143 (defknown integer-decode-single-float (single-float)
144 (values single-float-significand single-float-int-exponent (integer -1 1))
145 (movable foldable flushable))
147 (defknown integer-decode-double-float (double-float)
148 (values double-float-significand double-float-int-exponent (integer -1 1))
149 (movable foldable flushable))
151 (defknown scale-single-float (single-float integer) single-float
152 (movable foldable flushable))
154 (defknown scale-double-float (double-float integer) double-float
155 (movable foldable flushable))
157 (deftransform decode-float ((x) (single-float) *)
158 '(decode-single-float x))
160 (deftransform decode-float ((x) (double-float) *)
161 '(decode-double-float x))
163 (deftransform integer-decode-float ((x) (single-float) *)
164 '(integer-decode-single-float x))
166 (deftransform integer-decode-float ((x) (double-float) *)
167 '(integer-decode-double-float x))
169 (deftransform scale-float ((f ex) (single-float *) *)
170 (if (and #!+x86 t #!-x86 nil
171 (csubtypep (lvar-type ex)
172 (specifier-type '(signed-byte 32))))
173 '(coerce (%scalbn (coerce f 'double-float) ex) 'single-float)
174 '(scale-single-float f ex)))
176 (deftransform scale-float ((f ex) (double-float *) *)
177 (if (and #!+x86 t #!-x86 nil
178 (csubtypep (lvar-type ex)
179 (specifier-type '(signed-byte 32))))
181 '(scale-double-float f ex)))
183 ;;; What is the CROSS-FLOAT-INFINITY-KLUDGE?
185 ;;; SBCL's own implementation of floating point supports floating
186 ;;; point infinities. Some of the old CMU CL :PROPAGATE-FLOAT-TYPE and
187 ;;; :PROPAGATE-FUN-TYPE code, like the DEFOPTIMIZERs below, uses this
188 ;;; floating point support. Thus, we have to avoid running it on the
189 ;;; cross-compilation host, since we're not guaranteed that the
190 ;;; cross-compilation host will support floating point infinities.
192 ;;; If we wanted to live dangerously, we could conditionalize the code
193 ;;; with #+(OR SBCL SB-XC) instead. That way, if the cross-compilation
194 ;;; host happened to be SBCL, we'd be able to run the infinity-using
196 ;;; * SBCL itself gets built with more complete optimization.
198 ;;; * You get a different SBCL depending on what your cross-compilation
200 ;;; So far the pros and cons seem seem to be mostly academic, since
201 ;;; AFAIK (WHN 2001-08-28) the propagate-foo-type optimizations aren't
202 ;;; actually important in compiling SBCL itself. If this changes, then
203 ;;; we have to decide:
204 ;;; * Go for simplicity, leaving things as they are.
205 ;;; * Go for performance at the expense of conceptual clarity,
206 ;;; using #+(OR SBCL SB-XC) and otherwise leaving the build
208 ;;; * Go for performance at the expense of build time, using
209 ;;; #+(OR SBCL SB-XC) and also making SBCL do not just
210 ;;; make-host-1.sh and make-host-2.sh, but a third step
211 ;;; make-host-3.sh where it builds itself under itself. (Such a
212 ;;; 3-step build process could also help with other things, e.g.
213 ;;; using specialized arrays to represent debug information.)
214 ;;; * Rewrite the code so that it doesn't depend on unportable
215 ;;; floating point infinities.
217 ;;; optimizers for SCALE-FLOAT. If the float has bounds, new bounds
218 ;;; are computed for the result, if possible.
219 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
222 (defun scale-float-derive-type-aux (f ex same-arg)
223 (declare (ignore same-arg))
224 (flet ((scale-bound (x n)
225 ;; We need to be a bit careful here and catch any overflows
226 ;; that might occur. We can ignore underflows which become
230 (scale-float (type-bound-number x) n)
231 (floating-point-overflow ()
234 (when (and (numeric-type-p f) (numeric-type-p ex))
235 (let ((f-lo (numeric-type-low f))
236 (f-hi (numeric-type-high f))
237 (ex-lo (numeric-type-low ex))
238 (ex-hi (numeric-type-high ex))
242 (if (< (float-sign (type-bound-number f-hi)) 0.0)
244 (setf new-hi (scale-bound f-hi ex-lo)))
246 (setf new-hi (scale-bound f-hi ex-hi)))))
248 (if (< (float-sign (type-bound-number f-lo)) 0.0)
250 (setf new-lo (scale-bound f-lo ex-hi)))
252 (setf new-lo (scale-bound f-lo ex-lo)))))
253 (make-numeric-type :class (numeric-type-class f)
254 :format (numeric-type-format f)
258 (defoptimizer (scale-single-float derive-type) ((f ex))
259 (two-arg-derive-type f ex #'scale-float-derive-type-aux
260 #'scale-single-float t))
261 (defoptimizer (scale-double-float derive-type) ((f ex))
262 (two-arg-derive-type f ex #'scale-float-derive-type-aux
263 #'scale-double-float t))
265 ;;; DEFOPTIMIZERs for %SINGLE-FLOAT and %DOUBLE-FLOAT. This makes the
266 ;;; FLOAT function return the correct ranges if the input has some
267 ;;; defined range. Quite useful if we want to convert some type of
268 ;;; bounded integer into a float.
270 ((frob (fun type most-negative most-positive)
271 (let ((aux-name (symbolicate fun "-DERIVE-TYPE-AUX")))
273 (defun ,aux-name (num)
274 ;; When converting a number to a float, the limits are
276 (let* ((lo (bound-func (lambda (x)
277 (if (< x ,most-negative)
280 (numeric-type-low num)))
281 (hi (bound-func (lambda (x)
282 (if (< ,most-positive x )
285 (numeric-type-high num))))
286 (specifier-type `(,',type ,(or lo '*) ,(or hi '*)))))
288 (defoptimizer (,fun derive-type) ((num))
290 (one-arg-derive-type num #',aux-name #',fun)
293 (frob %single-float single-float
294 most-negative-single-float most-positive-single-float)
295 (frob %double-float double-float
296 most-negative-double-float most-positive-double-float))
301 ;;; Do some stuff to recognize when the loser is doing mixed float and
302 ;;; rational arithmetic, or different float types, and fix it up. If
303 ;;; we don't, he won't even get so much as an efficiency note.
304 (deftransform float-contagion-arg1 ((x y) * * :defun-only t :node node)
305 `(,(lvar-fun-name (basic-combination-fun node))
307 (deftransform float-contagion-arg2 ((x y) * * :defun-only t :node node)
308 `(,(lvar-fun-name (basic-combination-fun node))
311 (dolist (x '(+ * / -))
312 (%deftransform x '(function (rational float) *) #'float-contagion-arg1)
313 (%deftransform x '(function (float rational) *) #'float-contagion-arg2))
315 (dolist (x '(= < > + * / -))
316 (%deftransform x '(function (single-float double-float) *)
317 #'float-contagion-arg1)
318 (%deftransform x '(function (double-float single-float) *)
319 #'float-contagion-arg2))
321 ;;; Prevent ZEROP, PLUSP, and MINUSP from losing horribly. We can't in
322 ;;; general float rational args to comparison, since Common Lisp
323 ;;; semantics says we are supposed to compare as rationals, but we can
324 ;;; do it for any rational that has a precise representation as a
325 ;;; float (such as 0).
326 (macrolet ((frob (op)
327 `(deftransform ,op ((x y) (float rational) *)
328 "open-code FLOAT to RATIONAL comparison"
329 (unless (constant-lvar-p y)
330 (give-up-ir1-transform
331 "The RATIONAL value isn't known at compile time."))
332 (let ((val (lvar-value y)))
333 (unless (eql (rational (float val)) val)
334 (give-up-ir1-transform
335 "~S doesn't have a precise float representation."
337 `(,',op x (float y x)))))
342 ;;;; irrational derive-type methods
344 ;;; Derive the result to be float for argument types in the
345 ;;; appropriate domain.
346 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
347 (dolist (stuff '((asin (real -1.0 1.0))
348 (acos (real -1.0 1.0))
350 (atanh (real -1.0 1.0))
352 (destructuring-bind (name type) stuff
353 (let ((type (specifier-type type)))
354 (setf (fun-info-derive-type (fun-info-or-lose name))
356 (declare (type combination call))
357 (when (csubtypep (lvar-type
358 (first (combination-args call)))
360 (specifier-type 'float)))))))
362 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
363 (defoptimizer (log derive-type) ((x &optional y))
364 (when (and (csubtypep (lvar-type x)
365 (specifier-type '(real 0.0)))
367 (csubtypep (lvar-type y)
368 (specifier-type '(real 0.0)))))
369 (specifier-type 'float)))
371 ;;;; irrational transforms
373 (defknown (%tan %sinh %asinh %atanh %log %logb %log10 %tan-quick)
374 (double-float) double-float
375 (movable foldable flushable))
377 (defknown (%sin %cos %tanh %sin-quick %cos-quick)
378 (double-float) (double-float -1.0d0 1.0d0)
379 (movable foldable flushable))
381 (defknown (%asin %atan)
383 (double-float #.(coerce (- (/ pi 2)) 'double-float)
384 #.(coerce (/ pi 2) 'double-float))
385 (movable foldable flushable))
388 (double-float) (double-float 0.0d0 #.(coerce pi 'double-float))
389 (movable foldable flushable))
392 (double-float) (double-float 1.0d0)
393 (movable foldable flushable))
395 (defknown (%acosh %exp %sqrt)
396 (double-float) (double-float 0.0d0)
397 (movable foldable flushable))
400 (double-float) (double-float -1d0)
401 (movable foldable flushable))
404 (double-float double-float) (double-float 0d0)
405 (movable foldable flushable))
408 (double-float double-float) double-float
409 (movable foldable flushable))
412 (double-float double-float)
413 (double-float #.(coerce (- pi) 'double-float)
414 #.(coerce pi 'double-float))
415 (movable foldable flushable))
418 (double-float double-float) double-float
419 (movable foldable flushable))
422 (double-float (signed-byte 32)) double-float
423 (movable foldable flushable))
426 (double-float) double-float
427 (movable foldable flushable))
429 (macrolet ((def (name prim rtype)
431 (deftransform ,name ((x) (single-float) ,rtype)
432 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
433 (deftransform ,name ((x) (double-float) ,rtype)
437 (def sqrt %sqrt float)
438 (def asin %asin float)
439 (def acos %acos float)
445 (def acosh %acosh float)
446 (def atanh %atanh float))
448 ;;; The argument range is limited on the x86 FP trig. functions. A
449 ;;; post-test can detect a failure (and load a suitable result), but
450 ;;; this test is avoided if possible.
451 (macrolet ((def (name prim prim-quick)
452 (declare (ignorable prim-quick))
454 (deftransform ,name ((x) (single-float) *)
455 #!+x86 (cond ((csubtypep (lvar-type x)
456 (specifier-type '(single-float
457 (#.(- (expt 2f0 64)))
459 `(coerce (,',prim-quick (coerce x 'double-float))
463 "unable to avoid inline argument range check~@
464 because the argument range (~S) was not within 2^64"
465 (type-specifier (lvar-type x)))
466 `(coerce (,',prim (coerce x 'double-float)) 'single-float)))
467 #!-x86 `(coerce (,',prim (coerce x 'double-float)) 'single-float))
468 (deftransform ,name ((x) (double-float) *)
469 #!+x86 (cond ((csubtypep (lvar-type x)
470 (specifier-type '(double-float
471 (#.(- (expt 2d0 64)))
476 "unable to avoid inline argument range check~@
477 because the argument range (~S) was not within 2^64"
478 (type-specifier (lvar-type x)))
480 #!-x86 `(,',prim x)))))
481 (def sin %sin %sin-quick)
482 (def cos %cos %cos-quick)
483 (def tan %tan %tan-quick))
485 (deftransform atan ((x y) (single-float single-float) *)
486 `(coerce (%atan2 (coerce x 'double-float) (coerce y 'double-float))
488 (deftransform atan ((x y) (double-float double-float) *)
491 (deftransform expt ((x y) ((single-float 0f0) single-float) *)
492 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
494 (deftransform expt ((x y) ((double-float 0d0) double-float) *)
496 (deftransform expt ((x y) ((single-float 0f0) (signed-byte 32)) *)
497 `(coerce (%pow (coerce x 'double-float) (coerce y 'double-float))
499 (deftransform expt ((x y) ((double-float 0d0) (signed-byte 32)) *)
500 `(%pow x (coerce y 'double-float)))
502 ;;; ANSI says log with base zero returns zero.
503 (deftransform log ((x y) (float float) float)
504 '(if (zerop y) y (/ (log x) (log y))))
506 ;;; Handle some simple transformations.
508 (deftransform abs ((x) ((complex double-float)) double-float)
509 '(%hypot (realpart x) (imagpart x)))
511 (deftransform abs ((x) ((complex single-float)) single-float)
512 '(coerce (%hypot (coerce (realpart x) 'double-float)
513 (coerce (imagpart x) 'double-float))
516 (deftransform phase ((x) ((complex double-float)) double-float)
517 '(%atan2 (imagpart x) (realpart x)))
519 (deftransform phase ((x) ((complex single-float)) single-float)
520 '(coerce (%atan2 (coerce (imagpart x) 'double-float)
521 (coerce (realpart x) 'double-float))
524 (deftransform phase ((x) ((float)) float)
525 '(if (minusp (float-sign x))
529 ;;; The number is of type REAL.
530 (defun numeric-type-real-p (type)
531 (and (numeric-type-p type)
532 (eq (numeric-type-complexp type) :real)))
534 ;;; Coerce a numeric type bound to the given type while handling
535 ;;; exclusive bounds.
536 (defun coerce-numeric-bound (bound type)
539 (list (coerce (car bound) type))
540 (coerce bound type))))
542 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
545 ;;;; optimizers for elementary functions
547 ;;;; These optimizers compute the output range of the elementary
548 ;;;; function, based on the domain of the input.
550 ;;; Generate a specifier for a complex type specialized to the same
551 ;;; type as the argument.
552 (defun complex-float-type (arg)
553 (declare (type numeric-type arg))
554 (let* ((format (case (numeric-type-class arg)
555 ((integer rational) 'single-float)
556 (t (numeric-type-format arg))))
557 (float-type (or format 'float)))
558 (specifier-type `(complex ,float-type))))
560 ;;; Compute a specifier like '(OR FLOAT (COMPLEX FLOAT)), except float
561 ;;; should be the right kind of float. Allow bounds for the float
563 (defun float-or-complex-float-type (arg &optional lo hi)
564 (declare (type numeric-type arg))
565 (let* ((format (case (numeric-type-class arg)
566 ((integer rational) 'single-float)
567 (t (numeric-type-format arg))))
568 (float-type (or format 'float))
569 (lo (coerce-numeric-bound lo float-type))
570 (hi (coerce-numeric-bound hi float-type)))
571 (specifier-type `(or (,float-type ,(or lo '*) ,(or hi '*))
572 (complex ,float-type)))))
576 (eval-when (:compile-toplevel :execute)
577 ;; So the problem with this hack is that it's actually broken. If
578 ;; the host does not have long floats, then setting *R-D-F-F* to
579 ;; LONG-FLOAT doesn't actually buy us anything. FIXME.
580 (setf *read-default-float-format*
581 #!+long-float 'long-float #!-long-float 'double-float))
582 ;;; Test whether the numeric-type ARG is within in domain specified by
583 ;;; DOMAIN-LOW and DOMAIN-HIGH, consider negative and positive zero to
585 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
586 (defun domain-subtypep (arg domain-low domain-high)
587 (declare (type numeric-type arg)
588 (type (or real null) domain-low domain-high))
589 (let* ((arg-lo (numeric-type-low arg))
590 (arg-lo-val (type-bound-number arg-lo))
591 (arg-hi (numeric-type-high arg))
592 (arg-hi-val (type-bound-number arg-hi)))
593 ;; Check that the ARG bounds are correctly canonicalized.
594 (when (and arg-lo (floatp arg-lo-val) (zerop arg-lo-val) (consp arg-lo)
595 (minusp (float-sign arg-lo-val)))
596 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-lo)
597 (setq arg-lo 0e0 arg-lo-val arg-lo))
598 (when (and arg-hi (zerop arg-hi-val) (floatp arg-hi-val) (consp arg-hi)
599 (plusp (float-sign arg-hi-val)))
600 (compiler-notify "float zero bound ~S not correctly canonicalized?" arg-hi)
601 (setq arg-hi (ecase *read-default-float-format*
602 (double-float (load-time-value (make-unportable-float :double-float-negative-zero)))
604 (long-float (load-time-value (make-unportable-float :long-float-negative-zero))))
606 (flet ((fp-neg-zero-p (f) ; Is F -0.0?
607 (and (floatp f) (zerop f) (minusp (float-sign f))))
608 (fp-pos-zero-p (f) ; Is F +0.0?
609 (and (floatp f) (zerop f) (plusp (float-sign f)))))
610 (and (or (null domain-low)
611 (and arg-lo (>= arg-lo-val domain-low)
612 (not (and (fp-pos-zero-p domain-low)
613 (fp-neg-zero-p arg-lo)))))
614 (or (null domain-high)
615 (and arg-hi (<= arg-hi-val domain-high)
616 (not (and (fp-neg-zero-p domain-high)
617 (fp-pos-zero-p arg-hi)))))))))
618 (eval-when (:compile-toplevel :execute)
619 (setf *read-default-float-format* 'single-float))
621 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
624 ;;; Handle monotonic functions of a single variable whose domain is
625 ;;; possibly part of the real line. ARG is the variable, FCN is the
626 ;;; function, and DOMAIN is a specifier that gives the (real) domain
627 ;;; of the function. If ARG is a subset of the DOMAIN, we compute the
628 ;;; bounds directly. Otherwise, we compute the bounds for the
629 ;;; intersection between ARG and DOMAIN, and then append a complex
630 ;;; result, which occurs for the parts of ARG not in the DOMAIN.
632 ;;; Negative and positive zero are considered distinct within
633 ;;; DOMAIN-LOW and DOMAIN-HIGH.
635 ;;; DEFAULT-LOW and DEFAULT-HIGH are the lower and upper bounds if we
636 ;;; can't compute the bounds using FCN.
637 (defun elfun-derive-type-simple (arg fcn domain-low domain-high
638 default-low default-high
639 &optional (increasingp t))
640 (declare (type (or null real) domain-low domain-high))
643 (cond ((eq (numeric-type-complexp arg) :complex)
644 (complex-float-type arg))
645 ((numeric-type-real-p arg)
646 ;; The argument is real, so let's find the intersection
647 ;; between the argument and the domain of the function.
648 ;; We compute the bounds on the intersection, and for
649 ;; everything else, we return a complex number of the
651 (multiple-value-bind (intersection difference)
652 (interval-intersection/difference (numeric-type->interval arg)
658 ;; Process the intersection.
659 (let* ((low (interval-low intersection))
660 (high (interval-high intersection))
661 (res-lo (or (bound-func fcn (if increasingp low high))
663 (res-hi (or (bound-func fcn (if increasingp high low))
665 (format (case (numeric-type-class arg)
666 ((integer rational) 'single-float)
667 (t (numeric-type-format arg))))
668 (bound-type (or format 'float))
673 :low (coerce-numeric-bound res-lo bound-type)
674 :high (coerce-numeric-bound res-hi bound-type))))
675 ;; If the ARG is a subset of the domain, we don't
676 ;; have to worry about the difference, because that
678 (if (or (null difference)
679 ;; Check whether the arg is within the domain.
680 (domain-subtypep arg domain-low domain-high))
683 (specifier-type `(complex ,bound-type))))))
685 ;; No intersection so the result must be purely complex.
686 (complex-float-type arg)))))
688 (float-or-complex-float-type arg default-low default-high))))))
691 ((frob (name domain-low domain-high def-low-bnd def-high-bnd
692 &key (increasingp t))
693 (let ((num (gensym)))
694 `(defoptimizer (,name derive-type) ((,num))
698 (elfun-derive-type-simple arg #',name
699 ,domain-low ,domain-high
700 ,def-low-bnd ,def-high-bnd
703 ;; These functions are easy because they are defined for the whole
705 (frob exp nil nil 0 nil)
706 (frob sinh nil nil nil nil)
707 (frob tanh nil nil -1 1)
708 (frob asinh nil nil nil nil)
710 ;; These functions are only defined for part of the real line. The
711 ;; condition selects the desired part of the line.
712 (frob asin -1d0 1d0 (- (/ pi 2)) (/ pi 2))
713 ;; Acos is monotonic decreasing, so we need to swap the function
714 ;; values at the lower and upper bounds of the input domain.
715 (frob acos -1d0 1d0 0 pi :increasingp nil)
716 (frob acosh 1d0 nil nil nil)
717 (frob atanh -1d0 1d0 -1 1)
718 ;; Kahan says that (sqrt -0.0) is -0.0, so use a specifier that
720 (frob sqrt (load-time-value (make-unportable-float :double-float-negative-zero)) nil 0 nil))
722 ;;; Compute bounds for (expt x y). This should be easy since (expt x
723 ;;; y) = (exp (* y (log x))). However, computations done this way
724 ;;; have too much roundoff. Thus we have to do it the hard way.
725 (defun safe-expt (x y)
727 (when (< (abs y) 10000)
732 ;;; Handle the case when x >= 1.
733 (defun interval-expt-> (x y)
734 (case (sb!c::interval-range-info y 0d0)
736 ;; Y is positive and log X >= 0. The range of exp(y * log(x)) is
737 ;; obviously non-negative. We just have to be careful for
738 ;; infinite bounds (given by nil).
739 (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x))
740 (type-bound-number (sb!c::interval-low y))))
741 (hi (safe-expt (type-bound-number (sb!c::interval-high x))
742 (type-bound-number (sb!c::interval-high y)))))
743 (list (sb!c::make-interval :low (or lo 1) :high hi))))
745 ;; Y is negative and log x >= 0. The range of exp(y * log(x)) is
746 ;; obviously [0, 1]. However, underflow (nil) means 0 is the
748 (let ((lo (safe-expt (type-bound-number (sb!c::interval-high x))
749 (type-bound-number (sb!c::interval-low y))))
750 (hi (safe-expt (type-bound-number (sb!c::interval-low x))
751 (type-bound-number (sb!c::interval-high y)))))
752 (list (sb!c::make-interval :low (or lo 0) :high (or hi 1)))))
754 ;; Split the interval in half.
755 (destructuring-bind (y- y+)
756 (sb!c::interval-split 0 y t)
757 (list (interval-expt-> x y-)
758 (interval-expt-> x y+))))))
760 ;;; Handle the case when x <= 1
761 (defun interval-expt-< (x y)
762 (case (sb!c::interval-range-info x 0d0)
764 ;; The case of 0 <= x <= 1 is easy
765 (case (sb!c::interval-range-info y)
767 ;; Y is positive and log X <= 0. The range of exp(y * log(x)) is
768 ;; obviously [0, 1]. We just have to be careful for infinite bounds
770 (let ((lo (safe-expt (type-bound-number (sb!c::interval-low x))
771 (type-bound-number (sb!c::interval-high y))))
772 (hi (safe-expt (type-bound-number (sb!c::interval-high x))
773 (type-bound-number (sb!c::interval-low y)))))
774 (list (sb!c::make-interval :low (or lo 0) :high (or hi 1)))))
776 ;; Y is negative and log x <= 0. The range of exp(y * log(x)) is
777 ;; obviously [1, inf].
778 (let ((hi (safe-expt (type-bound-number (sb!c::interval-low x))
779 (type-bound-number (sb!c::interval-low y))))
780 (lo (safe-expt (type-bound-number (sb!c::interval-high x))
781 (type-bound-number (sb!c::interval-high y)))))
782 (list (sb!c::make-interval :low (or lo 1) :high hi))))
784 ;; Split the interval in half
785 (destructuring-bind (y- y+)
786 (sb!c::interval-split 0 y t)
787 (list (interval-expt-< x y-)
788 (interval-expt-< x y+))))))
790 ;; The case where x <= 0. Y MUST be an INTEGER for this to work!
791 ;; The calling function must insure this! For now we'll just
792 ;; return the appropriate unbounded float type.
793 (list (sb!c::make-interval :low nil :high nil)))
795 (destructuring-bind (neg pos)
796 (interval-split 0 x t t)
797 (list (interval-expt-< neg y)
798 (interval-expt-< pos y))))))
800 ;;; Compute bounds for (expt x y).
801 (defun interval-expt (x y)
802 (case (interval-range-info x 1)
805 (interval-expt-> x y))
808 (interval-expt-< x y))
810 (destructuring-bind (left right)
811 (interval-split 1 x t t)
812 (list (interval-expt left y)
813 (interval-expt right y))))))
815 (defun fixup-interval-expt (bnd x-int y-int x-type y-type)
816 (declare (ignore x-int))
817 ;; Figure out what the return type should be, given the argument
818 ;; types and bounds and the result type and bounds.
819 (cond ((csubtypep x-type (specifier-type 'integer))
820 ;; an integer to some power
821 (case (numeric-type-class y-type)
823 ;; Positive integer to an integer power is either an
824 ;; integer or a rational.
825 (let ((lo (or (interval-low bnd) '*))
826 (hi (or (interval-high bnd) '*)))
827 (if (and (interval-low y-int)
828 (>= (type-bound-number (interval-low y-int)) 0))
829 (specifier-type `(integer ,lo ,hi))
830 (specifier-type `(rational ,lo ,hi)))))
832 ;; Positive integer to rational power is either a rational
833 ;; or a single-float.
834 (let* ((lo (interval-low bnd))
835 (hi (interval-high bnd))
837 (floor (type-bound-number lo))
840 (ceiling (type-bound-number hi))
843 (bound-func #'float lo)
846 (bound-func #'float hi)
848 (specifier-type `(or (rational ,int-lo ,int-hi)
849 (single-float ,f-lo, f-hi)))))
851 ;; A positive integer to a float power is a float.
852 (modified-numeric-type y-type
853 :low (interval-low bnd)
854 :high (interval-high bnd)))
856 ;; A positive integer to a number is a number (for now).
857 (specifier-type 'number))))
858 ((csubtypep x-type (specifier-type 'rational))
859 ;; a rational to some power
860 (case (numeric-type-class y-type)
862 ;; A positive rational to an integer power is always a rational.
863 (specifier-type `(rational ,(or (interval-low bnd) '*)
864 ,(or (interval-high bnd) '*))))
866 ;; A positive rational to rational power is either a rational
867 ;; or a single-float.
868 (let* ((lo (interval-low bnd))
869 (hi (interval-high bnd))
871 (floor (type-bound-number lo))
874 (ceiling (type-bound-number hi))
877 (bound-func #'float lo)
880 (bound-func #'float hi)
882 (specifier-type `(or (rational ,int-lo ,int-hi)
883 (single-float ,f-lo, f-hi)))))
885 ;; A positive rational to a float power is a float.
886 (modified-numeric-type y-type
887 :low (interval-low bnd)
888 :high (interval-high bnd)))
890 ;; A positive rational to a number is a number (for now).
891 (specifier-type 'number))))
892 ((csubtypep x-type (specifier-type 'float))
893 ;; a float to some power
894 (case (numeric-type-class y-type)
895 ((or integer rational)
896 ;; A positive float to an integer or rational power is
900 :format (numeric-type-format x-type)
901 :low (interval-low bnd)
902 :high (interval-high bnd)))
904 ;; A positive float to a float power is a float of the
908 :format (float-format-max (numeric-type-format x-type)
909 (numeric-type-format y-type))
910 :low (interval-low bnd)
911 :high (interval-high bnd)))
913 ;; A positive float to a number is a number (for now)
914 (specifier-type 'number))))
916 ;; A number to some power is a number.
917 (specifier-type 'number))))
919 (defun merged-interval-expt (x y)
920 (let* ((x-int (numeric-type->interval x))
921 (y-int (numeric-type->interval y)))
922 (mapcar (lambda (type)
923 (fixup-interval-expt type x-int y-int x y))
924 (flatten-list (interval-expt x-int y-int)))))
926 (defun expt-derive-type-aux (x y same-arg)
927 (declare (ignore same-arg))
928 (cond ((or (not (numeric-type-real-p x))
929 (not (numeric-type-real-p y)))
930 ;; Use numeric contagion if either is not real.
931 (numeric-contagion x y))
932 ((csubtypep y (specifier-type 'integer))
933 ;; A real raised to an integer power is well-defined.
934 (merged-interval-expt x y))
935 ;; A real raised to a non-integral power can be a float or a
937 ((or (csubtypep x (specifier-type '(rational 0)))
938 (csubtypep x (specifier-type '(float (0d0)))))
939 ;; But a positive real to any power is well-defined.
940 (merged-interval-expt x y))
941 ((and (csubtypep x (specifier-type 'rational))
942 (csubtypep x (specifier-type 'rational)))
943 ;; A rational to the power of a rational could be a rational
944 ;; or a possibly-complex single float
945 (specifier-type '(or rational single-float (complex single-float))))
947 ;; a real to some power. The result could be a real or a
949 (float-or-complex-float-type (numeric-contagion x y)))))
951 (defoptimizer (expt derive-type) ((x y))
952 (two-arg-derive-type x y #'expt-derive-type-aux #'expt))
954 ;;; Note we must assume that a type including 0.0 may also include
955 ;;; -0.0 and thus the result may be complex -infinity + i*pi.
956 (defun log-derive-type-aux-1 (x)
957 (elfun-derive-type-simple x #'log 0d0 nil nil nil))
959 (defun log-derive-type-aux-2 (x y same-arg)
960 (let ((log-x (log-derive-type-aux-1 x))
961 (log-y (log-derive-type-aux-1 y))
962 (accumulated-list nil))
963 ;; LOG-X or LOG-Y might be union types. We need to run through
964 ;; the union types ourselves because /-DERIVE-TYPE-AUX doesn't.
965 (dolist (x-type (prepare-arg-for-derive-type log-x))
966 (dolist (y-type (prepare-arg-for-derive-type log-y))
967 (push (/-derive-type-aux x-type y-type same-arg) accumulated-list)))
968 (apply #'type-union (flatten-list accumulated-list))))
970 (defoptimizer (log derive-type) ((x &optional y))
972 (two-arg-derive-type x y #'log-derive-type-aux-2 #'log)
973 (one-arg-derive-type x #'log-derive-type-aux-1 #'log)))
975 (defun atan-derive-type-aux-1 (y)
976 (elfun-derive-type-simple y #'atan nil nil (- (/ pi 2)) (/ pi 2)))
978 (defun atan-derive-type-aux-2 (y x same-arg)
979 (declare (ignore same-arg))
980 ;; The hard case with two args. We just return the max bounds.
981 (let ((result-type (numeric-contagion y x)))
982 (cond ((and (numeric-type-real-p x)
983 (numeric-type-real-p y))
984 (let* (;; FIXME: This expression for FORMAT seems to
985 ;; appear multiple times, and should be factored out.
986 (format (case (numeric-type-class result-type)
987 ((integer rational) 'single-float)
988 (t (numeric-type-format result-type))))
989 (bound-format (or format 'float)))
990 (make-numeric-type :class 'float
993 :low (coerce (- pi) bound-format)
994 :high (coerce pi bound-format))))
996 ;; The result is a float or a complex number
997 (float-or-complex-float-type result-type)))))
999 (defoptimizer (atan derive-type) ((y &optional x))
1001 (two-arg-derive-type y x #'atan-derive-type-aux-2 #'atan)
1002 (one-arg-derive-type y #'atan-derive-type-aux-1 #'atan)))
1004 (defun cosh-derive-type-aux (x)
1005 ;; We note that cosh x = cosh |x| for all real x.
1006 (elfun-derive-type-simple
1007 (if (numeric-type-real-p x)
1008 (abs-derive-type-aux x)
1010 #'cosh nil nil 0 nil))
1012 (defoptimizer (cosh derive-type) ((num))
1013 (one-arg-derive-type num #'cosh-derive-type-aux #'cosh))
1015 (defun phase-derive-type-aux (arg)
1016 (let* ((format (case (numeric-type-class arg)
1017 ((integer rational) 'single-float)
1018 (t (numeric-type-format arg))))
1019 (bound-type (or format 'float)))
1020 (cond ((numeric-type-real-p arg)
1021 (case (interval-range-info (numeric-type->interval arg) 0.0)
1023 ;; The number is positive, so the phase is 0.
1024 (make-numeric-type :class 'float
1027 :low (coerce 0 bound-type)
1028 :high (coerce 0 bound-type)))
1030 ;; The number is always negative, so the phase is pi.
1031 (make-numeric-type :class 'float
1034 :low (coerce pi bound-type)
1035 :high (coerce pi bound-type)))
1037 ;; We can't tell. The result is 0 or pi. Use a union
1040 (make-numeric-type :class 'float
1043 :low (coerce 0 bound-type)
1044 :high (coerce 0 bound-type))
1045 (make-numeric-type :class 'float
1048 :low (coerce pi bound-type)
1049 :high (coerce pi bound-type))))))
1051 ;; We have a complex number. The answer is the range -pi
1052 ;; to pi. (-pi is included because we have -0.)
1053 (make-numeric-type :class 'float
1056 :low (coerce (- pi) bound-type)
1057 :high (coerce pi bound-type))))))
1059 (defoptimizer (phase derive-type) ((num))
1060 (one-arg-derive-type num #'phase-derive-type-aux #'phase))
1064 (deftransform realpart ((x) ((complex rational)) *)
1065 '(sb!kernel:%realpart x))
1066 (deftransform imagpart ((x) ((complex rational)) *)
1067 '(sb!kernel:%imagpart x))
1069 ;;; Make REALPART and IMAGPART return the appropriate types. This
1070 ;;; should help a lot in optimized code.
1071 (defun realpart-derive-type-aux (type)
1072 (let ((class (numeric-type-class type))
1073 (format (numeric-type-format type)))
1074 (cond ((numeric-type-real-p type)
1075 ;; The realpart of a real has the same type and range as
1077 (make-numeric-type :class class
1080 :low (numeric-type-low type)
1081 :high (numeric-type-high type)))
1083 ;; We have a complex number. The result has the same type
1084 ;; as the real part, except that it's real, not complex,
1086 (make-numeric-type :class class
1089 :low (numeric-type-low type)
1090 :high (numeric-type-high type))))))
1091 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1092 (defoptimizer (realpart derive-type) ((num))
1093 (one-arg-derive-type num #'realpart-derive-type-aux #'realpart))
1094 (defun imagpart-derive-type-aux (type)
1095 (let ((class (numeric-type-class type))
1096 (format (numeric-type-format type)))
1097 (cond ((numeric-type-real-p type)
1098 ;; The imagpart of a real has the same type as the input,
1099 ;; except that it's zero.
1100 (let ((bound-format (or format class 'real)))
1101 (make-numeric-type :class class
1104 :low (coerce 0 bound-format)
1105 :high (coerce 0 bound-format))))
1107 ;; We have a complex number. The result has the same type as
1108 ;; the imaginary part, except that it's real, not complex,
1110 (make-numeric-type :class class
1113 :low (numeric-type-low type)
1114 :high (numeric-type-high type))))))
1115 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1116 (defoptimizer (imagpart derive-type) ((num))
1117 (one-arg-derive-type num #'imagpart-derive-type-aux #'imagpart))
1119 (defun complex-derive-type-aux-1 (re-type)
1120 (if (numeric-type-p re-type)
1121 (make-numeric-type :class (numeric-type-class re-type)
1122 :format (numeric-type-format re-type)
1123 :complexp (if (csubtypep re-type
1124 (specifier-type 'rational))
1127 :low (numeric-type-low re-type)
1128 :high (numeric-type-high re-type))
1129 (specifier-type 'complex)))
1131 (defun complex-derive-type-aux-2 (re-type im-type same-arg)
1132 (declare (ignore same-arg))
1133 (if (and (numeric-type-p re-type)
1134 (numeric-type-p im-type))
1135 ;; Need to check to make sure numeric-contagion returns the
1136 ;; right type for what we want here.
1138 ;; Also, what about rational canonicalization, like (complex 5 0)
1139 ;; is 5? So, if the result must be complex, we make it so.
1140 ;; If the result might be complex, which happens only if the
1141 ;; arguments are rational, we make it a union type of (or
1142 ;; rational (complex rational)).
1143 (let* ((element-type (numeric-contagion re-type im-type))
1144 (rat-result-p (csubtypep element-type
1145 (specifier-type 'rational))))
1147 (type-union element-type
1149 `(complex ,(numeric-type-class element-type))))
1150 (make-numeric-type :class (numeric-type-class element-type)
1151 :format (numeric-type-format element-type)
1152 :complexp (if rat-result-p
1155 (specifier-type 'complex)))
1157 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1158 (defoptimizer (complex derive-type) ((re &optional im))
1160 (two-arg-derive-type re im #'complex-derive-type-aux-2 #'complex)
1161 (one-arg-derive-type re #'complex-derive-type-aux-1 #'complex)))
1163 ;;; Define some transforms for complex operations. We do this in lieu
1164 ;;; of complex operation VOPs.
1165 (macrolet ((frob (type)
1168 (deftransform %negate ((z) ((complex ,type)) *)
1169 '(complex (%negate (realpart z)) (%negate (imagpart z))))
1170 ;; complex addition and subtraction
1171 (deftransform + ((w z) ((complex ,type) (complex ,type)) *)
1172 '(complex (+ (realpart w) (realpart z))
1173 (+ (imagpart w) (imagpart z))))
1174 (deftransform - ((w z) ((complex ,type) (complex ,type)) *)
1175 '(complex (- (realpart w) (realpart z))
1176 (- (imagpart w) (imagpart z))))
1177 ;; Add and subtract a complex and a real.
1178 (deftransform + ((w z) ((complex ,type) real) *)
1179 '(complex (+ (realpart w) z) (imagpart w)))
1180 (deftransform + ((z w) (real (complex ,type)) *)
1181 '(complex (+ (realpart w) z) (imagpart w)))
1182 ;; Add and subtract a real and a complex number.
1183 (deftransform - ((w z) ((complex ,type) real) *)
1184 '(complex (- (realpart w) z) (imagpart w)))
1185 (deftransform - ((z w) (real (complex ,type)) *)
1186 '(complex (- z (realpart w)) (- (imagpart w))))
1187 ;; Multiply and divide two complex numbers.
1188 (deftransform * ((x y) ((complex ,type) (complex ,type)) *)
1189 '(let* ((rx (realpart x))
1193 (complex (- (* rx ry) (* ix iy))
1194 (+ (* rx iy) (* ix ry)))))
1195 (deftransform / ((x y) ((complex ,type) (complex ,type)) *)
1196 '(let* ((rx (realpart x))
1200 (if (> (abs ry) (abs iy))
1201 (let* ((r (/ iy ry))
1202 (dn (* ry (+ 1 (* r r)))))
1203 (complex (/ (+ rx (* ix r)) dn)
1204 (/ (- ix (* rx r)) dn)))
1205 (let* ((r (/ ry iy))
1206 (dn (* iy (+ 1 (* r r)))))
1207 (complex (/ (+ (* rx r) ix) dn)
1208 (/ (- (* ix r) rx) dn))))))
1209 ;; Multiply a complex by a real or vice versa.
1210 (deftransform * ((w z) ((complex ,type) real) *)
1211 '(complex (* (realpart w) z) (* (imagpart w) z)))
1212 (deftransform * ((z w) (real (complex ,type)) *)
1213 '(complex (* (realpart w) z) (* (imagpart w) z)))
1214 ;; Divide a complex by a real.
1215 (deftransform / ((w z) ((complex ,type) real) *)
1216 '(complex (/ (realpart w) z) (/ (imagpart w) z)))
1217 ;; conjugate of complex number
1218 (deftransform conjugate ((z) ((complex ,type)) *)
1219 '(complex (realpart z) (- (imagpart z))))
1221 (deftransform cis ((z) ((,type)) *)
1222 '(complex (cos z) (sin z)))
1224 (deftransform = ((w z) ((complex ,type) (complex ,type)) *)
1225 '(and (= (realpart w) (realpart z))
1226 (= (imagpart w) (imagpart z))))
1227 (deftransform = ((w z) ((complex ,type) real) *)
1228 '(and (= (realpart w) z) (zerop (imagpart w))))
1229 (deftransform = ((w z) (real (complex ,type)) *)
1230 '(and (= (realpart z) w) (zerop (imagpart z)))))))
1233 (frob double-float))
1235 ;;; Here are simple optimizers for SIN, COS, and TAN. They do not
1236 ;;; produce a minimal range for the result; the result is the widest
1237 ;;; possible answer. This gets around the problem of doing range
1238 ;;; reduction correctly but still provides useful results when the
1239 ;;; inputs are union types.
1240 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1242 (defun trig-derive-type-aux (arg domain fcn
1243 &optional def-lo def-hi (increasingp t))
1246 (cond ((eq (numeric-type-complexp arg) :complex)
1247 (make-numeric-type :class (numeric-type-class arg)
1248 :format (numeric-type-format arg)
1249 :complexp :complex))
1250 ((numeric-type-real-p arg)
1251 (let* ((format (case (numeric-type-class arg)
1252 ((integer rational) 'single-float)
1253 (t (numeric-type-format arg))))
1254 (bound-type (or format 'float)))
1255 ;; If the argument is a subset of the "principal" domain
1256 ;; of the function, we can compute the bounds because
1257 ;; the function is monotonic. We can't do this in
1258 ;; general for these periodic functions because we can't
1259 ;; (and don't want to) do the argument reduction in
1260 ;; exactly the same way as the functions themselves do
1262 (if (csubtypep arg domain)
1263 (let ((res-lo (bound-func fcn (numeric-type-low arg)))
1264 (res-hi (bound-func fcn (numeric-type-high arg))))
1266 (rotatef res-lo res-hi))
1270 :low (coerce-numeric-bound res-lo bound-type)
1271 :high (coerce-numeric-bound res-hi bound-type)))
1275 :low (and def-lo (coerce def-lo bound-type))
1276 :high (and def-hi (coerce def-hi bound-type))))))
1278 (float-or-complex-float-type arg def-lo def-hi))))))
1280 (defoptimizer (sin derive-type) ((num))
1281 (one-arg-derive-type
1284 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1285 (trig-derive-type-aux
1287 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1292 (defoptimizer (cos derive-type) ((num))
1293 (one-arg-derive-type
1296 ;; Derive the bounds if the arg is in [0, pi].
1297 (trig-derive-type-aux arg
1298 (specifier-type `(float 0d0 ,pi))
1304 (defoptimizer (tan derive-type) ((num))
1305 (one-arg-derive-type
1308 ;; Derive the bounds if the arg is in [-pi/2, pi/2].
1309 (trig-derive-type-aux arg
1310 (specifier-type `(float ,(- (/ pi 2)) ,(/ pi 2)))
1315 (defoptimizer (conjugate derive-type) ((num))
1316 (one-arg-derive-type num
1318 (flet ((most-negative-bound (l h)
1320 (if (< (type-bound-number l) (- (type-bound-number h)))
1322 (set-bound (- (type-bound-number h)) (consp h)))))
1323 (most-positive-bound (l h)
1325 (if (> (type-bound-number h) (- (type-bound-number l)))
1327 (set-bound (- (type-bound-number l)) (consp l))))))
1328 (if (numeric-type-real-p arg)
1330 (let ((low (numeric-type-low arg))
1331 (high (numeric-type-high arg)))
1332 (let ((new-low (most-negative-bound low high))
1333 (new-high (most-positive-bound low high)))
1334 (modified-numeric-type arg :low new-low :high new-high))))))
1337 (defoptimizer (cis derive-type) ((num))
1338 (one-arg-derive-type num
1340 (sb!c::specifier-type
1341 `(complex ,(or (numeric-type-format arg) 'float))))
1346 ;;;; TRUNCATE, FLOOR, CEILING, and ROUND
1348 (macrolet ((define-frobs (fun ufun)
1350 (defknown ,ufun (real) integer (movable foldable flushable))
1351 (deftransform ,fun ((x &optional by)
1353 (constant-arg (member 1))))
1354 '(let ((res (,ufun x)))
1355 (values res (- x res)))))))
1356 (define-frobs truncate %unary-truncate)
1357 (define-frobs round %unary-round))
1359 ;;; Convert (TRUNCATE x y) to the obvious implementation. We only want
1360 ;;; this when under certain conditions and let the generic TRUNCATE
1361 ;;; handle the rest. (Note: if Y = 1, the divide and multiply by Y
1362 ;;; should be removed by other DEFTRANSFORMs.)
1363 (deftransform truncate ((x &optional y)
1364 (float &optional (or float integer)))
1365 (let ((defaulted-y (if y 'y 1)))
1366 `(let ((res (%unary-truncate (/ x ,defaulted-y))))
1367 (values res (- x (* ,defaulted-y res))))))
1369 (deftransform floor ((number &optional divisor)
1370 (float &optional (or integer float)))
1371 (let ((defaulted-divisor (if divisor 'divisor 1)))
1372 `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor)
1373 (if (and (not (zerop rem))
1374 (if (minusp ,defaulted-divisor)
1377 (values (1- tru) (+ rem ,defaulted-divisor))
1378 (values tru rem)))))
1380 (deftransform ceiling ((number &optional divisor)
1381 (float &optional (or integer float)))
1382 (let ((defaulted-divisor (if divisor 'divisor 1)))
1383 `(multiple-value-bind (tru rem) (truncate number ,defaulted-divisor)
1384 (if (and (not (zerop rem))
1385 (if (minusp ,defaulted-divisor)
1388 (values (1+ tru) (- rem ,defaulted-divisor))
1389 (values tru rem)))))
1391 (defknown %unary-ftruncate (real) float (movable foldable flushable))
1392 (defknown %unary-ftruncate/single (single-float) single-float
1393 (movable foldable flushable))
1394 (defknown %unary-ftruncate/double (double-float) double-float
1395 (movable foldable flushable))
1397 (defun %unary-ftruncate/single (x)
1398 (declare (type single-float x))
1399 (declare (optimize speed (safety 0)))
1400 (let* ((bits (single-float-bits x))
1401 (exp (ldb sb!vm:single-float-exponent-byte bits))
1402 (biased (the single-float-exponent
1403 (- exp sb!vm:single-float-bias))))
1404 (declare (type (signed-byte 32) bits))
1406 ((= exp sb!vm:single-float-normal-exponent-max) x)
1407 ((<= biased 0) (* x 0f0))
1408 ((>= biased (float-digits x)) x)
1410 (let ((frac-bits (- (float-digits x) biased)))
1411 (setf bits (logandc2 bits (- (ash 1 frac-bits) 1)))
1412 (make-single-float bits))))))
1414 (defun %unary-ftruncate/double (x)
1415 (declare (type double-float x))
1416 (declare (optimize speed (safety 0)))
1417 (let* ((high (double-float-high-bits x))
1418 (low (double-float-low-bits x))
1419 (exp (ldb sb!vm:double-float-exponent-byte high))
1420 (biased (the double-float-exponent
1421 (- exp sb!vm:double-float-bias))))
1422 (declare (type (signed-byte 32) high)
1423 (type (unsigned-byte 32) low))
1425 ((= exp sb!vm:double-float-normal-exponent-max) x)
1426 ((<= biased 0) (* x 0d0))
1427 ((>= biased (float-digits x)) x)
1429 (let ((frac-bits (- (float-digits x) biased)))
1430 (cond ((< frac-bits 32)
1431 (setf low (logandc2 low (- (ash 1 frac-bits) 1))))
1434 (setf high (logandc2 high (- (ash 1 (- frac-bits 32)) 1)))))
1435 (make-double-float high low))))))
1438 ((def (float-type fun)
1439 `(deftransform %unary-ftruncate ((x) (,float-type))
1441 (def single-float %unary-ftruncate/single)
1442 (def double-float %unary-ftruncate/double))