1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list) lambda-var) varify-lambda-arg))
28 (defun varify-lambda-arg (name names-so-far)
29 (declare (inline member))
30 (unless (symbolp name)
31 (compiler-error "The lambda variable ~S is not a symbol." name))
32 (when (member name names-so-far :test #'eq)
33 (compiler-error "The variable ~S occurs more than once in the lambda list."
35 (let ((kind (info :variable :kind name)))
36 (cond ((or (keywordp name) (eq kind :constant))
37 (compiler-error "The name of the lambda variable ~S is already in use to name a constant."
40 (compiler-error "The name of the lambda variable ~S is already in use to name a global variable."
42 (cond ((eq kind :special)
43 (let ((specvar (find-free-var name)))
44 (make-lambda-var :%source-name name
45 :type (leaf-type specvar)
46 :where-from (leaf-where-from specvar)
49 (make-lambda-var :%source-name name)))))
51 ;;; Make the default keyword for a &KEY arg, checking that the keyword
52 ;;; isn't already used by one of the VARS.
53 (declaim (ftype (sfunction (symbol list t) symbol) make-keyword-for-arg))
54 (defun make-keyword-for-arg (symbol vars keywordify)
55 (let ((key (if (and keywordify (not (keywordp symbol)))
59 (let ((info (lambda-var-arg-info var)))
61 (eq (arg-info-kind info) :keyword)
62 (eq (arg-info-key info) key))
64 "The keyword ~S appears more than once in the lambda list."
68 ;;; Parse a lambda list into a list of VAR structures, stripping off
69 ;;; any &AUX bindings. Each arg name is checked for legality, and
70 ;;; duplicate names are checked for. If an arg is globally special,
71 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
72 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
73 ;;; which contains the extra information. If we hit something losing,
74 ;;; we bug out with COMPILER-ERROR. These values are returned:
75 ;;; 1. a list of the var structures for each top level argument;
76 ;;; 2. a flag indicating whether &KEY was specified;
77 ;;; 3. a flag indicating whether other &KEY args are allowed;
78 ;;; 4. a list of the &AUX variables; and
79 ;;; 5. a list of the &AUX values.
80 (declaim (ftype (sfunction (list) (values list boolean boolean list list))
82 (defun make-lambda-vars (list)
83 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
84 morep more-context more-count)
85 (parse-lambda-list list)
86 (declare (ignore auxp)) ; since we just iterate over AUX regardless
91 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
92 ;; for optionals and keywords args.
93 (parse-default (spec info)
94 (when (consp (cdr spec))
95 (setf (arg-info-default info) (second spec))
96 (when (consp (cddr spec))
97 (let* ((supplied-p (third spec))
98 (supplied-var (varify-lambda-arg supplied-p
100 (setf (arg-info-supplied-p info) supplied-var)
101 (names-so-far supplied-p)
102 (when (> (length (the list spec)) 3)
104 "The list ~S is too long to be an arg specifier."
107 (dolist (name required)
108 (let ((var (varify-lambda-arg name (names-so-far))))
110 (names-so-far name)))
112 (dolist (spec optional)
114 (let ((var (varify-lambda-arg spec (names-so-far))))
115 (setf (lambda-var-arg-info var)
116 (make-arg-info :kind :optional))
119 (let* ((name (first spec))
120 (var (varify-lambda-arg name (names-so-far)))
121 (info (make-arg-info :kind :optional)))
122 (setf (lambda-var-arg-info var) info)
125 (parse-default spec info))))
128 (let ((var (varify-lambda-arg rest (names-so-far))))
129 (setf (lambda-var-arg-info var) (make-arg-info :kind :rest))
131 (names-so-far rest)))
134 (let ((var (varify-lambda-arg more-context (names-so-far))))
135 (setf (lambda-var-arg-info var)
136 (make-arg-info :kind :more-context))
138 (names-so-far more-context))
139 (let ((var (varify-lambda-arg more-count (names-so-far))))
140 (setf (lambda-var-arg-info var)
141 (make-arg-info :kind :more-count))
143 (names-so-far more-count)))
148 (let ((var (varify-lambda-arg spec (names-so-far))))
149 (setf (lambda-var-arg-info var)
150 (make-arg-info :kind :keyword
151 :key (make-keyword-for-arg spec
155 (names-so-far spec)))
157 (let* ((name (first spec))
158 (var (varify-lambda-arg name (names-so-far)))
161 :key (make-keyword-for-arg name (vars) t))))
162 (setf (lambda-var-arg-info var) info)
165 (parse-default spec info)))
167 (let ((head (first spec)))
168 (unless (proper-list-of-length-p head 2)
169 (error "malformed &KEY argument specifier: ~S" spec))
170 (let* ((name (second head))
171 (var (varify-lambda-arg name (names-so-far)))
174 :key (make-keyword-for-arg (first head)
177 (setf (lambda-var-arg-info var) info)
180 (parse-default spec info))))))
184 (let ((var (varify-lambda-arg spec nil)))
187 (names-so-far spec)))
189 (unless (proper-list-of-length-p spec 1 2)
190 (compiler-error "malformed &AUX binding specifier: ~S"
192 (let* ((name (first spec))
193 (var (varify-lambda-arg name nil)))
195 (aux-vals (second spec))
196 (names-so-far name)))))
198 (values (vars) keyp allowp (aux-vars) (aux-vals))))))
200 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
201 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
202 ;;; converting the body. If there are no bindings, just convert the
203 ;;; body, otherwise do one binding and recurse on the rest.
205 ;;; FIXME: This could and probably should be converted to use
206 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
207 ;;; so I'm not motivated. Patches will be accepted...
208 (defun ir1-convert-aux-bindings (start next result body aux-vars aux-vals
210 (declare (type ctran start next) (type (or lvar null) result)
211 (list body aux-vars aux-vals))
213 (let ((*lexenv* (make-lexenv :vars (copy-list post-binding-lexenv))))
214 (ir1-convert-progn-body start next result body))
215 (let ((ctran (make-ctran))
216 (fun-lvar (make-lvar))
217 (fun (ir1-convert-lambda-body body
218 (list (first aux-vars))
219 :aux-vars (rest aux-vars)
220 :aux-vals (rest aux-vals)
221 :post-binding-lexenv post-binding-lexenv
222 :debug-name (debug-name
225 (reference-leaf start ctran fun-lvar fun)
226 (ir1-convert-combination-args fun-lvar ctran next result
227 (list (first aux-vals)))))
230 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
231 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
232 ;;; around the body. If there are no special bindings, we just convert
233 ;;; the body, otherwise we do one special binding and recurse on the
236 ;;; We make a cleanup and introduce it into the lexical
237 ;;; environment. If there are multiple special bindings, the cleanup
238 ;;; for the blocks will end up being the innermost one. We force NEXT
239 ;;; to start a block outside of this cleanup, causing cleanup code to
240 ;;; be emitted when the scope is exited.
241 (defun ir1-convert-special-bindings
242 (start next result body aux-vars aux-vals svars post-binding-lexenv)
243 (declare (type ctran start next) (type (or lvar null) result)
244 (list body aux-vars aux-vals svars))
247 (ir1-convert-aux-bindings start next result body aux-vars aux-vals
248 post-binding-lexenv))
250 (ctran-starts-block next)
251 (let ((cleanup (make-cleanup :kind :special-bind))
253 (bind-ctran (make-ctran))
254 (cleanup-ctran (make-ctran)))
255 (ir1-convert start bind-ctran nil
256 `(%special-bind ',(lambda-var-specvar var) ,var))
257 (setf (cleanup-mess-up cleanup) (ctran-use bind-ctran))
258 (let ((*lexenv* (make-lexenv :cleanup cleanup)))
259 (ir1-convert bind-ctran cleanup-ctran nil '(%cleanup-point))
260 (ir1-convert-special-bindings cleanup-ctran next result
261 body aux-vars aux-vals
263 post-binding-lexenv)))))
266 ;;; Create a lambda node out of some code, returning the result. The
267 ;;; bindings are specified by the list of VAR structures VARS. We deal
268 ;;; with adding the names to the LEXENV-VARS for the conversion. The
269 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
270 ;;; and linked to the component head and tail.
272 ;;; We detect special bindings here, replacing the original VAR in the
273 ;;; lambda list with a temporary variable. We then pass a list of the
274 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
275 ;;; the special binding code.
277 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
278 ;;; dealing with &NONSENSE, except for &REST vars with DYNAMIC-EXTENT.
280 ;;; AUX-VARS is a list of VAR structures for variables that are to be
281 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
282 ;;; to get the initial value for the corresponding AUX-VAR.
283 (defun ir1-convert-lambda-body (body
288 (source-name '.anonymous.)
290 (note-lexical-bindings t)
293 (declare (list body vars aux-vars aux-vals))
295 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
296 (aver-live-component *current-component*)
298 (let* ((bind (make-bind))
299 (lambda (make-lambda :vars vars
301 :%source-name source-name
302 :%debug-name debug-name
303 :system-lambda-p system-lambda))
304 (result-ctran (make-ctran))
305 (result-lvar (make-lvar)))
307 (awhen (lexenv-lambda *lexenv*)
308 (push lambda (lambda-children it))
309 (setf (lambda-parent lambda) it))
311 ;; just to check: This function should fail internal assertions if
312 ;; we didn't set up a valid debug name above.
314 ;; (In SBCL we try to make everything have a debug name, since we
315 ;; lack the omniscient perspective the original implementors used
316 ;; to decide which things didn't need one.)
317 (functional-debug-name lambda)
319 (setf (lambda-home lambda) lambda)
324 ;; As far as I can see, LAMBDA-VAR-HOME should never have
325 ;; been set before. Let's make sure. -- WHN 2001-09-29
326 (aver (not (lambda-var-home var)))
327 (setf (lambda-var-home var) lambda)
328 (let ((specvar (lambda-var-specvar var)))
331 (new-venv (cons (leaf-source-name specvar) specvar)))
333 (when note-lexical-bindings
334 (note-lexical-binding (leaf-source-name var)))
335 (new-venv (cons (leaf-source-name var) var))))))
337 (let ((*lexenv* (make-lexenv :vars (new-venv)
340 (setf (bind-lambda bind) lambda)
341 (setf (node-lexenv bind) *lexenv*)
343 (let ((block (ctran-starts-block result-ctran)))
344 (let ((return (make-return :result result-lvar :lambda lambda))
345 (tail-set (make-tail-set :funs (list lambda))))
346 (setf (lambda-tail-set lambda) tail-set)
347 (setf (lambda-return lambda) return)
348 (setf (lvar-dest result-lvar) return)
349 (link-node-to-previous-ctran return result-ctran)
350 (setf (block-last block) return))
351 (link-blocks block (component-tail *current-component*)))
353 (with-component-last-block (*current-component*
354 (ctran-block result-ctran))
355 (let ((prebind-ctran (make-ctran))
356 (postbind-ctran (make-ctran)))
357 (ctran-starts-block prebind-ctran)
358 (link-node-to-previous-ctran bind prebind-ctran)
359 (use-ctran bind postbind-ctran)
360 (ir1-convert-special-bindings postbind-ctran result-ctran
362 aux-vars aux-vals (svars)
363 post-binding-lexenv)))))
365 (link-blocks (component-head *current-component*) (node-block bind))
366 (push lambda (component-new-functionals *current-component*))
370 ;;; Entry point CLAMBDAs have a special kind
371 (defun register-entry-point (entry dispatcher)
372 (declare (type clambda entry)
373 (type optional-dispatch dispatcher))
374 (setf (functional-kind entry) :optional)
375 (setf (leaf-ever-used entry) t)
376 (setf (lambda-optional-dispatch entry) dispatcher)
379 ;;; Create the actual entry-point function for an optional entry
380 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
381 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
382 ;;; to the VARS by name. The VALS are passed in the reverse order.
384 ;;; If any of the copies of the vars are referenced more than once,
385 ;;; then we mark the corresponding var as EVER-USED to inhibit
386 ;;; "defined but not read" warnings for arguments that are only used
387 ;;; by default forms.
388 (defun convert-optional-entry (fun vars vals defaults name)
389 (declare (type clambda fun) (list vars vals defaults))
390 (let* ((fvars (reverse vars))
391 (arg-vars (mapcar (lambda (var)
393 :%source-name (leaf-source-name var)
394 :type (leaf-type var)
395 :where-from (leaf-where-from var)
396 :specvar (lambda-var-specvar var)))
398 (fun (collect ((default-bindings)
400 (dolist (default defaults)
401 (if (sb!xc:constantp default)
402 (default-vals default)
403 (let ((var (gensym)))
404 (default-bindings `(,var ,default))
405 (default-vals var))))
406 (let ((bindings (default-bindings))
407 (call `(%funcall ,fun ,@(reverse vals) ,@(default-vals))))
408 (ir1-convert-lambda-body (if bindings
409 `((let (,@bindings) ,call))
412 ;; FIXME: Would be nice to
413 ;; share these names instead
414 ;; of consing up several
415 ;; identical ones. Oh well.
416 :debug-name (debug-name
419 :note-lexical-bindings nil
420 :system-lambda t)))))
421 (mapc (lambda (var arg-var)
422 (when (cdr (leaf-refs arg-var))
423 (setf (leaf-ever-used var) t)))
427 ;;; This function deals with supplied-p vars in optional arguments. If
428 ;;; the there is no supplied-p arg, then we just call
429 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
430 ;;; optional entry that calls the result. If there is a supplied-p
431 ;;; var, then we add it into the default vars and throw a T into the
432 ;;; entry values. The resulting entry point function is returned.
433 (defun generate-optional-default-entry (res default-vars default-vals
434 entry-vars entry-vals
435 vars supplied-p-p body
437 source-name debug-name
438 force post-binding-lexenv
440 (declare (type optional-dispatch res)
441 (list default-vars default-vals entry-vars entry-vals vars body
443 (let* ((arg (first vars))
444 (arg-name (leaf-source-name arg))
445 (info (lambda-var-arg-info arg))
446 (default (arg-info-default info))
447 (supplied-p (arg-info-supplied-p info))
449 (not (sb!xc:constantp (arg-info-default info)))))
451 (ir1-convert-hairy-args
453 (list* supplied-p arg default-vars)
454 (list* (leaf-source-name supplied-p) arg-name default-vals)
455 (cons arg entry-vars)
456 (list* t arg-name entry-vals)
457 (rest vars) t body aux-vars aux-vals
458 source-name debug-name
459 force post-binding-lexenv system-lambda)
460 (ir1-convert-hairy-args
462 (cons arg default-vars)
463 (cons arg-name default-vals)
464 (cons arg entry-vars)
465 (cons arg-name entry-vals)
466 (rest vars) supplied-p-p body aux-vars aux-vals
467 source-name debug-name
468 force post-binding-lexenv system-lambda))))
470 ;; We want to delay converting the entry, but there exist
471 ;; problems: hidden references should not be established to
472 ;; lambdas of kind NIL should not have (otherwise the compiler
473 ;; might let-convert or delete them) and to variables.
474 (let ((name (or debug-name source-name)))
476 supplied-p-p ; this entry will be of kind NIL
477 (and (lambda-p ep) (eq (lambda-kind ep) nil)))
478 (convert-optional-entry ep
479 default-vars default-vals
480 (if supplied-p (list default nil) (list default))
482 (let* ((default `',(constant-form-value default))
483 (defaults (if supplied-p (list default nil) (list default))))
484 ;; DEFAULT can contain a reference to a
485 ;; to-be-optimized-away function/block/tag, so better to
486 ;; reduce code now (but we possibly lose syntax checking
487 ;; in an unreachable code).
489 (register-entry-point
490 (convert-optional-entry (force ep)
491 default-vars default-vals
496 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
497 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
498 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
500 ;;; The most interesting thing that we do is parse keywords. We create
501 ;;; a bunch of temporary variables to hold the result of the parse,
502 ;;; and then loop over the supplied arguments, setting the appropriate
503 ;;; temps for the supplied keyword. Note that it is significant that
504 ;;; we iterate over the keywords in reverse order --- this implements
505 ;;; the CL requirement that (when a keyword appears more than once)
506 ;;; the first value is used.
508 ;;; If there is no supplied-p var, then we initialize the temp to the
509 ;;; default and just pass the temp into the main entry. Since
510 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
511 ;;; know that the default is constant, and thus safe to evaluate out
514 ;;; If there is a supplied-p var, then we create temps for both the
515 ;;; value and the supplied-p, and pass them into the main entry,
516 ;;; letting it worry about defaulting.
518 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
519 ;;; until we have scanned all the keywords.
520 (defun convert-more-entry (res entry-vars entry-vals rest morep keys name)
521 (declare (type optional-dispatch res) (list entry-vars entry-vals keys))
523 (arg-vals (reverse entry-vals))
527 (dolist (var (reverse entry-vars))
528 (arg-vars (make-lambda-var :%source-name (leaf-source-name var)
529 :type (leaf-type var)
530 :where-from (leaf-where-from var))))
532 (let* ((n-context (gensym "N-CONTEXT-"))
533 (context-temp (make-lambda-var :%source-name n-context))
534 (n-count (gensym "N-COUNT-"))
535 (count-temp (make-lambda-var :%source-name n-count
536 :type (specifier-type 'index))))
538 (arg-vars context-temp count-temp)
541 (arg-vals `(%listify-rest-args
542 ,n-context ,n-count)))
547 ;; The reason for all the noise with
548 ;; STACK-GROWS-DOWNWARD-NOT-UPWARD is to enable generation of
549 ;; slightly more efficient code on x86oid processors. (We can
550 ;; hoist the negation of the index outside the main parsing loop
551 ;; and take advantage of the base+index+displacement addressing
553 (when (optional-dispatch-keyp res)
554 (let ((n-index (gensym "N-INDEX-"))
555 (n-key (gensym "N-KEY-"))
556 (n-value-temp (gensym "N-VALUE-TEMP-"))
557 (n-allowp (gensym "N-ALLOWP-"))
558 (n-losep (gensym "N-LOSEP-"))
559 (allowp (or (optional-dispatch-allowp res)
560 (policy *lexenv* (zerop safety))))
563 (temps #!-stack-grows-downward-not-upward
564 `(,n-index (1- ,n-count))
565 #!+stack-grows-downward-not-upward
566 `(,n-index (- (1- ,n-count)))
567 #!-stack-grows-downward-not-upward n-value-temp
568 #!-stack-grows-downward-not-upward n-key)
569 (body `(declare (fixnum ,n-index)
570 #!-stack-grows-downward-not-upward
571 (ignorable ,n-value-temp ,n-key)))
575 (let* ((info (lambda-var-arg-info key))
576 (default (arg-info-default info))
577 (keyword (arg-info-key info))
578 (supplied-p (arg-info-supplied-p info))
579 (n-value (gensym "N-VALUE-"))
580 (clause (cond (supplied-p
581 (let ((n-supplied (gensym "N-SUPPLIED-")))
583 (arg-vals n-value n-supplied)
584 `((eq ,n-key ',keyword)
586 (setq ,n-value ,n-value-temp))))
589 `((eq ,n-key ',keyword)
590 (setq ,n-value ,n-value-temp))))))
591 (when (and (not allowp) (eq keyword :allow-other-keys))
592 (setq found-allow-p t)
594 (append clause `((setq ,n-allowp ,n-value-temp)))))
596 (temps `(,n-value ,default))
600 (temps n-allowp n-losep)
601 (unless found-allow-p
602 (tests `((eq ,n-key :allow-other-keys)
603 (setq ,n-allowp ,n-value-temp))))
605 (setq ,n-losep (list ,n-key)))))
608 `(when (oddp ,n-count)
609 (%odd-key-args-error)))
612 #!-stack-grows-downward-not-upward
614 (declare (optimize (safety 0)))
616 (when (minusp ,n-index) (return))
617 (setf ,n-value-temp (%more-arg ,n-context ,n-index))
619 (setq ,n-key (%more-arg ,n-context ,n-index))
622 #!+stack-grows-downward-not-upward
623 `(locally (declare (optimize (safety 0)))
625 (when (plusp ,n-index) (return))
626 (multiple-value-bind (,n-value-temp ,n-key)
627 (%more-kw-arg ,n-context ,n-index)
628 (declare (ignorable ,n-value-temp ,n-key))
633 (body `(when (and ,n-losep (not ,n-allowp))
634 (%unknown-key-arg-error (car ,n-losep))))))))
636 (let ((ep (ir1-convert-lambda-body
639 (%funcall ,(optional-dispatch-main-entry res)
642 :debug-name (debug-name '&more-processor name)
643 :note-lexical-bindings nil
645 (setf (optional-dispatch-more-entry res)
646 (register-entry-point ep res)))))
650 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
651 ;;; or &KEY arg. The arguments are similar to that function, but we
652 ;;; split off any &REST arg and pass it in separately. REST is the
653 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
654 ;;; the &KEY argument vars.
656 ;;; When there are &KEY arguments, we introduce temporary gensym
657 ;;; variables to hold the values while keyword defaulting is in
658 ;;; progress to get the required sequential binding semantics.
660 ;;; This gets interesting mainly when there are &KEY arguments with
661 ;;; supplied-p vars or non-constant defaults. In either case, pass in
662 ;;; a supplied-p var. If the default is non-constant, we introduce an
663 ;;; IF in the main entry that tests the supplied-p var and decides
664 ;;; whether to evaluate the default or not. In this case, the real
665 ;;; incoming value is NIL, so we must union NULL with the declared
666 ;;; type when computing the type for the main entry's argument.
667 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
668 rest more-context more-count keys supplied-p-p
669 body aux-vars aux-vals source-name debug-name
670 post-binding-lexenv system-lambda)
671 (declare (type optional-dispatch res)
672 (list default-vars default-vals entry-vars entry-vals keys body
674 (collect ((main-vars (reverse default-vars))
675 (main-vals default-vals cons)
682 (main-vars more-context)
684 (main-vars more-count)
688 (let* ((info (lambda-var-arg-info key))
689 (default (arg-info-default info))
690 (hairy-default (not (sb!xc:constantp default)))
691 (supplied-p (arg-info-supplied-p info))
692 (n-val (make-symbol (format nil
694 (leaf-source-name key))))
695 (val-temp (make-lambda-var :%source-name n-val)))
698 (cond ((or hairy-default supplied-p)
699 (let* ((n-supplied (gensym "N-SUPPLIED-"))
700 (supplied-temp (make-lambda-var
701 :%source-name n-supplied)))
703 (setf (arg-info-supplied-p info) supplied-temp))
705 (setf (arg-info-default info) nil))
706 (main-vars supplied-temp)
709 (bind-vals `(if ,n-supplied ,n-val ,default)))
711 (main-vals default nil)
714 (bind-vars supplied-p)
715 (bind-vals n-supplied))))
717 (main-vals (arg-info-default info))
718 (bind-vals n-val)))))
720 (let* ((name (or debug-name source-name))
721 (main-entry (ir1-convert-lambda-body
723 :aux-vars (append (bind-vars) aux-vars)
724 :aux-vals (append (bind-vals) aux-vals)
725 :post-binding-lexenv post-binding-lexenv
726 :debug-name (debug-name 'varargs-entry name)
727 :system-lambda system-lambda))
728 (last-entry (convert-optional-entry main-entry default-vars
729 (main-vals) () name)))
730 (setf (optional-dispatch-main-entry res)
731 (register-entry-point main-entry res))
732 (convert-more-entry res entry-vars entry-vals rest more-context keys
735 (push (register-entry-point
737 (convert-optional-entry last-entry entry-vars entry-vals
741 (optional-dispatch-entry-points res))
744 ;;; This function generates the entry point functions for the
745 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
746 ;;; of arguments, analyzing the arglist on the way down and generating
747 ;;; entry points on the way up.
749 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
750 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
751 ;;; names of the DEFAULT-VARS.
753 ;;; ENTRY-VARS is a reversed list of processed argument vars,
754 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
755 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
756 ;;; It has the var name for each required or optional arg, and has T
757 ;;; for each supplied-p arg.
759 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
760 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
761 ;;; argument has already been processed; only in this case are the
762 ;;; DEFAULT-XXX and ENTRY-XXX different.
764 ;;; The result at each point is a lambda which should be called by the
765 ;;; above level to default the remaining arguments and evaluate the
766 ;;; body. We cause the body to be evaluated by converting it and
767 ;;; returning it as the result when the recursion bottoms out.
769 ;;; Each level in the recursion also adds its entry point function to
770 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
771 ;;; function and the entry point function will be the same, but when
772 ;;; SUPPLIED-P args are present they may be different.
774 ;;; When we run into a &REST or &KEY arg, we punt out to
775 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
776 (defun ir1-convert-hairy-args (res default-vars default-vals
777 entry-vars entry-vals
778 vars supplied-p-p body aux-vars
780 source-name debug-name
781 force post-binding-lexenv
783 (declare (type optional-dispatch res)
784 (list default-vars default-vals entry-vars entry-vals vars body
786 (aver (or debug-name (neq '.anonymous. source-name)))
788 (if (optional-dispatch-keyp res)
789 ;; Handle &KEY with no keys...
790 (ir1-convert-more res default-vars default-vals
791 entry-vars entry-vals
792 nil nil nil vars supplied-p-p body aux-vars
793 aux-vals source-name debug-name
794 post-binding-lexenv system-lambda)
795 (let* ((name (or debug-name source-name))
796 (fun (ir1-convert-lambda-body
797 body (reverse default-vars)
800 :post-binding-lexenv post-binding-lexenv
801 :debug-name (debug-name 'hairy-arg-processor name)
802 :system-lambda system-lambda)))
804 (setf (optional-dispatch-main-entry res) fun)
805 (register-entry-point fun res)
806 (push (if supplied-p-p
807 (register-entry-point
808 (convert-optional-entry fun entry-vars entry-vals ()
812 (optional-dispatch-entry-points res))
814 ((not (lambda-var-arg-info (first vars)))
815 (let* ((arg (first vars))
816 (nvars (cons arg default-vars))
817 (nvals (cons (leaf-source-name arg) default-vals)))
818 (ir1-convert-hairy-args res nvars nvals nvars nvals
819 (rest vars) nil body aux-vars aux-vals
820 source-name debug-name
821 nil post-binding-lexenv system-lambda)))
823 (let* ((arg (first vars))
824 (info (lambda-var-arg-info arg))
825 (kind (arg-info-kind info)))
828 (let ((ep (generate-optional-default-entry
829 res default-vars default-vals
830 entry-vars entry-vals vars supplied-p-p body
832 source-name debug-name
833 force post-binding-lexenv
835 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
836 (push (if (lambda-p ep)
837 (register-entry-point
839 (convert-optional-entry
840 ep entry-vars entry-vals nil
841 (or debug-name source-name))
844 (progn (aver (not supplied-p-p))
846 (optional-dispatch-entry-points res))
849 (ir1-convert-more res default-vars default-vals
850 entry-vars entry-vals
851 arg nil nil (rest vars) supplied-p-p body
853 source-name debug-name
854 post-binding-lexenv system-lambda))
856 (ir1-convert-more res default-vars default-vals
857 entry-vars entry-vals
858 nil arg (second vars) (cddr vars) supplied-p-p
859 body aux-vars aux-vals
860 source-name debug-name
861 post-binding-lexenv system-lambda))
863 (ir1-convert-more res default-vars default-vals
864 entry-vars entry-vals
865 nil nil nil vars supplied-p-p body aux-vars
866 aux-vals source-name debug-name
867 post-binding-lexenv system-lambda)))))))
869 ;;; This function deals with the case where we have to make an
870 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
871 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
872 ;;; figure out the MIN-ARGS and MAX-ARGS.
873 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
874 &key post-binding-lexenv
875 (source-name '.anonymous.)
876 debug-name system-lambda)
877 (declare (list body vars aux-vars aux-vals))
878 (aver (or debug-name (neq '.anonymous. source-name)))
879 (let ((res (make-optional-dispatch :arglist vars
882 :%source-name source-name
883 :%debug-name debug-name
884 :plist `(:ir1-environment
887 (min (or (position-if #'lambda-var-arg-info vars) (length vars))))
888 (aver-live-component *current-component*)
889 (push res (component-new-functionals *current-component*))
890 (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals
891 source-name debug-name nil post-binding-lexenv
893 (setf (optional-dispatch-min-args res) min)
894 (setf (optional-dispatch-max-args res)
895 (+ (1- (length (optional-dispatch-entry-points res))) min))
899 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
900 (defun ir1-convert-lambda (form &key (source-name '.anonymous.)
901 debug-name maybe-add-debug-catch
904 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
907 (unless (eq (car form) 'lambda)
908 (compiler-error "~S was expected but ~S was found:~% ~S"
912 (unless (and (consp (cdr form)) (listp (cadr form)))
914 "The lambda expression has a missing or non-list lambda list:~% ~S"
916 (when (and system-lambda maybe-add-debug-catch)
917 (bug "Both SYSTEM-LAMBDA and MAYBE-ADD-DEBUG-CATCH specified"))
918 (unless (or debug-name (neq '.anonymous. source-name))
919 (setf debug-name (name-lambdalike form)))
920 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals)
921 (make-lambda-vars (cadr form))
922 (multiple-value-bind (forms decls doc) (parse-body (cddr form))
923 (binding* (((*lexenv* result-type post-binding-lexenv)
924 (process-decls decls (append aux-vars vars) nil
926 (debug-catch-p (and maybe-add-debug-catch
927 *allow-instrumenting*
929 (>= insert-debug-catch 2))))
930 (forms (if debug-catch-p
931 (wrap-forms-in-debug-catch forms)
933 (forms (if (eq result-type *wild-type*)
935 `((the ,result-type (progn ,@forms)))))
936 (*allow-instrumenting* (and (not system-lambda) *allow-instrumenting*))
937 (res (cond ((or (find-if #'lambda-var-arg-info vars) keyp)
938 (ir1-convert-hairy-lambda forms vars keyp
941 :post-binding-lexenv post-binding-lexenv
942 :source-name source-name
943 :debug-name debug-name
944 :system-lambda system-lambda))
946 (ir1-convert-lambda-body forms vars
949 :post-binding-lexenv post-binding-lexenv
950 :source-name source-name
951 :debug-name debug-name
952 :system-lambda system-lambda)))))
953 (setf (functional-inline-expansion res) form)
954 (setf (functional-arg-documentation res) (cadr form))
955 (setf (functional-documentation res) doc)
956 (when (boundp '*lambda-conversions*)
957 ;; KLUDGE: Not counting TL-XEPs is a lie, of course, but
958 ;; keeps things less confusing to users of TIME, where this
960 (unless (and (consp debug-name) (eq 'tl-xep (car debug-name)))
961 (incf *lambda-conversions*)))
964 (defun wrap-forms-in-debug-catch (forms)
965 #!+unwind-to-frame-and-call-vop
966 `((multiple-value-prog1
969 ;; Just ensure that there won't be any tail-calls, IR2 magic will
972 #!-unwind-to-frame-and-call-vop
973 `( ;; Normally, we'll return from this block with the below RETURN-FROM.
976 ;; If DEBUG-CATCH-TAG is thrown (with a thunk as the value) the
977 ;; RETURN-FROM is elided and we funcall the thunk instead. That
978 ;; thunk might either return a value (for a RETURN-FROM-FRAME)
979 ;; or call this same function again (for a RESTART-FRAME).
980 ;; -- JES, 2007-01-09
983 ;; Use a constant catch tag instead of consing a new one for every
984 ;; entry to this block. The uniquencess of the catch tags is
985 ;; ensured when the tag is throw by the debugger. It'll allocate a
986 ;; new tag, and modify the reference this tag in the proper
987 ;; catch-block structure to refer to that new tag. This
988 ;; significantly decreases the runtime cost of high debug levels.
989 ;; -- JES, 2007-01-09
990 (catch 'debug-catch-tag
991 (return-from return-value-tag
995 ;;; helper for LAMBDA-like things, to massage them into a form
996 ;;; suitable for IR1-CONVERT-LAMBDA.
997 (defun ir1-convert-lambdalike (thing
999 (source-name '.anonymous.)
1001 (when (and (not debug-name) (eq '.anonymous. source-name))
1002 (setf debug-name (name-lambdalike thing)))
1005 (ir1-convert-lambda thing
1006 :maybe-add-debug-catch t
1007 :source-name source-name
1008 :debug-name debug-name))
1010 (deprecation-warning 'instance-lambda 'lambda)
1011 (ir1-convert-lambda `(lambda ,@(cdr thing))
1012 :source-name source-name
1013 :debug-name debug-name))
1015 (let ((name (cadr thing))
1016 (lambda-expression `(lambda ,@(cddr thing))))
1017 (if (and name (legal-fun-name-p name))
1018 (let ((defined-fun-res (get-defined-fun name))
1019 (res (ir1-convert-lambda lambda-expression
1020 :maybe-add-debug-catch t
1021 :source-name name)))
1022 (assert-global-function-definition-type name res)
1023 (push res (defined-fun-functionals defined-fun-res))
1024 (unless (eq (defined-fun-inlinep defined-fun-res) :notinline)
1027 (policy ref (> recognize-self-calls 0)))
1028 res defined-fun-res))
1030 (ir1-convert-lambda lambda-expression
1031 :maybe-add-debug-catch t
1033 (or name (name-lambdalike thing))))))
1034 ((lambda-with-lexenv)
1035 (ir1-convert-inline-lambda thing
1036 :source-name source-name
1037 :debug-name debug-name))))
1039 ;;;; defining global functions
1041 ;;; Convert FUN as a lambda in the null environment, but use the
1042 ;;; current compilation policy. Note that FUN may be a
1043 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
1044 ;;; reflect the state at the definition site.
1045 (defun ir1-convert-inline-lambda (fun
1047 (source-name '.anonymous.)
1050 (when (and (not debug-name) (eq '.anonymous. source-name))
1051 (setf debug-name (name-lambdalike fun)))
1052 (destructuring-bind (decls macros symbol-macros &rest body)
1053 (if (eq (car fun) 'lambda-with-lexenv)
1055 `(() () () . ,(cdr fun)))
1056 (let* ((*lexenv* (make-lexenv
1057 :default (process-decls decls nil nil
1058 :lexenv (make-null-lexenv))
1059 :vars (copy-list symbol-macros)
1060 :funs (mapcar (lambda (x)
1062 (macro . ,(coerce (cdr x) 'function))))
1064 ;; Inherit MUFFLE-CONDITIONS from the call-site lexenv
1065 ;; rather than the definition-site lexenv, since it seems
1066 ;; like a much more common case.
1067 :handled-conditions (lexenv-handled-conditions *lexenv*)
1068 :policy (lexenv-policy *lexenv*)))
1069 (clambda (ir1-convert-lambda `(lambda ,@body)
1070 :source-name source-name
1071 :debug-name debug-name
1072 :system-lambda system-lambda)))
1073 (setf (functional-inline-expanded clambda) t)
1076 ;;; Get a DEFINED-FUN object for a function we are about to define. If
1077 ;;; the function has been forward referenced, then substitute for the
1078 ;;; previous references.
1079 (defun get-defined-fun (name)
1080 (proclaim-as-fun-name name)
1081 (when (boundp '*free-funs*)
1082 (let ((found (find-free-fun name "shouldn't happen! (defined-fun)")))
1083 (note-name-defined name :function)
1084 (cond ((not (defined-fun-p found))
1085 (aver (not (info :function :inlinep name)))
1086 (let* ((where-from (leaf-where-from found))
1087 (res (make-defined-fun
1089 :where-from (if (eq where-from :declared)
1091 :type (leaf-type found))))
1092 (substitute-leaf res found)
1093 (setf (gethash name *free-funs*) res)))
1094 ;; If *FREE-FUNS* has a previously converted definition
1095 ;; for this name, then blow it away and try again.
1096 ((defined-fun-functionals found)
1097 (remhash name *free-funs*)
1098 (get-defined-fun name))
1101 ;;; Check a new global function definition for consistency with
1102 ;;; previous declaration or definition, and assert argument/result
1103 ;;; types if appropriate. This assertion is suppressed by the
1104 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
1105 ;;; check their argument types as a consequence of type dispatching.
1106 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
1107 (defun assert-new-definition (var fun)
1108 (let ((type (leaf-type var))
1109 (for-real (eq (leaf-where-from var) :declared))
1110 (info (info :function :info (leaf-source-name var))))
1111 (assert-definition-type
1113 ;; KLUDGE: Common Lisp is such a dynamic language that in general
1114 ;; all we can do here in general is issue a STYLE-WARNING. It
1115 ;; would be nice to issue a full WARNING in the special case of
1116 ;; of type mismatches within a compilation unit (as in section
1117 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
1118 ;; keep track of whether the mismatched data came from the same
1119 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
1120 :lossage-fun #'compiler-style-warn
1121 :unwinnage-fun (cond (info #'compiler-style-warn)
1122 (for-real #'compiler-notify)
1127 (ir1-attributep (fun-info-attributes info)
1130 "previous declaration"
1131 "previous definition"))))
1133 ;;; Used for global inline expansion. Earlier something like this was
1134 ;;; used by %DEFUN too. FIXME: And now it's probably worth rethinking
1135 ;;; whether this function is a good idea at all.
1136 (defun ir1-convert-inline-expansion (name expansion var inlinep info)
1137 ;; Unless a :INLINE function, we temporarily clobber the inline
1138 ;; expansion. This prevents recursive inline expansion of
1139 ;; opportunistic pseudo-inlines.
1140 (unless (eq inlinep :inline)
1141 (setf (defined-fun-inline-expansion var) nil))
1142 (let ((fun (ir1-convert-inline-lambda expansion
1144 ;; prevent instrumentation of
1145 ;; known function expansions
1146 :system-lambda (and info t))))
1147 (setf (functional-inlinep fun) inlinep)
1148 (assert-new-definition var fun)
1149 (setf (defined-fun-inline-expansion var) expansion)
1150 ;; substitute for any old references
1151 (unless (or (not *block-compile*)
1153 (or (fun-info-transforms info)
1154 (fun-info-templates info)
1155 (fun-info-ir2-convert info))))
1156 (substitute-leaf fun var))
1159 ;;; the even-at-compile-time part of DEFUN
1161 ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
1162 ;;; no inline expansion.
1163 (defun %compiler-defun (name lambda-with-lexenv compile-toplevel)
1164 (let ((defined-fun nil)) ; will be set below if we're in the compiler
1165 (when compile-toplevel
1166 (setf defined-fun (get-defined-fun name))
1167 (when (boundp '*lexenv*)
1168 (remhash name *free-funs*)
1169 (aver (fasl-output-p *compile-object*))
1170 (if (member name *fun-names-in-this-file* :test #'equal)
1171 (warn 'duplicate-definition :name name)
1172 (push name *fun-names-in-this-file*))))
1174 (become-defined-fun-name name)
1176 (cond (lambda-with-lexenv
1177 (setf (info :function :inline-expansion-designator name)
1180 (setf (defined-fun-inline-expansion defined-fun)
1181 lambda-with-lexenv)))
1183 (clear-info :function :inline-expansion-designator name)))
1185 ;; old CMU CL comment:
1186 ;; If there is a type from a previous definition, blast it,
1187 ;; since it is obsolete.
1188 (when (and defined-fun
1189 (eq (leaf-where-from defined-fun) :defined))
1190 (setf (leaf-type defined-fun)
1191 ;; FIXME: If this is a block compilation thing, shouldn't
1192 ;; we be setting the type to the full derived type for the
1193 ;; definition, instead of this most general function type?
1194 (specifier-type 'function))))
1199 ;;; Entry point utilities
1201 ;;; Return a function for the Nth entry point.
1202 (defun optional-dispatch-entry-point-fun (dispatcher n)
1203 (declare (type optional-dispatch dispatcher)
1204 (type unsigned-byte n))
1205 (let* ((env (getf (optional-dispatch-plist dispatcher) :ir1-environment))
1206 (*lexenv* (first env))
1207 (*current-path* (second env)))
1208 (force (nth n (optional-dispatch-entry-points dispatcher)))))