1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; If there is any CHECK-xxx template for TYPE, then return it,
25 ;;; otherwise return NIL.
26 (defun type-check-template (type)
27 (declare (type ctype type))
28 (multiple-value-bind (check-ptype exact) (primitive-type type)
30 (primitive-type-check check-ptype)
31 (let ((name (hairy-type-check-template-name type)))
33 (template-or-lose name)
36 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
37 ;;; yielding the checked result in RESULT. VALUE and result may be of
38 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
39 ;;; other type checks should have been converted to an explicit type
41 (defun emit-type-check (node block value result type)
42 (declare (type tn value result) (type node node) (type ir2-block block)
44 (emit-move-template node block (type-check-template type) value result)
47 ;;; Allocate an indirect value cell. Maybe do some clever stack
48 ;;; allocation someday.
50 ;;; FIXME: DO-MAKE-VALUE-CELL is a bad name, since it doesn't make
51 ;;; clear what's the distinction between it and the MAKE-VALUE-CELL
52 ;;; VOP, and since the DO- further connotes iteration, which has
53 ;;; nothing to do with this. Clearer, more systematic names, anyone?
54 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
55 (defun do-make-value-cell (node block value res)
56 (event make-value-cell-event node)
57 (vop make-value-cell node block value res))
61 ;;; Return the TN that holds the value of THING in the environment ENV.
62 (declaim (ftype (function ((or nlx-info lambda-var) physenv) tn)
64 (defun find-in-physenv (thing physenv)
65 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
68 ;; I think that a failure of this assertion means that we're
69 ;; trying to access a variable which was improperly closed
70 ;; over. The PHYSENV describes a physical environment. Every
71 ;; variable that a form refers to should either be in its
72 ;; physical environment directly, or grabbed from a
73 ;; surrounding physical environment when it was closed over.
74 ;; The ASSOC expression above finds closed-over variables, so
75 ;; if we fell through the ASSOC expression, it wasn't closed
76 ;; over. Therefore, it must be in our physical environment
77 ;; directly. If instead it is in some other physical
78 ;; environment, then it's bogus for us to reference it here
79 ;; without it being closed over. -- WHN 2001-09-29
80 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
83 (aver (eq physenv (block-physenv (nlx-info-target thing))))
84 (ir2-nlx-info-home (nlx-info-info thing))))
85 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
87 ;;; If LEAF already has a constant TN, return that, otherwise make a
89 (defun constant-tn (leaf)
90 (declare (type constant leaf))
92 (setf (leaf-info leaf)
93 (make-constant-tn leaf))))
95 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
96 ;;; isn't directly represented by a TN. ENV is the environment that
97 ;;; the reference is done in.
98 (defun leaf-tn (leaf env)
99 (declare (type leaf leaf) (type physenv env))
102 (unless (lambda-var-indirect leaf)
103 (find-in-physenv leaf env)))
104 (constant (constant-tn leaf))
107 ;;; This is used to conveniently get a handle on a constant TN during
108 ;;; IR2 conversion. It returns a constant TN representing the Lisp
110 (defun emit-constant (value)
111 (constant-tn (find-constant value)))
113 ;;; Convert a REF node. The reference must not be delayed.
114 (defun ir2-convert-ref (node block)
115 (declare (type ref node) (type ir2-block block))
116 (let* ((cont (node-cont node))
117 (leaf (ref-leaf node))
118 (locs (continuation-result-tns
119 cont (list (primitive-type (leaf-type leaf)))))
123 (let ((tn (find-in-physenv leaf (node-physenv node))))
124 (if (lambda-var-indirect leaf)
125 (vop value-cell-ref node block tn res)
126 (emit-move node block tn res))))
128 (if (legal-immediate-constant-p leaf)
129 (emit-move node block (constant-tn leaf) res)
130 (let* ((name (leaf-source-name leaf))
131 (name-tn (emit-constant name)))
132 (if (policy node (zerop safety))
133 (vop fast-symbol-value node block name-tn res)
134 (vop symbol-value node block name-tn res)))))
136 (ir2-convert-closure node block leaf res))
138 (let ((unsafe (policy node (zerop safety)))
139 (name (leaf-source-name leaf)))
140 (ecase (global-var-kind leaf)
142 (aver (symbolp name))
143 (let ((name-tn (emit-constant name)))
145 (vop fast-symbol-value node block name-tn res)
146 (vop symbol-value node block name-tn res))))
148 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
150 (vop fdefn-fun node block fdefn-tn res)
151 (vop safe-fdefn-fun node block fdefn-tn res))))))))
152 (move-continuation-result node block locs cont))
155 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
156 (defun assertions-on-ir2-converted-clambda (clambda)
157 ;; This assertion was sort of an experiment. It would be nice and
158 ;; sane and easier to understand things if it were *always* true,
159 ;; but experimentally I observe that it's only *almost* always
160 ;; true. -- WHN 2001-01-02
162 (aver (eql (lambda-component clambda)
163 (block-component (ir2-block-block ir2-block))))
164 ;; Check for some weirdness which came up in bug
167 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
168 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
170 ;; * treats every HANDLEless :ENTRY record into a
172 ;; * expects every patch to correspond to an
173 ;; IR2-COMPONENT-ENTRIES record.
174 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
175 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
176 ;; was a HANDLEless :ENTRY record which didn't correspond to an
177 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
178 ;; when it's caught at dump time, so this assertion tries to catch
180 (aver (member clambda
181 (component-lambdas (lambda-component clambda))))
182 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
183 ;; used as a queue for stuff pending to do in IR1, and now that
184 ;; we're doing IR2 it should've been completely flushed (but
186 (aver (null (component-new-functionals (lambda-component clambda))))
189 ;;; Emit code to load a function object implementing FUNCTIONAL into
190 ;;; RES. This gets interesting when the referenced function is a
191 ;;; closure: we must make the closure and move the closed-over values
194 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
195 ;;; for the called function, since local call analysis converts all
196 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
199 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
200 ;;; don't initialize that slot. This can happen with closures over
201 ;;; top level variables, where optimization of the closure deleted the
202 ;;; variable. Since we committed to the closure format when we
203 ;;; pre-analyzed the top level code, we just leave an empty slot.
204 (defun ir2-convert-closure (ref ir2-block functional res)
205 (declare (type ref ref)
206 (type ir2-block ir2-block)
207 (type functional functional)
209 (aver (not (eql (functional-kind functional) :deleted)))
210 (unless (leaf-info functional)
211 (setf (leaf-info functional)
212 (make-entry-info :name (functional-debug-name functional))))
213 (let ((entry (make-load-time-constant-tn :entry functional))
214 (closure (etypecase functional
216 (assertions-on-ir2-converted-clambda functional)
217 (physenv-closure (get-lambda-physenv functional)))
219 (aver (eq (functional-kind functional) :toplevel-xep))
223 (let ((this-env (node-physenv ref)))
224 (vop make-closure ref ir2-block entry (length closure) res)
225 (loop for what in closure and n from 0 do
226 (unless (and (lambda-var-p what)
227 (null (leaf-refs what)))
228 (vop closure-init ref ir2-block
230 (find-in-physenv what this-env)
233 (emit-move ref ir2-block entry res))))
236 ;;; Convert a SET node. If the node's CONT is annotated, then we also
237 ;;; deliver the value to that continuation. If the var is a lexical
238 ;;; variable with no refs, then we don't actually set anything, since
239 ;;; the variable has been deleted.
240 (defun ir2-convert-set (node block)
241 (declare (type cset node) (type ir2-block block))
242 (let* ((cont (node-cont node))
243 (leaf (set-var node))
244 (val (continuation-tn node block (set-value node)))
245 (locs (if (continuation-info cont)
246 (continuation-result-tns
247 cont (list (primitive-type (leaf-type leaf))))
251 (when (leaf-refs leaf)
252 (let ((tn (find-in-physenv leaf (node-physenv node))))
253 (if (lambda-var-indirect leaf)
254 (vop value-cell-set node block tn val)
255 (emit-move node block val tn)))))
257 (ecase (global-var-kind leaf)
259 (aver (symbolp (leaf-source-name leaf)))
260 (vop set node block (emit-constant (leaf-source-name leaf)) val)))))
262 (emit-move node block val (first locs))
263 (move-continuation-result node block locs cont)))
266 ;;;; utilities for receiving fixed values
268 ;;; Return a TN that can be referenced to get the value of CONT. CONT
269 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
270 ;;; single-value continuation. If a type check is called for, do it.
272 ;;; The primitive-type of the result will always be the same as the
273 ;;; IR2-CONTINUATION-PRIMITIVE-TYPE, ensuring that VOPs are always
274 ;;; called with TNs that satisfy the operand primitive-type
275 ;;; restriction. We may have to make a temporary of the desired type
276 ;;; and move the actual continuation TN into it. This happens when we
277 ;;; delete a type check in unsafe code or when we locally know
278 ;;; something about the type of an argument variable.
279 (defun continuation-tn (node block cont)
280 (declare (type node node) (type ir2-block block) (type continuation cont))
281 (let* ((2cont (continuation-info cont))
283 (ecase (ir2-continuation-kind 2cont)
285 (let ((ref (continuation-use cont)))
286 (leaf-tn (ref-leaf ref) (node-physenv ref))))
288 (aver (= (length (ir2-continuation-locs 2cont)) 1))
289 (first (ir2-continuation-locs 2cont)))))
290 (ptype (ir2-continuation-primitive-type 2cont)))
292 (cond ((and (eq (continuation-type-check cont) t)
293 (multiple-value-bind (check types)
294 (continuation-check-types cont nil)
295 (aver (eq check :simple))
296 ;; If the proven type is a subtype of the possibly
297 ;; weakened type check then it's always true and is
299 (unless (values-subtypep (continuation-proven-type cont)
301 (let ((temp (make-normal-tn ptype)))
302 (emit-type-check node block cont-tn temp
305 ((eq (tn-primitive-type cont-tn) ptype) cont-tn)
307 (let ((temp (make-normal-tn ptype)))
308 (emit-move node block cont-tn temp)
311 ;;; This is similar to CONTINUATION-TN, but hacks multiple values. We
312 ;;; return continuations holding the values of CONT with PTYPES as
313 ;;; their primitive types. CONT must be annotated for the same number
314 ;;; of fixed values are there are PTYPES.
316 ;;; If the continuation has a type check, check the values into temps
317 ;;; and return the temps. When we have more values than assertions, we
318 ;;; move the extra values with no check.
319 (defun continuation-tns (node block cont ptypes)
320 (declare (type node node) (type ir2-block block)
321 (type continuation cont) (list ptypes))
322 (let* ((locs (ir2-continuation-locs (continuation-info cont)))
323 (nlocs (length locs)))
324 (aver (= nlocs (length ptypes)))
325 (if (eq (continuation-type-check cont) t)
326 (multiple-value-bind (check types) (continuation-check-types cont nil)
327 (aver (eq check :simple))
328 (let ((ntypes (length types)))
329 (mapcar (lambda (from to-type assertion)
330 (let ((temp (make-normal-tn to-type)))
332 (emit-type-check node block from temp assertion)
333 (emit-move node block from temp))
337 (append types (make-list (- nlocs ntypes)
338 :initial-element nil))
340 (mapcar (lambda (from to-type)
341 (if (eq (tn-primitive-type from) to-type)
343 (let ((temp (make-normal-tn to-type)))
344 (emit-move node block from temp)
349 ;;;; utilities for delivering values to continuations
351 ;;; Return a list of TNs with the specifier TYPES that can be used as
352 ;;; result TNs to evaluate an expression into the continuation CONT.
353 ;;; This is used together with MOVE-CONTINUATION-RESULT to deliver
354 ;;; fixed values to a continuation.
356 ;;; If the continuation isn't annotated (meaning the values are
357 ;;; discarded) or is unknown-values, the then we make temporaries for
358 ;;; each supplied value, providing a place to compute the result in
359 ;;; until we decide what to do with it (if anything.)
361 ;;; If the continuation is fixed-values, and wants the same number of
362 ;;; values as the user wants to deliver, then we just return the
363 ;;; IR2-CONTINUATION-LOCS. Otherwise we make a new list padded as
364 ;;; necessary by discarded TNs. We always return a TN of the specified
365 ;;; type, using the continuation locs only when they are of the
367 (defun continuation-result-tns (cont types)
368 (declare (type continuation cont) (type list types))
369 (let ((2cont (continuation-info cont)))
371 (mapcar #'make-normal-tn types)
372 (ecase (ir2-continuation-kind 2cont)
374 (let* ((locs (ir2-continuation-locs 2cont))
375 (nlocs (length locs))
376 (ntypes (length types)))
377 (if (and (= nlocs ntypes)
378 (do ((loc locs (cdr loc))
379 (type types (cdr type)))
381 (unless (eq (tn-primitive-type (car loc)) (car type))
384 (mapcar (lambda (loc type)
385 (if (eq (tn-primitive-type loc) type)
387 (make-normal-tn type)))
390 (mapcar #'make-normal-tn
391 (subseq types nlocs)))
395 (mapcar #'make-normal-tn types))))))
397 ;;; Make the first N standard value TNs, returning them in a list.
398 (defun make-standard-value-tns (n)
399 (declare (type unsigned-byte n))
402 (res (standard-arg-location i)))
405 ;;; Return a list of TNs wired to the standard value passing
406 ;;; conventions that can be used to receive values according to the
407 ;;; unknown-values convention. This is used with together
408 ;;; MOVE-CONTINUATION-RESULT for delivering unknown values to a fixed
409 ;;; values continuation.
411 ;;; If the continuation isn't annotated, then we treat as 0-values,
412 ;;; returning an empty list of temporaries.
414 ;;; If the continuation is annotated, then it must be :FIXED.
415 (defun standard-result-tns (cont)
416 (declare (type continuation cont))
417 (let ((2cont (continuation-info cont)))
419 (ecase (ir2-continuation-kind 2cont)
421 (make-standard-value-tns (length (ir2-continuation-locs 2cont)))))
424 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
425 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
426 ;;; doing the appropriate coercions.
427 (defun move-results-coerced (node block src dest)
428 (declare (type node node) (type ir2-block block) (list src dest))
429 (let ((nsrc (length src))
430 (ndest (length dest)))
431 (mapc (lambda (from to)
433 (emit-move node block from to)))
435 (append src (make-list (- ndest nsrc)
436 :initial-element (emit-constant nil)))
441 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
442 ;;; the specified continuation. NODE and BLOCK provide context for
443 ;;; emitting code. Although usually obtained from STANDARD-RESULT-TNs
444 ;;; or CONTINUATION-RESULT-TNs, RESULTS my be a list of any type or
447 ;;; If the continuation is fixed values, then move the results into
448 ;;; the continuation locations. If the continuation is unknown values,
449 ;;; then do the moves into the standard value locations, and use
450 ;;; PUSH-VALUES to put the values on the stack.
451 (defun move-continuation-result (node block results cont)
452 (declare (type node node) (type ir2-block block)
453 (list results) (type continuation cont))
454 (let* ((2cont (continuation-info cont)))
456 (ecase (ir2-continuation-kind 2cont)
458 (let ((locs (ir2-continuation-locs 2cont)))
459 (unless (eq locs results)
460 (move-results-coerced node block results locs))))
462 (let* ((nvals (length results))
463 (locs (make-standard-value-tns nvals)))
464 (move-results-coerced node block results locs)
465 (vop* push-values node block
466 ((reference-tn-list locs nil))
467 ((reference-tn-list (ir2-continuation-locs 2cont) t))
471 ;;;; template conversion
473 ;;; Build a TN-REFS list that represents access to the values of the
474 ;;; specified list of continuations ARGS for TEMPLATE. Any :CONSTANT
475 ;;; arguments are returned in the second value as a list rather than
476 ;;; being accessed as a normal argument. NODE and BLOCK provide the
477 ;;; context for emitting any necessary type-checking code.
478 (defun reference-args (node block args template)
479 (declare (type node node) (type ir2-block block) (list args)
480 (type template template))
481 (collect ((info-args))
484 (do ((args args (cdr args))
485 (types (template-arg-types template) (cdr types)))
487 (let ((type (first types))
489 (if (and (consp type) (eq (car type) ':constant))
490 (info-args (continuation-value arg))
491 (let ((ref (reference-tn (continuation-tn node block arg) nil)))
493 (setf (tn-ref-across last) ref)
497 (values (the (or tn-ref null) first) (info-args)))))
499 ;;; Convert a conditional template. We try to exploit any
500 ;;; drop-through, but emit an unconditional branch afterward if we
501 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
503 (defun ir2-convert-conditional (node block template args info-args if not-p)
504 (declare (type node node) (type ir2-block block)
505 (type template template) (type (or tn-ref null) args)
506 (list info-args) (type cif if) (type boolean not-p))
507 (aver (= (template-info-arg-count template) (+ (length info-args) 2)))
508 (let ((consequent (if-consequent if))
509 (alternative (if-alternative if)))
510 (cond ((drop-thru-p if consequent)
511 (emit-template node block template args nil
512 (list* (block-label alternative) (not not-p)
515 (emit-template node block template args nil
516 (list* (block-label consequent) not-p info-args))
517 (unless (drop-thru-p if alternative)
518 (vop branch node block (block-label alternative)))))))
520 ;;; Convert an IF that isn't the DEST of a conditional template.
521 (defun ir2-convert-if (node block)
522 (declare (type ir2-block block) (type cif node))
523 (let* ((test (if-test node))
524 (test-ref (reference-tn (continuation-tn node block test) nil))
525 (nil-ref (reference-tn (emit-constant nil) nil)))
526 (setf (tn-ref-across test-ref) nil-ref)
527 (ir2-convert-conditional node block (template-or-lose 'if-eq)
528 test-ref () node t)))
530 ;;; Return a list of primitive-types that we can pass to
531 ;;; CONTINUATION-RESULT-TNS describing the result types we want for a
532 ;;; template call. We duplicate here the determination of output type
533 ;;; that was done in initially selecting the template, so we know that
534 ;;; the types we find are allowed by the template output type
536 (defun find-template-result-types (call cont template rtypes)
537 (declare (type combination call) (type continuation cont)
538 (type template template) (list rtypes))
539 (let* ((dtype (node-derived-type call))
540 (type (if (and (or (eq (template-ltn-policy template) :safe)
541 (policy call (= safety 0)))
542 (continuation-type-check cont))
543 (values-type-intersection
545 (continuation-asserted-type cont))
547 (types (mapcar #'primitive-type
548 (if (values-type-p type)
549 (append (values-type-required type)
550 (values-type-optional type))
552 (let ((nvals (length rtypes))
553 (ntypes (length types)))
554 (cond ((< ntypes nvals)
556 (make-list (- nvals ntypes)
557 :initial-element *backend-t-primitive-type*)))
559 (subseq types 0 nvals))
563 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
564 ;;; values to CONT. As an efficiency hack, we pick off the common case
565 ;;; where the continuation is fixed values and has locations that
566 ;;; satisfy the result restrictions. This can fail when there is a
567 ;;; type check or a values count mismatch.
568 (defun make-template-result-tns (call cont template rtypes)
569 (declare (type combination call) (type continuation cont)
570 (type template template) (list rtypes))
571 (let ((2cont (continuation-info cont)))
572 (if (and 2cont (eq (ir2-continuation-kind 2cont) :fixed))
573 (let ((locs (ir2-continuation-locs 2cont)))
574 (if (and (= (length rtypes) (length locs))
575 (do ((loc locs (cdr loc))
576 (rtype rtypes (cdr rtype)))
578 (unless (operand-restriction-ok
580 (tn-primitive-type (car loc))
584 (continuation-result-tns
586 (find-template-result-types call cont template rtypes))))
587 (continuation-result-tns
589 (find-template-result-types call cont template rtypes)))))
591 ;;; Get the operands into TNs, make TN-REFs for them, and then call
592 ;;; the template emit function.
593 (defun ir2-convert-template (call block)
594 (declare (type combination call) (type ir2-block block))
595 (let* ((template (combination-info call))
596 (cont (node-cont call))
597 (rtypes (template-result-types template)))
598 (multiple-value-bind (args info-args)
599 (reference-args call block (combination-args call) template)
600 (aver (not (template-more-results-type template)))
601 (if (eq rtypes :conditional)
602 (ir2-convert-conditional call block template args info-args
603 (continuation-dest cont) nil)
604 (let* ((results (make-template-result-tns call cont template rtypes))
605 (r-refs (reference-tn-list results t)))
606 (aver (= (length info-args)
607 (template-info-arg-count template)))
609 (emit-template call block template args r-refs info-args)
610 (emit-template call block template args r-refs))
611 (move-continuation-result call block results cont)))))
614 ;;; We don't have to do much because operand count checking is done by
615 ;;; IR1 conversion. The only difference between this and the function
616 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
618 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
619 (let* ((template (continuation-value template))
620 (info (continuation-value info))
621 (cont (node-cont call))
622 (rtypes (template-result-types template))
623 (results (make-template-result-tns call cont template rtypes))
624 (r-refs (reference-tn-list results t)))
625 (multiple-value-bind (args info-args)
626 (reference-args call block (cddr (combination-args call)) template)
627 (aver (not (template-more-results-type template)))
628 (aver (not (eq rtypes :conditional)))
629 (aver (null info-args))
632 (emit-template call block template args r-refs info)
633 (emit-template call block template args r-refs))
635 (move-continuation-result call block results cont)))
640 ;;; Convert a LET by moving the argument values into the variables.
641 ;;; Since a LET doesn't have any passing locations, we move the
642 ;;; arguments directly into the variables. We must also allocate any
643 ;;; indirect value cells, since there is no function prologue to do
645 (defun ir2-convert-let (node block fun)
646 (declare (type combination node) (type ir2-block block) (type clambda fun))
647 (mapc (lambda (var arg)
649 (let ((src (continuation-tn node block arg))
650 (dest (leaf-info var)))
651 (if (lambda-var-indirect var)
652 (do-make-value-cell node block src dest)
653 (emit-move node block src dest)))))
654 (lambda-vars fun) (basic-combination-args node))
657 ;;; Emit any necessary moves into assignment temps for a local call to
658 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
659 ;;; values, and (possibly EQ) TNs that are the actual destination of
660 ;;; the arguments. When necessary, we allocate temporaries for
661 ;;; arguments to preserve parallel assignment semantics. These lists
662 ;;; exclude unused arguments and include implicit environment
663 ;;; arguments, i.e. they exactly correspond to the arguments passed.
665 ;;; OLD-FP is the TN currently holding the value we want to pass as
666 ;;; OLD-FP. If null, then the call is to the same environment (an
667 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
668 ;;; environment alone.
669 (defun emit-psetq-moves (node block fun old-fp)
670 (declare (type combination node) (type ir2-block block) (type clambda fun)
671 (type (or tn null) old-fp))
672 (let ((actuals (mapcar (lambda (x)
674 (continuation-tn node block x)))
675 (combination-args node))))
678 (dolist (var (lambda-vars fun))
679 (let ((actual (pop actuals))
680 (loc (leaf-info var)))
683 ((lambda-var-indirect var)
685 (make-normal-tn *backend-t-primitive-type*)))
686 (do-make-value-cell node block actual temp)
688 ((member actual (locs))
689 (let ((temp (make-normal-tn (tn-primitive-type loc))))
690 (emit-move node block actual temp)
697 (let ((this-1env (node-physenv node))
698 (called-env (physenv-info (lambda-physenv fun))))
699 (dolist (thing (ir2-physenv-closure called-env))
700 (temps (find-in-physenv (car thing) this-1env))
703 (locs (ir2-physenv-old-fp called-env))))
705 (values (temps) (locs)))))
707 ;;; A tail-recursive local call is done by emitting moves of stuff
708 ;;; into the appropriate passing locations. After setting up the args
709 ;;; and environment, we just move our return-pc into the called
710 ;;; function's passing location.
711 (defun ir2-convert-tail-local-call (node block fun)
712 (declare (type combination node) (type ir2-block block) (type clambda fun))
713 (let ((this-env (physenv-info (node-physenv node))))
714 (multiple-value-bind (temps locs)
715 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
717 (mapc (lambda (temp loc)
718 (emit-move node block temp loc))
721 (emit-move node block
722 (ir2-physenv-return-pc this-env)
723 (ir2-physenv-return-pc-pass
725 (lambda-physenv fun)))))
729 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
730 ;;; except that the caller and callee environment are the same, so we
731 ;;; don't need to mess with the environment locations, return PC, etc.
732 (defun ir2-convert-assignment (node block fun)
733 (declare (type combination node) (type ir2-block block) (type clambda fun))
734 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
736 (mapc (lambda (temp loc)
737 (emit-move node block temp loc))
741 ;;; Do stuff to set up the arguments to a non-tail local call
742 ;;; (including implicit environment args.) We allocate a frame
743 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
744 ;;; the values to pass and the list of passing location TNs.
745 (defun ir2-convert-local-call-args (node block fun)
746 (declare (type combination node) (type ir2-block block) (type clambda fun))
747 (let ((fp (make-stack-pointer-tn))
748 (nfp (make-number-stack-pointer-tn))
749 (old-fp (make-stack-pointer-tn)))
750 (multiple-value-bind (temps locs)
751 (emit-psetq-moves node block fun old-fp)
752 (vop current-fp node block old-fp)
753 (vop allocate-frame node block
754 (physenv-info (lambda-physenv fun))
756 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
758 ;;; Handle a non-TR known-values local call. We emit the call, then
759 ;;; move the results to the continuation's destination.
760 (defun ir2-convert-local-known-call (node block fun returns cont start)
761 (declare (type node node) (type ir2-block block) (type clambda fun)
762 (type return-info returns) (type continuation cont)
764 (multiple-value-bind (fp nfp temps arg-locs)
765 (ir2-convert-local-call-args node block fun)
766 (let ((locs (return-info-locations returns)))
767 (vop* known-call-local node block
768 (fp nfp (reference-tn-list temps nil))
769 ((reference-tn-list locs t))
770 arg-locs (physenv-info (lambda-physenv fun)) start)
771 (move-continuation-result node block locs cont)))
774 ;;; Handle a non-TR unknown-values local call. We do different things
775 ;;; depending on what kind of values the continuation wants.
777 ;;; If CONT is :UNKNOWN, then we use the "multiple-" variant, directly
778 ;;; specifying the continuation's LOCS as the VOP results so that we
779 ;;; don't have to do anything after the call.
781 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
782 ;;; then call MOVE-CONTINUATION-RESULT to do any necessary type checks
784 (defun ir2-convert-local-unknown-call (node block fun cont start)
785 (declare (type node node) (type ir2-block block) (type clambda fun)
786 (type continuation cont) (type label start))
787 (multiple-value-bind (fp nfp temps arg-locs)
788 (ir2-convert-local-call-args node block fun)
789 (let ((2cont (continuation-info cont))
790 (env (physenv-info (lambda-physenv fun)))
791 (temp-refs (reference-tn-list temps nil)))
792 (if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown))
793 (vop* multiple-call-local node block (fp nfp temp-refs)
794 ((reference-tn-list (ir2-continuation-locs 2cont) t))
796 (let ((locs (standard-result-tns cont)))
797 (vop* call-local node block
799 ((reference-tn-list locs t))
800 arg-locs env start (length locs))
801 (move-continuation-result node block locs cont)))))
804 ;;; Dispatch to the appropriate function, depending on whether we have
805 ;;; a let, tail or normal call. If the function doesn't return, call
806 ;;; it using the unknown-value convention. We could compile it as a
807 ;;; tail call, but that might seem confusing in the debugger.
808 (defun ir2-convert-local-call (node block)
809 (declare (type combination node) (type ir2-block block))
810 (let* ((fun (ref-leaf (continuation-use (basic-combination-fun node))))
811 (kind (functional-kind fun)))
812 (cond ((eq kind :let)
813 (ir2-convert-let node block fun))
814 ((eq kind :assignment)
815 (ir2-convert-assignment node block fun))
817 (ir2-convert-tail-local-call node block fun))
819 (let ((start (block-label (lambda-block fun)))
820 (returns (tail-set-info (lambda-tail-set fun)))
821 (cont (node-cont node)))
823 (return-info-kind returns)
826 (ir2-convert-local-unknown-call node block fun cont start))
828 (ir2-convert-local-known-call node block fun returns
834 ;;; Given a function continuation FUN, return (VALUES TN-TO-CALL
835 ;;; NAMED-P), where TN-TO-CALL is a TN holding the thing that we call
836 ;;; NAMED-P is true if the thing is named (false if it is a function).
838 ;;; There are two interesting non-named cases:
839 ;;; -- We know it's a function. No check needed: return the
840 ;;; continuation LOC.
841 ;;; -- We don't know what it is.
842 (defun fun-continuation-tn (node block cont)
843 (declare (type continuation cont))
844 (let ((2cont (continuation-info cont)))
845 (if (eq (ir2-continuation-kind 2cont) :delayed)
846 (let ((name (continuation-fun-name cont t)))
848 (values (make-load-time-constant-tn :fdefinition name) t))
849 (let* ((locs (ir2-continuation-locs 2cont))
851 (check (continuation-type-check cont))
852 (function-ptype (primitive-type-or-lose 'function)))
853 (aver (and (eq (ir2-continuation-kind 2cont) :fixed)
854 (= (length locs) 1)))
855 (cond ((eq (tn-primitive-type loc) function-ptype)
856 (aver (not (eq check t)))
859 (let ((temp (make-normal-tn function-ptype)))
860 (aver (and (eq (ir2-continuation-primitive-type 2cont)
863 (emit-type-check node block loc temp
864 (specifier-type 'function))
865 (values temp nil))))))))
867 ;;; Set up the args to NODE in the current frame, and return a TN-REF
868 ;;; list for the passing locations.
869 (defun move-tail-full-call-args (node block)
870 (declare (type combination node) (type ir2-block block))
871 (let ((args (basic-combination-args node))
874 (dotimes (num (length args))
875 (let ((loc (standard-arg-location num)))
876 (emit-move node block (continuation-tn node block (elt args num)) loc)
877 (let ((ref (reference-tn loc nil)))
879 (setf (tn-ref-across last) ref)
884 ;;; Move the arguments into the passing locations and do a (possibly
885 ;;; named) tail call.
886 (defun ir2-convert-tail-full-call (node block)
887 (declare (type combination node) (type ir2-block block))
888 (let* ((env (physenv-info (node-physenv node)))
889 (args (basic-combination-args node))
890 (nargs (length args))
891 (pass-refs (move-tail-full-call-args node block))
892 (old-fp (ir2-physenv-old-fp env))
893 (return-pc (ir2-physenv-return-pc env)))
895 (multiple-value-bind (fun-tn named)
896 (fun-continuation-tn node block (basic-combination-fun node))
898 (vop* tail-call-named node block
899 (fun-tn old-fp return-pc pass-refs)
902 (vop* tail-call node block
903 (fun-tn old-fp return-pc pass-refs)
909 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
910 (defun ir2-convert-full-call-args (node block)
911 (declare (type combination node) (type ir2-block block))
912 (let* ((args (basic-combination-args node))
913 (fp (make-stack-pointer-tn))
914 (nargs (length args)))
915 (vop allocate-full-call-frame node block nargs fp)
920 (locs (standard-arg-location num))
921 (let ((ref (reference-tn (continuation-tn node block (elt args num))
924 (setf (tn-ref-across last) ref)
928 (values fp first (locs) nargs)))))
930 ;;; Do full call when a fixed number of values are desired. We make
931 ;;; STANDARD-RESULT-TNS for our continuation, then deliver the result
932 ;;; using MOVE-CONTINUATION-RESULT. We do named or normal call, as
934 (defun ir2-convert-fixed-full-call (node block)
935 (declare (type combination node) (type ir2-block block))
936 (multiple-value-bind (fp args arg-locs nargs)
937 (ir2-convert-full-call-args node block)
938 (let* ((cont (node-cont node))
939 (locs (standard-result-tns cont))
940 (loc-refs (reference-tn-list locs t))
941 (nvals (length locs)))
942 (multiple-value-bind (fun-tn named)
943 (fun-continuation-tn node block (basic-combination-fun node))
945 (vop* call-named node block (fp fun-tn args) (loc-refs)
946 arg-locs nargs nvals)
947 (vop* call node block (fp fun-tn args) (loc-refs)
948 arg-locs nargs nvals))
949 (move-continuation-result node block locs cont))))
952 ;;; Do full call when unknown values are desired.
953 (defun ir2-convert-multiple-full-call (node block)
954 (declare (type combination node) (type ir2-block block))
955 (multiple-value-bind (fp args arg-locs nargs)
956 (ir2-convert-full-call-args node block)
957 (let* ((cont (node-cont node))
958 (locs (ir2-continuation-locs (continuation-info cont)))
959 (loc-refs (reference-tn-list locs t)))
960 (multiple-value-bind (fun-tn named)
961 (fun-continuation-tn node block (basic-combination-fun node))
963 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
965 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
969 ;;; stuff to check in PONDER-FULL-CALL
971 ;;; There are some things which are intended always to be optimized
972 ;;; away by DEFTRANSFORMs and such, and so never compiled into full
973 ;;; calls. This has been a source of bugs so many times that it seems
974 ;;; worth listing some of them here so that we can check the list
975 ;;; whenever we compile a full call.
977 ;;; FIXME: It might be better to represent this property by setting a
978 ;;; flag in DEFKNOWN, instead of representing it by membership in this
980 (defvar *always-optimized-away*
981 '(;; This should always be DEFTRANSFORMed away, but wasn't in a bug
982 ;; reported to cmucl-imp 2000-06-20.
984 ;; These should always turn into VOPs, but wasn't in a bug which
985 ;; appeared when LTN-POLICY stuff was being tweaked in
986 ;; sbcl-0.6.9.16. in sbcl-0.6.0
990 ;;; more stuff to check in PONDER-FULL-CALL
992 ;;; These came in handy when troubleshooting cold boot after making
993 ;;; major changes in the package structure: various transforms and
994 ;;; VOPs and stuff got attached to the wrong symbol, so that
995 ;;; references to the right symbol were bogusly translated as full
996 ;;; calls instead of primitives, sending the system off into infinite
997 ;;; space. Having a report on all full calls generated makes it easier
998 ;;; to figure out what form caused the problem this time.
999 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1000 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1002 ;;; Do some checks (and store some notes relevant for future checks)
1004 ;;; * Is this a full call to something we have reason to know should
1005 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1006 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1008 ;;; * Is this a full call to (SETF FOO) which might conflict with
1009 ;;; a DEFSETF or some such thing elsewhere in the program?
1010 (defun ponder-full-call (node)
1011 (let* ((cont (basic-combination-fun node))
1012 (fname (continuation-fun-name cont t)))
1013 (declare (type (or symbol cons) fname))
1015 #!+sb-show (unless (gethash fname *full-called-fnames*)
1016 (setf (gethash fname *full-called-fnames*) t))
1017 #!+sb-show (when *show-full-called-fnames-p*
1018 (/show "converting full call to named function" fname)
1019 (/show (basic-combination-args node))
1020 (/show (policy node speed) (policy node safety))
1021 (/show (policy node compilation-speed))
1022 (let ((arg-types (mapcar (lambda (maybe-continuation)
1023 (when maybe-continuation
1026 maybe-continuation))))
1027 (basic-combination-args node))))
1030 ;; When illegal code is compiled, all sorts of perverse paths
1031 ;; through the compiler can be taken, and it's much harder -- and
1032 ;; probably pointless -- to guarantee that always-optimized-away
1033 ;; functions are actually optimized away. Thus, we skip the check
1036 (when (memq fname *always-optimized-away*)
1037 (/show (policy node speed) (policy node safety))
1038 (/show (policy node compilation-speed))
1039 (bug "full call to ~S" fname)))
1042 (destructuring-bind (setf stem) fname
1043 (aver (eq setf 'setf))
1044 (setf (gethash stem *setf-assumed-fboundp*) t)))))
1046 ;;; If the call is in a tail recursive position and the return
1047 ;;; convention is standard, then do a tail full call. If one or fewer
1048 ;;; values are desired, then use a single-value call, otherwise use a
1049 ;;; multiple-values call.
1050 (defun ir2-convert-full-call (node block)
1051 (declare (type combination node) (type ir2-block block))
1052 (ponder-full-call node)
1053 (let ((2cont (continuation-info (node-cont node))))
1054 (cond ((node-tail-p node)
1055 (ir2-convert-tail-full-call node block))
1057 (eq (ir2-continuation-kind 2cont) :unknown))
1058 (ir2-convert-multiple-full-call node block))
1060 (ir2-convert-fixed-full-call node block))))
1063 ;;;; entering functions
1065 ;;; Do all the stuff that needs to be done on XEP entry:
1066 ;;; -- Create frame.
1067 ;;; -- Copy any more arg.
1068 ;;; -- Set up the environment, accessing any closure variables.
1069 ;;; -- Move args from the standard passing locations to their internal
1071 (defun init-xep-environment (node block fun)
1072 (declare (type bind node) (type ir2-block block) (type clambda fun))
1073 (let ((start-label (entry-info-offset (leaf-info fun)))
1074 (env (physenv-info (node-physenv node))))
1075 (let ((ef (functional-entry-fun fun)))
1076 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1077 ;; Special case the xep-allocate-frame + copy-more-arg case.
1078 (vop xep-allocate-frame node block start-label t)
1079 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1081 ;; No more args, so normal entry.
1082 (vop xep-allocate-frame node block start-label nil)))
1083 (if (ir2-physenv-closure env)
1084 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1085 (vop setup-closure-environment node block start-label closure)
1086 (when (getf (functional-plist ef) :fin-function)
1087 (vop funcallable-instance-lexenv node block closure closure))
1089 (dolist (loc (ir2-physenv-closure env))
1090 (vop closure-ref node block closure (incf n) (cdr loc)))))
1091 (vop setup-environment node block start-label)))
1093 (unless (eq (functional-kind fun) :toplevel)
1094 (let ((vars (lambda-vars fun))
1096 (when (leaf-refs (first vars))
1097 (emit-move node block (make-arg-count-location)
1098 (leaf-info (first vars))))
1099 (dolist (arg (rest vars))
1100 (when (leaf-refs arg)
1101 (let ((pass (standard-arg-location n))
1102 (home (leaf-info arg)))
1103 (if (lambda-var-indirect arg)
1104 (do-make-value-cell node block pass home)
1105 (emit-move node block pass home))))
1108 (emit-move node block (make-old-fp-passing-location t)
1109 (ir2-physenv-old-fp env)))
1113 ;;; Emit function prolog code. This is only called on bind nodes for
1114 ;;; functions that allocate environments. All semantics of let calls
1115 ;;; are handled by IR2-CONVERT-LET.
1117 ;;; If not an XEP, all we do is move the return PC from its passing
1118 ;;; location, since in a local call, the caller allocates the frame
1119 ;;; and sets up the arguments.
1120 (defun ir2-convert-bind (node block)
1121 (declare (type bind node) (type ir2-block block))
1122 (let* ((fun (bind-lambda node))
1123 (env (physenv-info (lambda-physenv fun))))
1124 (aver (member (functional-kind fun)
1125 '(nil :external :optional :toplevel :cleanup)))
1128 (init-xep-environment node block fun)
1130 (when *collect-dynamic-statistics*
1131 (vop count-me node block *dynamic-counts-tn*
1132 (block-number (ir2-block-block block)))))
1136 (ir2-physenv-return-pc-pass env)
1137 (ir2-physenv-return-pc env))
1139 (let ((lab (gen-label)))
1140 (setf (ir2-physenv-environment-start env) lab)
1141 (vop note-environment-start node block lab)))
1145 ;;;; function return
1147 ;;; Do stuff to return from a function with the specified values and
1148 ;;; convention. If the return convention is :FIXED and we aren't
1149 ;;; returning from an XEP, then we do a known return (letting
1150 ;;; representation selection insert the correct move-arg VOPs.)
1151 ;;; Otherwise, we use the unknown-values convention. If there is a
1152 ;;; fixed number of return values, then use RETURN, otherwise use
1153 ;;; RETURN-MULTIPLE.
1154 (defun ir2-convert-return (node block)
1155 (declare (type creturn node) (type ir2-block block))
1156 (let* ((cont (return-result node))
1157 (2cont (continuation-info cont))
1158 (cont-kind (ir2-continuation-kind 2cont))
1159 (fun (return-lambda node))
1160 (env (physenv-info (lambda-physenv fun)))
1161 (old-fp (ir2-physenv-old-fp env))
1162 (return-pc (ir2-physenv-return-pc env))
1163 (returns (tail-set-info (lambda-tail-set fun))))
1165 ((and (eq (return-info-kind returns) :fixed)
1167 (let ((locs (continuation-tns node block cont
1168 (return-info-types returns))))
1169 (vop* known-return node block
1170 (old-fp return-pc (reference-tn-list locs nil))
1172 (return-info-locations returns))))
1173 ((eq cont-kind :fixed)
1174 (let* ((types (mapcar #'tn-primitive-type (ir2-continuation-locs 2cont)))
1175 (cont-locs (continuation-tns node block cont types))
1176 (nvals (length cont-locs))
1177 (locs (make-standard-value-tns nvals)))
1178 (mapc (lambda (val loc)
1179 (emit-move node block val loc))
1183 (vop return-single node block old-fp return-pc (car locs))
1184 (vop* return node block
1185 (old-fp return-pc (reference-tn-list locs nil))
1189 (aver (eq cont-kind :unknown))
1190 (vop* return-multiple node block
1192 (reference-tn-list (ir2-continuation-locs 2cont) nil))
1199 ;;; This is used by the debugger to find the top function on the
1200 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1201 ;;; function as multiple values.
1202 (defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block)
1203 (let ((ir2-physenv (physenv-info (node-physenv node))))
1204 (move-continuation-result node block
1205 (list (ir2-physenv-old-fp ir2-physenv)
1206 (ir2-physenv-return-pc ir2-physenv))
1209 ;;;; multiple values
1211 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1212 ;;; the continuation for the correct number of values (with the
1213 ;;; continuation user responsible for defaulting), we can just pick
1214 ;;; them up from the continuation.
1215 (defun ir2-convert-mv-bind (node block)
1216 (declare (type mv-combination node) (type ir2-block block))
1217 (let* ((cont (first (basic-combination-args node)))
1218 (fun (ref-leaf (continuation-use (basic-combination-fun node))))
1219 (vars (lambda-vars fun)))
1220 (aver (eq (functional-kind fun) :mv-let))
1221 (mapc (lambda (src var)
1222 (when (leaf-refs var)
1223 (let ((dest (leaf-info var)))
1224 (if (lambda-var-indirect var)
1225 (do-make-value-cell node block src dest)
1226 (emit-move node block src dest)))))
1227 (continuation-tns node block cont
1229 (primitive-type (leaf-type x)))
1234 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1235 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1236 ;;; the first argument: all the other argument continuation TNs are
1237 ;;; ignored. This is because we require all of the values globs to be
1238 ;;; contiguous and on stack top.
1239 (defun ir2-convert-mv-call (node block)
1240 (declare (type mv-combination node) (type ir2-block block))
1241 (aver (basic-combination-args node))
1242 (let* ((start-cont (continuation-info (first (basic-combination-args node))))
1243 (start (first (ir2-continuation-locs start-cont)))
1244 (tails (and (node-tail-p node)
1245 (lambda-tail-set (node-home-lambda node))))
1246 (cont (node-cont node))
1247 (2cont (continuation-info cont)))
1248 (multiple-value-bind (fun named)
1249 (fun-continuation-tn node block (basic-combination-fun node))
1250 (aver (and (not named)
1251 (eq (ir2-continuation-kind start-cont) :unknown)))
1254 (let ((env (physenv-info (node-physenv node))))
1255 (vop tail-call-variable node block start fun
1256 (ir2-physenv-old-fp env)
1257 (ir2-physenv-return-pc env))))
1259 (eq (ir2-continuation-kind 2cont) :unknown))
1260 (vop* multiple-call-variable node block (start fun nil)
1261 ((reference-tn-list (ir2-continuation-locs 2cont) t))))
1263 (let ((locs (standard-result-tns cont)))
1264 (vop* call-variable node block (start fun nil)
1265 ((reference-tn-list locs t)) (length locs))
1266 (move-continuation-result node block locs cont)))))))
1268 ;;; Reset the stack pointer to the start of the specified
1269 ;;; unknown-values continuation (discarding it and all values globs on
1271 (defoptimizer (%pop-values ir2-convert) ((continuation) node block)
1272 (let ((2cont (continuation-info (continuation-value continuation))))
1273 (aver (eq (ir2-continuation-kind 2cont) :unknown))
1274 (vop reset-stack-pointer node block
1275 (first (ir2-continuation-locs 2cont)))))
1277 ;;; Deliver the values TNs to CONT using MOVE-CONTINUATION-RESULT.
1278 (defoptimizer (values ir2-convert) ((&rest values) node block)
1279 (let ((tns (mapcar (lambda (x)
1280 (continuation-tn node block x))
1282 (move-continuation-result node block tns (node-cont node))))
1284 ;;; In the normal case where unknown values are desired, we use the
1285 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1286 ;;; for a fixed number of values, we punt by doing a full call to the
1287 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1288 ;;; defaulting any unsupplied values. It seems unworthwhile to
1289 ;;; optimize this case.
1290 (defoptimizer (values-list ir2-convert) ((list) node block)
1291 (let* ((cont (node-cont node))
1292 (2cont (continuation-info cont)))
1294 (eq (ir2-continuation-kind 2cont) :unknown))
1295 (let ((locs (ir2-continuation-locs 2cont)))
1296 (vop* values-list node block
1297 ((continuation-tn node block list) nil)
1298 ((reference-tn-list locs t)))))
1299 (t (aver (or (not 2cont) ; i.e. we want to check the argument
1300 (eq (ir2-continuation-kind 2cont) :fixed)))
1301 (ir2-convert-full-call node block)))))
1303 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1304 (let* ((cont (node-cont node))
1305 (2cont (continuation-info cont)))
1307 (ecase (ir2-continuation-kind 2cont)
1308 (:fixed (ir2-convert-full-call node block))
1310 (let ((locs (ir2-continuation-locs 2cont)))
1311 (vop* %more-arg-values node block
1312 ((continuation-tn node block context)
1313 (continuation-tn node block start)
1314 (continuation-tn node block count)
1316 ((reference-tn-list locs t)))))))))
1318 ;;;; special binding
1320 ;;; This is trivial, given our assumption of a shallow-binding
1322 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1323 (let ((name (leaf-source-name (continuation-value var))))
1324 (vop bind node block (continuation-tn node block value)
1325 (emit-constant name))))
1326 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1327 (vop unbind node block))
1329 ;;; ### It's not clear that this really belongs in this file, or
1330 ;;; should really be done this way, but this is the least violation of
1331 ;;; abstraction in the current setup. We don't want to wire
1332 ;;; shallow-binding assumptions into IR1tran.
1333 (def-ir1-translator progv ((vars vals &body body) start cont)
1336 (let ((bind (gensym "BIND"))
1337 (unbind (gensym "UNBIND")))
1338 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1341 (labels ((,unbind (vars)
1342 (declare (optimize (speed 2) (debug 0)))
1344 (%primitive bind nil var)
1347 (declare (optimize (speed 2) (debug 0)))
1349 ((null vals) (,unbind vars))
1350 (t (%primitive bind (car vals) (car vars))
1351 (,bind (cdr vars) (cdr vals))))))
1352 (,bind ,vars ,vals))
1355 (%primitive unbind-to-here ,n-save-bs))))))
1359 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1360 ;;; environment. Note that this is never called on the escape exits
1361 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1363 (defun ir2-convert-exit (node block)
1364 (declare (type exit node) (type ir2-block block))
1365 (let ((loc (find-in-physenv (find-nlx-info (exit-entry node)
1367 (node-physenv node)))
1368 (temp (make-stack-pointer-tn))
1369 (value (exit-value node)))
1370 (vop value-cell-ref node block loc temp)
1372 (let ((locs (ir2-continuation-locs (continuation-info value))))
1373 (vop unwind node block temp (first locs) (second locs)))
1374 (let ((0-tn (emit-constant 0)))
1375 (vop unwind node block temp 0-tn 0-tn))))
1379 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1380 ;;; being entirely deleted.
1381 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1383 ;;; This function invalidates a lexical exit on exiting from the
1384 ;;; dynamic extent. This is done by storing 0 into the indirect value
1385 ;;; cell that holds the closed unwind block.
1386 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1387 (vop value-cell-set node block
1388 (find-in-physenv (continuation-value info) (node-physenv node))
1391 ;;; We have to do a spurious move of no values to the result
1392 ;;; continuation so that lifetime analysis won't get confused.
1393 (defun ir2-convert-throw (node block)
1394 (declare (type mv-combination node) (type ir2-block block))
1395 (let ((args (basic-combination-args node)))
1396 (check-catch-tag-type (first args))
1397 (vop* throw node block
1398 ((continuation-tn node block (first args))
1400 (ir2-continuation-locs (continuation-info (second args)))
1403 (move-continuation-result node block () (node-cont node))
1406 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1407 ;;; exit, and TAG is the continuation for the catch tag (if any.) We
1408 ;;; get at the target PC by passing in the label to the vop. The vop
1409 ;;; is responsible for building a return-PC object.
1410 (defun emit-nlx-start (node block info tag)
1411 (declare (type node node) (type ir2-block block) (type nlx-info info)
1412 (type (or continuation null) tag))
1413 (let* ((2info (nlx-info-info info))
1414 (kind (cleanup-kind (nlx-info-cleanup info)))
1415 (block-tn (physenv-live-tn
1416 (make-normal-tn (primitive-type-or-lose 'catch-block))
1417 (node-physenv node)))
1418 (res (make-stack-pointer-tn))
1419 (target-label (ir2-nlx-info-target 2info)))
1421 (vop current-binding-pointer node block
1422 (car (ir2-nlx-info-dynamic-state 2info)))
1423 (vop* save-dynamic-state node block
1425 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1426 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1430 (vop make-catch-block node block block-tn
1431 (continuation-tn node block tag) target-label res))
1432 ((:unwind-protect :block :tagbody)
1433 (vop make-unwind-block node block block-tn target-label res)))
1437 (do-make-value-cell node block res (ir2-nlx-info-home 2info)))
1439 (vop set-unwind-protect node block block-tn))
1444 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1445 (defun ir2-convert-entry (node block)
1446 (declare (type entry node) (type ir2-block block))
1447 (dolist (exit (entry-exits node))
1448 (let ((info (find-nlx-info node (node-cont exit))))
1450 (member (cleanup-kind (nlx-info-cleanup info))
1451 '(:block :tagbody)))
1452 (emit-nlx-start node block info nil))))
1455 ;;; Set up the unwind block for these guys.
1456 (defoptimizer (%catch ir2-convert) ((info-cont tag) node block)
1457 (check-catch-tag-type tag)
1458 (emit-nlx-start node block (continuation-value info-cont) tag))
1459 (defoptimizer (%unwind-protect ir2-convert) ((info-cont cleanup) node block)
1460 (emit-nlx-start node block (continuation-value info-cont) nil))
1462 ;;; Emit the entry code for a non-local exit. We receive values and
1463 ;;; restore dynamic state.
1465 ;;; In the case of a lexical exit or CATCH, we look at the exit
1466 ;;; continuation's kind to determine which flavor of entry VOP to
1467 ;;; emit. If unknown values, emit the xxx-MULTIPLE variant to the
1468 ;;; continuation locs. If fixed values, make the appropriate number of
1469 ;;; temps in the standard values locations and use the other variant,
1470 ;;; delivering the temps to the continuation using
1471 ;;; MOVE-CONTINUATION-RESULT.
1473 ;;; In the UNWIND-PROTECT case, we deliver the first register
1474 ;;; argument, the argument count and the argument pointer to our
1475 ;;; continuation as multiple values. These values are the block exited
1476 ;;; to and the values start and count.
1478 ;;; After receiving values, we restore dynamic state. Except in the
1479 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1480 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1481 ;;; pointer alone, since the thrown values are still out there.
1482 (defoptimizer (%nlx-entry ir2-convert) ((info-cont) node block)
1483 (let* ((info (continuation-value info-cont))
1484 (cont (nlx-info-continuation info))
1485 (2cont (continuation-info cont))
1486 (2info (nlx-info-info info))
1487 (top-loc (ir2-nlx-info-save-sp 2info))
1488 (start-loc (make-nlx-entry-arg-start-location))
1489 (count-loc (make-arg-count-location))
1490 (target (ir2-nlx-info-target 2info)))
1492 (ecase (cleanup-kind (nlx-info-cleanup info))
1493 ((:catch :block :tagbody)
1494 (if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown))
1495 (vop* nlx-entry-multiple node block
1496 (top-loc start-loc count-loc nil)
1497 ((reference-tn-list (ir2-continuation-locs 2cont) t))
1499 (let ((locs (standard-result-tns cont)))
1500 (vop* nlx-entry node block
1501 (top-loc start-loc count-loc nil)
1502 ((reference-tn-list locs t))
1505 (move-continuation-result node block locs cont))))
1507 (let ((block-loc (standard-arg-location 0)))
1508 (vop uwp-entry node block target block-loc start-loc count-loc)
1509 (move-continuation-result
1511 (list block-loc start-loc count-loc)
1515 (when *collect-dynamic-statistics*
1516 (vop count-me node block *dynamic-counts-tn*
1517 (block-number (ir2-block-block block))))
1519 (vop* restore-dynamic-state node block
1520 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1522 (vop unbind-to-here node block
1523 (car (ir2-nlx-info-dynamic-state 2info)))))
1525 ;;;; n-argument functions
1527 (macrolet ((def (name)
1528 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1529 (let* ((refs (move-tail-full-call-args node block))
1530 (cont (node-cont node))
1531 (res (continuation-result-tns
1533 (list (primitive-type (specifier-type 'list))))))
1534 (vop* ,name node block (refs) ((first res) nil)
1536 (move-continuation-result node block res cont)))))
1540 ;;; Convert the code in a component into VOPs.
1541 (defun ir2-convert (component)
1542 (declare (type component component))
1543 (let (#!+sb-dyncount
1544 (*dynamic-counts-tn*
1545 (when *collect-dynamic-statistics*
1547 (block-number (block-next (component-head component))))
1548 (counts (make-array blocks
1549 :element-type '(unsigned-byte 32)
1550 :initial-element 0))
1551 (info (make-dyncount-info
1552 :for (component-name component)
1553 :costs (make-array blocks
1554 :element-type '(unsigned-byte 32)
1557 (setf (ir2-component-dyncount-info (component-info component))
1559 (emit-constant info)
1560 (emit-constant counts)))))
1562 (declare (type index num))
1563 (do-ir2-blocks (2block component)
1564 (let ((block (ir2-block-block 2block)))
1565 (when (block-start block)
1566 (setf (block-number block) num)
1568 (when *collect-dynamic-statistics*
1569 (let ((first-node (continuation-next (block-start block))))
1570 (unless (or (and (bind-p first-node)
1571 (xep-p (bind-lambda first-node)))
1572 (eq (continuation-fun-name
1573 (node-cont first-node))
1578 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1580 (ir2-convert-block block)
1584 ;;; If necessary, emit a terminal unconditional branch to go to the
1585 ;;; successor block. If the successor is the component tail, then
1586 ;;; there isn't really any successor, but if the end is an unknown,
1587 ;;; non-tail call, then we emit an error trap just in case the
1588 ;;; function really does return.
1589 (defun finish-ir2-block (block)
1590 (declare (type cblock block))
1591 (let* ((2block (block-info block))
1592 (last (block-last block))
1593 (succ (block-succ block)))
1595 (aver (and succ (null (rest succ))))
1596 (let ((target (first succ)))
1597 (cond ((eq target (component-tail (block-component block)))
1598 (when (and (basic-combination-p last)
1599 (eq (basic-combination-kind last) :full))
1600 (let* ((fun (basic-combination-fun last))
1601 (use (continuation-use fun))
1602 (name (and (ref-p use)
1603 (leaf-has-source-name-p (ref-leaf use))
1604 (leaf-source-name (ref-leaf use)))))
1605 (unless (or (node-tail-p last)
1606 (info :function :info name)
1607 (policy last (zerop safety)))
1608 (vop nil-fun-returned-error last 2block
1610 (emit-constant name)
1611 (multiple-value-bind (tn named)
1612 (fun-continuation-tn last 2block fun)
1615 ((not (eq (ir2-block-next 2block) (block-info target)))
1616 (vop branch last 2block (block-label target)))))))
1620 ;;; Convert the code in a block into VOPs.
1621 (defun ir2-convert-block (block)
1622 (declare (type cblock block))
1623 (let ((2block (block-info block)))
1624 (do-nodes (node cont block)
1627 (let ((2cont (continuation-info cont)))
1629 (not (eq (ir2-continuation-kind 2cont) :delayed)))
1630 (ir2-convert-ref node 2block))))
1632 (let ((kind (basic-combination-kind node)))
1635 (ir2-convert-local-call node 2block))
1637 (ir2-convert-full-call node 2block))
1639 (let ((fun (fun-info-ir2-convert kind)))
1641 (funcall fun node 2block))
1642 ((eq (basic-combination-info node) :full)
1643 (ir2-convert-full-call node 2block))
1645 (ir2-convert-template node 2block))))))))
1647 (when (continuation-info (if-test node))
1648 (ir2-convert-if node 2block)))
1650 (let ((fun (bind-lambda node)))
1651 (when (eq (lambda-home fun) fun)
1652 (ir2-convert-bind node 2block))))
1654 (ir2-convert-return node 2block))
1656 (ir2-convert-set node 2block))
1659 ((eq (basic-combination-kind node) :local)
1660 (ir2-convert-mv-bind node 2block))
1661 ((eq (continuation-fun-name (basic-combination-fun node))
1663 (ir2-convert-throw node 2block))
1665 (ir2-convert-mv-call node 2block))))
1667 (when (exit-entry node)
1668 (ir2-convert-exit node 2block)))
1670 (ir2-convert-entry node 2block)))))
1672 (finish-ir2-block block)