1 ;;;; This file contains code which does the translation of lambda
2 ;;;; forms from Lisp code to the first intermediate representation
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
18 ;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
19 ;;;; function representation" before you seriously mess with this
22 ;;; Verify that the NAME is a legal name for a variable and return a
23 ;;; VAR structure for it, filling in info if it is globally special.
24 ;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
25 ;;; list of names which have previously been bound. If the NAME is in
26 ;;; this list, then we error out.
27 (declaim (ftype (sfunction (t list) lambda-var) varify-lambda-arg))
28 (defun varify-lambda-arg (name names-so-far)
29 (declare (inline member))
30 (unless (symbolp name)
31 (compiler-error "The lambda variable ~S is not a symbol." name))
32 (when (member name names-so-far :test #'eq)
33 (compiler-error "The variable ~S occurs more than once in the lambda list."
35 (let ((kind (info :variable :kind name)))
36 (when (or (keywordp name) (eq kind :constant))
37 (compiler-error "The name of the lambda variable ~S is already in use to name a constant."
39 (cond ((eq kind :special)
40 (let ((specvar (find-free-var name)))
41 (make-lambda-var :%source-name name
42 :type (leaf-type specvar)
43 :where-from (leaf-where-from specvar)
46 (make-lambda-var :%source-name name)))))
48 ;;; Make the default keyword for a &KEY arg, checking that the keyword
49 ;;; isn't already used by one of the VARS.
50 (declaim (ftype (sfunction (symbol list t) symbol) make-keyword-for-arg))
51 (defun make-keyword-for-arg (symbol vars keywordify)
52 (let ((key (if (and keywordify (not (keywordp symbol)))
56 (let ((info (lambda-var-arg-info var)))
58 (eq (arg-info-kind info) :keyword)
59 (eq (arg-info-key info) key))
61 "The keyword ~S appears more than once in the lambda list."
65 ;;; Parse a lambda list into a list of VAR structures, stripping off
66 ;;; any &AUX bindings. Each arg name is checked for legality, and
67 ;;; duplicate names are checked for. If an arg is globally special,
68 ;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
69 ;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
70 ;;; which contains the extra information. If we hit something losing,
71 ;;; we bug out with COMPILER-ERROR. These values are returned:
72 ;;; 1. a list of the var structures for each top level argument;
73 ;;; 2. a flag indicating whether &KEY was specified;
74 ;;; 3. a flag indicating whether other &KEY args are allowed;
75 ;;; 4. a list of the &AUX variables; and
76 ;;; 5. a list of the &AUX values.
77 (declaim (ftype (sfunction (list) (values list boolean boolean list list))
79 (defun make-lambda-vars (list)
80 (multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
81 morep more-context more-count)
82 (parse-lambda-list list)
83 (declare (ignore auxp)) ; since we just iterate over AUX regardless
88 (flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
89 ;; for optionals and keywords args.
90 (parse-default (spec info)
91 (when (consp (cdr spec))
92 (setf (arg-info-default info) (second spec))
93 (when (consp (cddr spec))
94 (let* ((supplied-p (third spec))
95 (supplied-var (varify-lambda-arg supplied-p
97 (setf (arg-info-supplied-p info) supplied-var)
98 (names-so-far supplied-p)
99 (when (> (length (the list spec)) 3)
101 "The list ~S is too long to be an arg specifier."
104 (dolist (name required)
105 (let ((var (varify-lambda-arg name (names-so-far))))
107 (names-so-far name)))
109 (dolist (spec optional)
111 (let ((var (varify-lambda-arg spec (names-so-far))))
112 (setf (lambda-var-arg-info var)
113 (make-arg-info :kind :optional))
116 (let* ((name (first spec))
117 (var (varify-lambda-arg name (names-so-far)))
118 (info (make-arg-info :kind :optional)))
119 (setf (lambda-var-arg-info var) info)
122 (parse-default spec info))))
125 (let ((var (varify-lambda-arg rest (names-so-far))))
126 (setf (lambda-var-arg-info var) (make-arg-info :kind :rest))
128 (names-so-far rest)))
131 (let ((var (varify-lambda-arg more-context (names-so-far))))
132 (setf (lambda-var-arg-info var)
133 (make-arg-info :kind :more-context))
135 (names-so-far more-context))
136 (let ((var (varify-lambda-arg more-count (names-so-far))))
137 (setf (lambda-var-arg-info var)
138 (make-arg-info :kind :more-count))
140 (names-so-far more-count)))
145 (let ((var (varify-lambda-arg spec (names-so-far))))
146 (setf (lambda-var-arg-info var)
147 (make-arg-info :kind :keyword
148 :key (make-keyword-for-arg spec
152 (names-so-far spec)))
154 (let* ((name (first spec))
155 (var (varify-lambda-arg name (names-so-far)))
158 :key (make-keyword-for-arg name (vars) t))))
159 (setf (lambda-var-arg-info var) info)
162 (parse-default spec info)))
164 (let ((head (first spec)))
165 (unless (proper-list-of-length-p head 2)
166 (error "malformed &KEY argument specifier: ~S" spec))
167 (let* ((name (second head))
168 (var (varify-lambda-arg name (names-so-far)))
171 :key (make-keyword-for-arg (first head)
174 (setf (lambda-var-arg-info var) info)
177 (parse-default spec info))))))
181 (let ((var (varify-lambda-arg spec nil)))
184 (names-so-far spec)))
186 (unless (proper-list-of-length-p spec 1 2)
187 (compiler-error "malformed &AUX binding specifier: ~S"
189 (let* ((name (first spec))
190 (var (varify-lambda-arg name nil)))
192 (aux-vals (second spec))
193 (names-so-far name)))))
195 (values (vars) keyp allowp (aux-vars) (aux-vals))))))
197 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
198 ;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
199 ;;; converting the body. If there are no bindings, just convert the
200 ;;; body, otherwise do one binding and recurse on the rest.
202 ;;; FIXME: This could and probably should be converted to use
203 ;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
204 ;;; so I'm not motivated. Patches will be accepted...
205 (defun ir1-convert-aux-bindings (start cont body aux-vars aux-vals)
206 (declare (type continuation start cont) (list body aux-vars aux-vals))
208 (ir1-convert-progn-body start cont body)
209 (let ((fun-cont (make-continuation))
210 (fun (ir1-convert-lambda-body body
211 (list (first aux-vars))
212 :aux-vars (rest aux-vars)
213 :aux-vals (rest aux-vals)
214 :debug-name (debug-namify
217 (reference-leaf start fun-cont fun)
218 (ir1-convert-combination-args fun-cont cont
219 (list (first aux-vals)))))
222 ;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
223 ;;; the SPECVAR for each SVAR to the value of the variable is wrapped
224 ;;; around the body. If there are no special bindings, we just convert
225 ;;; the body, otherwise we do one special binding and recurse on the
228 ;;; We make a cleanup and introduce it into the lexical environment.
229 ;;; If there are multiple special bindings, the cleanup for the blocks
230 ;;; will end up being the innermost one. We force CONT to start a
231 ;;; block outside of this cleanup, causing cleanup code to be emitted
232 ;;; when the scope is exited.
233 (defun ir1-convert-special-bindings (start cont body aux-vars aux-vals svars)
234 (declare (type continuation start cont)
235 (list body aux-vars aux-vals svars))
238 (ir1-convert-aux-bindings start cont body aux-vars aux-vals))
240 (continuation-starts-block cont)
241 (let ((cleanup (make-cleanup :kind :special-bind))
243 (next-cont (make-continuation))
244 (nnext-cont (make-continuation)))
245 (ir1-convert start next-cont
246 `(%special-bind ',(lambda-var-specvar var) ,var))
247 (setf (cleanup-mess-up cleanup) (continuation-use next-cont))
248 (let ((*lexenv* (make-lexenv :cleanup cleanup)))
249 (ir1-convert next-cont nnext-cont '(%cleanup-point))
250 (ir1-convert-special-bindings nnext-cont cont body aux-vars aux-vals
254 ;;; Create a lambda node out of some code, returning the result. The
255 ;;; bindings are specified by the list of VAR structures VARS. We deal
256 ;;; with adding the names to the LEXENV-VARS for the conversion. The
257 ;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
258 ;;; and linked to the component head and tail.
260 ;;; We detect special bindings here, replacing the original VAR in the
261 ;;; lambda list with a temporary variable. We then pass a list of the
262 ;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
263 ;;; the special binding code.
265 ;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
266 ;;; dealing with &nonsense.
268 ;;; AUX-VARS is a list of VAR structures for variables that are to be
269 ;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
270 ;;; to get the initial value for the corresponding AUX-VAR.
271 (defun ir1-convert-lambda-body (body
276 (source-name '.anonymous.)
278 (note-lexical-bindings t))
279 (declare (list body vars aux-vars aux-vals))
281 ;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
282 (aver-live-component *current-component*)
284 (let* ((bind (make-bind))
285 (lambda (make-lambda :vars vars
287 :%source-name source-name
288 :%debug-name debug-name))
289 (result (make-continuation)))
291 ;; just to check: This function should fail internal assertions if
292 ;; we didn't set up a valid debug name above.
294 ;; (In SBCL we try to make everything have a debug name, since we
295 ;; lack the omniscient perspective the original implementors used
296 ;; to decide which things didn't need one.)
297 (functional-debug-name lambda)
299 (setf (lambda-home lambda) lambda)
304 ;; As far as I can see, LAMBDA-VAR-HOME should never have
305 ;; been set before. Let's make sure. -- WHN 2001-09-29
306 (aver (not (lambda-var-home var)))
307 (setf (lambda-var-home var) lambda)
308 (let ((specvar (lambda-var-specvar var)))
311 (new-venv (cons (leaf-source-name specvar) specvar)))
313 (when note-lexical-bindings
314 (note-lexical-binding (leaf-source-name var)))
315 (new-venv (cons (leaf-source-name var) var))))))
317 (let ((*lexenv* (make-lexenv :vars (new-venv)
320 (setf (bind-lambda bind) lambda)
321 (setf (node-lexenv bind) *lexenv*)
323 (let ((block (continuation-starts-block result)))
324 (let ((return (make-return :result result :lambda lambda))
325 (tail-set (make-tail-set :funs (list lambda)))
326 (dummy (make-continuation)))
327 (setf (lambda-tail-set lambda) tail-set)
328 (setf (lambda-return lambda) return)
329 (setf (continuation-dest result) return)
330 (setf (block-last block) return)
331 (link-node-to-previous-continuation return result)
332 (use-continuation return dummy))
333 (link-blocks block (component-tail *current-component*)))
335 (with-component-last-block (*current-component*
336 (continuation-block result))
337 (let ((cont1 (make-continuation))
338 (cont2 (make-continuation)))
339 (continuation-starts-block cont1)
340 (link-node-to-previous-continuation bind cont1)
341 (use-continuation bind cont2)
342 (ir1-convert-special-bindings cont2 result body
343 aux-vars aux-vals (svars))))))
345 (link-blocks (component-head *current-component*) (node-block bind))
346 (push lambda (component-new-functionals *current-component*))
350 ;;; Entry point CLAMBDAs have a special kind
351 (defun register-entry-point (entry dispatcher)
352 (declare (type clambda entry)
353 (type optional-dispatch dispatcher))
354 (setf (functional-kind entry) :optional)
355 (setf (leaf-ever-used entry) t)
356 (setf (lambda-optional-dispatch entry)
360 ;;; Create the actual entry-point function for an optional entry
361 ;;; point. The lambda binds copies of each of the VARS, then calls FUN
362 ;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
363 ;;; to the VARS by name. The VALS are passed in the reverse order.
365 ;;; If any of the copies of the vars are referenced more than once,
366 ;;; then we mark the corresponding var as EVER-USED to inhibit
367 ;;; "defined but not read" warnings for arguments that are only used
368 ;;; by default forms.
369 (defun convert-optional-entry (fun vars vals defaults)
370 (declare (type clambda fun) (list vars vals defaults))
371 (let* ((fvars (reverse vars))
372 (arg-vars (mapcar (lambda (var)
374 :%source-name (leaf-source-name var)
375 :type (leaf-type var)
376 :where-from (leaf-where-from var)
377 :specvar (lambda-var-specvar var)))
379 (fun (collect ((default-bindings)
381 (dolist (default defaults)
382 (if (constantp default)
383 (default-vals default)
384 (let ((var (gensym)))
385 (default-bindings `(,var ,default))
386 (default-vals var))))
387 (ir1-convert-lambda-body `((let (,@(default-bindings))
393 (debug-namify "&OPTIONAL processor ~D"
395 :note-lexical-bindings nil))))
396 (mapc (lambda (var arg-var)
397 (when (cdr (leaf-refs arg-var))
398 (setf (leaf-ever-used var) t)))
402 ;;; This function deals with supplied-p vars in optional arguments. If
403 ;;; the there is no supplied-p arg, then we just call
404 ;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
405 ;;; optional entry that calls the result. If there is a supplied-p
406 ;;; var, then we add it into the default vars and throw a T into the
407 ;;; entry values. The resulting entry point function is returned.
408 (defun generate-optional-default-entry (res default-vars default-vals
409 entry-vars entry-vals
410 vars supplied-p-p body
412 source-name debug-name
414 (declare (type optional-dispatch res)
415 (list default-vars default-vals entry-vars entry-vals vars body
417 (let* ((arg (first vars))
418 (arg-name (leaf-source-name arg))
419 (info (lambda-var-arg-info arg))
420 (default (arg-info-default info))
421 (supplied-p (arg-info-supplied-p info))
423 (not (sb!xc:constantp (arg-info-default info)))))
425 (ir1-convert-hairy-args
427 (list* supplied-p arg default-vars)
428 (list* (leaf-source-name supplied-p) arg-name default-vals)
429 (cons arg entry-vars)
430 (list* t arg-name entry-vals)
431 (rest vars) t body aux-vars aux-vals
432 source-name debug-name
434 (ir1-convert-hairy-args
436 (cons arg default-vars)
437 (cons arg-name default-vals)
438 (cons arg entry-vars)
439 (cons arg-name entry-vals)
440 (rest vars) supplied-p-p body aux-vars aux-vals
441 source-name debug-name
444 ;; We want to delay converting the entry, but there exist
445 ;; problems: hidden references should not be established to
446 ;; lambdas of kind NIL should not have (otherwise the compiler
447 ;; might let-convert or delete them) and to variables.
449 supplied-p-p ; this entry will be of kind NIL
450 (and (lambda-p ep) (eq (lambda-kind ep) nil)))
451 (convert-optional-entry ep
452 default-vars default-vals
457 (register-entry-point
458 (convert-optional-entry (force ep)
459 default-vars default-vals
465 ;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
466 ;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
467 ;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
469 ;;; The most interesting thing that we do is parse keywords. We create
470 ;;; a bunch of temporary variables to hold the result of the parse,
471 ;;; and then loop over the supplied arguments, setting the appropriate
472 ;;; temps for the supplied keyword. Note that it is significant that
473 ;;; we iterate over the keywords in reverse order --- this implements
474 ;;; the CL requirement that (when a keyword appears more than once)
475 ;;; the first value is used.
477 ;;; If there is no supplied-p var, then we initialize the temp to the
478 ;;; default and just pass the temp into the main entry. Since
479 ;;; non-constant &KEY args are forcibly given a supplied-p var, we
480 ;;; know that the default is constant, and thus safe to evaluate out
483 ;;; If there is a supplied-p var, then we create temps for both the
484 ;;; value and the supplied-p, and pass them into the main entry,
485 ;;; letting it worry about defaulting.
487 ;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
488 ;;; until we have scanned all the keywords.
489 (defun convert-more-entry (res entry-vars entry-vals rest morep keys)
490 (declare (type optional-dispatch res) (list entry-vars entry-vals keys))
492 (arg-vals (reverse entry-vals))
496 (dolist (var (reverse entry-vars))
497 (arg-vars (make-lambda-var :%source-name (leaf-source-name var)
498 :type (leaf-type var)
499 :where-from (leaf-where-from var))))
501 (let* ((n-context (gensym "N-CONTEXT-"))
502 (context-temp (make-lambda-var :%source-name n-context))
503 (n-count (gensym "N-COUNT-"))
504 (count-temp (make-lambda-var :%source-name n-count
505 :type (specifier-type 'index))))
507 (arg-vars context-temp count-temp)
510 (arg-vals `(%listify-rest-args ,n-context ,n-count)))
515 (when (optional-dispatch-keyp res)
516 (let ((n-index (gensym "N-INDEX-"))
517 (n-key (gensym "N-KEY-"))
518 (n-value-temp (gensym "N-VALUE-TEMP-"))
519 (n-allowp (gensym "N-ALLOWP-"))
520 (n-losep (gensym "N-LOSEP-"))
521 (allowp (or (optional-dispatch-allowp res)
522 (policy *lexenv* (zerop safety))))
525 (temps `(,n-index (1- ,n-count)) n-key n-value-temp)
526 (body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp)))
530 (let* ((info (lambda-var-arg-info key))
531 (default (arg-info-default info))
532 (keyword (arg-info-key info))
533 (supplied-p (arg-info-supplied-p info))
534 (n-value (gensym "N-VALUE-"))
535 (clause (cond (supplied-p
536 (let ((n-supplied (gensym "N-SUPPLIED-")))
538 (arg-vals n-value n-supplied)
539 `((eq ,n-key ',keyword)
541 (setq ,n-value ,n-value-temp))))
544 `((eq ,n-key ',keyword)
545 (setq ,n-value ,n-value-temp))))))
546 (when (and (not allowp) (eq keyword :allow-other-keys))
547 (setq found-allow-p t)
549 (append clause `((setq ,n-allowp ,n-value-temp)))))
551 (temps `(,n-value ,default))
555 (temps n-allowp n-losep)
556 (unless found-allow-p
557 (tests `((eq ,n-key :allow-other-keys)
558 (setq ,n-allowp ,n-value-temp))))
560 (setq ,n-losep ,n-key))))
563 `(when (oddp ,n-count)
564 (%odd-key-args-error)))
568 (declare (optimize (safety 0)))
570 (when (minusp ,n-index) (return))
571 (setf ,n-value-temp (%more-arg ,n-context ,n-index))
573 (setq ,n-key (%more-arg ,n-context ,n-index))
578 (body `(when (and ,n-losep (not ,n-allowp))
579 (%unknown-key-arg-error ,n-losep)))))))
581 (let ((ep (ir1-convert-lambda-body
584 (%funcall ,(optional-dispatch-main-entry res)
587 :debug-name (debug-namify "~S processing" '&more)
588 :note-lexical-bindings nil)))
589 (setf (optional-dispatch-more-entry res)
590 (register-entry-point ep res)))))
594 ;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
595 ;;; or &KEY arg. The arguments are similar to that function, but we
596 ;;; split off any &REST arg and pass it in separately. REST is the
597 ;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
598 ;;; the &KEY argument vars.
600 ;;; When there are &KEY arguments, we introduce temporary gensym
601 ;;; variables to hold the values while keyword defaulting is in
602 ;;; progress to get the required sequential binding semantics.
604 ;;; This gets interesting mainly when there are &KEY arguments with
605 ;;; supplied-p vars or non-constant defaults. In either case, pass in
606 ;;; a supplied-p var. If the default is non-constant, we introduce an
607 ;;; IF in the main entry that tests the supplied-p var and decides
608 ;;; whether to evaluate the default or not. In this case, the real
609 ;;; incoming value is NIL, so we must union NULL with the declared
610 ;;; type when computing the type for the main entry's argument.
611 (defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
612 rest more-context more-count keys supplied-p-p
613 body aux-vars aux-vals
614 source-name debug-name)
615 (declare (type optional-dispatch res)
616 (list default-vars default-vals entry-vars entry-vals keys body
618 (collect ((main-vars (reverse default-vars))
619 (main-vals default-vals cons)
626 (main-vars more-context)
628 (main-vars more-count)
632 (let* ((info (lambda-var-arg-info key))
633 (default (arg-info-default info))
634 (hairy-default (not (sb!xc:constantp default)))
635 (supplied-p (arg-info-supplied-p info))
636 (n-val (make-symbol (format nil
638 (leaf-source-name key))))
639 (key-type (leaf-type key))
640 (val-temp (make-lambda-var
642 :type (if hairy-default
643 (type-union key-type (specifier-type 'null))
647 (cond ((or hairy-default supplied-p)
648 (let* ((n-supplied (gensym "N-SUPPLIED-"))
649 (supplied-temp (make-lambda-var
650 :%source-name n-supplied)))
652 (setf (arg-info-supplied-p info) supplied-temp))
654 (setf (arg-info-default info) nil))
655 (main-vars supplied-temp)
658 (bind-vals `(if ,n-supplied ,n-val ,default)))
660 (main-vals default nil)
663 (bind-vars supplied-p)
664 (bind-vals n-supplied))))
666 (main-vals (arg-info-default info))
667 (bind-vals n-val)))))
669 (let* ((main-entry (ir1-convert-lambda-body
671 :aux-vars (append (bind-vars) aux-vars)
672 :aux-vals (append (bind-vals) aux-vals)
673 :debug-name (debug-namify "varargs entry for ~A"
674 (as-debug-name source-name
676 (last-entry (convert-optional-entry main-entry default-vars
678 (setf (optional-dispatch-main-entry res)
679 (register-entry-point main-entry res))
680 (convert-more-entry res entry-vars entry-vals rest more-context keys)
682 (push (register-entry-point
684 (convert-optional-entry last-entry entry-vars entry-vals ())
687 (optional-dispatch-entry-points res))
690 ;;; This function generates the entry point functions for the
691 ;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
692 ;;; of arguments, analyzing the arglist on the way down and generating
693 ;;; entry points on the way up.
695 ;;; DEFAULT-VARS is a reversed list of all the argument vars processed
696 ;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
697 ;;; names of the DEFAULT-VARS.
699 ;;; ENTRY-VARS is a reversed list of processed argument vars,
700 ;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
701 ;;; evaluated to get the values for all the vars from the ENTRY-VARS.
702 ;;; It has the var name for each required or optional arg, and has T
703 ;;; for each supplied-p arg.
705 ;;; VARS is a list of the LAMBDA-VAR structures for arguments that
706 ;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
707 ;;; argument has already been processed; only in this case are the
708 ;;; DEFAULT-XXX and ENTRY-XXX different.
710 ;;; The result at each point is a lambda which should be called by the
711 ;;; above level to default the remaining arguments and evaluate the
712 ;;; body. We cause the body to be evaluated by converting it and
713 ;;; returning it as the result when the recursion bottoms out.
715 ;;; Each level in the recursion also adds its entry point function to
716 ;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
717 ;;; function and the entry point function will be the same, but when
718 ;;; SUPPLIED-P args are present they may be different.
720 ;;; When we run into a &REST or &KEY arg, we punt out to
721 ;;; IR1-CONVERT-MORE, which finishes for us in this case.
722 (defun ir1-convert-hairy-args (res default-vars default-vals
723 entry-vars entry-vals
724 vars supplied-p-p body aux-vars
726 source-name debug-name
728 (declare (type optional-dispatch res)
729 (list default-vars default-vals entry-vars entry-vals vars body
732 (if (optional-dispatch-keyp res)
733 ;; Handle &KEY with no keys...
734 (ir1-convert-more res default-vars default-vals
735 entry-vars entry-vals
736 nil nil nil vars supplied-p-p body aux-vars
737 aux-vals source-name debug-name)
738 (let ((fun (ir1-convert-lambda-body
739 body (reverse default-vars)
742 :debug-name (debug-namify
743 "hairy arg processor for ~A"
744 (as-debug-name source-name
746 (setf (optional-dispatch-main-entry res) fun)
747 (register-entry-point fun res)
748 (push (if supplied-p-p
749 (register-entry-point
750 (convert-optional-entry fun entry-vars entry-vals ())
753 (optional-dispatch-entry-points res))
755 ((not (lambda-var-arg-info (first vars)))
756 (let* ((arg (first vars))
757 (nvars (cons arg default-vars))
758 (nvals (cons (leaf-source-name arg) default-vals)))
759 (ir1-convert-hairy-args res nvars nvals nvars nvals
760 (rest vars) nil body aux-vars aux-vals
761 source-name debug-name
764 (let* ((arg (first vars))
765 (info (lambda-var-arg-info arg))
766 (kind (arg-info-kind info)))
769 (let ((ep (generate-optional-default-entry
770 res default-vars default-vals
771 entry-vars entry-vals vars supplied-p-p body
773 source-name debug-name
775 ;; See GENERATE-OPTIONAL-DEFAULT-ENTRY.
776 (push (if (lambda-p ep)
777 (register-entry-point
779 (convert-optional-entry ep entry-vars entry-vals ())
782 (progn (aver (not supplied-p-p))
784 (optional-dispatch-entry-points res))
787 (ir1-convert-more res default-vars default-vals
788 entry-vars entry-vals
789 arg nil nil (rest vars) supplied-p-p body
791 source-name debug-name))
793 (ir1-convert-more res default-vars default-vals
794 entry-vars entry-vals
795 nil arg (second vars) (cddr vars) supplied-p-p
796 body aux-vars aux-vals
797 source-name debug-name))
799 (ir1-convert-more res default-vars default-vals
800 entry-vars entry-vals
801 nil nil nil vars supplied-p-p body aux-vars
802 aux-vals source-name debug-name)))))))
804 ;;; This function deals with the case where we have to make an
805 ;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
806 ;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
807 ;;; figure out the MIN-ARGS and MAX-ARGS.
808 (defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals
810 (source-name '.anonymous.)
811 (debug-name (debug-namify
812 "OPTIONAL-DISPATCH ~S"
814 (declare (list body vars aux-vars aux-vals))
815 (let ((res (make-optional-dispatch :arglist vars
818 :%source-name source-name
819 :%debug-name debug-name
820 :plist `(:ir1-environment
823 (min (or (position-if #'lambda-var-arg-info vars) (length vars))))
824 (aver-live-component *current-component*)
825 (push res (component-new-functionals *current-component*))
826 (ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals
827 source-name debug-name nil)
828 (setf (optional-dispatch-min-args res) min)
829 (setf (optional-dispatch-max-args res)
830 (+ (1- (length (optional-dispatch-entry-points res))) min))
834 ;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
835 (defun ir1-convert-lambda (form &key (source-name '.anonymous.)
837 allow-debug-catch-tag)
840 (compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
843 (unless (eq (car form) 'lambda)
844 (compiler-error "~S was expected but ~S was found:~% ~S"
848 (unless (and (consp (cdr form)) (listp (cadr form)))
850 "The lambda expression has a missing or non-list lambda list:~% ~S"
853 (let ((*allow-debug-catch-tag* (and *allow-debug-catch-tag* allow-debug-catch-tag)))
854 (multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals)
855 (make-lambda-vars (cadr form))
856 (multiple-value-bind (forms decls) (parse-body (cddr form))
857 (binding* (((*lexenv* result-type)
858 (process-decls decls (append aux-vars vars) nil))
859 (forms (if (and *allow-debug-catch-tag*
860 (policy *lexenv* (>= insert-debug-catch 2)))
861 `((catch (make-symbol "SB-DEBUG-CATCH-TAG")
864 (forms (if (eq result-type *wild-type*)
866 `((the ,result-type (progn ,@forms)))))
867 (res (if (or (find-if #'lambda-var-arg-info vars) keyp)
868 (ir1-convert-hairy-lambda forms vars keyp
871 :source-name source-name
872 :debug-name debug-name)
873 (ir1-convert-lambda-body forms vars
876 :source-name source-name
877 :debug-name debug-name))))
878 (setf (functional-inline-expansion res) form)
879 (setf (functional-arg-documentation res) (cadr form))
882 ;;; helper for LAMBDA-like things, to massage them into a form
883 ;;; suitable for IR1-CONVERT-LAMBDA.
885 ;;; KLUDGE: We cons up a &REST list here, maybe for no particularly
886 ;;; good reason. It's probably lost in the noise of all the other
887 ;;; consing, but it's still inelegant. And we force our called
888 ;;; functions to do full runtime keyword parsing, ugh. -- CSR,
890 (defun ir1-convert-lambdalike (thing &rest args
891 &key (source-name '.anonymous.)
892 debug-name allow-debug-catch-tag)
893 (declare (ignorable source-name debug-name allow-debug-catch-tag))
895 ((lambda) (apply #'ir1-convert-lambda thing args))
897 (let ((res (apply #'ir1-convert-lambda
898 `(lambda ,@(cdr thing)) args)))
899 (setf (getf (functional-plist res) :fin-function) t)
902 (let ((name (cadr thing)))
903 (if (legal-fun-name-p name)
904 (let ((defined-fun-res (get-defined-fun name))
905 (res (apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
909 (assert-global-function-definition-type name res)
910 (setf (defined-fun-functional defined-fun-res)
912 (unless (eq (defined-fun-inlinep defined-fun-res) :notinline)
915 (policy ref (> recognize-self-calls 0)))
916 res defined-fun-res))
918 (apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
919 :debug-name name args))))
920 ((lambda-with-lexenv) (apply #'ir1-convert-inline-lambda thing args))))
922 ;;;; defining global functions
924 ;;; Convert FUN as a lambda in the null environment, but use the
925 ;;; current compilation policy. Note that FUN may be a
926 ;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
927 ;;; reflect the state at the definition site.
928 (defun ir1-convert-inline-lambda (fun &key
929 (source-name '.anonymous.)
931 allow-debug-catch-tag)
932 (destructuring-bind (decls macros symbol-macros &rest body)
933 (if (eq (car fun) 'lambda-with-lexenv)
935 `(() () () . ,(cdr fun)))
936 (let ((*lexenv* (make-lexenv
937 :default (process-decls decls nil nil
939 :vars (copy-list symbol-macros)
940 :funs (mapcar (lambda (x)
942 (macro . ,(coerce (cdr x) 'function))))
944 :policy (lexenv-policy *lexenv*))))
945 (ir1-convert-lambda `(lambda ,@body)
946 :source-name source-name
947 :debug-name debug-name
948 :allow-debug-catch-tag nil))))
950 ;;; Get a DEFINED-FUN object for a function we are about to define. If
951 ;;; the function has been forward referenced, then substitute for the
952 ;;; previous references.
953 (defun get-defined-fun (name)
954 (proclaim-as-fun-name name)
955 (let ((found (find-free-fun name "shouldn't happen! (defined-fun)")))
956 (note-name-defined name :function)
957 (cond ((not (defined-fun-p found))
958 (aver (not (info :function :inlinep name)))
959 (let* ((where-from (leaf-where-from found))
960 (res (make-defined-fun
962 :where-from (if (eq where-from :declared)
964 :type (leaf-type found))))
965 (substitute-leaf res found)
966 (setf (gethash name *free-funs*) res)))
967 ;; If *FREE-FUNS* has a previously converted definition
968 ;; for this name, then blow it away and try again.
969 ((defined-fun-functional found)
970 (remhash name *free-funs*)
971 (get-defined-fun name))
974 ;;; Check a new global function definition for consistency with
975 ;;; previous declaration or definition, and assert argument/result
976 ;;; types if appropriate. This assertion is suppressed by the
977 ;;; EXPLICIT-CHECK attribute, which is specified on functions that
978 ;;; check their argument types as a consequence of type dispatching.
979 ;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
980 (defun assert-new-definition (var fun)
981 (let ((type (leaf-type var))
982 (for-real (eq (leaf-where-from var) :declared))
983 (info (info :function :info (leaf-source-name var))))
984 (assert-definition-type
986 ;; KLUDGE: Common Lisp is such a dynamic language that in general
987 ;; all we can do here in general is issue a STYLE-WARNING. It
988 ;; would be nice to issue a full WARNING in the special case of
989 ;; of type mismatches within a compilation unit (as in section
990 ;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
991 ;; keep track of whether the mismatched data came from the same
992 ;; compilation unit, so we can't do that. -- WHN 2001-02-11
993 :lossage-fun #'compiler-style-warn
994 :unwinnage-fun (cond (info #'compiler-style-warn)
995 (for-real #'compiler-notify)
1000 (ir1-attributep (fun-info-attributes info)
1003 "previous declaration"
1004 "previous definition"))))
1006 ;;; Convert a lambda doing all the basic stuff we would do if we were
1007 ;;; converting a DEFUN. In the old CMU CL system, this was used both
1008 ;;; by the %DEFUN translator and for global inline expansion, but
1009 ;;; since sbcl-0.pre7.something %DEFUN does things differently.
1010 ;;; FIXME: And now it's probably worth rethinking whether this
1011 ;;; function is a good idea.
1013 ;;; Unless a :INLINE function, we temporarily clobber the inline
1014 ;;; expansion. This prevents recursive inline expansion of
1015 ;;; opportunistic pseudo-inlines.
1016 (defun ir1-convert-lambda-for-defun (lambda var expansion converter)
1017 (declare (cons lambda) (function converter) (type defined-fun var))
1018 (let ((var-expansion (defined-fun-inline-expansion var)))
1019 (unless (eq (defined-fun-inlinep var) :inline)
1020 (setf (defined-fun-inline-expansion var) nil))
1021 (let* ((name (leaf-source-name var))
1022 (fun (funcall converter lambda
1024 (fun-info (info :function :info name)))
1025 (setf (functional-inlinep fun) (defined-fun-inlinep var))
1026 (assert-new-definition var fun)
1027 (setf (defined-fun-inline-expansion var) var-expansion)
1028 ;; If definitely not an interpreter stub, then substitute for
1029 ;; any old references.
1030 (unless (or (eq (defined-fun-inlinep var) :notinline)
1031 (not *block-compile*)
1033 (or (fun-info-transforms fun-info)
1034 (fun-info-templates fun-info)
1035 (fun-info-ir2-convert fun-info))))
1036 (substitute-leaf fun var)
1037 ;; If in a simple environment, then we can allow backward
1038 ;; references to this function from following top level forms.
1039 (when expansion (setf (defined-fun-functional var) fun)))
1042 ;;; the even-at-compile-time part of DEFUN
1044 ;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
1045 ;;; no inline expansion.
1046 (defun %compiler-defun (name lambda-with-lexenv)
1048 (let ((defined-fun nil)) ; will be set below if we're in the compiler
1050 (when (boundp '*lexenv*) ; when in the compiler
1051 (when sb!xc:*compile-print*
1052 (compiler-mumble "~&; recognizing DEFUN ~S~%" name))
1053 (remhash name *free-funs*)
1054 (setf defined-fun (get-defined-fun name)))
1056 (become-defined-fun-name name)
1058 (cond (lambda-with-lexenv
1059 (setf (info :function :inline-expansion-designator name)
1062 (setf (defined-fun-inline-expansion defined-fun)
1063 lambda-with-lexenv)))
1065 (clear-info :function :inline-expansion-designator name)))
1067 ;; old CMU CL comment:
1068 ;; If there is a type from a previous definition, blast it,
1069 ;; since it is obsolete.
1070 (when (and defined-fun
1071 (eq (leaf-where-from defined-fun) :defined))
1072 (setf (leaf-type defined-fun)
1073 ;; FIXME: If this is a block compilation thing, shouldn't
1074 ;; we be setting the type to the full derived type for the
1075 ;; definition, instead of this most general function type?
1076 (specifier-type 'function))))
1081 ;;; Entry point utilities
1083 ;;; Return a function for the Nth entry point.
1084 (defun optional-dispatch-entry-point-fun (dispatcher n)
1085 (declare (type optional-dispatch dispatcher)
1086 (type unsigned-byte n))
1087 (let* ((env (getf (optional-dispatch-plist dispatcher) :ir1-environment))
1088 (*lexenv* (first env))
1089 (*current-path* (second env)))
1090 (force (nth n (optional-dispatch-entry-points dispatcher)))))