1 ;;;; implementation-dependent transforms
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;; We need to define these predicates, since the TYPEP source
15 ;;; transform picks whichever predicate was defined last when there
16 ;;; are multiple predicates for equivalent types.
17 (define-source-transform short-float-p (x) `(single-float-p ,x))
19 (define-source-transform long-float-p (x) `(double-float-p ,x))
21 (define-source-transform compiled-function-p (x)
27 (not (sb!eval:interpreted-function-p ,x)))))
29 (define-source-transform char-int (x)
32 (deftransform abs ((x) (rational))
33 '(if (< x 0) (- x) x))
35 ;;; We don't want to clutter the bignum code.
37 (define-source-transform sb!bignum:%bignum-ref (bignum index)
38 ;; KLUDGE: We use TRULY-THE here because even though the bignum code
39 ;; is (currently) compiled with (SAFETY 0), the compiler insists on
40 ;; inserting CAST nodes to ensure that INDEX is of the correct type.
41 ;; These CAST nodes do not generate any type checks, but they do
42 ;; interfere with the operation of FOLD-INDEX-ADDRESSING, below.
43 ;; This scenario is a problem for the more user-visible case of
44 ;; folding as well. --njf, 2006-12-01
45 `(sb!bignum:%bignum-ref-with-offset ,bignum
46 (truly-the bignum-index ,index) 0))
49 (defun fold-index-addressing (fun-name element-size lowtag data-offset
50 index offset &optional setter-p)
51 (multiple-value-bind (func index-args) (extract-fun-args index '(+ -) 2)
52 (destructuring-bind (x constant) index-args
53 (unless (and (constant-lvar-p constant)
54 ;; we lose if the remaining argument isn't a fixnum
55 (csubtypep (lvar-type x) (specifier-type 'fixnum)))
56 (give-up-ir1-transform))
57 (let ((value (lvar-value constant))
59 (unless (and (integerp value)
60 (sb!vm::foldable-constant-offset-p
61 element-size lowtag data-offset
62 (setf new-offset (funcall func (lvar-value offset)
64 (give-up-ir1-transform "constant is too large for inlining"))
65 (splice-fun-args index func 2)
66 `(lambda (thing index off1 off2 ,@(when setter-p
68 (declare (ignore off1 off2))
69 (,fun-name thing index ',new-offset ,@(when setter-p
73 (deftransform sb!bignum:%bignum-ref-with-offset
74 ((bignum index offset) * * :node node)
75 (fold-index-addressing 'sb!bignum:%bignum-ref-with-offset
76 sb!vm:n-word-bits sb!vm:other-pointer-lowtag
77 sb!vm:bignum-digits-offset
80 ;;; The layout is stored in slot 0.
81 (define-source-transform %instance-layout (x)
82 `(truly-the layout (%instance-ref ,x 0)))
83 (define-source-transform %set-instance-layout (x val)
84 `(%instance-set ,x 0 (the layout ,val)))
85 (define-source-transform %funcallable-instance-layout (x)
86 `(truly-the layout (%funcallable-instance-info ,x 0)))
87 (define-source-transform %set-funcallable-instance-layout (x val)
88 `(setf (%funcallable-instance-info ,x 0) (the layout ,val)))
90 ;;;; character support
92 ;;; In our implementation there are really only BASE-CHARs.
94 (define-source-transform characterp (obj)
97 ;;;; simplifying HAIRY-DATA-VECTOR-REF and HAIRY-DATA-VECTOR-SET
99 (deftransform hairy-data-vector-ref ((string index) (simple-string t))
100 (let ((ctype (lvar-type string)))
101 (if (array-type-p ctype)
102 ;; the other transform will kick in, so that's OK
103 (give-up-ir1-transform)
105 ((simple-array character (*))
106 (data-vector-ref string index))
108 ((simple-array base-char (*))
109 (data-vector-ref string index))
110 ((simple-array nil (*))
111 (data-vector-ref string index))))))
113 ;;; This and the corresponding -SET transform work equally well on non-simple
114 ;;; arrays, but after benchmarking (on x86), Nikodemus didn't find any cases
115 ;;; where it actually helped with non-simple arrays -- to the contrary, it
116 ;;; only made for bigger and up to 100% slower code.
117 (deftransform hairy-data-vector-ref ((array index) (simple-array t) *)
118 "avoid runtime dispatch on array element type"
119 (let* ((type (lvar-type array))
120 (element-ctype (array-type-upgraded-element-type type))
121 (declared-element-ctype (array-type-declared-element-type type)))
122 (declare (type ctype element-ctype))
123 (when (eq *wild-type* element-ctype)
124 (give-up-ir1-transform
125 "Upgraded element type of array is not known at compile time."))
126 ;; (The expansion here is basically a degenerate case of
127 ;; WITH-ARRAY-DATA. Since WITH-ARRAY-DATA is implemented as a
128 ;; macro, and macros aren't expanded in transform output, we have
129 ;; to hand-expand it ourselves.)
130 (let* ((element-type-specifier (type-specifier element-ctype)))
131 `(multiple-value-bind (array index)
132 (%data-vector-and-index array index)
133 (declare (type (simple-array ,element-type-specifier 1) array))
134 ,(let ((bare-form '(data-vector-ref array index)))
135 (if (type= element-ctype declared-element-ctype)
137 `(the ,(type-specifier declared-element-ctype)
140 ;;; Transform multi-dimensional array to one dimensional data vector
142 (deftransform data-vector-ref ((array index) (simple-array t))
143 (let ((array-type (lvar-type array)))
144 (unless (array-type-p array-type)
145 (give-up-ir1-transform))
146 (let ((dims (array-type-dimensions array-type)))
147 (when (or (atom dims) (= (length dims) 1))
148 (give-up-ir1-transform))
149 (let ((el-type (array-type-specialized-element-type array-type))
150 (total-size (if (member '* dims)
153 `(data-vector-ref (truly-the (simple-array ,(type-specifier el-type)
155 (%array-data-vector array))
158 ;;; Transform data vector access to a form that opens up optimization
159 ;;; opportunities. On platforms that support DATA-VECTOR-REF-WITH-OFFSET
160 ;;; DATA-VECTOR-REF is not supported at all.
162 (define-source-transform data-vector-ref (array index)
163 `(data-vector-ref-with-offset ,array ,index 0))
166 (deftransform data-vector-ref-with-offset ((array index offset))
167 (let ((array-type (lvar-type array)))
168 (when (or (not (array-type-p array-type))
169 (eql (array-type-specialized-element-type array-type)
171 (give-up-ir1-transform))
172 ;; It shouldn't be possible to get here with anything but a non-complex
174 (aver (not (array-type-complexp array-type)))
175 (let* ((element-type (type-specifier (array-type-specialized-element-type array-type)))
176 (saetp (find-saetp element-type)))
177 (when (< (sb!vm:saetp-n-bits saetp) sb!vm:n-byte-bits)
178 (give-up-ir1-transform))
179 (fold-index-addressing 'data-vector-ref-with-offset
180 (sb!vm:saetp-n-bits saetp)
181 sb!vm:other-pointer-lowtag
182 sb!vm:vector-data-offset
185 (deftransform hairy-data-vector-set ((string index new-value)
187 (let ((ctype (lvar-type string)))
188 (if (array-type-p ctype)
189 ;; the other transform will kick in, so that's OK
190 (give-up-ir1-transform)
192 ((simple-array character (*))
193 (data-vector-set string index new-value))
195 ((simple-array base-char (*))
196 (data-vector-set string index new-value))
197 ((simple-array nil (*))
198 (data-vector-set string index new-value))))))
200 ;;; This and the corresponding -REF transform work equally well on non-simple
201 ;;; arrays, but after benchmarking (on x86), Nikodemus didn't find any cases
202 ;;; where it actually helped with non-simple arrays -- to the contrary, it
203 ;;; only made for bigger and up 1o 100% slower code.
204 (deftransform hairy-data-vector-set ((array index new-value)
207 "avoid runtime dispatch on array element type"
208 (let* ((type (lvar-type array))
209 (element-ctype (array-type-upgraded-element-type type))
210 (declared-element-ctype (array-type-declared-element-type type)))
211 (declare (type ctype element-ctype))
212 (when (eq *wild-type* element-ctype)
213 (give-up-ir1-transform
214 "Upgraded element type of array is not known at compile time."))
215 (let ((element-type-specifier (type-specifier element-ctype)))
216 `(multiple-value-bind (array index)
217 (%data-vector-and-index array index)
218 (declare (type (simple-array ,element-type-specifier 1) array)
219 (type ,element-type-specifier new-value))
220 ,(if (type= element-ctype declared-element-ctype)
221 '(data-vector-set array index new-value)
222 `(truly-the ,(type-specifier declared-element-ctype)
223 (data-vector-set array index
224 (the ,(type-specifier declared-element-ctype)
227 ;;; Transform multi-dimensional array to one dimensional data vector
229 (deftransform data-vector-set ((array index new-value)
231 (let ((array-type (lvar-type array)))
232 (unless (array-type-p array-type)
233 (give-up-ir1-transform))
234 (let ((dims (array-type-dimensions array-type)))
235 (when (or (atom dims) (= (length dims) 1))
236 (give-up-ir1-transform))
237 (let ((el-type (array-type-specialized-element-type array-type))
238 (total-size (if (member '* dims)
241 `(data-vector-set (truly-the (simple-array ,(type-specifier el-type)
243 (%array-data-vector array))
247 ;;; Transform data vector access to a form that opens up optimization
250 (define-source-transform data-vector-set (array index new-value)
251 `(data-vector-set-with-offset ,array ,index 0 ,new-value))
254 (deftransform data-vector-set-with-offset ((array index offset new-value))
255 (let ((array-type (lvar-type array)))
256 (when (or (not (array-type-p array-type))
257 (eql (array-type-specialized-element-type array-type)
259 ;; We don't yet know the exact element type, but will get that
260 ;; knowledge after some more type propagation.
261 (give-up-ir1-transform))
262 (aver (not (array-type-complexp array-type)))
263 (let* ((element-type (type-specifier (array-type-specialized-element-type array-type)))
264 (saetp (find-saetp element-type)))
265 (when (< (sb!vm:saetp-n-bits saetp) sb!vm:n-byte-bits)
266 (give-up-ir1-transform))
267 (fold-index-addressing 'data-vector-set-with-offset
268 (sb!vm:saetp-n-bits saetp)
269 sb!vm:other-pointer-lowtag
270 sb!vm:vector-data-offset
273 (defun maybe-array-data-vector-type-specifier (array-lvar)
274 (let ((atype (lvar-type array-lvar)))
275 (when (array-type-p atype)
276 (let ((dims (array-type-dimensions atype)))
277 (if (or (array-type-complexp atype)
279 (notevery #'integerp dims))
280 `(simple-array ,(type-specifier
281 (array-type-specialized-element-type atype))
283 `(simple-array ,(type-specifier
284 (array-type-specialized-element-type atype))
285 (,(apply #'* dims))))))))
287 (macrolet ((def (name)
288 `(defoptimizer (,name derive-type) ((array-lvar))
289 (let ((spec (maybe-array-data-vector-type-specifier array-lvar)))
291 (specifier-type spec))))))
292 (def %array-data-vector)
293 (def array-storage-vector))
295 (defoptimizer (%data-vector-and-index derive-type) ((array index))
296 (let ((spec (maybe-array-data-vector-type-specifier array)))
298 (values-specifier-type `(values ,spec index)))))
300 (deftransform %data-vector-and-index ((%array %index)
303 ;; KLUDGE: why the percent signs? Well, ARRAY and INDEX are
304 ;; respectively exported from the CL and SB!INT packages, which
305 ;; means that they're visible to all sorts of things. If the
306 ;; compiler can prove that the call to ARRAY-HEADER-P, below, either
307 ;; returns T or NIL, it will delete the irrelevant branch. However,
308 ;; user code might have got here with a variable named CL:ARRAY, and
309 ;; quite often compiler code with a variable named SB!INT:INDEX, so
310 ;; this can generate code deletion notes for innocuous user code:
311 ;; (DEFUN F (ARRAY I) (DECLARE (SIMPLE-VECTOR ARRAY)) (AREF ARRAY I))
312 ;; -- CSR, 2003-04-01
314 ;; We do this solely for the -OR-GIVE-UP side effect, since we want
315 ;; to know that the type can be figured out in the end before we
316 ;; proceed, but we don't care yet what the type will turn out to be.
317 (upgraded-element-type-specifier-or-give-up %array)
319 '(if (array-header-p %array)
320 (values (%array-data-vector %array) %index)
321 (values %array %index)))
323 ;;;; BIT-VECTOR hackery
325 ;;; SIMPLE-BIT-VECTOR bit-array operations are transformed to a word
326 ;;; loop that does 32 bits at a time.
328 ;;; FIXME: This is a lot of repeatedly macroexpanded code. It should
329 ;;; be a function call instead.
330 (macrolet ((def (bitfun wordfun)
331 `(deftransform ,bitfun ((bit-array-1 bit-array-2 result-bit-array)
336 :node node :policy (>= speed space))
338 ,@(unless (policy node (zerop safety))
339 '((unless (= (length bit-array-1)
341 (length result-bit-array))
342 (error "Argument and/or result bit arrays are not the same length:~
347 (let ((length (length result-bit-array)))
349 ;; We avoid doing anything to 0-length
350 ;; bit-vectors, or rather, the memory that
351 ;; follows them. Other divisible-by-32 cases
352 ;; are handled by the (1- length), below.
355 (do ((index 0 (1+ index))
356 ;; bit-vectors of length 1-32 need
357 ;; precisely one (SETF %VECTOR-RAW-BITS),
358 ;; done here in the epilogue. - CSR,
360 (end-1 (truncate (truly-the index (1- length))
363 (setf (%vector-raw-bits result-bit-array index)
364 (,',wordfun (%vector-raw-bits bit-array-1 index)
365 (%vector-raw-bits bit-array-2 index)))
367 (declare (optimize (speed 3) (safety 0))
368 (type index index end-1))
369 (setf (%vector-raw-bits result-bit-array index)
370 (,',wordfun (%vector-raw-bits bit-array-1 index)
371 (%vector-raw-bits bit-array-2 index))))))))))
372 (def bit-and word-logical-and)
373 (def bit-ior word-logical-or)
374 (def bit-xor word-logical-xor)
375 (def bit-eqv word-logical-eqv)
376 (def bit-nand word-logical-nand)
377 (def bit-nor word-logical-nor)
378 (def bit-andc1 word-logical-andc1)
379 (def bit-andc2 word-logical-andc2)
380 (def bit-orc1 word-logical-orc1)
381 (def bit-orc2 word-logical-orc2))
383 (deftransform bit-not
384 ((bit-array result-bit-array)
385 (simple-bit-vector simple-bit-vector) *
386 :node node :policy (>= speed space))
388 ,@(unless (policy node (zerop safety))
389 '((unless (= (length bit-array)
390 (length result-bit-array))
391 (error "Argument and result bit arrays are not the same length:~
393 bit-array result-bit-array))))
394 (let ((length (length result-bit-array)))
396 ;; We avoid doing anything to 0-length bit-vectors, or rather,
397 ;; the memory that follows them. Other divisible-by
398 ;; n-word-bits cases are handled by the (1- length), below.
401 (do ((index 0 (1+ index))
402 ;; bit-vectors of length 1 to n-word-bits need precisely
403 ;; one (SETF %VECTOR-RAW-BITS), done here in the
404 ;; epilogue. - CSR, 2002-04-24
405 (end-1 (truncate (truly-the index (1- length))
408 (setf (%vector-raw-bits result-bit-array index)
409 (word-logical-not (%vector-raw-bits bit-array index)))
411 (declare (optimize (speed 3) (safety 0))
412 (type index index end-1))
413 (setf (%vector-raw-bits result-bit-array index)
414 (word-logical-not (%vector-raw-bits bit-array index))))))))
416 (deftransform bit-vector-= ((x y) (simple-bit-vector simple-bit-vector))
417 `(and (= (length x) (length y))
418 (let ((length (length x)))
421 (end-1 (floor (1- length) sb!vm:n-word-bits)))
423 (let* ((extra (1+ (mod (1- length) sb!vm:n-word-bits)))
424 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
425 (- extra sb!vm:n-word-bits)))
429 ,(ecase sb!c:*backend-byte-order*
432 '(- sb!vm:n-word-bits extra))))
433 (%vector-raw-bits x i)))
437 ,(ecase sb!c:*backend-byte-order*
440 '(- sb!vm:n-word-bits extra))))
441 (%vector-raw-bits y i))))
442 (declare (type (integer 1 #.sb!vm:n-word-bits) extra)
443 (type sb!vm:word mask numx numy))
445 (declare (type index i end-1))
446 (let ((numx (%vector-raw-bits x i))
447 (numy (%vector-raw-bits y i)))
448 (declare (type sb!vm:word numx numy))
449 (unless (= numx numy)
452 (deftransform count ((item sequence) (bit simple-bit-vector) *
453 :policy (>= speed space))
454 `(let ((length (length sequence)))
457 (do ((index 0 (1+ index))
459 (end-1 (truncate (truly-the index (1- length))
462 (let* ((extra (1+ (mod (1- length) sb!vm:n-word-bits)))
463 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
464 (- extra sb!vm:n-word-bits)))
465 (bits (logand (ash mask
466 ,(ecase sb!c:*backend-byte-order*
469 '(- sb!vm:n-word-bits extra))))
470 (%vector-raw-bits sequence index))))
471 (declare (type (integer 1 #.sb!vm:n-word-bits) extra))
472 (declare (type sb!vm:word mask bits))
473 (incf count (logcount bits))
474 ,(if (constant-lvar-p item)
475 (if (zerop (lvar-value item))
481 (declare (type index index count end-1)
482 (optimize (speed 3) (safety 0)))
483 (incf count (logcount (%vector-raw-bits sequence index)))))))
485 (deftransform fill ((sequence item) (simple-bit-vector bit) *
486 :policy (>= speed space))
487 (let ((value (if (constant-lvar-p item)
488 (if (= (lvar-value item) 0)
490 #.(1- (ash 1 sb!vm:n-word-bits)))
491 `(if (= item 0) 0 #.(1- (ash 1 sb!vm:n-word-bits))))))
492 `(let ((length (length sequence))
496 (do ((index 0 (1+ index))
497 ;; bit-vectors of length 1 to n-word-bits need precisely
498 ;; one (SETF %VECTOR-RAW-BITS), done here in the
499 ;; epilogue. - CSR, 2002-04-24
500 (end-1 (truncate (truly-the index (1- length))
503 (setf (%vector-raw-bits sequence index) value)
505 (declare (optimize (speed 3) (safety 0))
506 (type index index end-1))
507 (setf (%vector-raw-bits sequence index) value))))))
509 (deftransform fill ((sequence item) (simple-base-string base-char) *
510 :policy (>= speed space))
511 (let ((value (if (constant-lvar-p item)
512 (let* ((char (lvar-value item))
513 (code (sb!xc:char-code char))
515 (dotimes (i sb!vm:n-word-bytes accum)
516 (setf accum (logior accum (ash code (* 8 i))))))
517 `(let ((code (sb!xc:char-code item)))
518 (logior ,@(loop for i from 0 below sb!vm:n-word-bytes
519 collect `(ash code ,(* 8 i))))))))
520 `(let ((length (length sequence))
522 (multiple-value-bind (times rem)
523 (truncate length sb!vm:n-word-bytes)
524 (do ((index 0 (1+ index))
527 (let ((place (* times sb!vm:n-word-bytes)))
528 (declare (fixnum place))
529 (dotimes (j rem sequence)
531 (setf (schar sequence (the index (+ place j))) item))))
532 (declare (optimize (speed 3) (safety 0))
534 (setf (%vector-raw-bits sequence index) value))))))
538 ;;; FIXME: The old CMU CL code used various COPY-TO/FROM-SYSTEM-AREA
539 ;;; stuff (with all the associated bit-index cruft and overflow
540 ;;; issues) even for byte moves. In SBCL, we're converting to byte
541 ;;; moves as problems are discovered with the old code, and this is
542 ;;; currently (ca. sbcl-0.6.12.30) the main interface for code in
543 ;;; SB!KERNEL and SB!SYS (e.g. i/o code). It's not clear that it's the
544 ;;; ideal interface, though, and it probably deserves some thought.
545 (deftransform %byte-blt ((src src-start dst dst-start dst-end)
546 ((or (simple-unboxed-array (*)) system-area-pointer)
548 (or (simple-unboxed-array (*)) system-area-pointer)
551 ;; FIXME: CMU CL had a hairier implementation of this (back when it
552 ;; was still called (%PRIMITIVE BYTE-BLT). It had the small problem
553 ;; that it didn't work for large (>16M) values of SRC-START or
554 ;; DST-START. However, it might have been more efficient. In
555 ;; particular, I don't really know how much the foreign function
556 ;; call costs us here. My guess is that if the overhead is
557 ;; acceptable for SQRT and COS, it's acceptable here, but this
558 ;; should probably be checked. -- WHN
559 '(flet ((sapify (thing)
561 (system-area-pointer thing)
562 ;; FIXME: The code here rather relies on the simple
563 ;; unboxed array here having byte-sized entries. That
564 ;; should be asserted explicitly, I just haven't found
565 ;; a concise way of doing it. (It would be nice to
566 ;; declare it in the DEFKNOWN too.)
567 ((simple-unboxed-array (*)) (vector-sap thing)))))
568 (declare (inline sapify))
569 (with-pinned-objects (dst src)
570 (memmove (sap+ (sapify dst) dst-start)
571 (sap+ (sapify src) src-start)
572 (- dst-end dst-start)))
575 ;;;; transforms for EQL of floating point values
577 (deftransform eql ((x y) (single-float single-float))
578 '(= (single-float-bits x) (single-float-bits y)))
581 (deftransform eql ((x y) (double-float double-float))
582 '(and (= (double-float-low-bits x) (double-float-low-bits y))
583 (= (double-float-high-bits x) (double-float-high-bits y))))
586 ;;;; modular functions
588 ;;; FIXME: I think that the :GOODness of a modular function boils down
589 ;;; to whether the normal definition can be used in the middle of a
590 ;;; modular arrangement. LOGAND and LOGIOR can be for all unsigned
591 ;;; modular implementations, I believe, because for all unsigned
592 ;;; arguments of a given size the result of the ordinary definition is
593 ;;; the right one. This should follow through to other logical
594 ;;; functions, such as LOGXOR, should it not? -- CSR, 2007-12-29,
595 ;;; trying to understand a comment he wrote over four years
596 ;;; previously: "FIXME: XOR? ANDC1, ANDC2? -- CSR, 2003-09-16"
597 (define-good-modular-fun logand :untagged nil)
598 (define-good-modular-fun logior :untagged nil)
599 (define-good-modular-fun logxor :untagged nil)
600 (macrolet ((define-good-signed-modular-funs (&rest funs)
603 ,@(dolist (fun funs (nreverse result))
604 (push `(define-good-modular-fun ,fun :untagged t) result)
605 (push `(define-good-modular-fun ,fun :tagged t) result))))))
606 (define-good-signed-modular-funs
607 logand logandc1 logandc2 logeqv logior lognand lognor lognot
608 logorc1 logorc2 logxor))
611 ((def (name kind width signedp)
612 (let ((type (ecase signedp
613 ((nil) 'unsigned-byte)
614 ((t) 'signed-byte))))
616 (defknown ,name (integer (integer 0)) (,type ,width)
617 (foldable flushable movable))
618 (define-modular-fun-optimizer ash ((integer count) ,kind ,signedp :width width)
619 (when (and (<= width ,width)
620 (or (and (constant-lvar-p count)
621 (plusp (lvar-value count)))
622 (csubtypep (lvar-type count)
623 (specifier-type '(and unsigned-byte fixnum)))))
624 (cut-to-width integer ,kind width ,signedp)
626 (setf (gethash ',name (modular-class-versions (find-modular-class ',kind ',signedp)))
628 ;; This should really be dependent on SB!VM:N-WORD-BITS, but since we
629 ;; don't have a true Alpha64 port yet, we'll have to stick to
630 ;; SB!VM:N-MACHINE-WORD-BITS for the time being. --njf, 2004-08-14
633 (def sb!vm::ash-left-modfx
634 :tagged ,(- sb!vm:n-word-bits sb!vm:n-fixnum-tag-bits) t)
635 (def ,(intern (format nil "ASH-LEFT-MOD~D" sb!vm:n-machine-word-bits)
637 :untagged ,sb!vm:n-machine-word-bits nil)))
639 ;;;; word-wise logical operations
641 ;;; These transforms assume the presence of modular arithmetic to
642 ;;; generate efficient code.
644 (define-source-transform word-logical-not (x)
645 `(logand (lognot (the sb!vm:word ,x)) #.(1- (ash 1 sb!vm:n-word-bits))))
647 (deftransform word-logical-and ((x y))
650 (deftransform word-logical-nand ((x y))
651 '(logand (lognand x y) #.(1- (ash 1 sb!vm:n-word-bits))))
653 (deftransform word-logical-or ((x y))
656 (deftransform word-logical-nor ((x y))
657 '(logand (lognor x y) #.(1- (ash 1 sb!vm:n-word-bits))))
659 (deftransform word-logical-xor ((x y))
662 (deftransform word-logical-eqv ((x y))
663 '(logand (logeqv x y) #.(1- (ash 1 sb!vm:n-word-bits))))
665 (deftransform word-logical-orc1 ((x y))
666 '(logand (logorc1 x y) #.(1- (ash 1 sb!vm:n-word-bits))))
668 (deftransform word-logical-orc2 ((x y))
669 '(logand (logorc2 x y) #.(1- (ash 1 sb!vm:n-word-bits))))
671 (deftransform word-logical-andc1 ((x y))
672 '(logand (logandc1 x y) #.(1- (ash 1 sb!vm:n-word-bits))))
674 (deftransform word-logical-andc2 ((x y))
675 '(logand (logandc2 x y) #.(1- (ash 1 sb!vm:n-word-bits))))
678 ;;; There are two different ways the multiplier can be recoded. The
679 ;;; more obvious is to shift X by the correct amount for each bit set
680 ;;; in Y and to sum the results. But if there is a string of bits that
681 ;;; are all set, you can add X shifted by one more then the bit
682 ;;; position of the first set bit and subtract X shifted by the bit
683 ;;; position of the last set bit. We can't use this second method when
684 ;;; the high order bit is bit 31 because shifting by 32 doesn't work
686 (defun ub32-strength-reduce-constant-multiply (arg num)
687 (declare (type (unsigned-byte 32) num))
688 (let ((adds 0) (shifts 0)
689 (result nil) first-one)
690 (labels ((add (next-factor)
693 (progn (incf adds) `(+ ,result ,next-factor))
695 (declare (inline add))
698 (when (not (logbitp bitpos num))
699 (add (if (= (1+ first-one) bitpos)
700 ;; There is only a single bit in the string.
701 (progn (incf shifts) `(ash ,arg ,first-one))
702 ;; There are at least two.
706 `(- (ash ,arg ,bitpos)
707 (ash ,arg ,first-one)))))
708 (setf first-one nil))
709 (when (logbitp bitpos num)
710 (setf first-one bitpos))))
712 (cond ((= first-one 31))
713 ((= first-one 30) (incf shifts) (add `(ash ,arg 30)))
717 (add `(- (ash ,arg 31)
718 (ash ,arg ,first-one)))))
720 (add `(ash ,arg 31))))
721 (values (if (plusp adds)
722 `(logand ,result #.(1- (ash 1 32))) ; using modular arithmetic
728 ;;; Transform GET-LISP-OBJ-ADDRESS for constant immediates, since the normal
729 ;;; VOP can't handle them.
731 (deftransform sb!vm::get-lisp-obj-address ((obj) ((constant-arg fixnum)))
732 (ash (lvar-value obj) sb!vm::n-fixnum-tag-bits))
734 (deftransform sb!vm::get-lisp-obj-address ((obj) ((constant-arg character)))
735 (logior sb!vm::character-widetag
736 (ash (char-code (lvar-value obj)) sb!vm::n-widetag-bits)))