1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
41 (template-or-lose name)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
52 (emit-move-template node block (type-check-template type) value result)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (let ((leaf (tn-leaf res)))
60 (vop make-value-cell node block value (and leaf (leaf-dynamic-extent leaf))
65 ;;; Return the TN that holds the value of THING in the environment ENV.
66 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
68 (defun find-in-physenv (thing physenv)
69 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
72 ;; I think that a failure of this assertion means that we're
73 ;; trying to access a variable which was improperly closed
74 ;; over. The PHYSENV describes a physical environment. Every
75 ;; variable that a form refers to should either be in its
76 ;; physical environment directly, or grabbed from a
77 ;; surrounding physical environment when it was closed over.
78 ;; The ASSOC expression above finds closed-over variables, so
79 ;; if we fell through the ASSOC expression, it wasn't closed
80 ;; over. Therefore, it must be in our physical environment
81 ;; directly. If instead it is in some other physical
82 ;; environment, then it's bogus for us to reference it here
83 ;; without it being closed over. -- WHN 2001-09-29
84 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
87 (aver (eq physenv (block-physenv (nlx-info-target thing))))
88 (ir2-nlx-info-home (nlx-info-info thing)))
91 (entry-info-closure-tn (lambda-info thing))))
92 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
94 ;;; If LEAF already has a constant TN, return that, otherwise make a
96 (defun constant-tn (leaf)
97 (declare (type constant leaf))
99 (setf (leaf-info leaf)
100 (make-constant-tn leaf))))
102 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
103 ;;; isn't directly represented by a TN. ENV is the environment that
104 ;;; the reference is done in.
105 (defun leaf-tn (leaf env)
106 (declare (type leaf leaf) (type physenv env))
109 (unless (lambda-var-indirect leaf)
110 (find-in-physenv leaf env)))
111 (constant (constant-tn leaf))
114 ;;; This is used to conveniently get a handle on a constant TN during
115 ;;; IR2 conversion. It returns a constant TN representing the Lisp
117 (defun emit-constant (value)
118 (constant-tn (find-constant value)))
120 ;;; Convert a REF node. The reference must not be delayed.
121 (defun ir2-convert-ref (node block)
122 (declare (type ref node) (type ir2-block block))
123 (let* ((lvar (node-lvar node))
124 (leaf (ref-leaf node))
125 (locs (lvar-result-tns
126 lvar (list (primitive-type (leaf-type leaf)))))
130 (let ((tn (find-in-physenv leaf (node-physenv node))))
131 (if (lambda-var-indirect leaf)
132 (vop value-cell-ref node block tn res)
133 (emit-move node block tn res))))
135 (if (legal-immediate-constant-p leaf)
136 (emit-move node block (constant-tn leaf) res)
137 (let* ((name (leaf-source-name leaf))
138 (name-tn (emit-constant name)))
139 (if (policy node (zerop safety))
140 (vop fast-symbol-value node block name-tn res)
141 (vop symbol-value node block name-tn res)))))
143 (ir2-convert-closure node block leaf res))
145 (let ((unsafe (policy node (zerop safety)))
146 (name (leaf-source-name leaf)))
147 (ecase (global-var-kind leaf)
149 (aver (symbolp name))
150 (let ((name-tn (emit-constant name)))
152 (vop fast-symbol-value node block name-tn res)
153 (vop symbol-value node block name-tn res))))
155 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
157 (vop fdefn-fun node block fdefn-tn res)
158 (vop safe-fdefn-fun node block fdefn-tn res))))))))
159 (move-lvar-result node block locs lvar))
162 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
163 (defun assertions-on-ir2-converted-clambda (clambda)
164 ;; This assertion was sort of an experiment. It would be nice and
165 ;; sane and easier to understand things if it were *always* true,
166 ;; but experimentally I observe that it's only *almost* always
167 ;; true. -- WHN 2001-01-02
169 (aver (eql (lambda-component clambda)
170 (block-component (ir2-block-block ir2-block))))
171 ;; Check for some weirdness which came up in bug
174 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
175 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
177 ;; * treats every HANDLEless :ENTRY record into a
179 ;; * expects every patch to correspond to an
180 ;; IR2-COMPONENT-ENTRIES record.
181 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
182 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
183 ;; was a HANDLEless :ENTRY record which didn't correspond to an
184 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
185 ;; when it's caught at dump time, so this assertion tries to catch
187 (aver (member clambda
188 (component-lambdas (lambda-component clambda))))
189 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
190 ;; used as a queue for stuff pending to do in IR1, and now that
191 ;; we're doing IR2 it should've been completely flushed (but
193 (aver (null (component-new-functionals (lambda-component clambda))))
196 ;;; Emit code to load a function object implementing FUNCTIONAL into
197 ;;; RES. This gets interesting when the referenced function is a
198 ;;; closure: we must make the closure and move the closed-over values
201 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
202 ;;; for the called function, since local call analysis converts all
203 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
206 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
207 ;;; don't initialize that slot. This can happen with closures over
208 ;;; top level variables, where optimization of the closure deleted the
209 ;;; variable. Since we committed to the closure format when we
210 ;;; pre-analyzed the top level code, we just leave an empty slot.
211 (defun ir2-convert-closure (ref ir2-block functional res)
212 (declare (type ref ref)
213 (type ir2-block ir2-block)
214 (type functional functional)
216 (aver (not (eql (functional-kind functional) :deleted)))
217 (unless (leaf-info functional)
218 (setf (leaf-info functional)
219 (make-entry-info :name (functional-debug-name functional))))
220 (let ((closure (etypecase functional
222 (assertions-on-ir2-converted-clambda functional)
223 (physenv-closure (get-lambda-physenv functional)))
225 (aver (eq (functional-kind functional) :toplevel-xep))
229 (let* ((physenv (node-physenv ref))
230 (tn (find-in-physenv functional physenv)))
231 (emit-move ref ir2-block tn res)))
233 (let ((entry (make-load-time-constant-tn :entry functional)))
234 (emit-move ref ir2-block entry res)))))
237 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
238 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
239 (when (lvar-dynamic-extent leaves)
240 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
241 (setf (ir2-lvar-kind info) :delayed)
242 (setf (lvar-info leaves) info)
243 (setf (ir2-lvar-stack-pointer info)
244 (make-stack-pointer-tn)))))
246 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
247 (let ((dx-p (lvar-dynamic-extent leaves)))
250 (vop current-stack-pointer call 2block
251 (ir2-lvar-stack-pointer (lvar-info leaves))))
252 (dolist (leaf (lvar-value leaves))
253 (binding* ((xep (functional-entry-fun leaf) :exit-if-null)
254 (nil (aver (xep-p xep)))
255 (entry-info (lambda-info xep) :exit-if-null)
256 (tn (entry-info-closure-tn entry-info) :exit-if-null)
257 (closure (physenv-closure (get-lambda-physenv xep)))
258 (entry (make-load-time-constant-tn :entry xep)))
259 (let ((this-env (node-physenv call))
260 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
261 (vop make-closure call 2block entry (length closure)
263 (loop for what in closure and n from 0 do
264 (unless (and (lambda-var-p what)
265 (null (leaf-refs what)))
266 ;; In LABELS a closure may refer to another closure
267 ;; in the same group, so we must be sure that we
268 ;; store a closure only after its creation.
270 ;; TODO: Here is a simple solution: we postpone
271 ;; putting of all closures after all creations
272 ;; (though it may require more registers).
274 (delayed (list tn (find-in-physenv what this-env) n))
275 (vop closure-init call 2block
277 (find-in-physenv what this-env)
279 (loop for (tn what n) in (delayed)
280 do (vop closure-init call 2block
284 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
285 ;;; deliver the value to that lvar. If the var is a lexical variable
286 ;;; with no refs, then we don't actually set anything, since the
287 ;;; variable has been deleted.
288 (defun ir2-convert-set (node block)
289 (declare (type cset node) (type ir2-block block))
290 (let* ((lvar (node-lvar node))
291 (leaf (set-var node))
292 (val (lvar-tn node block (set-value node)))
295 lvar (list (primitive-type (leaf-type leaf))))
299 (when (leaf-refs leaf)
300 (let ((tn (find-in-physenv leaf (node-physenv node))))
301 (if (lambda-var-indirect leaf)
302 (vop value-cell-set node block tn val)
303 (emit-move node block val tn)))))
305 (ecase (global-var-kind leaf)
307 (aver (symbolp (leaf-source-name leaf)))
308 (vop set node block (emit-constant (leaf-source-name leaf)) val)))))
310 (emit-move node block val (first locs))
311 (move-lvar-result node block locs lvar)))
314 ;;;; utilities for receiving fixed values
316 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
317 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
318 ;;; single-value lvar.
320 ;;; The primitive-type of the result will always be the same as the
321 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
322 ;;; TNs that satisfy the operand primitive-type restriction. We may
323 ;;; have to make a temporary of the desired type and move the actual
324 ;;; lvar TN into it. This happens when we delete a type check in
325 ;;; unsafe code or when we locally know something about the type of an
326 ;;; argument variable.
327 (defun lvar-tn (node block lvar)
328 (declare (type node node) (type ir2-block block) (type lvar lvar))
329 (let* ((2lvar (lvar-info lvar))
331 (ecase (ir2-lvar-kind 2lvar)
333 (let ((ref (lvar-uses lvar)))
334 (leaf-tn (ref-leaf ref) (node-physenv ref))))
336 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
337 (first (ir2-lvar-locs 2lvar)))))
338 (ptype (ir2-lvar-primitive-type 2lvar)))
340 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
342 (let ((temp (make-normal-tn ptype)))
343 (emit-move node block lvar-tn temp)
346 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
347 ;;; TNs holding the values of LVAR with PTYPES as their primitive
348 ;;; types. LVAR must be annotated for the same number of fixed values
349 ;;; are there are PTYPES.
351 ;;; If the lvar has a type check, check the values into temps and
352 ;;; return the temps. When we have more values than assertions, we
353 ;;; move the extra values with no check.
354 (defun lvar-tns (node block lvar ptypes)
355 (declare (type node node) (type ir2-block block)
356 (type lvar lvar) (list ptypes))
357 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
358 (nlocs (length locs)))
359 (aver (= nlocs (length ptypes)))
361 (mapcar (lambda (from to-type)
362 (if (eq (tn-primitive-type from) to-type)
364 (let ((temp (make-normal-tn to-type)))
365 (emit-move node block from temp)
370 ;;;; utilities for delivering values to lvars
372 ;;; Return a list of TNs with the specifier TYPES that can be used as
373 ;;; result TNs to evaluate an expression into LVAR. This is used
374 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
377 ;;; If the lvar isn't annotated (meaning the values are discarded) or
378 ;;; is unknown-values, the then we make temporaries for each supplied
379 ;;; value, providing a place to compute the result in until we decide
380 ;;; what to do with it (if anything.)
382 ;;; If the lvar is fixed-values, and wants the same number of values
383 ;;; as the user wants to deliver, then we just return the
384 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
385 ;;; discarded TNs. We always return a TN of the specified type, using
386 ;;; the lvar locs only when they are of the correct type.
387 (defun lvar-result-tns (lvar types)
388 (declare (type (or lvar null) lvar) (type list types))
390 (mapcar #'make-normal-tn types)
391 (let ((2lvar (lvar-info lvar)))
392 (ecase (ir2-lvar-kind 2lvar)
394 (let* ((locs (ir2-lvar-locs 2lvar))
395 (nlocs (length locs))
396 (ntypes (length types)))
397 (if (and (= nlocs ntypes)
398 (do ((loc locs (cdr loc))
399 (type types (cdr type)))
401 (unless (eq (tn-primitive-type (car loc)) (car type))
404 (mapcar (lambda (loc type)
405 (if (eq (tn-primitive-type loc) type)
407 (make-normal-tn type)))
410 (mapcar #'make-normal-tn
411 (subseq types nlocs)))
415 (mapcar #'make-normal-tn types))))))
417 ;;; Make the first N standard value TNs, returning them in a list.
418 (defun make-standard-value-tns (n)
419 (declare (type unsigned-byte n))
422 (res (standard-arg-location i)))
425 ;;; Return a list of TNs wired to the standard value passing
426 ;;; conventions that can be used to receive values according to the
427 ;;; unknown-values convention. This is used with together
428 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
431 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
432 ;;; an empty list of temporaries.
434 ;;; If the lvar is annotated, then it must be :FIXED.
435 (defun standard-result-tns (lvar)
436 (declare (type (or lvar null) lvar))
438 (let ((2lvar (lvar-info lvar)))
439 (ecase (ir2-lvar-kind 2lvar)
441 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
444 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
445 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
446 ;;; doing the appropriate coercions.
447 (defun move-results-coerced (node block src dest)
448 (declare (type node node) (type ir2-block block) (list src dest))
449 (let ((nsrc (length src))
450 (ndest (length dest)))
451 (mapc (lambda (from to)
453 (emit-move node block from to)))
455 (append src (make-list (- ndest nsrc)
456 :initial-element (emit-constant nil)))
461 ;;; Move each SRC TN into the corresponding DEST TN, checking types
462 ;;; and defaulting any unsupplied source values to NIL
463 (defun move-results-checked (node block src dest types)
464 (declare (type node node) (type ir2-block block) (list src dest types))
465 (let ((nsrc (length src))
466 (ndest (length dest))
467 (ntypes (length types)))
468 (mapc (lambda (from to type)
470 (emit-type-check node block from to type)
471 (emit-move node block from to)))
473 (append src (make-list (- ndest nsrc)
474 :initial-element (emit-constant nil)))
478 (append types (make-list (- ndest ntypes)))
482 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
483 ;;; the specified lvar. NODE and BLOCK provide context for emitting
484 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
485 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
488 ;;; If the lvar is fixed values, then move the results into the lvar
489 ;;; locations. If the lvar is unknown values, then do the moves into
490 ;;; the standard value locations, and use PUSH-VALUES to put the
491 ;;; values on the stack.
492 (defun move-lvar-result (node block results lvar)
493 (declare (type node node) (type ir2-block block)
494 (list results) (type (or lvar null) lvar))
496 (let ((2lvar (lvar-info lvar)))
497 (ecase (ir2-lvar-kind 2lvar)
499 (let ((locs (ir2-lvar-locs 2lvar)))
500 (unless (eq locs results)
501 (move-results-coerced node block results locs))))
503 (let* ((nvals (length results))
504 (locs (make-standard-value-tns nvals)))
505 (move-results-coerced node block results locs)
506 (vop* push-values node block
507 ((reference-tn-list locs nil))
508 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
513 (defun ir2-convert-cast (node block)
514 (declare (type cast node)
515 (type ir2-block block))
516 (binding* ((lvar (node-lvar node) :exit-if-null)
517 (2lvar (lvar-info lvar))
518 (value (cast-value node))
519 (2value (lvar-info value)))
520 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
521 ((eq (ir2-lvar-kind 2lvar) :unknown)
522 (aver (eq (ir2-lvar-kind 2value) :unknown))
523 (aver (not (cast-type-check node)))
524 (move-results-coerced node block
525 (ir2-lvar-locs 2value)
526 (ir2-lvar-locs 2lvar)))
527 ((eq (ir2-lvar-kind 2lvar) :fixed)
528 (aver (eq (ir2-lvar-kind 2value) :fixed))
529 (if (cast-type-check node)
530 (move-results-checked node block
531 (ir2-lvar-locs 2value)
532 (ir2-lvar-locs 2lvar)
533 (multiple-value-bind (check types)
534 (cast-check-types node nil)
535 (aver (eq check :simple))
537 (move-results-coerced node block
538 (ir2-lvar-locs 2value)
539 (ir2-lvar-locs 2lvar))))
540 (t (bug "CAST cannot be :DELAYED.")))))
542 ;;;; template conversion
544 ;;; Build a TN-REFS list that represents access to the values of the
545 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
546 ;;; are returned in the second value as a list rather than being
547 ;;; accessed as a normal argument. NODE and BLOCK provide the context
548 ;;; for emitting any necessary type-checking code.
549 (defun reference-args (node block args template)
550 (declare (type node node) (type ir2-block block) (list args)
551 (type template template))
552 (collect ((info-args))
555 (do ((args args (cdr args))
556 (types (template-arg-types template) (cdr types)))
558 (let ((type (first types))
560 (if (and (consp type) (eq (car type) ':constant))
561 (info-args (lvar-value arg))
562 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
564 (setf (tn-ref-across last) ref)
568 (values (the (or tn-ref null) first) (info-args)))))
570 ;;; Convert a conditional template. We try to exploit any
571 ;;; drop-through, but emit an unconditional branch afterward if we
572 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
574 (defun ir2-convert-conditional (node block template args info-args if not-p)
575 (declare (type node node) (type ir2-block block)
576 (type template template) (type (or tn-ref null) args)
577 (list info-args) (type cif if) (type boolean not-p))
578 (aver (= (template-info-arg-count template) (+ (length info-args) 2)))
579 (let ((consequent (if-consequent if))
580 (alternative (if-alternative if)))
581 (cond ((drop-thru-p if consequent)
582 (emit-template node block template args nil
583 (list* (block-label alternative) (not not-p)
586 (emit-template node block template args nil
587 (list* (block-label consequent) not-p info-args))
588 (unless (drop-thru-p if alternative)
589 (vop branch node block (block-label alternative)))))))
591 ;;; Convert an IF that isn't the DEST of a conditional template.
592 (defun ir2-convert-if (node block)
593 (declare (type ir2-block block) (type cif node))
594 (let* ((test (if-test node))
595 (test-ref (reference-tn (lvar-tn node block test) nil))
596 (nil-ref (reference-tn (emit-constant nil) nil)))
597 (setf (tn-ref-across test-ref) nil-ref)
598 (ir2-convert-conditional node block (template-or-lose 'if-eq)
599 test-ref () node t)))
601 ;;; Return a list of primitive-types that we can pass to
602 ;;; LVAR-RESULT-TNS describing the result types we want for a
603 ;;; template call. We duplicate here the determination of output type
604 ;;; that was done in initially selecting the template, so we know that
605 ;;; the types we find are allowed by the template output type
607 (defun find-template-result-types (call template rtypes)
608 (declare (type combination call)
609 (type template template) (list rtypes))
610 (declare (ignore template))
611 (let* ((dtype (node-derived-type call))
613 (types (mapcar #'primitive-type
614 (if (values-type-p type)
615 (append (values-type-required type)
616 (values-type-optional type))
618 (let ((nvals (length rtypes))
619 (ntypes (length types)))
620 (cond ((< ntypes nvals)
622 (make-list (- nvals ntypes)
623 :initial-element *backend-t-primitive-type*)))
625 (subseq types 0 nvals))
629 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
630 ;;; values to LVAR. As an efficiency hack, we pick off the common case
631 ;;; where the LVAR is fixed values and has locations that satisfy the
632 ;;; result restrictions. This can fail when there is a type check or a
633 ;;; values count mismatch.
634 (defun make-template-result-tns (call lvar template rtypes)
635 (declare (type combination call) (type (or lvar null) lvar)
636 (type template template) (list rtypes))
637 (let ((2lvar (when lvar (lvar-info lvar))))
638 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
639 (let ((locs (ir2-lvar-locs 2lvar)))
640 (if (and (= (length rtypes) (length locs))
641 (do ((loc locs (cdr loc))
642 (rtype rtypes (cdr rtype)))
644 (unless (operand-restriction-ok
646 (tn-primitive-type (car loc))
652 (find-template-result-types call template rtypes))))
655 (find-template-result-types call template rtypes)))))
657 ;;; Get the operands into TNs, make TN-REFs for them, and then call
658 ;;; the template emit function.
659 (defun ir2-convert-template (call block)
660 (declare (type combination call) (type ir2-block block))
661 (let* ((template (combination-info call))
662 (lvar (node-lvar call))
663 (rtypes (template-result-types template)))
664 (multiple-value-bind (args info-args)
665 (reference-args call block (combination-args call) template)
666 (aver (not (template-more-results-type template)))
667 (if (eq rtypes :conditional)
668 (ir2-convert-conditional call block template args info-args
669 (lvar-dest lvar) nil)
670 (let* ((results (make-template-result-tns call lvar template rtypes))
671 (r-refs (reference-tn-list results t)))
672 (aver (= (length info-args)
673 (template-info-arg-count template)))
674 (when (and lvar (lvar-dynamic-extent lvar))
675 (vop current-stack-pointer call block
676 (ir2-lvar-stack-pointer (lvar-info lvar))))
677 (when (emit-step-p call)
678 (vop sb!vm::step-instrument-before-vop call block))
680 (emit-template call block template args r-refs info-args)
681 (emit-template call block template args r-refs))
682 (move-lvar-result call block results lvar)))))
685 ;;; We don't have to do much because operand count checking is done by
686 ;;; IR1 conversion. The only difference between this and the function
687 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
689 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
690 (let* ((template (lvar-value template))
691 (info (lvar-value info))
692 (lvar (node-lvar call))
693 (rtypes (template-result-types template))
694 (results (make-template-result-tns call lvar template rtypes))
695 (r-refs (reference-tn-list results t)))
696 (multiple-value-bind (args info-args)
697 (reference-args call block (cddr (combination-args call)) template)
698 (aver (not (template-more-results-type template)))
699 (aver (not (eq rtypes :conditional)))
700 (aver (null info-args))
703 (emit-template call block template args r-refs info)
704 (emit-template call block template args r-refs))
706 (move-lvar-result call block results lvar)))
711 ;;; Convert a LET by moving the argument values into the variables.
712 ;;; Since a LET doesn't have any passing locations, we move the
713 ;;; arguments directly into the variables. We must also allocate any
714 ;;; indirect value cells, since there is no function prologue to do
716 (defun ir2-convert-let (node block fun)
717 (declare (type combination node) (type ir2-block block) (type clambda fun))
718 (mapc (lambda (var arg)
720 (let ((src (lvar-tn node block arg))
721 (dest (leaf-info var)))
722 (if (lambda-var-indirect var)
723 (emit-make-value-cell node block src dest)
724 (emit-move node block src dest)))))
725 (lambda-vars fun) (basic-combination-args node))
728 ;;; Emit any necessary moves into assignment temps for a local call to
729 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
730 ;;; values, and (possibly EQ) TNs that are the actual destination of
731 ;;; the arguments. When necessary, we allocate temporaries for
732 ;;; arguments to preserve parallel assignment semantics. These lists
733 ;;; exclude unused arguments and include implicit environment
734 ;;; arguments, i.e. they exactly correspond to the arguments passed.
736 ;;; OLD-FP is the TN currently holding the value we want to pass as
737 ;;; OLD-FP. If null, then the call is to the same environment (an
738 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
739 ;;; environment alone.
740 (defun emit-psetq-moves (node block fun old-fp)
741 (declare (type combination node) (type ir2-block block) (type clambda fun)
742 (type (or tn null) old-fp))
743 (let ((actuals (mapcar (lambda (x)
745 (lvar-tn node block x)))
746 (combination-args node))))
749 (dolist (var (lambda-vars fun))
750 (let ((actual (pop actuals))
751 (loc (leaf-info var)))
754 ((lambda-var-indirect var)
756 (make-normal-tn *backend-t-primitive-type*)))
757 (emit-make-value-cell node block actual temp)
759 ((member actual (locs))
760 (let ((temp (make-normal-tn (tn-primitive-type loc))))
761 (emit-move node block actual temp)
768 (let ((this-1env (node-physenv node))
769 (called-env (physenv-info (lambda-physenv fun))))
770 (dolist (thing (ir2-physenv-closure called-env))
771 (temps (find-in-physenv (car thing) this-1env))
774 (locs (ir2-physenv-old-fp called-env))))
776 (values (temps) (locs)))))
778 ;;; A tail-recursive local call is done by emitting moves of stuff
779 ;;; into the appropriate passing locations. After setting up the args
780 ;;; and environment, we just move our return-pc into the called
781 ;;; function's passing location.
782 (defun ir2-convert-tail-local-call (node block fun)
783 (declare (type combination node) (type ir2-block block) (type clambda fun))
784 (let ((this-env (physenv-info (node-physenv node))))
785 (multiple-value-bind (temps locs)
786 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
788 (mapc (lambda (temp loc)
789 (emit-move node block temp loc))
792 (emit-move node block
793 (ir2-physenv-return-pc this-env)
794 (ir2-physenv-return-pc-pass
796 (lambda-physenv fun)))))
800 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
801 ;;; except that the caller and callee environment are the same, so we
802 ;;; don't need to mess with the environment locations, return PC, etc.
803 (defun ir2-convert-assignment (node block fun)
804 (declare (type combination node) (type ir2-block block) (type clambda fun))
805 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
807 (mapc (lambda (temp loc)
808 (emit-move node block temp loc))
812 ;;; Do stuff to set up the arguments to a non-tail local call
813 ;;; (including implicit environment args.) We allocate a frame
814 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
815 ;;; the values to pass and the list of passing location TNs.
816 (defun ir2-convert-local-call-args (node block fun)
817 (declare (type combination node) (type ir2-block block) (type clambda fun))
818 (let ((fp (make-stack-pointer-tn))
819 (nfp (make-number-stack-pointer-tn))
820 (old-fp (make-stack-pointer-tn)))
821 (multiple-value-bind (temps locs)
822 (emit-psetq-moves node block fun old-fp)
823 (vop current-fp node block old-fp)
824 (vop allocate-frame node block
825 (physenv-info (lambda-physenv fun))
827 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
829 ;;; Handle a non-TR known-values local call. We emit the call, then
830 ;;; move the results to the lvar's destination.
831 (defun ir2-convert-local-known-call (node block fun returns lvar start)
832 (declare (type node node) (type ir2-block block) (type clambda fun)
833 (type return-info returns) (type (or lvar null) lvar)
835 (multiple-value-bind (fp nfp temps arg-locs)
836 (ir2-convert-local-call-args node block fun)
837 (let ((locs (return-info-locations returns)))
838 (vop* known-call-local node block
839 (fp nfp (reference-tn-list temps nil))
840 ((reference-tn-list locs t))
841 arg-locs (physenv-info (lambda-physenv fun)) start)
842 (move-lvar-result node block locs lvar)))
845 ;;; Handle a non-TR unknown-values local call. We do different things
846 ;;; depending on what kind of values the lvar wants.
848 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
849 ;;; specifying the lvar's LOCS as the VOP results so that we don't
850 ;;; have to do anything after the call.
852 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
853 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
855 (defun ir2-convert-local-unknown-call (node block fun lvar start)
856 (declare (type node node) (type ir2-block block) (type clambda fun)
857 (type (or lvar null) lvar) (type label start))
858 (multiple-value-bind (fp nfp temps arg-locs)
859 (ir2-convert-local-call-args node block fun)
860 (let ((2lvar (and lvar (lvar-info lvar)))
861 (env (physenv-info (lambda-physenv fun)))
862 (temp-refs (reference-tn-list temps nil)))
863 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
864 (vop* multiple-call-local node block (fp nfp temp-refs)
865 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
867 (let ((locs (standard-result-tns lvar)))
868 (vop* call-local node block
870 ((reference-tn-list locs t))
871 arg-locs env start (length locs))
872 (move-lvar-result node block locs lvar)))))
875 ;;; Dispatch to the appropriate function, depending on whether we have
876 ;;; a let, tail or normal call. If the function doesn't return, call
877 ;;; it using the unknown-value convention. We could compile it as a
878 ;;; tail call, but that might seem confusing in the debugger.
879 (defun ir2-convert-local-call (node block)
880 (declare (type combination node) (type ir2-block block))
881 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
882 (kind (functional-kind fun)))
883 (cond ((eq kind :let)
884 (ir2-convert-let node block fun))
885 ((eq kind :assignment)
886 (ir2-convert-assignment node block fun))
888 (ir2-convert-tail-local-call node block fun))
890 (let ((start (block-label (lambda-block fun)))
891 (returns (tail-set-info (lambda-tail-set fun)))
892 (lvar (node-lvar node)))
894 (return-info-kind returns)
897 (ir2-convert-local-unknown-call node block fun lvar start))
899 (ir2-convert-local-known-call node block fun returns
905 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
906 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
907 ;;; true if the thing is named (false if it is a function).
909 ;;; There are two interesting non-named cases:
910 ;;; -- We know it's a function. No check needed: return the
912 ;;; -- We don't know what it is.
913 (defun fun-lvar-tn (node block lvar)
914 (declare (ignore node block))
915 (declare (type lvar lvar))
916 (let ((2lvar (lvar-info lvar)))
917 (if (eq (ir2-lvar-kind 2lvar) :delayed)
918 (let ((name (lvar-fun-name lvar t)))
920 (values (make-load-time-constant-tn :fdefinition name) t))
921 (let* ((locs (ir2-lvar-locs 2lvar))
923 (function-ptype (primitive-type-or-lose 'function)))
924 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
925 (= (length locs) 1)))
926 (aver (eq (tn-primitive-type loc) function-ptype))
929 ;;; Set up the args to NODE in the current frame, and return a TN-REF
930 ;;; list for the passing locations.
931 (defun move-tail-full-call-args (node block)
932 (declare (type combination node) (type ir2-block block))
933 (let ((args (basic-combination-args node))
936 (dotimes (num (length args))
937 (let ((loc (standard-arg-location num)))
938 (emit-move node block (lvar-tn node block (elt args num)) loc)
939 (let ((ref (reference-tn loc nil)))
941 (setf (tn-ref-across last) ref)
946 ;;; Move the arguments into the passing locations and do a (possibly
947 ;;; named) tail call.
948 (defun ir2-convert-tail-full-call (node block)
949 (declare (type combination node) (type ir2-block block))
950 (let* ((env (physenv-info (node-physenv node)))
951 (args (basic-combination-args node))
952 (nargs (length args))
953 (pass-refs (move-tail-full-call-args node block))
954 (old-fp (ir2-physenv-old-fp env))
955 (return-pc (ir2-physenv-return-pc env)))
957 (multiple-value-bind (fun-tn named)
958 (fun-lvar-tn node block (basic-combination-fun node))
960 (vop* tail-call-named node block
961 (fun-tn old-fp return-pc pass-refs)
965 (vop* tail-call node block
966 (fun-tn old-fp return-pc pass-refs)
969 (emit-step-p node)))))
973 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
974 (defun ir2-convert-full-call-args (node block)
975 (declare (type combination node) (type ir2-block block))
976 (let* ((args (basic-combination-args node))
977 (fp (make-stack-pointer-tn))
978 (nargs (length args)))
979 (vop allocate-full-call-frame node block nargs fp)
984 (locs (standard-arg-location num))
985 (let ((ref (reference-tn (lvar-tn node block (elt args num))
988 (setf (tn-ref-across last) ref)
992 (values fp first (locs) nargs)))))
994 ;;; Do full call when a fixed number of values are desired. We make
995 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
996 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
997 (defun ir2-convert-fixed-full-call (node block)
998 (declare (type combination node) (type ir2-block block))
999 (multiple-value-bind (fp args arg-locs nargs)
1000 (ir2-convert-full-call-args node block)
1001 (let* ((lvar (node-lvar node))
1002 (locs (standard-result-tns lvar))
1003 (loc-refs (reference-tn-list locs t))
1004 (nvals (length locs)))
1005 (multiple-value-bind (fun-tn named)
1006 (fun-lvar-tn node block (basic-combination-fun node))
1008 (vop* call-named node block (fp fun-tn args) (loc-refs)
1009 arg-locs nargs nvals (emit-step-p node))
1010 (vop* call node block (fp fun-tn args) (loc-refs)
1011 arg-locs nargs nvals (emit-step-p node)))
1012 (move-lvar-result node block locs lvar))))
1015 ;;; Do full call when unknown values are desired.
1016 (defun ir2-convert-multiple-full-call (node block)
1017 (declare (type combination node) (type ir2-block block))
1018 (multiple-value-bind (fp args arg-locs nargs)
1019 (ir2-convert-full-call-args node block)
1020 (let* ((lvar (node-lvar node))
1021 (locs (ir2-lvar-locs (lvar-info lvar)))
1022 (loc-refs (reference-tn-list locs t)))
1023 (multiple-value-bind (fun-tn named)
1024 (fun-lvar-tn node block (basic-combination-fun node))
1026 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1027 arg-locs nargs (emit-step-p node))
1028 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1029 arg-locs nargs (emit-step-p node))))))
1032 ;;; stuff to check in PONDER-FULL-CALL
1034 ;;; These came in handy when troubleshooting cold boot after making
1035 ;;; major changes in the package structure: various transforms and
1036 ;;; VOPs and stuff got attached to the wrong symbol, so that
1037 ;;; references to the right symbol were bogusly translated as full
1038 ;;; calls instead of primitives, sending the system off into infinite
1039 ;;; space. Having a report on all full calls generated makes it easier
1040 ;;; to figure out what form caused the problem this time.
1041 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1042 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1044 ;;; Do some checks (and store some notes relevant for future checks)
1046 ;;; * Is this a full call to something we have reason to know should
1047 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1048 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1050 ;;; * Is this a full call to (SETF FOO) which might conflict with
1051 ;;; a DEFSETF or some such thing elsewhere in the program?
1052 (defun ponder-full-call (node)
1053 (let* ((lvar (basic-combination-fun node))
1054 (fname (lvar-fun-name lvar t)))
1055 (declare (type (or symbol cons) fname))
1057 #!+sb-show (unless (gethash fname *full-called-fnames*)
1058 (setf (gethash fname *full-called-fnames*) t))
1059 #!+sb-show (when *show-full-called-fnames-p*
1060 (/show "converting full call to named function" fname)
1061 (/show (basic-combination-args node))
1062 (/show (policy node speed) (policy node safety))
1063 (/show (policy node compilation-speed))
1064 (let ((arg-types (mapcar (lambda (lvar)
1068 (basic-combination-args node))))
1071 ;; When illegal code is compiled, all sorts of perverse paths
1072 ;; through the compiler can be taken, and it's much harder -- and
1073 ;; probably pointless -- to guarantee that always-optimized-away
1074 ;; functions are actually optimized away. Thus, we skip the check
1077 ;; check to see if we know anything about the function
1078 (let ((info (info :function :info fname)))
1079 ;; if we know something, check to see if the full call was valid
1080 (when (and info (ir1-attributep (fun-info-attributes info)
1081 always-translatable))
1082 (/show (policy node speed) (policy node safety))
1083 (/show (policy node compilation-speed))
1084 (bug "full call to ~S" fname))))
1087 (aver (legal-fun-name-p fname))
1088 (destructuring-bind (setfoid &rest stem) fname
1089 (when (eq setfoid 'setf)
1090 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1092 ;;; If the call is in a tail recursive position and the return
1093 ;;; convention is standard, then do a tail full call. If one or fewer
1094 ;;; values are desired, then use a single-value call, otherwise use a
1095 ;;; multiple-values call.
1096 (defun ir2-convert-full-call (node block)
1097 (declare (type combination node) (type ir2-block block))
1098 (ponder-full-call node)
1099 (cond ((node-tail-p node)
1100 (ir2-convert-tail-full-call node block))
1101 ((let ((lvar (node-lvar node)))
1103 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1104 (ir2-convert-multiple-full-call node block))
1106 (ir2-convert-fixed-full-call node block)))
1109 ;;;; entering functions
1111 ;;; Do all the stuff that needs to be done on XEP entry:
1112 ;;; -- Create frame.
1113 ;;; -- Copy any more arg.
1114 ;;; -- Set up the environment, accessing any closure variables.
1115 ;;; -- Move args from the standard passing locations to their internal
1117 (defun init-xep-environment (node block fun)
1118 (declare (type bind node) (type ir2-block block) (type clambda fun))
1119 (let ((start-label (entry-info-offset (leaf-info fun)))
1120 (env (physenv-info (node-physenv node))))
1121 (let ((ef (functional-entry-fun fun)))
1122 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1123 ;; Special case the xep-allocate-frame + copy-more-arg case.
1124 (vop xep-allocate-frame node block start-label t)
1125 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1127 ;; No more args, so normal entry.
1128 (vop xep-allocate-frame node block start-label nil)))
1129 (if (ir2-physenv-closure env)
1130 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1131 (vop setup-closure-environment node block start-label closure)
1133 (dolist (loc (ir2-physenv-closure env))
1134 (vop closure-ref node block closure (incf n) (cdr loc)))))
1135 (vop setup-environment node block start-label)))
1137 (unless (eq (functional-kind fun) :toplevel)
1138 (let ((vars (lambda-vars fun))
1140 (when (leaf-refs (first vars))
1141 (emit-move node block (make-arg-count-location)
1142 (leaf-info (first vars))))
1143 (dolist (arg (rest vars))
1144 (when (leaf-refs arg)
1145 (let ((pass (standard-arg-location n))
1146 (home (leaf-info arg)))
1147 (if (lambda-var-indirect arg)
1148 (emit-make-value-cell node block pass home)
1149 (emit-move node block pass home))))
1152 (emit-move node block (make-old-fp-passing-location t)
1153 (ir2-physenv-old-fp env)))
1157 ;;; Emit function prolog code. This is only called on bind nodes for
1158 ;;; functions that allocate environments. All semantics of let calls
1159 ;;; are handled by IR2-CONVERT-LET.
1161 ;;; If not an XEP, all we do is move the return PC from its passing
1162 ;;; location, since in a local call, the caller allocates the frame
1163 ;;; and sets up the arguments.
1164 (defun ir2-convert-bind (node block)
1165 (declare (type bind node) (type ir2-block block))
1166 (let* ((fun (bind-lambda node))
1167 (env (physenv-info (lambda-physenv fun))))
1168 (aver (member (functional-kind fun)
1169 '(nil :external :optional :toplevel :cleanup)))
1172 (init-xep-environment node block fun)
1174 (when *collect-dynamic-statistics*
1175 (vop count-me node block *dynamic-counts-tn*
1176 (block-number (ir2-block-block block)))))
1180 (ir2-physenv-return-pc-pass env)
1181 (ir2-physenv-return-pc env))
1183 #!+unwind-to-frame-and-call-vop
1184 (when (and (lambda-allow-instrumenting fun)
1185 (not (lambda-inline-expanded fun))
1187 (policy fun (>= insert-debug-catch 2)))
1188 (vop sb!vm::bind-sentinel node block))
1190 (let ((lab (gen-label)))
1191 (setf (ir2-physenv-environment-start env) lab)
1192 (vop note-environment-start node block lab)))
1196 ;;;; function return
1198 ;;; Do stuff to return from a function with the specified values and
1199 ;;; convention. If the return convention is :FIXED and we aren't
1200 ;;; returning from an XEP, then we do a known return (letting
1201 ;;; representation selection insert the correct move-arg VOPs.)
1202 ;;; Otherwise, we use the unknown-values convention. If there is a
1203 ;;; fixed number of return values, then use RETURN, otherwise use
1204 ;;; RETURN-MULTIPLE.
1205 (defun ir2-convert-return (node block)
1206 (declare (type creturn node) (type ir2-block block))
1207 (let* ((lvar (return-result node))
1208 (2lvar (lvar-info lvar))
1209 (lvar-kind (ir2-lvar-kind 2lvar))
1210 (fun (return-lambda node))
1211 (env (physenv-info (lambda-physenv fun)))
1212 (old-fp (ir2-physenv-old-fp env))
1213 (return-pc (ir2-physenv-return-pc env))
1214 (returns (tail-set-info (lambda-tail-set fun))))
1215 #!+unwind-to-frame-and-call-vop
1216 (when (and (lambda-allow-instrumenting fun)
1217 (not (lambda-inline-expanded fun))
1218 (policy fun (>= insert-debug-catch 2)))
1219 (vop sb!vm::unbind-sentinel node block))
1221 ((and (eq (return-info-kind returns) :fixed)
1223 (let ((locs (lvar-tns node block lvar
1224 (return-info-types returns))))
1225 (vop* known-return node block
1226 (old-fp return-pc (reference-tn-list locs nil))
1228 (return-info-locations returns))))
1229 ((eq lvar-kind :fixed)
1230 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1231 (lvar-locs (lvar-tns node block lvar types))
1232 (nvals (length lvar-locs))
1233 (locs (make-standard-value-tns nvals)))
1234 (mapc (lambda (val loc)
1235 (emit-move node block val loc))
1239 (vop return-single node block old-fp return-pc (car locs))
1240 (vop* return node block
1241 (old-fp return-pc (reference-tn-list locs nil))
1245 (aver (eq lvar-kind :unknown))
1246 (vop* return-multiple node block
1248 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1255 ;;; This is used by the debugger to find the top function on the
1256 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1257 ;;; function as multiple values.
1258 (defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block)
1259 (let ((ir2-physenv (physenv-info (node-physenv node))))
1260 (move-lvar-result node block
1261 (list (ir2-physenv-old-fp ir2-physenv)
1262 (ir2-physenv-return-pc ir2-physenv))
1265 ;;;; multiple values
1267 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1268 ;;; the lvar for the correct number of values (with the lvar user
1269 ;;; responsible for defaulting), we can just pick them up from the
1271 (defun ir2-convert-mv-bind (node block)
1272 (declare (type mv-combination node) (type ir2-block block))
1273 (let* ((lvar (first (basic-combination-args node)))
1274 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1275 (vars (lambda-vars fun)))
1276 (aver (eq (functional-kind fun) :mv-let))
1277 (mapc (lambda (src var)
1278 (when (leaf-refs var)
1279 (let ((dest (leaf-info var)))
1280 (if (lambda-var-indirect var)
1281 (emit-make-value-cell node block src dest)
1282 (emit-move node block src dest)))))
1283 (lvar-tns node block lvar
1285 (primitive-type (leaf-type x)))
1290 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1291 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1292 ;;; the first argument: all the other argument lvar TNs are
1293 ;;; ignored. This is because we require all of the values globs to be
1294 ;;; contiguous and on stack top.
1295 (defun ir2-convert-mv-call (node block)
1296 (declare (type mv-combination node) (type ir2-block block))
1297 (aver (basic-combination-args node))
1298 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1299 (start (first (ir2-lvar-locs start-lvar)))
1300 (tails (and (node-tail-p node)
1301 (lambda-tail-set (node-home-lambda node))))
1302 (lvar (node-lvar node))
1303 (2lvar (and lvar (lvar-info lvar))))
1304 (multiple-value-bind (fun named)
1305 (fun-lvar-tn node block (basic-combination-fun node))
1306 (aver (and (not named)
1307 (eq (ir2-lvar-kind start-lvar) :unknown)))
1310 (let ((env (physenv-info (node-physenv node))))
1311 (vop tail-call-variable node block start fun
1312 (ir2-physenv-old-fp env)
1313 (ir2-physenv-return-pc env))))
1315 (eq (ir2-lvar-kind 2lvar) :unknown))
1316 (vop* multiple-call-variable node block (start fun nil)
1317 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1318 (emit-step-p node)))
1320 (let ((locs (standard-result-tns lvar)))
1321 (vop* call-variable node block (start fun nil)
1322 ((reference-tn-list locs t)) (length locs)
1324 (move-lvar-result node block locs lvar)))))))
1326 ;;; Reset the stack pointer to the start of the specified
1327 ;;; unknown-values lvar (discarding it and all values globs on top of
1329 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1330 (let* ((lvar (lvar-value %lvar))
1331 (2lvar (lvar-info lvar)))
1332 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1333 (vop reset-stack-pointer node block
1334 (first (ir2-lvar-locs 2lvar))))
1335 ((lvar-dynamic-extent lvar)
1336 (vop reset-stack-pointer node block
1337 (ir2-lvar-stack-pointer 2lvar)))
1338 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1341 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1344 (let* ( ;; pointer immediately after the nipped block
1345 (after (lvar-value last-nipped))
1346 (2after (lvar-info after))
1347 ;; pointer to the first nipped word
1348 (first (lvar-value last-preserved))
1349 (2first (lvar-info first))
1351 (moved-tns (loop for lvar-ref in moved
1352 for lvar = (lvar-value lvar-ref)
1353 for 2lvar = (lvar-info lvar)
1355 collect (first (ir2-lvar-locs 2lvar)))))
1356 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1357 (lvar-dynamic-extent after)))
1358 (aver (eq (ir2-lvar-kind 2first) :unknown))
1359 (when *check-consistency*
1360 ;; we cannot move stack-allocated DX objects
1361 (dolist (moved-lvar moved)
1362 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1364 (flet ((nip-aligned (nipped)
1365 (vop* %%nip-values node block
1367 (first (ir2-lvar-locs 2first))
1368 (reference-tn-list moved-tns nil))
1369 ((reference-tn-list moved-tns t)))))
1370 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1371 (nip-aligned (first (ir2-lvar-locs 2after))))
1372 ((lvar-dynamic-extent after)
1373 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1375 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1377 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1378 (defoptimizer (values ir2-convert) ((&rest values) node block)
1379 (let ((tns (mapcar (lambda (x)
1380 (lvar-tn node block x))
1382 (move-lvar-result node block tns (node-lvar node))))
1384 ;;; In the normal case where unknown values are desired, we use the
1385 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1386 ;;; for a fixed number of values, we punt by doing a full call to the
1387 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1388 ;;; defaulting any unsupplied values. It seems unworthwhile to
1389 ;;; optimize this case.
1390 (defoptimizer (values-list ir2-convert) ((list) node block)
1391 (let* ((lvar (node-lvar node))
1392 (2lvar (and lvar (lvar-info lvar))))
1394 (eq (ir2-lvar-kind 2lvar) :unknown))
1395 (let ((locs (ir2-lvar-locs 2lvar)))
1396 (vop* values-list node block
1397 ((lvar-tn node block list) nil)
1398 ((reference-tn-list locs t)))))
1399 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1400 (eq (ir2-lvar-kind 2lvar) :fixed)))
1401 (ir2-convert-full-call node block)))))
1403 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1404 (binding* ((lvar (node-lvar node) :exit-if-null)
1405 (2lvar (lvar-info lvar)))
1406 (ecase (ir2-lvar-kind 2lvar)
1407 (:fixed (ir2-convert-full-call node block))
1409 (let ((locs (ir2-lvar-locs 2lvar)))
1410 (vop* %more-arg-values node block
1411 ((lvar-tn node block context)
1412 (lvar-tn node block start)
1413 (lvar-tn node block count)
1415 ((reference-tn-list locs t))))))))
1417 ;;;; special binding
1419 ;;; This is trivial, given our assumption of a shallow-binding
1421 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1422 (let ((name (leaf-source-name (lvar-value var))))
1423 (vop bind node block (lvar-tn node block value)
1424 (emit-constant name))))
1425 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1426 (vop unbind node block))
1428 ;;; ### It's not clear that this really belongs in this file, or
1429 ;;; should really be done this way, but this is the least violation of
1430 ;;; abstraction in the current setup. We don't want to wire
1431 ;;; shallow-binding assumptions into IR1tran.
1432 (def-ir1-translator progv
1433 ((vars vals &body body) start next result)
1436 (with-unique-names (bind unbind)
1437 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1440 (labels ((,unbind (vars)
1441 (declare (optimize (speed 2) (debug 0)))
1443 (%primitive bind nil var)
1446 (declare (optimize (speed 2) (debug 0)))
1448 ((null vals) (,unbind vars))
1452 (,bind (cdr vars) (cdr vals))))))
1453 (,bind ,vars ,vals))
1456 ;; Technically ANSI CL doesn't allow declarations at the
1457 ;; start of the cleanup form. SBCL happens to allow for
1458 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1459 ;; is implemented; the cleanup forms are directly spliced
1460 ;; into an FLET definition body. And a declaration here
1461 ;; actually has exactly the right scope for what we need
1462 ;; (ensure that debug instrumentation is not emitted for the
1463 ;; cleanup function). -- JES, 2007-06-16
1464 (declare (optimize (insert-debug-catch 0)))
1465 (%primitive unbind-to-here ,n-save-bs))))))
1469 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1470 ;;; environment. Note that this is never called on the escape exits
1471 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1473 (defun ir2-convert-exit (node block)
1474 (declare (type exit node) (type ir2-block block))
1475 (let* ((nlx (exit-nlx-info node))
1476 (loc (find-in-physenv nlx (node-physenv node)))
1477 (temp (make-stack-pointer-tn))
1478 (value (exit-value node)))
1479 (if (nlx-info-safe-p nlx)
1480 (vop value-cell-ref node block loc temp)
1481 (emit-move node block loc temp))
1483 (let ((locs (ir2-lvar-locs (lvar-info value))))
1484 (vop unwind node block temp (first locs) (second locs)))
1485 (let ((0-tn (emit-constant 0)))
1486 (vop unwind node block temp 0-tn 0-tn))))
1490 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1491 ;;; being entirely deleted.
1492 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1494 ;;; This function invalidates a lexical exit on exiting from the
1495 ;;; dynamic extent. This is done by storing 0 into the indirect value
1496 ;;; cell that holds the closed unwind block.
1497 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1498 (let ((nlx (lvar-value info)))
1499 (when (nlx-info-safe-p nlx)
1500 (vop value-cell-set node block
1501 (find-in-physenv nlx (node-physenv node))
1502 (emit-constant 0)))))
1504 ;;; We have to do a spurious move of no values to the result lvar so
1505 ;;; that lifetime analysis won't get confused.
1506 (defun ir2-convert-throw (node block)
1507 (declare (type mv-combination node) (type ir2-block block))
1508 (let ((args (basic-combination-args node)))
1509 (check-catch-tag-type (first args))
1510 (vop* throw node block
1511 ((lvar-tn node block (first args))
1513 (ir2-lvar-locs (lvar-info (second args)))
1516 (move-lvar-result node block () (node-lvar node))
1519 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1520 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1521 ;;; the target PC by passing in the label to the vop. The vop is
1522 ;;; responsible for building a return-PC object.
1523 (defun emit-nlx-start (node block info tag)
1524 (declare (type node node) (type ir2-block block) (type nlx-info info)
1525 (type (or lvar null) tag))
1526 (let* ((2info (nlx-info-info info))
1527 (kind (cleanup-kind (nlx-info-cleanup info)))
1528 (block-tn (physenv-live-tn
1529 (make-normal-tn (primitive-type-or-lose 'catch-block))
1530 (node-physenv node)))
1531 (res (make-stack-pointer-tn))
1532 (target-label (ir2-nlx-info-target 2info)))
1534 (vop current-binding-pointer node block
1535 (car (ir2-nlx-info-dynamic-state 2info)))
1536 (vop* save-dynamic-state node block
1538 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1539 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1543 (vop make-catch-block node block block-tn
1544 (lvar-tn node block tag) target-label res))
1545 ((:unwind-protect :block :tagbody)
1546 (vop make-unwind-block node block block-tn target-label res)))
1550 (if (nlx-info-safe-p info)
1551 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1552 (emit-move node block res (ir2-nlx-info-home 2info))))
1554 (vop set-unwind-protect node block block-tn))
1559 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1560 (defun ir2-convert-entry (node block)
1561 (declare (type entry node) (type ir2-block block))
1563 (dolist (exit (entry-exits node))
1564 (let ((info (exit-nlx-info exit)))
1566 (not (memq info nlxes))
1567 (member (cleanup-kind (nlx-info-cleanup info))
1568 '(:block :tagbody)))
1570 (emit-nlx-start node block info nil)))))
1573 ;;; Set up the unwind block for these guys.
1574 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1575 (check-catch-tag-type tag)
1576 (emit-nlx-start node block (lvar-value info-lvar) tag))
1577 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1578 (emit-nlx-start node block (lvar-value info-lvar) nil))
1580 ;;; Emit the entry code for a non-local exit. We receive values and
1581 ;;; restore dynamic state.
1583 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1584 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1585 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1586 ;;; values, make the appropriate number of temps in the standard
1587 ;;; values locations and use the other variant, delivering the temps
1588 ;;; to the lvar using MOVE-LVAR-RESULT.
1590 ;;; In the UNWIND-PROTECT case, we deliver the first register
1591 ;;; argument, the argument count and the argument pointer to our lvar
1592 ;;; as multiple values. These values are the block exited to and the
1593 ;;; values start and count.
1595 ;;; After receiving values, we restore dynamic state. Except in the
1596 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1597 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1598 ;;; pointer alone, since the thrown values are still out there.
1599 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1600 (let* ((info (lvar-value info-lvar))
1601 (lvar (node-lvar node))
1602 (2info (nlx-info-info info))
1603 (top-loc (ir2-nlx-info-save-sp 2info))
1604 (start-loc (make-nlx-entry-arg-start-location))
1605 (count-loc (make-arg-count-location))
1606 (target (ir2-nlx-info-target 2info)))
1608 (ecase (cleanup-kind (nlx-info-cleanup info))
1609 ((:catch :block :tagbody)
1610 (let ((2lvar (and lvar (lvar-info lvar))))
1611 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1612 (vop* nlx-entry-multiple node block
1613 (top-loc start-loc count-loc nil)
1614 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1616 (let ((locs (standard-result-tns lvar)))
1617 (vop* nlx-entry node block
1618 (top-loc start-loc count-loc nil)
1619 ((reference-tn-list locs t))
1622 (move-lvar-result node block locs lvar)))))
1624 (let ((block-loc (standard-arg-location 0)))
1625 (vop uwp-entry node block target block-loc start-loc count-loc)
1628 (list block-loc start-loc count-loc)
1632 (when *collect-dynamic-statistics*
1633 (vop count-me node block *dynamic-counts-tn*
1634 (block-number (ir2-block-block block))))
1636 (vop* restore-dynamic-state node block
1637 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1639 (vop unbind-to-here node block
1640 (car (ir2-nlx-info-dynamic-state 2info)))))
1642 ;;;; n-argument functions
1644 (macrolet ((def (name)
1645 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1646 (let* ((refs (move-tail-full-call-args node block))
1647 (lvar (node-lvar node))
1648 (res (lvar-result-tns
1650 (list (primitive-type (specifier-type 'list))))))
1651 (when (and lvar (lvar-dynamic-extent lvar))
1652 (vop current-stack-pointer node block
1653 (ir2-lvar-stack-pointer (lvar-info lvar))))
1654 (vop* ,name node block (refs) ((first res) nil)
1656 (move-lvar-result node block res lvar)))))
1661 ;;; Convert the code in a component into VOPs.
1662 (defun ir2-convert (component)
1663 (declare (type component component))
1664 (let (#!+sb-dyncount
1665 (*dynamic-counts-tn*
1666 (when *collect-dynamic-statistics*
1668 (block-number (block-next (component-head component))))
1669 (counts (make-array blocks
1670 :element-type '(unsigned-byte 32)
1671 :initial-element 0))
1672 (info (make-dyncount-info
1673 :for (component-name component)
1674 :costs (make-array blocks
1675 :element-type '(unsigned-byte 32)
1678 (setf (ir2-component-dyncount-info (component-info component))
1680 (emit-constant info)
1681 (emit-constant counts)))))
1683 (declare (type index num))
1684 (do-ir2-blocks (2block component)
1685 (let ((block (ir2-block-block 2block)))
1686 (when (block-start block)
1687 (setf (block-number block) num)
1689 (when *collect-dynamic-statistics*
1690 (let ((first-node (block-start-node block)))
1691 (unless (or (and (bind-p first-node)
1692 (xep-p (bind-lambda first-node)))
1694 (node-lvar first-node))
1699 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1701 (ir2-convert-block block)
1705 ;;; If necessary, emit a terminal unconditional branch to go to the
1706 ;;; successor block. If the successor is the component tail, then
1707 ;;; there isn't really any successor, but if the end is an unknown,
1708 ;;; non-tail call, then we emit an error trap just in case the
1709 ;;; function really does return.
1710 (defun finish-ir2-block (block)
1711 (declare (type cblock block))
1712 (let* ((2block (block-info block))
1713 (last (block-last block))
1714 (succ (block-succ block)))
1716 (aver (singleton-p succ))
1717 (let ((target (first succ)))
1718 (cond ((eq target (component-tail (block-component block)))
1719 (when (and (basic-combination-p last)
1720 (eq (basic-combination-kind last) :full))
1721 (let* ((fun (basic-combination-fun last))
1722 (use (lvar-uses fun))
1723 (name (and (ref-p use)
1724 (leaf-has-source-name-p (ref-leaf use))
1725 (leaf-source-name (ref-leaf use)))))
1726 (unless (or (node-tail-p last)
1727 (info :function :info name)
1728 (policy last (zerop safety)))
1729 (vop nil-fun-returned-error last 2block
1731 (emit-constant name)
1732 (multiple-value-bind (tn named)
1733 (fun-lvar-tn last 2block fun)
1736 ((not (eq (ir2-block-next 2block) (block-info target)))
1737 (vop branch last 2block (block-label target)))))))
1741 ;;; Convert the code in a block into VOPs.
1742 (defun ir2-convert-block (block)
1743 (declare (type cblock block))
1744 (let ((2block (block-info block)))
1745 (do-nodes (node lvar block)
1749 (let ((2lvar (lvar-info lvar)))
1750 ;; function REF in a local call is not annotated
1751 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1752 (ir2-convert-ref node 2block)))))
1754 (let ((kind (basic-combination-kind node)))
1757 (ir2-convert-local-call node 2block))
1759 (ir2-convert-full-call node 2block))
1761 (let* ((info (basic-combination-fun-info node))
1762 (fun (fun-info-ir2-convert info)))
1764 (funcall fun node 2block))
1765 ((eq (basic-combination-info node) :full)
1766 (ir2-convert-full-call node 2block))
1768 (ir2-convert-template node 2block))))))))
1770 (when (lvar-info (if-test node))
1771 (ir2-convert-if node 2block)))
1773 (let ((fun (bind-lambda node)))
1774 (when (eq (lambda-home fun) fun)
1775 (ir2-convert-bind node 2block))))
1777 (ir2-convert-return node 2block))
1779 (ir2-convert-set node 2block))
1781 (ir2-convert-cast node 2block))
1784 ((eq (basic-combination-kind node) :local)
1785 (ir2-convert-mv-bind node 2block))
1786 ((eq (lvar-fun-name (basic-combination-fun node))
1788 (ir2-convert-throw node 2block))
1790 (ir2-convert-mv-call node 2block))))
1792 (when (exit-entry node)
1793 (ir2-convert-exit node 2block)))
1795 (ir2-convert-entry node 2block)))))
1797 (finish-ir2-block block)