1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
41 (template-or-lose name)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
52 (emit-move-template node block (type-check-template type) value result)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (let* ((leaf (tn-leaf res))
60 (dx (when leaf (leaf-dynamic-extent leaf))))
61 (when (and dx (neq :truly dx) (leaf-has-source-name-p leaf))
62 (compiler-notify "cannot stack allocate value cell for ~S" (leaf-source-name leaf)))
63 (vop make-value-cell node block value
70 ;;; Return the TN that holds the value of THING in the environment ENV.
71 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
73 (defun find-in-physenv (thing physenv)
74 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
77 ;; I think that a failure of this assertion means that we're
78 ;; trying to access a variable which was improperly closed
79 ;; over. The PHYSENV describes a physical environment. Every
80 ;; variable that a form refers to should either be in its
81 ;; physical environment directly, or grabbed from a
82 ;; surrounding physical environment when it was closed over.
83 ;; The ASSOC expression above finds closed-over variables, so
84 ;; if we fell through the ASSOC expression, it wasn't closed
85 ;; over. Therefore, it must be in our physical environment
86 ;; directly. If instead it is in some other physical
87 ;; environment, then it's bogus for us to reference it here
88 ;; without it being closed over. -- WHN 2001-09-29
89 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
92 (aver (eq physenv (block-physenv (nlx-info-target thing))))
93 (ir2-nlx-info-home (nlx-info-info thing)))
96 (entry-info-closure-tn (lambda-info thing))))
97 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
99 ;;; If LEAF already has a constant TN, return that, otherwise make a
101 (defun constant-tn (leaf)
102 (declare (type constant leaf))
104 (setf (leaf-info leaf)
105 (make-constant-tn leaf))))
107 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
108 ;;; isn't directly represented by a TN. ENV is the environment that
109 ;;; the reference is done in.
110 (defun leaf-tn (leaf env)
111 (declare (type leaf leaf) (type physenv env))
114 (unless (lambda-var-indirect leaf)
115 (find-in-physenv leaf env)))
116 (constant (constant-tn leaf))
119 ;;; This is used to conveniently get a handle on a constant TN during
120 ;;; IR2 conversion. It returns a constant TN representing the Lisp
122 (defun emit-constant (value)
123 (constant-tn (find-constant value)))
125 ;;; Convert a REF node. The reference must not be delayed.
126 (defun ir2-convert-ref (node block)
127 (declare (type ref node) (type ir2-block block))
128 (let* ((lvar (node-lvar node))
129 (leaf (ref-leaf node))
130 (locs (lvar-result-tns
131 lvar (list (primitive-type (leaf-type leaf)))))
135 (let ((tn (find-in-physenv leaf (node-physenv node))))
136 (if (lambda-var-indirect leaf)
137 (vop value-cell-ref node block tn res)
138 (emit-move node block tn res))))
140 (emit-move node block (constant-tn leaf) res))
142 (ir2-convert-closure node block leaf res))
144 (let ((unsafe (policy node (zerop safety)))
145 (name (leaf-source-name leaf)))
146 (ecase (global-var-kind leaf)
148 (aver (symbolp name))
149 (let ((name-tn (emit-constant name)))
150 (if (or unsafe (info :variable :always-bound name))
151 (vop fast-symbol-value node block name-tn res)
152 (vop symbol-value node block name-tn res))))
154 (aver (symbolp name))
155 (let ((name-tn (emit-constant name)))
156 (if (or unsafe (info :variable :always-bound name))
157 (vop fast-symbol-global-value node block name-tn res)
158 (vop symbol-global-value node block name-tn res))))
160 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
162 (vop fdefn-fun node block fdefn-tn res)
163 (vop safe-fdefn-fun node block fdefn-tn res))))))))
164 (move-lvar-result node block locs lvar))
167 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
168 (defun assertions-on-ir2-converted-clambda (clambda)
169 ;; This assertion was sort of an experiment. It would be nice and
170 ;; sane and easier to understand things if it were *always* true,
171 ;; but experimentally I observe that it's only *almost* always
172 ;; true. -- WHN 2001-01-02
174 (aver (eql (lambda-component clambda)
175 (block-component (ir2-block-block ir2-block))))
176 ;; Check for some weirdness which came up in bug
179 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
180 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
182 ;; * treats every HANDLEless :ENTRY record into a
184 ;; * expects every patch to correspond to an
185 ;; IR2-COMPONENT-ENTRIES record.
186 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
187 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
188 ;; was a HANDLEless :ENTRY record which didn't correspond to an
189 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
190 ;; when it's caught at dump time, so this assertion tries to catch
192 (aver (member clambda
193 (component-lambdas (lambda-component clambda))))
194 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
195 ;; used as a queue for stuff pending to do in IR1, and now that
196 ;; we're doing IR2 it should've been completely flushed (but
198 (aver (null (component-new-functionals (lambda-component clambda))))
201 ;;; Emit code to load a function object implementing FUNCTIONAL into
202 ;;; RES. This gets interesting when the referenced function is a
203 ;;; closure: we must make the closure and move the closed-over values
206 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
207 ;;; for the called function, since local call analysis converts all
208 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
211 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
212 ;;; don't initialize that slot. This can happen with closures over
213 ;;; top level variables, where optimization of the closure deleted the
214 ;;; variable. Since we committed to the closure format when we
215 ;;; pre-analyzed the top level code, we just leave an empty slot.
216 (defun ir2-convert-closure (ref ir2-block functional res)
217 (declare (type ref ref)
218 (type ir2-block ir2-block)
219 (type functional functional)
221 (aver (not (eql (functional-kind functional) :deleted)))
222 (unless (leaf-info functional)
223 (setf (leaf-info functional)
224 (make-entry-info :name (functional-debug-name functional))))
225 (let ((closure (etypecase functional
227 (assertions-on-ir2-converted-clambda functional)
228 (physenv-closure (get-lambda-physenv functional)))
230 (aver (eq (functional-kind functional) :toplevel-xep))
234 (let* ((physenv (node-physenv ref))
235 (tn (find-in-physenv functional physenv)))
236 (emit-move ref ir2-block tn res)))
238 (let ((entry (make-load-time-constant-tn :entry functional)))
239 (emit-move ref ir2-block entry res)))))
242 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
243 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
244 (when (lvar-dynamic-extent leaves)
245 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
246 (setf (ir2-lvar-kind info) :delayed)
247 (setf (lvar-info leaves) info)
248 (setf (ir2-lvar-stack-pointer info)
249 (make-stack-pointer-tn)))))
251 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
252 (let ((dx-p (lvar-dynamic-extent leaves)))
255 (vop current-stack-pointer call 2block
256 (ir2-lvar-stack-pointer (lvar-info leaves))))
257 (dolist (leaf (lvar-value leaves))
258 (binding* ((xep (awhen (functional-entry-fun leaf)
259 ;; if the xep's been deleted then we can skip it
260 (if (eq (functional-kind it) :deleted)
263 (nil (aver (xep-p xep)))
264 (entry-info (lambda-info xep) :exit-if-null)
265 (tn (entry-info-closure-tn entry-info) :exit-if-null)
266 (closure (physenv-closure (get-lambda-physenv xep)))
267 (entry (make-load-time-constant-tn :entry xep)))
268 (let ((this-env (node-physenv call))
269 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
270 (vop make-closure call 2block entry (length closure)
272 (loop for what in closure and n from 0 do
273 (unless (and (lambda-var-p what)
274 (null (leaf-refs what)))
275 ;; In LABELS a closure may refer to another closure
276 ;; in the same group, so we must be sure that we
277 ;; store a closure only after its creation.
279 ;; TODO: Here is a simple solution: we postpone
280 ;; putting of all closures after all creations
281 ;; (though it may require more registers).
283 (delayed (list tn (find-in-physenv what this-env) n))
284 (vop closure-init call 2block
286 (find-in-physenv what this-env)
288 (loop for (tn what n) in (delayed)
289 do (vop closure-init call 2block
293 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
294 ;;; deliver the value to that lvar. If the var is a lexical variable
295 ;;; with no refs, then we don't actually set anything, since the
296 ;;; variable has been deleted.
297 (defun ir2-convert-set (node block)
298 (declare (type cset node) (type ir2-block block))
299 (let* ((lvar (node-lvar node))
300 (leaf (set-var node))
301 (val (lvar-tn node block (set-value node)))
304 lvar (list (primitive-type (leaf-type leaf))))
308 (when (leaf-refs leaf)
309 (let ((tn (find-in-physenv leaf (node-physenv node))))
310 (if (lambda-var-indirect leaf)
311 (vop value-cell-set node block tn val)
312 (emit-move node block val tn)))))
314 (aver (symbolp (leaf-source-name leaf)))
315 (ecase (global-var-kind leaf)
317 (vop set node block (emit-constant (leaf-source-name leaf)) val))
319 (vop %set-symbol-global-value node
320 block (emit-constant (leaf-source-name leaf)) val)))))
322 (emit-move node block val (first locs))
323 (move-lvar-result node block locs lvar)))
326 ;;;; utilities for receiving fixed values
328 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
329 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
330 ;;; single-value lvar.
332 ;;; The primitive-type of the result will always be the same as the
333 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
334 ;;; TNs that satisfy the operand primitive-type restriction. We may
335 ;;; have to make a temporary of the desired type and move the actual
336 ;;; lvar TN into it. This happens when we delete a type check in
337 ;;; unsafe code or when we locally know something about the type of an
338 ;;; argument variable.
339 (defun lvar-tn (node block lvar)
340 (declare (type node node) (type ir2-block block) (type lvar lvar))
341 (let* ((2lvar (lvar-info lvar))
343 (ecase (ir2-lvar-kind 2lvar)
345 (let ((ref (lvar-uses lvar)))
346 (leaf-tn (ref-leaf ref) (node-physenv ref))))
348 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
349 (first (ir2-lvar-locs 2lvar)))))
350 (ptype (ir2-lvar-primitive-type 2lvar)))
352 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
354 (let ((temp (make-normal-tn ptype)))
355 (emit-move node block lvar-tn temp)
358 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
359 ;;; TNs holding the values of LVAR with PTYPES as their primitive
360 ;;; types. LVAR must be annotated for the same number of fixed values
361 ;;; are there are PTYPES.
363 ;;; If the lvar has a type check, check the values into temps and
364 ;;; return the temps. When we have more values than assertions, we
365 ;;; move the extra values with no check.
366 (defun lvar-tns (node block lvar ptypes)
367 (declare (type node node) (type ir2-block block)
368 (type lvar lvar) (list ptypes))
369 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
370 (nlocs (length locs)))
371 (aver (= nlocs (length ptypes)))
373 (mapcar (lambda (from to-type)
374 (if (eq (tn-primitive-type from) to-type)
376 (let ((temp (make-normal-tn to-type)))
377 (emit-move node block from temp)
382 ;;;; utilities for delivering values to lvars
384 ;;; Return a list of TNs with the specifier TYPES that can be used as
385 ;;; result TNs to evaluate an expression into LVAR. This is used
386 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
389 ;;; If the lvar isn't annotated (meaning the values are discarded) or
390 ;;; is unknown-values, the then we make temporaries for each supplied
391 ;;; value, providing a place to compute the result in until we decide
392 ;;; what to do with it (if anything.)
394 ;;; If the lvar is fixed-values, and wants the same number of values
395 ;;; as the user wants to deliver, then we just return the
396 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
397 ;;; discarded TNs. We always return a TN of the specified type, using
398 ;;; the lvar locs only when they are of the correct type.
399 (defun lvar-result-tns (lvar types)
400 (declare (type (or lvar null) lvar) (type list types))
402 (mapcar #'make-normal-tn types)
403 (let ((2lvar (lvar-info lvar)))
404 (ecase (ir2-lvar-kind 2lvar)
406 (let* ((locs (ir2-lvar-locs 2lvar))
407 (nlocs (length locs))
408 (ntypes (length types)))
409 (if (and (= nlocs ntypes)
410 (do ((loc locs (cdr loc))
411 (type types (cdr type)))
413 (unless (eq (tn-primitive-type (car loc)) (car type))
416 (mapcar (lambda (loc type)
417 (if (eq (tn-primitive-type loc) type)
419 (make-normal-tn type)))
422 (mapcar #'make-normal-tn
423 (subseq types nlocs)))
427 (mapcar #'make-normal-tn types))))))
429 ;;; Make the first N standard value TNs, returning them in a list.
430 (defun make-standard-value-tns (n)
431 (declare (type unsigned-byte n))
434 (res (standard-arg-location i)))
437 ;;; Return a list of TNs wired to the standard value passing
438 ;;; conventions that can be used to receive values according to the
439 ;;; unknown-values convention. This is used with together
440 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
443 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
444 ;;; an empty list of temporaries.
446 ;;; If the lvar is annotated, then it must be :FIXED.
447 (defun standard-result-tns (lvar)
448 (declare (type (or lvar null) lvar))
450 (let ((2lvar (lvar-info lvar)))
451 (ecase (ir2-lvar-kind 2lvar)
453 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
456 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
457 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
458 ;;; doing the appropriate coercions.
459 (defun move-results-coerced (node block src dest)
460 (declare (type node node) (type ir2-block block) (list src dest))
461 (let ((nsrc (length src))
462 (ndest (length dest)))
463 (mapc (lambda (from to)
465 (emit-move node block from to)))
467 (append src (make-list (- ndest nsrc)
468 :initial-element (emit-constant nil)))
473 ;;; Move each SRC TN into the corresponding DEST TN, checking types
474 ;;; and defaulting any unsupplied source values to NIL
475 (defun move-results-checked (node block src dest types)
476 (declare (type node node) (type ir2-block block) (list src dest types))
477 (let ((nsrc (length src))
478 (ndest (length dest))
479 (ntypes (length types)))
480 (mapc (lambda (from to type)
482 (emit-type-check node block from to type)
483 (emit-move node block from to)))
485 (append src (make-list (- ndest nsrc)
486 :initial-element (emit-constant nil)))
490 (append types (make-list (- ndest ntypes)))
494 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
495 ;;; the specified lvar. NODE and BLOCK provide context for emitting
496 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
497 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
500 ;;; If the lvar is fixed values, then move the results into the lvar
501 ;;; locations. If the lvar is unknown values, then do the moves into
502 ;;; the standard value locations, and use PUSH-VALUES to put the
503 ;;; values on the stack.
504 (defun move-lvar-result (node block results lvar)
505 (declare (type node node) (type ir2-block block)
506 (list results) (type (or lvar null) lvar))
508 (let ((2lvar (lvar-info lvar)))
509 (ecase (ir2-lvar-kind 2lvar)
511 (let ((locs (ir2-lvar-locs 2lvar)))
512 (unless (eq locs results)
513 (move-results-coerced node block results locs))))
515 (let* ((nvals (length results))
516 (locs (make-standard-value-tns nvals)))
517 (move-results-coerced node block results locs)
518 (vop* push-values node block
519 ((reference-tn-list locs nil))
520 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
525 (defun ir2-convert-cast (node block)
526 (declare (type cast node)
527 (type ir2-block block))
528 (binding* ((lvar (node-lvar node) :exit-if-null)
529 (2lvar (lvar-info lvar))
530 (value (cast-value node))
531 (2value (lvar-info value)))
532 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
533 ((eq (ir2-lvar-kind 2lvar) :unknown)
534 (aver (eq (ir2-lvar-kind 2value) :unknown))
535 (aver (not (cast-type-check node)))
536 (move-results-coerced node block
537 (ir2-lvar-locs 2value)
538 (ir2-lvar-locs 2lvar)))
539 ((eq (ir2-lvar-kind 2lvar) :fixed)
540 (aver (eq (ir2-lvar-kind 2value) :fixed))
541 (if (cast-type-check node)
542 (move-results-checked node block
543 (ir2-lvar-locs 2value)
544 (ir2-lvar-locs 2lvar)
545 (multiple-value-bind (check types)
546 (cast-check-types node nil)
547 (aver (eq check :simple))
549 (move-results-coerced node block
550 (ir2-lvar-locs 2value)
551 (ir2-lvar-locs 2lvar))))
552 (t (bug "CAST cannot be :DELAYED.")))))
554 ;;;; template conversion
556 ;;; Build a TN-REFS list that represents access to the values of the
557 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
558 ;;; are returned in the second value as a list rather than being
559 ;;; accessed as a normal argument. NODE and BLOCK provide the context
560 ;;; for emitting any necessary type-checking code.
561 (defun reference-args (node block args template)
562 (declare (type node node) (type ir2-block block) (list args)
563 (type template template))
564 (collect ((info-args))
567 (do ((args args (cdr args))
568 (types (template-arg-types template) (cdr types)))
570 (let ((type (first types))
572 (if (and (consp type) (eq (car type) ':constant))
573 (info-args (lvar-value arg))
574 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
576 (setf (tn-ref-across last) ref)
580 (values (the (or tn-ref null) first) (info-args)))))
582 ;;; Convert a conditional template. We try to exploit any
583 ;;; drop-through, but emit an unconditional branch afterward if we
584 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
586 (defun ir2-convert-conditional (node block template args info-args if not-p)
587 (declare (type node node) (type ir2-block block)
588 (type template template) (type (or tn-ref null) args)
589 (list info-args) (type cif if) (type boolean not-p))
590 (let ((consequent (if-consequent if))
591 (alternative (if-alternative if))
592 (flags (and (consp (template-result-types template))
593 (rest (template-result-types template)))))
594 (aver (= (template-info-arg-count template)
595 (+ (length info-args)
598 (rotatef consequent alternative)
600 (when (drop-thru-p if consequent)
601 (rotatef consequent alternative)
604 (emit-template node block template args nil
605 (list* (block-label consequent) not-p
607 (unless (drop-thru-p if alternative)
608 (vop branch node block (block-label alternative))))
610 (emit-template node block template args nil info-args)
611 (vop branch-if node block (block-label consequent) flags not-p)
612 (unless (drop-thru-p if alternative)
613 (vop branch node block (block-label alternative)))))))
615 ;;; Convert an IF that isn't the DEST of a conditional template.
616 (defun ir2-convert-if (node block)
617 (declare (type ir2-block block) (type cif node))
618 (let* ((test (if-test node))
619 (test-ref (reference-tn (lvar-tn node block test) nil))
620 (nil-ref (reference-tn (emit-constant nil) nil)))
621 (setf (tn-ref-across test-ref) nil-ref)
622 (ir2-convert-conditional node block (template-or-lose 'if-eq)
623 test-ref () node t)))
625 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
626 ;;; describing the result types we want for a template call. We are really
627 ;;; only interested in the number of results required: in normal case
628 ;;; TEMPLATE-RESULTS-OK has already checked them.
629 (defun find-template-result-types (call rtypes)
630 (let* ((type (node-derived-type call))
632 (mapcar #'primitive-type
633 (if (values-type-p type)
634 (append (args-type-required type)
635 (args-type-optional type))
637 (primitive-t *backend-t-primitive-type*))
638 (loop for rtype in rtypes
639 for type = (or (pop types) primitive-t)
642 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
643 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
644 ;;; fixed values and has locations that satisfy the result restrictions. This
645 ;;; can fail when there is a type check or a values count mismatch.
646 (defun make-template-result-tns (call lvar rtypes)
647 (declare (type combination call) (type (or lvar null) lvar)
649 (let ((2lvar (when lvar (lvar-info lvar))))
650 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
651 (let ((locs (ir2-lvar-locs 2lvar)))
652 (if (and (= (length rtypes) (length locs))
653 (do ((loc locs (cdr loc))
654 (rtypes rtypes (cdr rtypes)))
656 (unless (operand-restriction-ok
658 (tn-primitive-type (car loc))
664 (find-template-result-types call rtypes))))
667 (find-template-result-types call rtypes)))))
669 ;;; Get the operands into TNs, make TN-REFs for them, and then call
670 ;;; the template emit function.
671 (defun ir2-convert-template (call block)
672 (declare (type combination call) (type ir2-block block))
673 (let* ((template (combination-info call))
674 (lvar (node-lvar call))
675 (rtypes (template-result-types template)))
676 (multiple-value-bind (args info-args)
677 (reference-args call block (combination-args call) template)
678 (aver (not (template-more-results-type template)))
679 (if (template-conditional-p template)
680 (ir2-convert-conditional call block template args info-args
681 (lvar-dest lvar) nil)
682 (let* ((results (make-template-result-tns call lvar rtypes))
683 (r-refs (reference-tn-list results t)))
684 (aver (= (length info-args)
685 (template-info-arg-count template)))
686 (when (and lvar (lvar-dynamic-extent lvar))
687 (vop current-stack-pointer call block
688 (ir2-lvar-stack-pointer (lvar-info lvar))))
689 (when (emit-step-p call)
690 (vop sb!vm::step-instrument-before-vop call block))
692 (emit-template call block template args r-refs info-args)
693 (emit-template call block template args r-refs))
694 (move-lvar-result call block results lvar)))))
697 ;;; We don't have to do much because operand count checking is done by
698 ;;; IR1 conversion. The only difference between this and the function
699 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
701 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
702 (let* ((template (lvar-value template))
703 (info (lvar-value info))
704 (lvar (node-lvar call))
705 (rtypes (template-result-types template))
706 (results (make-template-result-tns call lvar rtypes))
707 (r-refs (reference-tn-list results t)))
708 (multiple-value-bind (args info-args)
709 (reference-args call block (cddr (combination-args call)) template)
710 (aver (not (template-more-results-type template)))
711 (aver (not (template-conditional-p template)))
712 (aver (null info-args))
715 (emit-template call block template args r-refs info)
716 (emit-template call block template args r-refs))
718 (move-lvar-result call block results lvar)))
721 (defoptimizer (%%primitive derive-type) ((template info &rest args))
722 (let ((type (template-type (lvar-value template))))
723 (if (fun-type-p type)
724 (fun-type-returns type)
729 ;;; Convert a LET by moving the argument values into the variables.
730 ;;; Since a LET doesn't have any passing locations, we move the
731 ;;; arguments directly into the variables. We must also allocate any
732 ;;; indirect value cells, since there is no function prologue to do
734 (defun ir2-convert-let (node block fun)
735 (declare (type combination node) (type ir2-block block) (type clambda fun))
736 (mapc (lambda (var arg)
738 (let ((src (lvar-tn node block arg))
739 (dest (leaf-info var)))
740 (if (lambda-var-indirect var)
741 (emit-make-value-cell node block src dest)
742 (emit-move node block src dest)))))
743 (lambda-vars fun) (basic-combination-args node))
746 ;;; Emit any necessary moves into assignment temps for a local call to
747 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
748 ;;; values, and (possibly EQ) TNs that are the actual destination of
749 ;;; the arguments. When necessary, we allocate temporaries for
750 ;;; arguments to preserve parallel assignment semantics. These lists
751 ;;; exclude unused arguments and include implicit environment
752 ;;; arguments, i.e. they exactly correspond to the arguments passed.
754 ;;; OLD-FP is the TN currently holding the value we want to pass as
755 ;;; OLD-FP. If null, then the call is to the same environment (an
756 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
757 ;;; environment alone.
758 (defun emit-psetq-moves (node block fun old-fp)
759 (declare (type combination node) (type ir2-block block) (type clambda fun)
760 (type (or tn null) old-fp))
761 (let ((actuals (mapcar (lambda (x)
763 (lvar-tn node block x)))
764 (combination-args node))))
767 (dolist (var (lambda-vars fun))
768 (let ((actual (pop actuals))
769 (loc (leaf-info var)))
772 ((lambda-var-indirect var)
774 (make-normal-tn *backend-t-primitive-type*)))
775 (emit-make-value-cell node block actual temp)
777 ((member actual (locs))
778 (let ((temp (make-normal-tn (tn-primitive-type loc))))
779 (emit-move node block actual temp)
786 (let ((this-1env (node-physenv node))
787 (called-env (physenv-info (lambda-physenv fun))))
788 (dolist (thing (ir2-physenv-closure called-env))
789 (temps (find-in-physenv (car thing) this-1env))
792 (locs (ir2-physenv-old-fp called-env))))
794 (values (temps) (locs)))))
796 ;;; A tail-recursive local call is done by emitting moves of stuff
797 ;;; into the appropriate passing locations. After setting up the args
798 ;;; and environment, we just move our return-pc into the called
799 ;;; function's passing location.
800 (defun ir2-convert-tail-local-call (node block fun)
801 (declare (type combination node) (type ir2-block block) (type clambda fun))
802 (let ((this-env (physenv-info (node-physenv node))))
803 (multiple-value-bind (temps locs)
804 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
806 (mapc (lambda (temp loc)
807 (emit-move node block temp loc))
810 (emit-move node block
811 (ir2-physenv-return-pc this-env)
812 (ir2-physenv-return-pc-pass
814 (lambda-physenv fun)))))
818 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
819 ;;; except that the caller and callee environment are the same, so we
820 ;;; don't need to mess with the environment locations, return PC, etc.
821 (defun ir2-convert-assignment (node block fun)
822 (declare (type combination node) (type ir2-block block) (type clambda fun))
823 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
825 (mapc (lambda (temp loc)
826 (emit-move node block temp loc))
830 ;;; Do stuff to set up the arguments to a non-tail local call
831 ;;; (including implicit environment args.) We allocate a frame
832 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
833 ;;; the values to pass and the list of passing location TNs.
834 (defun ir2-convert-local-call-args (node block fun)
835 (declare (type combination node) (type ir2-block block) (type clambda fun))
836 (let ((fp (make-stack-pointer-tn))
837 (nfp (make-number-stack-pointer-tn))
838 (old-fp (make-stack-pointer-tn)))
839 (multiple-value-bind (temps locs)
840 (emit-psetq-moves node block fun old-fp)
841 (vop current-fp node block old-fp)
842 (vop allocate-frame node block
843 (physenv-info (lambda-physenv fun))
845 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
847 ;;; Handle a non-TR known-values local call. We emit the call, then
848 ;;; move the results to the lvar's destination.
849 (defun ir2-convert-local-known-call (node block fun returns lvar start)
850 (declare (type node node) (type ir2-block block) (type clambda fun)
851 (type return-info returns) (type (or lvar null) lvar)
853 (multiple-value-bind (fp nfp temps arg-locs)
854 (ir2-convert-local-call-args node block fun)
855 (let ((locs (return-info-locations returns)))
856 (vop* known-call-local node block
857 (fp nfp (reference-tn-list temps nil))
858 ((reference-tn-list locs t))
859 arg-locs (physenv-info (lambda-physenv fun)) start)
860 (move-lvar-result node block locs lvar)))
863 ;;; Handle a non-TR unknown-values local call. We do different things
864 ;;; depending on what kind of values the lvar wants.
866 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
867 ;;; specifying the lvar's LOCS as the VOP results so that we don't
868 ;;; have to do anything after the call.
870 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
871 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
873 (defun ir2-convert-local-unknown-call (node block fun lvar start)
874 (declare (type node node) (type ir2-block block) (type clambda fun)
875 (type (or lvar null) lvar) (type label start))
876 (multiple-value-bind (fp nfp temps arg-locs)
877 (ir2-convert-local-call-args node block fun)
878 (let ((2lvar (and lvar (lvar-info lvar)))
879 (env (physenv-info (lambda-physenv fun)))
880 (temp-refs (reference-tn-list temps nil)))
881 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
882 (vop* multiple-call-local node block (fp nfp temp-refs)
883 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
885 (let ((locs (standard-result-tns lvar)))
886 (vop* call-local node block
888 ((reference-tn-list locs t))
889 arg-locs env start (length locs))
890 (move-lvar-result node block locs lvar)))))
893 ;;; Dispatch to the appropriate function, depending on whether we have
894 ;;; a let, tail or normal call. If the function doesn't return, call
895 ;;; it using the unknown-value convention. We could compile it as a
896 ;;; tail call, but that might seem confusing in the debugger.
897 (defun ir2-convert-local-call (node block)
898 (declare (type combination node) (type ir2-block block))
899 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
900 (kind (functional-kind fun)))
901 (cond ((eq kind :let)
902 (ir2-convert-let node block fun))
903 ((eq kind :assignment)
904 (ir2-convert-assignment node block fun))
906 (ir2-convert-tail-local-call node block fun))
908 (let ((start (block-label (lambda-block fun)))
909 (returns (tail-set-info (lambda-tail-set fun)))
910 (lvar (node-lvar node)))
912 (return-info-kind returns)
915 (ir2-convert-local-unknown-call node block fun lvar start))
917 (ir2-convert-local-known-call node block fun returns
923 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
924 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
925 ;;; true if the thing is named (false if it is a function).
927 ;;; There are two interesting non-named cases:
928 ;;; -- We know it's a function. No check needed: return the
930 ;;; -- We don't know what it is.
931 (defun fun-lvar-tn (node block lvar)
932 (declare (ignore node block))
933 (declare (type lvar lvar))
934 (let ((2lvar (lvar-info lvar)))
935 (if (eq (ir2-lvar-kind 2lvar) :delayed)
936 (let ((name (lvar-fun-name lvar t)))
938 (values (make-load-time-constant-tn :fdefinition name) t))
939 (let* ((locs (ir2-lvar-locs 2lvar))
941 (function-ptype (primitive-type-or-lose 'function)))
942 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
943 (= (length locs) 1)))
944 (aver (eq (tn-primitive-type loc) function-ptype))
947 ;;; Set up the args to NODE in the current frame, and return a TN-REF
948 ;;; list for the passing locations.
949 (defun move-tail-full-call-args (node block)
950 (declare (type combination node) (type ir2-block block))
951 (let ((args (basic-combination-args node))
954 (dotimes (num (length args))
955 (let ((loc (standard-arg-location num)))
956 (emit-move node block (lvar-tn node block (elt args num)) loc)
957 (let ((ref (reference-tn loc nil)))
959 (setf (tn-ref-across last) ref)
964 ;;; Move the arguments into the passing locations and do a (possibly
965 ;;; named) tail call.
966 (defun ir2-convert-tail-full-call (node block)
967 (declare (type combination node) (type ir2-block block))
968 (let* ((env (physenv-info (node-physenv node)))
969 (args (basic-combination-args node))
970 (nargs (length args))
971 (pass-refs (move-tail-full-call-args node block))
972 (old-fp (ir2-physenv-old-fp env))
973 (return-pc (ir2-physenv-return-pc env)))
975 (multiple-value-bind (fun-tn named)
976 (fun-lvar-tn node block (basic-combination-fun node))
978 (vop* tail-call-named node block
979 (fun-tn old-fp return-pc pass-refs)
983 (vop* tail-call node block
984 (fun-tn old-fp return-pc pass-refs)
987 (emit-step-p node)))))
991 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
992 (defun ir2-convert-full-call-args (node block)
993 (declare (type combination node) (type ir2-block block))
994 (let* ((args (basic-combination-args node))
995 (fp (make-stack-pointer-tn))
996 (nargs (length args)))
997 (vop allocate-full-call-frame node block nargs fp)
1001 (dotimes (num nargs)
1002 (locs (standard-arg-location num))
1003 (let ((ref (reference-tn (lvar-tn node block (elt args num))
1006 (setf (tn-ref-across last) ref)
1010 (values fp first (locs) nargs)))))
1012 ;;; Do full call when a fixed number of values are desired. We make
1013 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
1014 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
1015 (defun ir2-convert-fixed-full-call (node block)
1016 (declare (type combination node) (type ir2-block block))
1017 (multiple-value-bind (fp args arg-locs nargs)
1018 (ir2-convert-full-call-args node block)
1019 (let* ((lvar (node-lvar node))
1020 (locs (standard-result-tns lvar))
1021 (loc-refs (reference-tn-list locs t))
1022 (nvals (length locs)))
1023 (multiple-value-bind (fun-tn named)
1024 (fun-lvar-tn node block (basic-combination-fun node))
1026 (vop* call-named node block (fp fun-tn args) (loc-refs)
1027 arg-locs nargs nvals (emit-step-p node))
1028 (vop* call node block (fp fun-tn args) (loc-refs)
1029 arg-locs nargs nvals (emit-step-p node)))
1030 (move-lvar-result node block locs lvar))))
1033 ;;; Do full call when unknown values are desired.
1034 (defun ir2-convert-multiple-full-call (node block)
1035 (declare (type combination node) (type ir2-block block))
1036 (multiple-value-bind (fp args arg-locs nargs)
1037 (ir2-convert-full-call-args node block)
1038 (let* ((lvar (node-lvar node))
1039 (locs (ir2-lvar-locs (lvar-info lvar)))
1040 (loc-refs (reference-tn-list locs t)))
1041 (multiple-value-bind (fun-tn named)
1042 (fun-lvar-tn node block (basic-combination-fun node))
1044 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1045 arg-locs nargs (emit-step-p node))
1046 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1047 arg-locs nargs (emit-step-p node))))))
1050 ;;; stuff to check in PONDER-FULL-CALL
1052 ;;; These came in handy when troubleshooting cold boot after making
1053 ;;; major changes in the package structure: various transforms and
1054 ;;; VOPs and stuff got attached to the wrong symbol, so that
1055 ;;; references to the right symbol were bogusly translated as full
1056 ;;; calls instead of primitives, sending the system off into infinite
1057 ;;; space. Having a report on all full calls generated makes it easier
1058 ;;; to figure out what form caused the problem this time.
1059 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1060 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1062 ;;; Do some checks (and store some notes relevant for future checks)
1064 ;;; * Is this a full call to something we have reason to know should
1065 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1066 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1068 ;;; * Is this a full call to (SETF FOO) which might conflict with
1069 ;;; a DEFSETF or some such thing elsewhere in the program?
1070 (defun ponder-full-call (node)
1071 (let* ((lvar (basic-combination-fun node))
1072 (fname (lvar-fun-name lvar t)))
1073 (declare (type (or symbol cons) fname))
1075 #!+sb-show (unless (gethash fname *full-called-fnames*)
1076 (setf (gethash fname *full-called-fnames*) t))
1077 #!+sb-show (when *show-full-called-fnames-p*
1078 (/show "converting full call to named function" fname)
1079 (/show (basic-combination-args node))
1080 (/show (policy node speed) (policy node safety))
1081 (/show (policy node compilation-speed))
1082 (let ((arg-types (mapcar (lambda (lvar)
1086 (basic-combination-args node))))
1089 ;; When illegal code is compiled, all sorts of perverse paths
1090 ;; through the compiler can be taken, and it's much harder -- and
1091 ;; probably pointless -- to guarantee that always-optimized-away
1092 ;; functions are actually optimized away. Thus, we skip the check
1095 ;; check to see if we know anything about the function
1096 (let ((info (info :function :info fname)))
1097 ;; if we know something, check to see if the full call was valid
1098 (when (and info (ir1-attributep (fun-info-attributes info)
1099 always-translatable))
1100 (/show (policy node speed) (policy node safety))
1101 (/show (policy node compilation-speed))
1102 (bug "full call to ~S" fname))))
1105 (aver (legal-fun-name-p fname))
1106 (destructuring-bind (setfoid &rest stem) fname
1107 (when (eq setfoid 'setf)
1108 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1110 ;;; If the call is in a tail recursive position and the return
1111 ;;; convention is standard, then do a tail full call. If one or fewer
1112 ;;; values are desired, then use a single-value call, otherwise use a
1113 ;;; multiple-values call.
1114 (defun ir2-convert-full-call (node block)
1115 (declare (type combination node) (type ir2-block block))
1116 (ponder-full-call node)
1117 (cond ((node-tail-p node)
1118 (ir2-convert-tail-full-call node block))
1119 ((let ((lvar (node-lvar node)))
1121 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1122 (ir2-convert-multiple-full-call node block))
1124 (ir2-convert-fixed-full-call node block)))
1127 ;;;; entering functions
1129 ;;; Do all the stuff that needs to be done on XEP entry:
1130 ;;; -- Create frame.
1131 ;;; -- Copy any more arg.
1132 ;;; -- Set up the environment, accessing any closure variables.
1133 ;;; -- Move args from the standard passing locations to their internal
1135 (defun init-xep-environment (node block fun)
1136 (declare (type bind node) (type ir2-block block) (type clambda fun))
1137 (let ((start-label (entry-info-offset (leaf-info fun)))
1138 (env (physenv-info (node-physenv node))))
1139 (let ((ef (functional-entry-fun fun)))
1140 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1141 ;; Special case the xep-allocate-frame + copy-more-arg case.
1142 (vop xep-allocate-frame node block start-label t)
1143 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1145 ;; No more args, so normal entry.
1146 (vop xep-allocate-frame node block start-label nil)))
1147 (if (ir2-physenv-closure env)
1148 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1149 (vop setup-closure-environment node block start-label closure)
1151 (dolist (loc (ir2-physenv-closure env))
1152 (vop closure-ref node block closure (incf n) (cdr loc)))))
1153 (vop setup-environment node block start-label)))
1155 (unless (eq (functional-kind fun) :toplevel)
1156 (let ((vars (lambda-vars fun))
1158 (when (leaf-refs (first vars))
1159 (emit-move node block (make-arg-count-location)
1160 (leaf-info (first vars))))
1161 (dolist (arg (rest vars))
1162 (when (leaf-refs arg)
1163 (let ((pass (standard-arg-location n))
1164 (home (leaf-info arg)))
1165 (if (lambda-var-indirect arg)
1166 (emit-make-value-cell node block pass home)
1167 (emit-move node block pass home))))
1170 (emit-move node block (make-old-fp-passing-location t)
1171 (ir2-physenv-old-fp env)))
1175 ;;; Emit function prolog code. This is only called on bind nodes for
1176 ;;; functions that allocate environments. All semantics of let calls
1177 ;;; are handled by IR2-CONVERT-LET.
1179 ;;; If not an XEP, all we do is move the return PC from its passing
1180 ;;; location, since in a local call, the caller allocates the frame
1181 ;;; and sets up the arguments.
1182 (defun ir2-convert-bind (node block)
1183 (declare (type bind node) (type ir2-block block))
1184 (let* ((fun (bind-lambda node))
1185 (env (physenv-info (lambda-physenv fun))))
1186 (aver (member (functional-kind fun)
1187 '(nil :external :optional :toplevel :cleanup)))
1190 (init-xep-environment node block fun)
1192 (when *collect-dynamic-statistics*
1193 (vop count-me node block *dynamic-counts-tn*
1194 (block-number (ir2-block-block block)))))
1198 (ir2-physenv-return-pc-pass env)
1199 (ir2-physenv-return-pc env))
1201 #!+unwind-to-frame-and-call-vop
1202 (when (and (lambda-allow-instrumenting fun)
1203 (not (lambda-inline-expanded fun))
1205 (policy fun (>= insert-debug-catch 2)))
1206 (vop sb!vm::bind-sentinel node block))
1208 (let ((lab (gen-label)))
1209 (setf (ir2-physenv-environment-start env) lab)
1210 (vop note-environment-start node block lab)))
1214 ;;;; function return
1216 ;;; Do stuff to return from a function with the specified values and
1217 ;;; convention. If the return convention is :FIXED and we aren't
1218 ;;; returning from an XEP, then we do a known return (letting
1219 ;;; representation selection insert the correct move-arg VOPs.)
1220 ;;; Otherwise, we use the unknown-values convention. If there is a
1221 ;;; fixed number of return values, then use RETURN, otherwise use
1222 ;;; RETURN-MULTIPLE.
1223 (defun ir2-convert-return (node block)
1224 (declare (type creturn node) (type ir2-block block))
1225 (let* ((lvar (return-result node))
1226 (2lvar (lvar-info lvar))
1227 (lvar-kind (ir2-lvar-kind 2lvar))
1228 (fun (return-lambda node))
1229 (env (physenv-info (lambda-physenv fun)))
1230 (old-fp (ir2-physenv-old-fp env))
1231 (return-pc (ir2-physenv-return-pc env))
1232 (returns (tail-set-info (lambda-tail-set fun))))
1233 #!+unwind-to-frame-and-call-vop
1234 (when (and (lambda-allow-instrumenting fun)
1235 (not (lambda-inline-expanded fun))
1236 (policy fun (>= insert-debug-catch 2)))
1237 (vop sb!vm::unbind-sentinel node block))
1239 ((and (eq (return-info-kind returns) :fixed)
1241 (let ((locs (lvar-tns node block lvar
1242 (return-info-types returns))))
1243 (vop* known-return node block
1244 (old-fp return-pc (reference-tn-list locs nil))
1246 (return-info-locations returns))))
1247 ((eq lvar-kind :fixed)
1248 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1249 (lvar-locs (lvar-tns node block lvar types))
1250 (nvals (length lvar-locs))
1251 (locs (make-standard-value-tns nvals)))
1252 (mapc (lambda (val loc)
1253 (emit-move node block val loc))
1257 (vop return-single node block old-fp return-pc (car locs))
1258 (vop* return node block
1259 (old-fp return-pc (reference-tn-list locs nil))
1263 (aver (eq lvar-kind :unknown))
1264 (vop* return-multiple node block
1266 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1273 ;;;; These are used by the debugger to find the top function on the
1274 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1275 ;;;; function as multiple values.
1277 (defoptimizer (%caller-frame ir2-convert) (() node block)
1278 (let ((ir2-physenv (physenv-info (node-physenv node))))
1279 (move-lvar-result node block
1280 (list (ir2-physenv-old-fp ir2-physenv))
1283 (defoptimizer (%caller-pc ir2-convert) (() node block)
1284 (let ((ir2-physenv (physenv-info (node-physenv node))))
1285 (move-lvar-result node block
1286 (list (ir2-physenv-return-pc ir2-physenv))
1289 ;;;; multiple values
1291 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1292 ;;; the lvar for the correct number of values (with the lvar user
1293 ;;; responsible for defaulting), we can just pick them up from the
1295 (defun ir2-convert-mv-bind (node block)
1296 (declare (type mv-combination node) (type ir2-block block))
1297 (let* ((lvar (first (basic-combination-args node)))
1298 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1299 (vars (lambda-vars fun)))
1300 (aver (eq (functional-kind fun) :mv-let))
1301 (mapc (lambda (src var)
1302 (when (leaf-refs var)
1303 (let ((dest (leaf-info var)))
1304 (if (lambda-var-indirect var)
1305 (emit-make-value-cell node block src dest)
1306 (emit-move node block src dest)))))
1307 (lvar-tns node block lvar
1309 (primitive-type (leaf-type x)))
1314 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1315 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1316 ;;; the first argument: all the other argument lvar TNs are
1317 ;;; ignored. This is because we require all of the values globs to be
1318 ;;; contiguous and on stack top.
1319 (defun ir2-convert-mv-call (node block)
1320 (declare (type mv-combination node) (type ir2-block block))
1321 (aver (basic-combination-args node))
1322 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1323 (start (first (ir2-lvar-locs start-lvar)))
1324 (tails (and (node-tail-p node)
1325 (lambda-tail-set (node-home-lambda node))))
1326 (lvar (node-lvar node))
1327 (2lvar (and lvar (lvar-info lvar))))
1328 (multiple-value-bind (fun named)
1329 (fun-lvar-tn node block (basic-combination-fun node))
1330 (aver (and (not named)
1331 (eq (ir2-lvar-kind start-lvar) :unknown)))
1334 (let ((env (physenv-info (node-physenv node))))
1335 (vop tail-call-variable node block start fun
1336 (ir2-physenv-old-fp env)
1337 (ir2-physenv-return-pc env))))
1339 (eq (ir2-lvar-kind 2lvar) :unknown))
1340 (vop* multiple-call-variable node block (start fun nil)
1341 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1342 (emit-step-p node)))
1344 (let ((locs (standard-result-tns lvar)))
1345 (vop* call-variable node block (start fun nil)
1346 ((reference-tn-list locs t)) (length locs)
1348 (move-lvar-result node block locs lvar)))))))
1350 ;;; Reset the stack pointer to the start of the specified
1351 ;;; unknown-values lvar (discarding it and all values globs on top of
1353 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1354 (let* ((lvar (lvar-value %lvar))
1355 (2lvar (lvar-info lvar)))
1356 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1357 (vop reset-stack-pointer node block
1358 (first (ir2-lvar-locs 2lvar))))
1359 ((lvar-dynamic-extent lvar)
1360 (vop reset-stack-pointer node block
1361 (ir2-lvar-stack-pointer 2lvar)))
1362 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1365 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1368 (let* ( ;; pointer immediately after the nipped block
1369 (after (lvar-value last-nipped))
1370 (2after (lvar-info after))
1371 ;; pointer to the first nipped word
1372 (first (lvar-value last-preserved))
1373 (2first (lvar-info first))
1375 (moved-tns (loop for lvar-ref in moved
1376 for lvar = (lvar-value lvar-ref)
1377 for 2lvar = (lvar-info lvar)
1379 collect (first (ir2-lvar-locs 2lvar)))))
1380 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1381 (lvar-dynamic-extent after)))
1382 (aver (eq (ir2-lvar-kind 2first) :unknown))
1383 (when *check-consistency*
1384 ;; we cannot move stack-allocated DX objects
1385 (dolist (moved-lvar moved)
1386 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1388 (flet ((nip-aligned (nipped)
1389 (vop* %%nip-values node block
1391 (first (ir2-lvar-locs 2first))
1392 (reference-tn-list moved-tns nil))
1393 ((reference-tn-list moved-tns t)))))
1394 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1395 (nip-aligned (first (ir2-lvar-locs 2after))))
1396 ((lvar-dynamic-extent after)
1397 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1399 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1401 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1402 (defoptimizer (values ir2-convert) ((&rest values) node block)
1403 (let ((tns (mapcar (lambda (x)
1404 (lvar-tn node block x))
1406 (move-lvar-result node block tns (node-lvar node))))
1408 ;;; In the normal case where unknown values are desired, we use the
1409 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1410 ;;; for a fixed number of values, we punt by doing a full call to the
1411 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1412 ;;; defaulting any unsupplied values. It seems unworthwhile to
1413 ;;; optimize this case.
1414 (defoptimizer (values-list ir2-convert) ((list) node block)
1415 (let* ((lvar (node-lvar node))
1416 (2lvar (and lvar (lvar-info lvar))))
1418 (eq (ir2-lvar-kind 2lvar) :unknown))
1419 (let ((locs (ir2-lvar-locs 2lvar)))
1420 (vop* values-list node block
1421 ((lvar-tn node block list) nil)
1422 ((reference-tn-list locs t)))))
1423 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1424 (eq (ir2-lvar-kind 2lvar) :fixed)))
1425 (ir2-convert-full-call node block)))))
1427 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1428 (binding* ((lvar (node-lvar node) :exit-if-null)
1429 (2lvar (lvar-info lvar)))
1430 (ecase (ir2-lvar-kind 2lvar)
1431 (:fixed (ir2-convert-full-call node block))
1433 (let ((locs (ir2-lvar-locs 2lvar)))
1434 (vop* %more-arg-values node block
1435 ((lvar-tn node block context)
1436 (lvar-tn node block start)
1437 (lvar-tn node block count)
1439 ((reference-tn-list locs t))))))))
1441 ;;;; special binding
1443 ;;; This is trivial, given our assumption of a shallow-binding
1445 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1446 (let ((name (leaf-source-name (lvar-value var))))
1447 (vop bind node block (lvar-tn node block value)
1448 (emit-constant name))))
1449 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1450 (vop unbind node block))
1452 ;;; ### It's not clear that this really belongs in this file, or
1453 ;;; should really be done this way, but this is the least violation of
1454 ;;; abstraction in the current setup. We don't want to wire
1455 ;;; shallow-binding assumptions into IR1tran.
1456 (def-ir1-translator progv
1457 ((vars vals &body body) start next result)
1460 (with-unique-names (bind unbind)
1461 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1464 (labels ((,unbind (vars)
1465 (declare (optimize (speed 2) (debug 0)))
1466 (let ((unbound-marker (%primitive make-other-immediate-type
1467 0 sb!vm:unbound-marker-widetag)))
1469 ;; CLHS says "bound and then made to have no value" -- user
1470 ;; should not be able to tell the difference between that and this.
1471 (about-to-modify-symbol-value var 'progv)
1472 (%primitive bind unbound-marker var))))
1474 (declare (optimize (speed 2) (debug 0)
1475 (insert-debug-catch 0)))
1477 ((null vals) (,unbind vars))
1479 (let ((val (car vals))
1481 (about-to-modify-symbol-value var 'progv val t)
1482 (%primitive bind val var))
1483 (,bind (cdr vars) (cdr vals))))))
1484 (,bind ,vars ,vals))
1487 ;; Technically ANSI CL doesn't allow declarations at the
1488 ;; start of the cleanup form. SBCL happens to allow for
1489 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1490 ;; is implemented; the cleanup forms are directly spliced
1491 ;; into an FLET definition body. And a declaration here
1492 ;; actually has exactly the right scope for what we need
1493 ;; (ensure that debug instrumentation is not emitted for the
1494 ;; cleanup function). -- JES, 2007-06-16
1495 (declare (optimize (insert-debug-catch 0)))
1496 (%primitive unbind-to-here ,n-save-bs))))))
1500 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1501 ;;; environment. Note that this is never called on the escape exits
1502 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1504 (defun ir2-convert-exit (node block)
1505 (declare (type exit node) (type ir2-block block))
1506 (let* ((nlx (exit-nlx-info node))
1507 (loc (find-in-physenv nlx (node-physenv node)))
1508 (temp (make-stack-pointer-tn))
1509 (value (exit-value node)))
1510 (if (nlx-info-safe-p nlx)
1511 (vop value-cell-ref node block loc temp)
1512 (emit-move node block loc temp))
1514 (let ((locs (ir2-lvar-locs (lvar-info value))))
1515 (vop unwind node block temp (first locs) (second locs)))
1516 (let ((0-tn (emit-constant 0)))
1517 (vop unwind node block temp 0-tn 0-tn))))
1521 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1522 ;;; being entirely deleted.
1523 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1525 ;;; This function invalidates a lexical exit on exiting from the
1526 ;;; dynamic extent. This is done by storing 0 into the indirect value
1527 ;;; cell that holds the closed unwind block.
1528 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1529 (let ((nlx (lvar-value info)))
1530 (when (nlx-info-safe-p nlx)
1531 (vop value-cell-set node block
1532 (find-in-physenv nlx (node-physenv node))
1533 (emit-constant 0)))))
1535 ;;; We have to do a spurious move of no values to the result lvar so
1536 ;;; that lifetime analysis won't get confused.
1537 (defun ir2-convert-throw (node block)
1538 (declare (type mv-combination node) (type ir2-block block))
1539 (let ((args (basic-combination-args node)))
1540 (check-catch-tag-type (first args))
1541 (vop* throw node block
1542 ((lvar-tn node block (first args))
1544 (ir2-lvar-locs (lvar-info (second args)))
1547 (move-lvar-result node block () (node-lvar node))
1550 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1551 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1552 ;;; the target PC by passing in the label to the vop. The vop is
1553 ;;; responsible for building a return-PC object.
1554 (defun emit-nlx-start (node block info tag)
1555 (declare (type node node) (type ir2-block block) (type nlx-info info)
1556 (type (or lvar null) tag))
1557 (let* ((2info (nlx-info-info info))
1558 (kind (cleanup-kind (nlx-info-cleanup info)))
1559 (block-tn (physenv-live-tn
1560 (make-normal-tn (primitive-type-or-lose 'catch-block))
1561 (node-physenv node)))
1562 (res (make-stack-pointer-tn))
1563 (target-label (ir2-nlx-info-target 2info)))
1565 (vop current-binding-pointer node block
1566 (car (ir2-nlx-info-dynamic-state 2info)))
1567 (vop* save-dynamic-state node block
1569 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1570 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1574 (vop make-catch-block node block block-tn
1575 (lvar-tn node block tag) target-label res))
1576 ((:unwind-protect :block :tagbody)
1577 (vop make-unwind-block node block block-tn target-label res)))
1581 (if (nlx-info-safe-p info)
1582 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1583 (emit-move node block res (ir2-nlx-info-home 2info))))
1585 (vop set-unwind-protect node block block-tn))
1590 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1591 (defun ir2-convert-entry (node block)
1592 (declare (type entry node) (type ir2-block block))
1594 (dolist (exit (entry-exits node))
1595 (let ((info (exit-nlx-info exit)))
1597 (not (memq info nlxes))
1598 (member (cleanup-kind (nlx-info-cleanup info))
1599 '(:block :tagbody)))
1601 (emit-nlx-start node block info nil)))))
1604 ;;; Set up the unwind block for these guys.
1605 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1606 (check-catch-tag-type tag)
1607 (emit-nlx-start node block (lvar-value info-lvar) tag))
1608 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1609 (emit-nlx-start node block (lvar-value info-lvar) nil))
1611 ;;; Emit the entry code for a non-local exit. We receive values and
1612 ;;; restore dynamic state.
1614 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1615 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1616 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1617 ;;; values, make the appropriate number of temps in the standard
1618 ;;; values locations and use the other variant, delivering the temps
1619 ;;; to the lvar using MOVE-LVAR-RESULT.
1621 ;;; In the UNWIND-PROTECT case, we deliver the first register
1622 ;;; argument, the argument count and the argument pointer to our lvar
1623 ;;; as multiple values. These values are the block exited to and the
1624 ;;; values start and count.
1626 ;;; After receiving values, we restore dynamic state. Except in the
1627 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1628 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1629 ;;; pointer alone, since the thrown values are still out there.
1630 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1631 (let* ((info (lvar-value info-lvar))
1632 (lvar (node-lvar node))
1633 (2info (nlx-info-info info))
1634 (top-loc (ir2-nlx-info-save-sp 2info))
1635 (start-loc (make-nlx-entry-arg-start-location))
1636 (count-loc (make-arg-count-location))
1637 (target (ir2-nlx-info-target 2info)))
1639 (ecase (cleanup-kind (nlx-info-cleanup info))
1640 ((:catch :block :tagbody)
1641 (let ((2lvar (and lvar (lvar-info lvar))))
1642 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1643 (vop* nlx-entry-multiple node block
1644 (top-loc start-loc count-loc nil)
1645 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1647 (let ((locs (standard-result-tns lvar)))
1648 (vop* nlx-entry node block
1649 (top-loc start-loc count-loc nil)
1650 ((reference-tn-list locs t))
1653 (move-lvar-result node block locs lvar)))))
1655 (let ((block-loc (standard-arg-location 0)))
1656 (vop uwp-entry node block target block-loc start-loc count-loc)
1659 (list block-loc start-loc count-loc)
1663 (when *collect-dynamic-statistics*
1664 (vop count-me node block *dynamic-counts-tn*
1665 (block-number (ir2-block-block block))))
1667 (vop* restore-dynamic-state node block
1668 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1670 (vop unbind-to-here node block
1671 (car (ir2-nlx-info-dynamic-state 2info)))))
1673 ;;;; n-argument functions
1675 (macrolet ((def (name)
1676 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1677 (let* ((refs (move-tail-full-call-args node block))
1678 (lvar (node-lvar node))
1679 (res (lvar-result-tns
1681 (list (primitive-type (specifier-type 'list))))))
1682 (when (and lvar (lvar-dynamic-extent lvar))
1683 (vop current-stack-pointer node block
1684 (ir2-lvar-stack-pointer (lvar-info lvar))))
1685 (vop* ,name node block (refs) ((first res) nil)
1687 (move-lvar-result node block res lvar)))))
1692 ;;; Convert the code in a component into VOPs.
1693 (defun ir2-convert (component)
1694 (declare (type component component))
1695 (let (#!+sb-dyncount
1696 (*dynamic-counts-tn*
1697 (when *collect-dynamic-statistics*
1699 (block-number (block-next (component-head component))))
1700 (counts (make-array blocks
1701 :element-type '(unsigned-byte 32)
1702 :initial-element 0))
1703 (info (make-dyncount-info
1704 :for (component-name component)
1705 :costs (make-array blocks
1706 :element-type '(unsigned-byte 32)
1709 (setf (ir2-component-dyncount-info (component-info component))
1711 (emit-constant info)
1712 (emit-constant counts)))))
1714 (declare (type index num))
1715 (do-ir2-blocks (2block component)
1716 (let ((block (ir2-block-block 2block)))
1717 (when (block-start block)
1718 (setf (block-number block) num)
1720 (when *collect-dynamic-statistics*
1721 (let ((first-node (block-start-node block)))
1722 (unless (or (and (bind-p first-node)
1723 (xep-p (bind-lambda first-node)))
1725 (node-lvar first-node))
1730 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1732 (ir2-convert-block block)
1736 ;;; If necessary, emit a terminal unconditional branch to go to the
1737 ;;; successor block. If the successor is the component tail, then
1738 ;;; there isn't really any successor, but if the end is an unknown,
1739 ;;; non-tail call, then we emit an error trap just in case the
1740 ;;; function really does return.
1741 (defun finish-ir2-block (block)
1742 (declare (type cblock block))
1743 (let* ((2block (block-info block))
1744 (last (block-last block))
1745 (succ (block-succ block)))
1747 (aver (singleton-p succ))
1748 (let ((target (first succ)))
1749 (cond ((eq target (component-tail (block-component block)))
1750 (when (and (basic-combination-p last)
1751 (eq (basic-combination-kind last) :full))
1752 (let* ((fun (basic-combination-fun last))
1753 (use (lvar-uses fun))
1754 (name (and (ref-p use)
1755 (leaf-has-source-name-p (ref-leaf use))
1756 (leaf-source-name (ref-leaf use)))))
1757 (unless (or (node-tail-p last)
1758 (info :function :info name)
1759 (policy last (zerop safety)))
1760 (vop nil-fun-returned-error last 2block
1762 (emit-constant name)
1763 (multiple-value-bind (tn named)
1764 (fun-lvar-tn last 2block fun)
1767 ((not (eq (ir2-block-next 2block) (block-info target)))
1768 (vop branch last 2block (block-label target)))))))
1772 ;;; Convert the code in a block into VOPs.
1773 (defun ir2-convert-block (block)
1774 (declare (type cblock block))
1775 (let ((2block (block-info block)))
1776 (do-nodes (node lvar block)
1780 (let ((2lvar (lvar-info lvar)))
1781 ;; function REF in a local call is not annotated
1782 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1783 (ir2-convert-ref node 2block)))))
1785 (let ((kind (basic-combination-kind node)))
1788 (ir2-convert-local-call node 2block))
1790 (ir2-convert-full-call node 2block))
1792 (let* ((info (basic-combination-fun-info node))
1793 (fun (fun-info-ir2-convert info)))
1795 (funcall fun node 2block))
1796 ((eq (basic-combination-info node) :full)
1797 (ir2-convert-full-call node 2block))
1799 (ir2-convert-template node 2block))))))))
1801 (when (lvar-info (if-test node))
1802 (ir2-convert-if node 2block)))
1804 (let ((fun (bind-lambda node)))
1805 (when (eq (lambda-home fun) fun)
1806 (ir2-convert-bind node 2block))))
1808 (ir2-convert-return node 2block))
1810 (ir2-convert-set node 2block))
1812 (ir2-convert-cast node 2block))
1815 ((eq (basic-combination-kind node) :local)
1816 (ir2-convert-mv-bind node 2block))
1817 ((eq (lvar-fun-name (basic-combination-fun node))
1819 (ir2-convert-throw node 2block))
1821 (ir2-convert-mv-call node 2block))))
1823 (when (exit-entry node)
1824 (ir2-convert-exit node 2block)))
1826 (ir2-convert-entry node 2block)))))
1828 (finish-ir2-block block)