1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
41 (template-or-lose name)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
52 (emit-move-template node block (type-check-template type) value result)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (vop make-value-cell node block value nil res))
63 ;;; Return the TN that holds the value of THING in the environment ENV.
64 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
66 (defun find-in-physenv (thing physenv)
67 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
70 ;; I think that a failure of this assertion means that we're
71 ;; trying to access a variable which was improperly closed
72 ;; over. The PHYSENV describes a physical environment. Every
73 ;; variable that a form refers to should either be in its
74 ;; physical environment directly, or grabbed from a
75 ;; surrounding physical environment when it was closed over.
76 ;; The ASSOC expression above finds closed-over variables, so
77 ;; if we fell through the ASSOC expression, it wasn't closed
78 ;; over. Therefore, it must be in our physical environment
79 ;; directly. If instead it is in some other physical
80 ;; environment, then it's bogus for us to reference it here
81 ;; without it being closed over. -- WHN 2001-09-29
82 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
85 (aver (eq physenv (block-physenv (nlx-info-target thing))))
86 (ir2-nlx-info-home (nlx-info-info thing)))
89 (entry-info-closure-tn (lambda-info thing))))
90 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
92 ;;; If LEAF already has a constant TN, return that, otherwise make a
94 (defun constant-tn (leaf)
95 (declare (type constant leaf))
97 (setf (leaf-info leaf)
98 (make-constant-tn leaf))))
100 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
101 ;;; isn't directly represented by a TN. ENV is the environment that
102 ;;; the reference is done in.
103 (defun leaf-tn (leaf env)
104 (declare (type leaf leaf) (type physenv env))
107 (unless (lambda-var-indirect leaf)
108 (find-in-physenv leaf env)))
109 (constant (constant-tn leaf))
112 ;;; This is used to conveniently get a handle on a constant TN during
113 ;;; IR2 conversion. It returns a constant TN representing the Lisp
115 (defun emit-constant (value)
116 (constant-tn (find-constant value)))
118 ;;; Convert a REF node. The reference must not be delayed.
119 (defun ir2-convert-ref (node block)
120 (declare (type ref node) (type ir2-block block))
121 (let* ((lvar (node-lvar node))
122 (leaf (ref-leaf node))
123 (locs (lvar-result-tns
124 lvar (list (primitive-type (leaf-type leaf)))))
128 (let ((tn (find-in-physenv leaf (node-physenv node)))
129 (indirect (lambda-var-indirect leaf))
130 (explicit (lambda-var-explicit-value-cell leaf)))
132 ((and indirect explicit)
133 (vop value-cell-ref node block tn res))
135 (not (eq (node-physenv node)
136 (lambda-physenv (lambda-var-home leaf)))))
137 (let ((reffer (third (primitive-type-indirect-cell-type
138 (primitive-type (leaf-type leaf))))))
140 (funcall reffer node block tn (leaf-info leaf) res)
141 (vop ancestor-frame-ref node block tn (leaf-info leaf) res))))
142 (t (emit-move node block tn res)))))
144 (emit-move node block (constant-tn leaf) res))
146 (ir2-convert-closure node block leaf res))
148 (let ((unsafe (policy node (zerop safety)))
149 (name (leaf-source-name leaf)))
150 (ecase (global-var-kind leaf)
152 (aver (symbolp name))
153 (let ((name-tn (emit-constant name)))
154 (if (or unsafe (info :variable :always-bound name))
155 (vop fast-symbol-value node block name-tn res)
156 (vop symbol-value node block name-tn res))))
158 (aver (symbolp name))
159 (let ((name-tn (emit-constant name)))
160 (if (or unsafe (info :variable :always-bound name))
161 (vop fast-symbol-global-value node block name-tn res)
162 (vop symbol-global-value node block name-tn res))))
164 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
166 (vop fdefn-fun node block fdefn-tn res)
167 (vop safe-fdefn-fun node block fdefn-tn res))))))))
168 (move-lvar-result node block locs lvar))
171 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
172 (defun assertions-on-ir2-converted-clambda (clambda)
173 ;; This assertion was sort of an experiment. It would be nice and
174 ;; sane and easier to understand things if it were *always* true,
175 ;; but experimentally I observe that it's only *almost* always
176 ;; true. -- WHN 2001-01-02
178 (aver (eql (lambda-component clambda)
179 (block-component (ir2-block-block ir2-block))))
180 ;; Check for some weirdness which came up in bug
183 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
184 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
186 ;; * treats every HANDLEless :ENTRY record into a
188 ;; * expects every patch to correspond to an
189 ;; IR2-COMPONENT-ENTRIES record.
190 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
191 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
192 ;; was a HANDLEless :ENTRY record which didn't correspond to an
193 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
194 ;; when it's caught at dump time, so this assertion tries to catch
196 (aver (member clambda
197 (component-lambdas (lambda-component clambda))))
198 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
199 ;; used as a queue for stuff pending to do in IR1, and now that
200 ;; we're doing IR2 it should've been completely flushed (but
202 (aver (null (component-new-functionals (lambda-component clambda))))
205 ;;; Emit code to load a function object implementing FUNCTIONAL into
206 ;;; RES. This gets interesting when the referenced function is a
207 ;;; closure: we must make the closure and move the closed-over values
210 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
211 ;;; for the called function, since local call analysis converts all
212 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
215 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
216 ;;; don't initialize that slot. This can happen with closures over
217 ;;; top level variables, where optimization of the closure deleted the
218 ;;; variable. Since we committed to the closure format when we
219 ;;; pre-analyzed the top level code, we just leave an empty slot.
220 (defun ir2-convert-closure (ref ir2-block functional res)
221 (declare (type ref ref)
222 (type ir2-block ir2-block)
223 (type functional functional)
225 (aver (not (eql (functional-kind functional) :deleted)))
226 (unless (leaf-info functional)
227 (setf (leaf-info functional)
228 (make-entry-info :name (functional-debug-name functional))))
229 (let ((closure (etypecase functional
231 (assertions-on-ir2-converted-clambda functional)
232 (physenv-closure (get-lambda-physenv functional)))
234 (aver (eq (functional-kind functional) :toplevel-xep))
238 (let* ((physenv (node-physenv ref))
239 (tn (find-in-physenv functional physenv)))
240 (emit-move ref ir2-block tn res)))
242 (let ((entry (make-load-time-constant-tn :entry functional)))
243 (emit-move ref ir2-block entry res)))))
246 (defun closure-initial-value (what this-env current-fp)
247 (declare (type (or nlx-info lambda-var clambda) what)
248 (type physenv this-env)
249 (type (or tn null) current-fp))
250 ;; If we have an indirect LAMBDA-VAR that does not require an
251 ;; EXPLICIT-VALUE-CELL, and is from this environment (not from being
252 ;; closed over), we need to store the current frame pointer.
253 (if (and (lambda-var-p what)
254 (lambda-var-indirect what)
255 (not (lambda-var-explicit-value-cell what))
256 (eq (lambda-physenv (lambda-var-home what))
259 (find-in-physenv what this-env)))
261 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
262 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
263 (when (lvar-dynamic-extent leaves)
264 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
265 (setf (ir2-lvar-kind info) :delayed)
266 (setf (lvar-info leaves) info)
267 (setf (ir2-lvar-stack-pointer info)
268 (make-stack-pointer-tn)))))
270 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
271 (let ((dx-p (lvar-dynamic-extent leaves)))
274 (vop current-stack-pointer call 2block
275 (ir2-lvar-stack-pointer (lvar-info leaves))))
276 (dolist (leaf (lvar-value leaves))
277 (binding* ((xep (awhen (functional-entry-fun leaf)
278 ;; if the xep's been deleted then we can skip it
279 (if (eq (functional-kind it) :deleted)
282 (nil (aver (xep-p xep)))
283 (entry-info (lambda-info xep) :exit-if-null)
284 (tn (entry-info-closure-tn entry-info) :exit-if-null)
285 (closure (physenv-closure (get-lambda-physenv xep)))
286 (entry (make-load-time-constant-tn :entry xep)))
287 (let ((this-env (node-physenv call))
288 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
289 (vop make-closure call 2block entry (length closure)
291 (loop for what in closure and n from 0 do
292 (unless (and (lambda-var-p what)
293 (null (leaf-refs what)))
294 ;; In LABELS a closure may refer to another closure
295 ;; in the same group, so we must be sure that we
296 ;; store a closure only after its creation.
298 ;; TODO: Here is a simple solution: we postpone
299 ;; putting of all closures after all creations
300 ;; (though it may require more registers).
302 (delayed (list tn (find-in-physenv what this-env) n))
303 (let ((initial-value (closure-initial-value
306 (vop closure-init call 2block
308 ;; An initial-value of NIL means to stash
309 ;; the frame pointer... which requires a
311 (vop closure-init-from-fp call 2block tn n)))))))))
312 (loop for (tn what n) in (delayed)
313 do (vop closure-init call 2block
317 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
318 ;;; deliver the value to that lvar. If the var is a lexical variable
319 ;;; with no refs, then we don't actually set anything, since the
320 ;;; variable has been deleted.
321 (defun ir2-convert-set (node block)
322 (declare (type cset node) (type ir2-block block))
323 (let* ((lvar (node-lvar node))
324 (leaf (set-var node))
325 (val (lvar-tn node block (set-value node)))
328 lvar (list (primitive-type (leaf-type leaf))))
332 (when (leaf-refs leaf)
333 (let ((tn (find-in-physenv leaf (node-physenv node)))
334 (indirect (lambda-var-indirect leaf))
335 (explicit (lambda-var-explicit-value-cell leaf)))
337 ((and indirect explicit)
338 (vop value-cell-set node block tn val))
340 (not (eq (node-physenv node)
341 (lambda-physenv (lambda-var-home leaf)))))
342 (let ((setter (fourth (primitive-type-indirect-cell-type
343 (primitive-type (leaf-type leaf))))))
345 (funcall setter node block tn val (leaf-info leaf))
346 (vop ancestor-frame-set node block tn val (leaf-info leaf)))))
347 (t (emit-move node block val tn))))))
349 (aver (symbolp (leaf-source-name leaf)))
350 (ecase (global-var-kind leaf)
352 (vop set node block (emit-constant (leaf-source-name leaf)) val))
354 (vop %set-symbol-global-value node
355 block (emit-constant (leaf-source-name leaf)) val)))))
357 (emit-move node block val (first locs))
358 (move-lvar-result node block locs lvar)))
361 ;;;; utilities for receiving fixed values
363 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
364 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
365 ;;; single-value lvar.
367 ;;; The primitive-type of the result will always be the same as the
368 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
369 ;;; TNs that satisfy the operand primitive-type restriction. We may
370 ;;; have to make a temporary of the desired type and move the actual
371 ;;; lvar TN into it. This happens when we delete a type check in
372 ;;; unsafe code or when we locally know something about the type of an
373 ;;; argument variable.
374 (defun lvar-tn (node block lvar)
375 (declare (type node node) (type ir2-block block) (type lvar lvar))
376 (let* ((2lvar (lvar-info lvar))
378 (ecase (ir2-lvar-kind 2lvar)
380 (let ((ref (lvar-uses lvar)))
381 (leaf-tn (ref-leaf ref) (node-physenv ref))))
383 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
384 (first (ir2-lvar-locs 2lvar)))))
385 (ptype (ir2-lvar-primitive-type 2lvar)))
387 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
389 (let ((temp (make-normal-tn ptype)))
390 (emit-move node block lvar-tn temp)
393 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
394 ;;; TNs holding the values of LVAR with PTYPES as their primitive
395 ;;; types. LVAR must be annotated for the same number of fixed values
396 ;;; are there are PTYPES.
398 ;;; If the lvar has a type check, check the values into temps and
399 ;;; return the temps. When we have more values than assertions, we
400 ;;; move the extra values with no check.
401 (defun lvar-tns (node block lvar ptypes)
402 (declare (type node node) (type ir2-block block)
403 (type lvar lvar) (list ptypes))
404 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
405 (nlocs (length locs)))
406 (aver (= nlocs (length ptypes)))
408 (mapcar (lambda (from to-type)
409 (if (eq (tn-primitive-type from) to-type)
411 (let ((temp (make-normal-tn to-type)))
412 (emit-move node block from temp)
417 ;;;; utilities for delivering values to lvars
419 ;;; Return a list of TNs with the specifier TYPES that can be used as
420 ;;; result TNs to evaluate an expression into LVAR. This is used
421 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
424 ;;; If the lvar isn't annotated (meaning the values are discarded) or
425 ;;; is unknown-values, the then we make temporaries for each supplied
426 ;;; value, providing a place to compute the result in until we decide
427 ;;; what to do with it (if anything.)
429 ;;; If the lvar is fixed-values, and wants the same number of values
430 ;;; as the user wants to deliver, then we just return the
431 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
432 ;;; discarded TNs. We always return a TN of the specified type, using
433 ;;; the lvar locs only when they are of the correct type.
434 (defun lvar-result-tns (lvar types)
435 (declare (type (or lvar null) lvar) (type list types))
437 (mapcar #'make-normal-tn types)
438 (let ((2lvar (lvar-info lvar)))
439 (ecase (ir2-lvar-kind 2lvar)
441 (let* ((locs (ir2-lvar-locs 2lvar))
442 (nlocs (length locs))
443 (ntypes (length types)))
444 (if (and (= nlocs ntypes)
445 (do ((loc locs (cdr loc))
446 (type types (cdr type)))
448 (unless (eq (tn-primitive-type (car loc)) (car type))
451 (mapcar (lambda (loc type)
452 (if (eq (tn-primitive-type loc) type)
454 (make-normal-tn type)))
457 (mapcar #'make-normal-tn
458 (subseq types nlocs)))
462 (mapcar #'make-normal-tn types))))))
464 ;;; Make the first N standard value TNs, returning them in a list.
465 (defun make-standard-value-tns (n)
466 (declare (type unsigned-byte n))
469 (res (standard-arg-location i)))
472 ;;; Return a list of TNs wired to the standard value passing
473 ;;; conventions that can be used to receive values according to the
474 ;;; unknown-values convention. This is used with together
475 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
478 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
479 ;;; an empty list of temporaries.
481 ;;; If the lvar is annotated, then it must be :FIXED.
482 (defun standard-result-tns (lvar)
483 (declare (type (or lvar null) lvar))
485 (let ((2lvar (lvar-info lvar)))
486 (ecase (ir2-lvar-kind 2lvar)
488 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
491 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
492 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
493 ;;; doing the appropriate coercions.
494 (defun move-results-coerced (node block src dest)
495 (declare (type node node) (type ir2-block block) (list src dest))
496 (let ((nsrc (length src))
497 (ndest (length dest)))
498 (mapc (lambda (from to)
500 (emit-move node block from to)))
502 (append src (make-list (- ndest nsrc)
503 :initial-element (emit-constant nil)))
508 ;;; Move each SRC TN into the corresponding DEST TN, checking types
509 ;;; and defaulting any unsupplied source values to NIL
510 (defun move-results-checked (node block src dest types)
511 (declare (type node node) (type ir2-block block) (list src dest types))
512 (let ((nsrc (length src))
513 (ndest (length dest))
514 (ntypes (length types)))
515 (mapc (lambda (from to type)
517 (emit-type-check node block from to type)
518 (emit-move node block from to)))
520 (append src (make-list (- ndest nsrc)
521 :initial-element (emit-constant nil)))
525 (append types (make-list (- ndest ntypes)))
529 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
530 ;;; the specified lvar. NODE and BLOCK provide context for emitting
531 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
532 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
535 ;;; If the lvar is fixed values, then move the results into the lvar
536 ;;; locations. If the lvar is unknown values, then do the moves into
537 ;;; the standard value locations, and use PUSH-VALUES to put the
538 ;;; values on the stack.
539 (defun move-lvar-result (node block results lvar)
540 (declare (type node node) (type ir2-block block)
541 (list results) (type (or lvar null) lvar))
543 (let ((2lvar (lvar-info lvar)))
544 (ecase (ir2-lvar-kind 2lvar)
546 (let ((locs (ir2-lvar-locs 2lvar)))
547 (unless (eq locs results)
548 (move-results-coerced node block results locs))))
550 (let* ((nvals (length results))
551 (locs (make-standard-value-tns nvals)))
552 (move-results-coerced node block results locs)
553 (vop* push-values node block
554 ((reference-tn-list locs nil))
555 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
560 (defun ir2-convert-cast (node block)
561 (declare (type cast node)
562 (type ir2-block block))
563 (binding* ((lvar (node-lvar node) :exit-if-null)
564 (2lvar (lvar-info lvar))
565 (value (cast-value node))
566 (2value (lvar-info value)))
567 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
568 ((eq (ir2-lvar-kind 2lvar) :unknown)
569 (aver (eq (ir2-lvar-kind 2value) :unknown))
570 (aver (not (cast-type-check node)))
571 (move-results-coerced node block
572 (ir2-lvar-locs 2value)
573 (ir2-lvar-locs 2lvar)))
574 ((eq (ir2-lvar-kind 2lvar) :fixed)
575 (aver (eq (ir2-lvar-kind 2value) :fixed))
576 (if (cast-type-check node)
577 (move-results-checked node block
578 (ir2-lvar-locs 2value)
579 (ir2-lvar-locs 2lvar)
580 (multiple-value-bind (check types)
581 (cast-check-types node nil)
582 (aver (eq check :simple))
584 (move-results-coerced node block
585 (ir2-lvar-locs 2value)
586 (ir2-lvar-locs 2lvar))))
587 (t (bug "CAST cannot be :DELAYED.")))))
589 ;;;; template conversion
591 ;;; Build a TN-REFS list that represents access to the values of the
592 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
593 ;;; are returned in the second value as a list rather than being
594 ;;; accessed as a normal argument. NODE and BLOCK provide the context
595 ;;; for emitting any necessary type-checking code.
596 (defun reference-args (node block args template)
597 (declare (type node node) (type ir2-block block) (list args)
598 (type template template))
599 (collect ((info-args))
602 (do ((args args (cdr args))
603 (types (template-arg-types template) (cdr types)))
605 (let ((type (first types))
607 (if (and (consp type) (eq (car type) ':constant))
608 (info-args (lvar-value arg))
609 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
611 (setf (tn-ref-across last) ref)
615 (values (the (or tn-ref null) first) (info-args)))))
617 ;;; Convert a conditional template. We try to exploit any
618 ;;; drop-through, but emit an unconditional branch afterward if we
619 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
621 (defun ir2-convert-conditional (node block template args info-args if not-p)
622 (declare (type node node) (type ir2-block block)
623 (type template template) (type (or tn-ref null) args)
624 (list info-args) (type cif if) (type boolean not-p))
625 (let ((consequent (if-consequent if))
626 (alternative (if-alternative if))
627 (flags (and (consp (template-result-types template))
628 (rest (template-result-types template)))))
629 (aver (= (template-info-arg-count template)
630 (+ (length info-args)
633 (rotatef consequent alternative)
635 (when (drop-thru-p if consequent)
636 (rotatef consequent alternative)
639 (emit-template node block template args nil
640 (list* (block-label consequent) not-p
642 (if (drop-thru-p if alternative)
643 (register-drop-thru alternative)
644 (vop branch node block (block-label alternative))))
646 (emit-template node block template args nil info-args)
647 (vop branch-if node block (block-label consequent) flags not-p)
648 (if (drop-thru-p if alternative)
649 (register-drop-thru alternative)
650 (vop branch node block (block-label alternative)))))))
652 ;;; Convert an IF that isn't the DEST of a conditional template.
653 (defun ir2-convert-if (node block)
654 (declare (type ir2-block block) (type cif node))
655 (let* ((test (if-test node))
656 (test-ref (reference-tn (lvar-tn node block test) nil))
657 (nil-ref (reference-tn (emit-constant nil) nil)))
658 (setf (tn-ref-across test-ref) nil-ref)
659 (ir2-convert-conditional node block (template-or-lose 'if-eq)
660 test-ref () node t)))
662 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
663 ;;; describing the result types we want for a template call. We are really
664 ;;; only interested in the number of results required: in normal case
665 ;;; TEMPLATE-RESULTS-OK has already checked them.
666 (defun find-template-result-types (call rtypes)
667 (let* ((type (node-derived-type call))
669 (mapcar #'primitive-type
670 (if (args-type-p type)
671 (append (args-type-required type)
672 (args-type-optional type))
674 (primitive-t *backend-t-primitive-type*))
675 (loop for rtype in rtypes
676 for type = (or (pop types) primitive-t)
679 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
680 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
681 ;;; fixed values and has locations that satisfy the result restrictions. This
682 ;;; can fail when there is a type check or a values count mismatch.
683 (defun make-template-result-tns (call lvar rtypes)
684 (declare (type combination call) (type (or lvar null) lvar)
686 (let ((2lvar (when lvar (lvar-info lvar))))
687 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
688 (let ((locs (ir2-lvar-locs 2lvar)))
689 (if (and (= (length rtypes) (length locs))
690 (do ((loc locs (cdr loc))
691 (rtypes rtypes (cdr rtypes)))
693 (unless (operand-restriction-ok
695 (tn-primitive-type (car loc))
701 (find-template-result-types call rtypes))))
704 (find-template-result-types call rtypes)))))
706 ;;; Get the operands into TNs, make TN-REFs for them, and then call
707 ;;; the template emit function.
708 (defun ir2-convert-template (call block)
709 (declare (type combination call) (type ir2-block block))
710 (let* ((template (combination-info call))
711 (lvar (node-lvar call))
712 (rtypes (template-result-types template)))
713 (multiple-value-bind (args info-args)
714 (reference-args call block (combination-args call) template)
715 (aver (not (template-more-results-type template)))
716 (if (template-conditional-p template)
717 (ir2-convert-conditional call block template args info-args
718 (lvar-dest lvar) nil)
719 (let* ((results (make-template-result-tns call lvar rtypes))
720 (r-refs (reference-tn-list results t)))
721 (aver (= (length info-args)
722 (template-info-arg-count template)))
723 (when (and lvar (lvar-dynamic-extent lvar))
724 (vop current-stack-pointer call block
725 (ir2-lvar-stack-pointer (lvar-info lvar))))
726 (when (emit-step-p call)
727 (vop sb!vm::step-instrument-before-vop call block))
729 (emit-template call block template args r-refs info-args)
730 (emit-template call block template args r-refs))
731 (move-lvar-result call block results lvar)))))
734 ;;; We don't have to do much because operand count checking is done by
735 ;;; IR1 conversion. The only difference between this and the function
736 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
738 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
739 (let* ((template (lvar-value template))
740 (info (lvar-value info))
741 (lvar (node-lvar call))
742 (rtypes (template-result-types template))
743 (results (make-template-result-tns call lvar rtypes))
744 (r-refs (reference-tn-list results t)))
745 (multiple-value-bind (args info-args)
746 (reference-args call block (cddr (combination-args call)) template)
747 (aver (not (template-more-results-type template)))
748 (aver (not (template-conditional-p template)))
749 (aver (null info-args))
752 (emit-template call block template args r-refs info)
753 (emit-template call block template args r-refs))
755 (move-lvar-result call block results lvar)))
758 (defoptimizer (%%primitive derive-type) ((template info &rest args))
759 (let ((type (template-type (lvar-value template))))
760 (if (fun-type-p type)
761 (fun-type-returns type)
766 ;;; Convert a LET by moving the argument values into the variables.
767 ;;; Since a LET doesn't have any passing locations, we move the
768 ;;; arguments directly into the variables. We must also allocate any
769 ;;; indirect value cells, since there is no function prologue to do
771 (defun ir2-convert-let (node block fun)
772 (declare (type combination node) (type ir2-block block) (type clambda fun))
773 (mapc (lambda (var arg)
775 (let ((src (lvar-tn node block arg))
776 (dest (leaf-info var)))
777 (if (and (lambda-var-indirect var)
778 (lambda-var-explicit-value-cell var))
779 (emit-make-value-cell node block src dest)
780 (emit-move node block src dest)))))
781 (lambda-vars fun) (basic-combination-args node))
784 ;;; Emit any necessary moves into assignment temps for a local call to
785 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
786 ;;; values, and (possibly EQ) TNs that are the actual destination of
787 ;;; the arguments. When necessary, we allocate temporaries for
788 ;;; arguments to preserve parallel assignment semantics. These lists
789 ;;; exclude unused arguments and include implicit environment
790 ;;; arguments, i.e. they exactly correspond to the arguments passed.
792 ;;; OLD-FP is the TN currently holding the value we want to pass as
793 ;;; OLD-FP. If null, then the call is to the same environment (an
794 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
795 ;;; environment alone.
797 ;;; CLOSURE-FP is for calling a closure that has "implicit" value
798 ;;; cells (stored in the allocating stack frame), and is the frame
799 ;;; pointer TN to use for values allocated in the outbound stack
800 ;;; frame. This is distinct from OLD-FP for the specific case of a
802 (defun emit-psetq-moves (node block fun old-fp &optional (closure-fp old-fp))
803 (declare (type combination node) (type ir2-block block) (type clambda fun)
804 (type (or tn null) old-fp closure-fp))
805 (let ((actuals (mapcar (lambda (x)
807 (lvar-tn node block x)))
808 (combination-args node))))
811 (dolist (var (lambda-vars fun))
812 (let ((actual (pop actuals))
813 (loc (leaf-info var)))
816 ((and (lambda-var-indirect var)
817 (lambda-var-explicit-value-cell var))
819 (make-normal-tn *backend-t-primitive-type*)))
820 (emit-make-value-cell node block actual temp)
822 ((member actual (locs))
823 (let ((temp (make-normal-tn (tn-primitive-type loc))))
824 (emit-move node block actual temp)
831 (let ((this-1env (node-physenv node))
832 (called-env (physenv-info (lambda-physenv fun))))
833 (dolist (thing (ir2-physenv-closure called-env))
834 (temps (closure-initial-value (car thing) this-1env closure-fp))
837 (locs (ir2-physenv-old-fp called-env))))
839 (values (temps) (locs)))))
841 ;;; A tail-recursive local call is done by emitting moves of stuff
842 ;;; into the appropriate passing locations. After setting up the args
843 ;;; and environment, we just move our return-pc into the called
844 ;;; function's passing location.
845 (defun ir2-convert-tail-local-call (node block fun)
846 (declare (type combination node) (type ir2-block block) (type clambda fun))
847 (let ((this-env (physenv-info (node-physenv node)))
848 (current-fp (make-stack-pointer-tn)))
849 (multiple-value-bind (temps locs)
850 (emit-psetq-moves node block fun
851 (ir2-physenv-old-fp this-env) current-fp)
853 ;; If we're about to emit a move from CURRENT-FP then we need to
855 (when (find current-fp temps)
856 (vop current-fp node block current-fp))
858 (mapc (lambda (temp loc)
859 (emit-move node block temp loc))
862 (emit-move node block
863 (ir2-physenv-return-pc this-env)
864 (ir2-physenv-return-pc-pass
866 (lambda-physenv fun)))))
870 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
871 ;;; except that the caller and callee environment are the same, so we
872 ;;; don't need to mess with the environment locations, return PC, etc.
873 (defun ir2-convert-assignment (node block fun)
874 (declare (type combination node) (type ir2-block block) (type clambda fun))
875 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
877 (mapc (lambda (temp loc)
878 (emit-move node block temp loc))
882 ;;; Do stuff to set up the arguments to a non-tail local call
883 ;;; (including implicit environment args.) We allocate a frame
884 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
885 ;;; the values to pass and the list of passing location TNs.
886 (defun ir2-convert-local-call-args (node block fun)
887 (declare (type combination node) (type ir2-block block) (type clambda fun))
888 (let ((fp (make-stack-pointer-tn))
889 (nfp (make-number-stack-pointer-tn))
890 (old-fp (make-stack-pointer-tn)))
891 (multiple-value-bind (temps locs)
892 (emit-psetq-moves node block fun old-fp)
893 (vop current-fp node block old-fp)
894 (vop allocate-frame node block
895 (physenv-info (lambda-physenv fun))
897 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
899 ;;; Handle a non-TR known-values local call. We emit the call, then
900 ;;; move the results to the lvar's destination.
901 (defun ir2-convert-local-known-call (node block fun returns lvar start)
902 (declare (type node node) (type ir2-block block) (type clambda fun)
903 (type return-info returns) (type (or lvar null) lvar)
905 (multiple-value-bind (fp nfp temps arg-locs)
906 (ir2-convert-local-call-args node block fun)
907 (let ((locs (return-info-locations returns)))
908 (vop* known-call-local node block
909 (fp nfp (reference-tn-list temps nil))
910 ((reference-tn-list locs t))
911 arg-locs (physenv-info (lambda-physenv fun)) start)
912 (move-lvar-result node block locs lvar)))
915 ;;; Handle a non-TR unknown-values local call. We do different things
916 ;;; depending on what kind of values the lvar wants.
918 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
919 ;;; specifying the lvar's LOCS as the VOP results so that we don't
920 ;;; have to do anything after the call.
922 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
923 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
925 (defun ir2-convert-local-unknown-call (node block fun lvar start)
926 (declare (type node node) (type ir2-block block) (type clambda fun)
927 (type (or lvar null) lvar) (type label start))
928 (multiple-value-bind (fp nfp temps arg-locs)
929 (ir2-convert-local-call-args node block fun)
930 (let ((2lvar (and lvar (lvar-info lvar)))
931 (env (physenv-info (lambda-physenv fun)))
932 (temp-refs (reference-tn-list temps nil)))
933 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
934 (vop* multiple-call-local node block (fp nfp temp-refs)
935 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
937 (let ((locs (standard-result-tns lvar)))
938 (vop* call-local node block
940 ((reference-tn-list locs t))
941 arg-locs env start (length locs))
942 (move-lvar-result node block locs lvar)))))
945 ;;; Dispatch to the appropriate function, depending on whether we have
946 ;;; a let, tail or normal call. If the function doesn't return, call
947 ;;; it using the unknown-value convention. We could compile it as a
948 ;;; tail call, but that might seem confusing in the debugger.
949 (defun ir2-convert-local-call (node block)
950 (declare (type combination node) (type ir2-block block))
951 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
952 (kind (functional-kind fun)))
953 (cond ((eq kind :let)
954 (ir2-convert-let node block fun))
955 ((eq kind :assignment)
956 (ir2-convert-assignment node block fun))
958 (ir2-convert-tail-local-call node block fun))
960 (let ((start (block-trampoline (lambda-block fun)))
961 (returns (tail-set-info (lambda-tail-set fun)))
962 (lvar (node-lvar node)))
964 (return-info-kind returns)
967 (ir2-convert-local-unknown-call node block fun lvar start))
969 (ir2-convert-local-known-call node block fun returns
975 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
976 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
977 ;;; true if the thing is named (false if it is a function).
979 ;;; There are two interesting non-named cases:
980 ;;; -- We know it's a function. No check needed: return the
982 ;;; -- We don't know what it is.
983 (defun fun-lvar-tn (node block lvar)
984 (declare (ignore node block))
985 (declare (type lvar lvar))
986 (let ((2lvar (lvar-info lvar)))
987 (if (eq (ir2-lvar-kind 2lvar) :delayed)
988 (let ((name (lvar-fun-name lvar t)))
990 (values (make-load-time-constant-tn :fdefinition name) t))
991 (let* ((locs (ir2-lvar-locs 2lvar))
993 (function-ptype (primitive-type-or-lose 'function)))
994 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
995 (= (length locs) 1)))
996 (aver (eq (tn-primitive-type loc) function-ptype))
999 ;;; Set up the args to NODE in the current frame, and return a TN-REF
1000 ;;; list for the passing locations.
1001 (defun move-tail-full-call-args (node block)
1002 (declare (type combination node) (type ir2-block block))
1003 (let ((args (basic-combination-args node))
1006 (dotimes (num (length args))
1007 (let ((loc (standard-arg-location num)))
1008 (emit-move node block (lvar-tn node block (elt args num)) loc)
1009 (let ((ref (reference-tn loc nil)))
1011 (setf (tn-ref-across last) ref)
1016 ;;; Move the arguments into the passing locations and do a (possibly
1017 ;;; named) tail call.
1018 (defun ir2-convert-tail-full-call (node block)
1019 (declare (type combination node) (type ir2-block block))
1020 (let* ((env (physenv-info (node-physenv node)))
1021 (args (basic-combination-args node))
1022 (nargs (length args))
1023 (pass-refs (move-tail-full-call-args node block))
1024 (old-fp (ir2-physenv-old-fp env))
1025 (return-pc (ir2-physenv-return-pc env)))
1027 (multiple-value-bind (fun-tn named)
1028 (fun-lvar-tn node block (basic-combination-fun node))
1030 (vop* tail-call-named node block
1031 (fun-tn old-fp return-pc pass-refs)
1035 (vop* tail-call node block
1036 (fun-tn old-fp return-pc pass-refs)
1039 (emit-step-p node)))))
1043 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
1044 (defun ir2-convert-full-call-args (node block)
1045 (declare (type combination node) (type ir2-block block))
1046 (let* ((args (basic-combination-args node))
1047 (fp (make-stack-pointer-tn))
1048 (nargs (length args)))
1049 (vop allocate-full-call-frame node block nargs fp)
1053 (dotimes (num nargs)
1054 (locs (standard-arg-location num))
1055 (let ((ref (reference-tn (lvar-tn node block (elt args num))
1058 (setf (tn-ref-across last) ref)
1062 (values fp first (locs) nargs)))))
1064 ;;; Do full call when a fixed number of values are desired. We make
1065 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
1066 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
1067 (defun ir2-convert-fixed-full-call (node block)
1068 (declare (type combination node) (type ir2-block block))
1069 (multiple-value-bind (fp args arg-locs nargs)
1070 (ir2-convert-full-call-args node block)
1071 (let* ((lvar (node-lvar node))
1072 (locs (standard-result-tns lvar))
1073 (loc-refs (reference-tn-list locs t))
1074 (nvals (length locs)))
1075 (multiple-value-bind (fun-tn named)
1076 (fun-lvar-tn node block (basic-combination-fun node))
1078 (vop* call-named node block (fp fun-tn args) (loc-refs)
1079 arg-locs nargs nvals (emit-step-p node))
1080 (vop* call node block (fp fun-tn args) (loc-refs)
1081 arg-locs nargs nvals (emit-step-p node)))
1082 (move-lvar-result node block locs lvar))))
1085 ;;; Do full call when unknown values are desired.
1086 (defun ir2-convert-multiple-full-call (node block)
1087 (declare (type combination node) (type ir2-block block))
1088 (multiple-value-bind (fp args arg-locs nargs)
1089 (ir2-convert-full-call-args node block)
1090 (let* ((lvar (node-lvar node))
1091 (locs (ir2-lvar-locs (lvar-info lvar)))
1092 (loc-refs (reference-tn-list locs t)))
1093 (multiple-value-bind (fun-tn named)
1094 (fun-lvar-tn node block (basic-combination-fun node))
1096 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1097 arg-locs nargs (emit-step-p node))
1098 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1099 arg-locs nargs (emit-step-p node))))))
1102 ;;; stuff to check in PONDER-FULL-CALL
1104 ;;; These came in handy when troubleshooting cold boot after making
1105 ;;; major changes in the package structure: various transforms and
1106 ;;; VOPs and stuff got attached to the wrong symbol, so that
1107 ;;; references to the right symbol were bogusly translated as full
1108 ;;; calls instead of primitives, sending the system off into infinite
1109 ;;; space. Having a report on all full calls generated makes it easier
1110 ;;; to figure out what form caused the problem this time.
1111 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1112 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1114 ;;; Do some checks (and store some notes relevant for future checks)
1116 ;;; * Is this a full call to something we have reason to know should
1117 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1118 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1120 ;;; * Is this a full call to (SETF FOO) which might conflict with
1121 ;;; a DEFSETF or some such thing elsewhere in the program?
1122 (defun ponder-full-call (node)
1123 (let* ((lvar (basic-combination-fun node))
1124 (fname (lvar-fun-name lvar t)))
1125 (declare (type (or symbol cons) fname))
1127 #!+sb-show (unless (gethash fname *full-called-fnames*)
1128 (setf (gethash fname *full-called-fnames*) t))
1129 #!+sb-show (when *show-full-called-fnames-p*
1130 (/show "converting full call to named function" fname)
1131 (/show (basic-combination-args node))
1132 (/show (policy node speed) (policy node safety))
1133 (/show (policy node compilation-speed))
1134 (let ((arg-types (mapcar (lambda (lvar)
1138 (basic-combination-args node))))
1141 ;; When illegal code is compiled, all sorts of perverse paths
1142 ;; through the compiler can be taken, and it's much harder -- and
1143 ;; probably pointless -- to guarantee that always-optimized-away
1144 ;; functions are actually optimized away. Thus, we skip the check
1147 ;; check to see if we know anything about the function
1148 (let ((info (info :function :info fname)))
1149 ;; if we know something, check to see if the full call was valid
1150 (when (and info (ir1-attributep (fun-info-attributes info)
1151 always-translatable))
1152 (/show (policy node speed) (policy node safety))
1153 (/show (policy node compilation-speed))
1154 (bug "full call to ~S" fname))))
1157 (aver (legal-fun-name-p fname))
1158 (destructuring-bind (setfoid &rest stem) fname
1159 (when (eq setfoid 'setf)
1160 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1162 ;;; If the call is in a tail recursive position and the return
1163 ;;; convention is standard, then do a tail full call. If one or fewer
1164 ;;; values are desired, then use a single-value call, otherwise use a
1165 ;;; multiple-values call.
1166 (defun ir2-convert-full-call (node block)
1167 (declare (type combination node) (type ir2-block block))
1168 (ponder-full-call node)
1169 (cond ((node-tail-p node)
1170 (ir2-convert-tail-full-call node block))
1171 ((let ((lvar (node-lvar node)))
1173 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1174 (ir2-convert-multiple-full-call node block))
1176 (ir2-convert-fixed-full-call node block)))
1179 ;;;; entering functions
1181 ;;; Do all the stuff that needs to be done on XEP entry:
1182 ;;; -- Create frame.
1183 ;;; -- Copy any more arg.
1184 ;;; -- Set up the environment, accessing any closure variables.
1185 ;;; -- Move args from the standard passing locations to their internal
1187 (defun init-xep-environment (node block fun)
1188 (declare (type bind node) (type ir2-block block) (type clambda fun))
1189 (let ((start-label (entry-info-offset (leaf-info fun)))
1190 (env (physenv-info (node-physenv node))))
1191 (let ((ef (functional-entry-fun fun)))
1192 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1193 ;; Special case the xep-allocate-frame + copy-more-arg case.
1194 (vop xep-allocate-frame node block start-label t)
1195 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1197 ;; No more args, so normal entry.
1198 (vop xep-allocate-frame node block start-label nil)))
1199 (if (ir2-physenv-closure env)
1200 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1201 (vop setup-closure-environment node block start-label closure)
1203 (dolist (loc (ir2-physenv-closure env))
1204 (vop closure-ref node block closure (incf n) (cdr loc)))))
1205 (vop setup-environment node block start-label)))
1207 (unless (eq (functional-kind fun) :toplevel)
1208 (let ((vars (lambda-vars fun))
1210 (when (leaf-refs (first vars))
1211 (emit-move node block (make-arg-count-location)
1212 (leaf-info (first vars))))
1213 (dolist (arg (rest vars))
1214 (when (leaf-refs arg)
1215 (let ((pass (standard-arg-location n))
1216 (home (leaf-info arg)))
1217 (if (and (lambda-var-indirect arg)
1218 (lambda-var-explicit-value-cell arg))
1219 (emit-make-value-cell node block pass home)
1220 (emit-move node block pass home))))
1223 (emit-move node block (make-old-fp-passing-location t)
1224 (ir2-physenv-old-fp env)))
1228 ;;; Emit function prolog code. This is only called on bind nodes for
1229 ;;; functions that allocate environments. All semantics of let calls
1230 ;;; are handled by IR2-CONVERT-LET.
1232 ;;; If not an XEP, all we do is move the return PC from its passing
1233 ;;; location, since in a local call, the caller allocates the frame
1234 ;;; and sets up the arguments.
1235 (defun ir2-convert-bind (node block)
1236 (declare (type bind node) (type ir2-block block))
1237 (let* ((fun (bind-lambda node))
1238 (env (physenv-info (lambda-physenv fun))))
1239 (aver (member (functional-kind fun)
1240 '(nil :external :optional :toplevel :cleanup)))
1243 (init-xep-environment node block fun)
1245 (when *collect-dynamic-statistics*
1246 (vop count-me node block *dynamic-counts-tn*
1247 (block-number (ir2-block-block block)))))
1251 (ir2-physenv-return-pc-pass env)
1252 (ir2-physenv-return-pc env))
1254 #!+unwind-to-frame-and-call-vop
1255 (when (and (lambda-allow-instrumenting fun)
1256 (not (lambda-inline-expanded fun))
1258 (policy fun (>= insert-debug-catch 2)))
1259 (vop sb!vm::bind-sentinel node block))
1261 (let ((lab (gen-label)))
1262 (setf (ir2-physenv-environment-start env) lab)
1263 (vop note-environment-start node block lab)))
1267 ;;;; function return
1269 ;;; Do stuff to return from a function with the specified values and
1270 ;;; convention. If the return convention is :FIXED and we aren't
1271 ;;; returning from an XEP, then we do a known return (letting
1272 ;;; representation selection insert the correct move-arg VOPs.)
1273 ;;; Otherwise, we use the unknown-values convention. If there is a
1274 ;;; fixed number of return values, then use RETURN, otherwise use
1275 ;;; RETURN-MULTIPLE.
1276 (defun ir2-convert-return (node block)
1277 (declare (type creturn node) (type ir2-block block))
1278 (let* ((lvar (return-result node))
1279 (2lvar (lvar-info lvar))
1280 (lvar-kind (ir2-lvar-kind 2lvar))
1281 (fun (return-lambda node))
1282 (env (physenv-info (lambda-physenv fun)))
1283 (old-fp (ir2-physenv-old-fp env))
1284 (return-pc (ir2-physenv-return-pc env))
1285 (returns (tail-set-info (lambda-tail-set fun))))
1286 #!+unwind-to-frame-and-call-vop
1287 (when (and (lambda-allow-instrumenting fun)
1288 (not (lambda-inline-expanded fun))
1289 (policy fun (>= insert-debug-catch 2)))
1290 (vop sb!vm::unbind-sentinel node block))
1292 ((and (eq (return-info-kind returns) :fixed)
1294 (let ((locs (lvar-tns node block lvar
1295 (return-info-types returns))))
1296 (vop* known-return node block
1297 (old-fp return-pc (reference-tn-list locs nil))
1299 (return-info-locations returns))))
1300 ((eq lvar-kind :fixed)
1301 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1302 (lvar-locs (lvar-tns node block lvar types))
1303 (nvals (length lvar-locs))
1304 (locs (make-standard-value-tns nvals)))
1305 (mapc (lambda (val loc)
1306 (emit-move node block val loc))
1310 (vop return-single node block old-fp return-pc (car locs))
1311 (vop* return node block
1312 (old-fp return-pc (reference-tn-list locs nil))
1316 (aver (eq lvar-kind :unknown))
1317 (vop* return-multiple node block
1319 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1326 ;;;; These are used by the debugger to find the top function on the
1327 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1328 ;;;; function as multiple values.
1330 (defoptimizer (%caller-frame ir2-convert) (() node block)
1331 (let ((ir2-physenv (physenv-info (node-physenv node))))
1332 (move-lvar-result node block
1333 (list (ir2-physenv-old-fp ir2-physenv))
1336 (defoptimizer (%caller-pc ir2-convert) (() node block)
1337 (let ((ir2-physenv (physenv-info (node-physenv node))))
1338 (move-lvar-result node block
1339 (list (ir2-physenv-return-pc ir2-physenv))
1342 ;;;; multiple values
1344 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1345 ;;; the lvar for the correct number of values (with the lvar user
1346 ;;; responsible for defaulting), we can just pick them up from the
1348 (defun ir2-convert-mv-bind (node block)
1349 (declare (type mv-combination node) (type ir2-block block))
1350 (let* ((lvar (first (basic-combination-args node)))
1351 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1352 (vars (lambda-vars fun)))
1353 (aver (eq (functional-kind fun) :mv-let))
1354 (mapc (lambda (src var)
1355 (when (leaf-refs var)
1356 (let ((dest (leaf-info var)))
1357 (if (and (lambda-var-indirect var)
1358 (lambda-var-explicit-value-cell var))
1359 (emit-make-value-cell node block src dest)
1360 (emit-move node block src dest)))))
1361 (lvar-tns node block lvar
1363 (primitive-type (leaf-type x)))
1368 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1369 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1370 ;;; the first argument: all the other argument lvar TNs are
1371 ;;; ignored. This is because we require all of the values globs to be
1372 ;;; contiguous and on stack top.
1373 (defun ir2-convert-mv-call (node block)
1374 (declare (type mv-combination node) (type ir2-block block))
1375 (aver (basic-combination-args node))
1376 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1377 (start (first (ir2-lvar-locs start-lvar)))
1378 (tails (and (node-tail-p node)
1379 (lambda-tail-set (node-home-lambda node))))
1380 (lvar (node-lvar node))
1381 (2lvar (and lvar (lvar-info lvar))))
1382 (multiple-value-bind (fun named)
1383 (fun-lvar-tn node block (basic-combination-fun node))
1384 (aver (and (not named)
1385 (eq (ir2-lvar-kind start-lvar) :unknown)))
1388 (let ((env (physenv-info (node-physenv node))))
1389 (vop tail-call-variable node block start fun
1390 (ir2-physenv-old-fp env)
1391 (ir2-physenv-return-pc env))))
1393 (eq (ir2-lvar-kind 2lvar) :unknown))
1394 (vop* multiple-call-variable node block (start fun nil)
1395 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1396 (emit-step-p node)))
1398 (let ((locs (standard-result-tns lvar)))
1399 (vop* call-variable node block (start fun nil)
1400 ((reference-tn-list locs t)) (length locs)
1402 (move-lvar-result node block locs lvar)))))))
1404 ;;; Reset the stack pointer to the start of the specified
1405 ;;; unknown-values lvar (discarding it and all values globs on top of
1407 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1408 (let* ((lvar (lvar-value %lvar))
1409 (2lvar (lvar-info lvar)))
1410 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1411 (vop reset-stack-pointer node block
1412 (first (ir2-lvar-locs 2lvar))))
1413 ((lvar-dynamic-extent lvar)
1414 (vop reset-stack-pointer node block
1415 (ir2-lvar-stack-pointer 2lvar)))
1416 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1419 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1422 (let* ( ;; pointer immediately after the nipped block
1423 (after (lvar-value last-nipped))
1424 (2after (lvar-info after))
1425 ;; pointer to the first nipped word
1426 (first (lvar-value last-preserved))
1427 (2first (lvar-info first))
1429 (moved-tns (loop for lvar-ref in moved
1430 for lvar = (lvar-value lvar-ref)
1431 for 2lvar = (lvar-info lvar)
1433 collect (first (ir2-lvar-locs 2lvar)))))
1434 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1435 (lvar-dynamic-extent after)))
1436 (aver (eq (ir2-lvar-kind 2first) :unknown))
1437 (when *check-consistency*
1438 ;; we cannot move stack-allocated DX objects
1439 (dolist (moved-lvar moved)
1440 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1442 (flet ((nip-aligned (nipped)
1443 (vop* %%nip-values node block
1445 (first (ir2-lvar-locs 2first))
1446 (reference-tn-list moved-tns nil))
1447 ((reference-tn-list moved-tns t)))))
1448 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1449 (nip-aligned (first (ir2-lvar-locs 2after))))
1450 ((lvar-dynamic-extent after)
1451 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1453 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1455 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1456 (defoptimizer (values ir2-convert) ((&rest values) node block)
1457 (let ((tns (mapcar (lambda (x)
1458 (lvar-tn node block x))
1460 (move-lvar-result node block tns (node-lvar node))))
1462 ;;; In the normal case where unknown values are desired, we use the
1463 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1464 ;;; for a fixed number of values, we punt by doing a full call to the
1465 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1466 ;;; defaulting any unsupplied values. It seems unworthwhile to
1467 ;;; optimize this case.
1468 (defoptimizer (values-list ir2-convert) ((list) node block)
1469 (let* ((lvar (node-lvar node))
1470 (2lvar (and lvar (lvar-info lvar))))
1472 (eq (ir2-lvar-kind 2lvar) :unknown))
1473 (let ((locs (ir2-lvar-locs 2lvar)))
1474 (vop* values-list node block
1475 ((lvar-tn node block list) nil)
1476 ((reference-tn-list locs t)))))
1477 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1478 (eq (ir2-lvar-kind 2lvar) :fixed)))
1479 (ir2-convert-full-call node block)))))
1481 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1482 (binding* ((lvar (node-lvar node) :exit-if-null)
1483 (2lvar (lvar-info lvar)))
1484 (ecase (ir2-lvar-kind 2lvar)
1486 ;; KLUDGE: this is very much unsafe, and can leak random stack values.
1487 ;; OTOH, I think the :FIXED case can only happen with (safety 0) in the
1490 (loop for loc in (ir2-lvar-locs 2lvar)
1492 do (vop sb!vm::more-arg node block
1493 (lvar-tn node block context)
1494 (make-constant-tn (find-constant idx))
1497 (let ((locs (ir2-lvar-locs 2lvar)))
1498 (vop* %more-arg-values node block
1499 ((lvar-tn node block context)
1500 (lvar-tn node block start)
1501 (lvar-tn node block count)
1503 ((reference-tn-list locs t))))))))
1505 ;;;; special binding
1507 ;;; This is trivial, given our assumption of a shallow-binding
1509 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1510 (let ((name (leaf-source-name (lvar-value var))))
1511 (vop bind node block (lvar-tn node block value)
1512 (emit-constant name))))
1513 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1514 (vop unbind node block))
1516 ;;; ### It's not clear that this really belongs in this file, or
1517 ;;; should really be done this way, but this is the least violation of
1518 ;;; abstraction in the current setup. We don't want to wire
1519 ;;; shallow-binding assumptions into IR1tran.
1520 (def-ir1-translator progv
1521 ((vars vals &body body) start next result)
1524 (with-unique-names (bind unbind)
1525 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1528 (labels ((,unbind (vars)
1529 (declare (optimize (speed 2) (debug 0)))
1530 (let ((unbound-marker (%primitive make-other-immediate-type
1531 0 sb!vm:unbound-marker-widetag)))
1533 ;; CLHS says "bound and then made to have no value" -- user
1534 ;; should not be able to tell the difference between that and this.
1535 (about-to-modify-symbol-value var 'progv)
1536 (%primitive bind unbound-marker var))))
1538 (declare (optimize (speed 2) (debug 0)
1539 (insert-debug-catch 0)))
1541 ((null vals) (,unbind vars))
1543 (let ((val (car vals))
1545 (about-to-modify-symbol-value var 'progv val t)
1546 (%primitive bind val var))
1547 (,bind (cdr vars) (cdr vals))))))
1548 (,bind ,vars ,vals))
1551 ;; Technically ANSI CL doesn't allow declarations at the
1552 ;; start of the cleanup form. SBCL happens to allow for
1553 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1554 ;; is implemented; the cleanup forms are directly spliced
1555 ;; into an FLET definition body. And a declaration here
1556 ;; actually has exactly the right scope for what we need
1557 ;; (ensure that debug instrumentation is not emitted for the
1558 ;; cleanup function). -- JES, 2007-06-16
1559 (declare (optimize (insert-debug-catch 0)))
1560 (%primitive unbind-to-here ,n-save-bs))))))
1564 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1565 ;;; environment. Note that this is never called on the escape exits
1566 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1568 (defun ir2-convert-exit (node block)
1569 (declare (type exit node) (type ir2-block block))
1570 (let* ((nlx (exit-nlx-info node))
1571 (loc (find-in-physenv nlx (node-physenv node)))
1572 (temp (make-stack-pointer-tn))
1573 (value (exit-value node)))
1574 (if (nlx-info-safe-p nlx)
1575 (vop value-cell-ref node block loc temp)
1576 (emit-move node block loc temp))
1578 (let ((locs (ir2-lvar-locs (lvar-info value))))
1579 (vop unwind node block temp (first locs) (second locs)))
1580 (let ((0-tn (emit-constant 0)))
1581 (vop unwind node block temp 0-tn 0-tn))))
1585 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1586 ;;; being entirely deleted.
1587 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1589 ;;; This function invalidates a lexical exit on exiting from the
1590 ;;; dynamic extent. This is done by storing 0 into the indirect value
1591 ;;; cell that holds the closed unwind block.
1592 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1593 (let ((nlx (lvar-value info)))
1594 (when (nlx-info-safe-p nlx)
1595 (vop value-cell-set node block
1596 (find-in-physenv nlx (node-physenv node))
1597 (emit-constant 0)))))
1599 ;;; We have to do a spurious move of no values to the result lvar so
1600 ;;; that lifetime analysis won't get confused.
1601 (defun ir2-convert-throw (node block)
1602 (declare (type mv-combination node) (type ir2-block block))
1603 (let ((args (basic-combination-args node)))
1604 (check-catch-tag-type (first args))
1605 (vop* throw node block
1606 ((lvar-tn node block (first args))
1608 (ir2-lvar-locs (lvar-info (second args)))
1611 (move-lvar-result node block () (node-lvar node))
1614 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1615 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1616 ;;; the target PC by passing in the label to the vop. The vop is
1617 ;;; responsible for building a return-PC object.
1618 (defun emit-nlx-start (node block info tag)
1619 (declare (type node node) (type ir2-block block) (type nlx-info info)
1620 (type (or lvar null) tag))
1621 (let* ((2info (nlx-info-info info))
1622 (kind (cleanup-kind (nlx-info-cleanup info)))
1623 (block-tn (physenv-live-tn
1624 (make-normal-tn (primitive-type-or-lose 'catch-block))
1625 (node-physenv node)))
1626 (res (make-stack-pointer-tn))
1627 (target-label (ir2-nlx-info-target 2info)))
1629 (vop current-binding-pointer node block
1630 (car (ir2-nlx-info-dynamic-state 2info)))
1631 (vop* save-dynamic-state node block
1633 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1634 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1638 (vop make-catch-block node block block-tn
1639 (lvar-tn node block tag) target-label res))
1640 ((:unwind-protect :block :tagbody)
1641 (vop make-unwind-block node block block-tn target-label res)))
1645 (if (nlx-info-safe-p info)
1646 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1647 (emit-move node block res (ir2-nlx-info-home 2info))))
1649 (vop set-unwind-protect node block block-tn))
1654 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1655 (defun ir2-convert-entry (node block)
1656 (declare (type entry node) (type ir2-block block))
1658 (dolist (exit (entry-exits node))
1659 (let ((info (exit-nlx-info exit)))
1661 (not (memq info nlxes))
1662 (member (cleanup-kind (nlx-info-cleanup info))
1663 '(:block :tagbody)))
1665 (emit-nlx-start node block info nil)))))
1668 ;;; Set up the unwind block for these guys.
1669 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1670 (check-catch-tag-type tag)
1671 (emit-nlx-start node block (lvar-value info-lvar) tag))
1672 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1673 (emit-nlx-start node block (lvar-value info-lvar) nil))
1675 ;;; Emit the entry code for a non-local exit. We receive values and
1676 ;;; restore dynamic state.
1678 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1679 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1680 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1681 ;;; values, make the appropriate number of temps in the standard
1682 ;;; values locations and use the other variant, delivering the temps
1683 ;;; to the lvar using MOVE-LVAR-RESULT.
1685 ;;; In the UNWIND-PROTECT case, we deliver the first register
1686 ;;; argument, the argument count and the argument pointer to our lvar
1687 ;;; as multiple values. These values are the block exited to and the
1688 ;;; values start and count.
1690 ;;; After receiving values, we restore dynamic state. Except in the
1691 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1692 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1693 ;;; pointer alone, since the thrown values are still out there.
1694 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1695 (let* ((info (lvar-value info-lvar))
1696 (lvar (node-lvar node))
1697 (2info (nlx-info-info info))
1698 (top-loc (ir2-nlx-info-save-sp 2info))
1699 (start-loc (make-nlx-entry-arg-start-location))
1700 (count-loc (make-arg-count-location))
1701 (target (ir2-nlx-info-target 2info)))
1703 (ecase (cleanup-kind (nlx-info-cleanup info))
1704 ((:catch :block :tagbody)
1705 (let ((2lvar (and lvar (lvar-info lvar))))
1706 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1707 (vop* nlx-entry-multiple node block
1708 (top-loc start-loc count-loc nil)
1709 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1711 (let ((locs (standard-result-tns lvar)))
1712 (vop* nlx-entry node block
1713 (top-loc start-loc count-loc nil)
1714 ((reference-tn-list locs t))
1717 (move-lvar-result node block locs lvar)))))
1719 (let ((block-loc (standard-arg-location 0)))
1720 (vop uwp-entry node block target block-loc start-loc count-loc)
1723 (list block-loc start-loc count-loc)
1727 (when *collect-dynamic-statistics*
1728 (vop count-me node block *dynamic-counts-tn*
1729 (block-number (ir2-block-block block))))
1731 (vop* restore-dynamic-state node block
1732 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1734 (vop unbind-to-here node block
1735 (car (ir2-nlx-info-dynamic-state 2info)))))
1737 ;;;; n-argument functions
1739 (macrolet ((def (name)
1740 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1741 (let* ((refs (move-tail-full-call-args node block))
1742 (lvar (node-lvar node))
1743 (res (lvar-result-tns
1745 (list (primitive-type (specifier-type 'list))))))
1746 (when (and lvar (lvar-dynamic-extent lvar))
1747 (vop current-stack-pointer node block
1748 (ir2-lvar-stack-pointer (lvar-info lvar))))
1749 (vop* ,name node block (refs) ((first res) nil)
1751 (move-lvar-result node block res lvar)))))
1756 ;;; Convert the code in a component into VOPs.
1757 (defun ir2-convert (component)
1758 (declare (type component component))
1759 (let (#!+sb-dyncount
1760 (*dynamic-counts-tn*
1761 (when *collect-dynamic-statistics*
1763 (block-number (block-next (component-head component))))
1764 (counts (make-array blocks
1765 :element-type '(unsigned-byte 32)
1766 :initial-element 0))
1767 (info (make-dyncount-info
1768 :for (component-name component)
1769 :costs (make-array blocks
1770 :element-type '(unsigned-byte 32)
1773 (setf (ir2-component-dyncount-info (component-info component))
1775 (emit-constant info)
1776 (emit-constant counts)))))
1778 (declare (type index num))
1779 (do-ir2-blocks (2block component)
1780 (let ((block (ir2-block-block 2block)))
1781 (when (block-start block)
1782 (setf (block-number block) num)
1784 (when *collect-dynamic-statistics*
1785 (let ((first-node (block-start-node block)))
1786 (unless (or (and (bind-p first-node)
1787 (xep-p (bind-lambda first-node)))
1789 (node-lvar first-node))
1794 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1796 (ir2-convert-block block)
1800 ;;; If necessary, emit a terminal unconditional branch to go to the
1801 ;;; successor block. If the successor is the component tail, then
1802 ;;; there isn't really any successor, but if the end is an unknown,
1803 ;;; non-tail call, then we emit an error trap just in case the
1804 ;;; function really does return.
1805 (defun finish-ir2-block (block)
1806 (declare (type cblock block))
1807 (let* ((2block (block-info block))
1808 (last (block-last block))
1809 (succ (block-succ block)))
1811 (aver (singleton-p succ))
1812 (let ((target (first succ)))
1813 (cond ((eq target (component-tail (block-component block)))
1814 (when (and (basic-combination-p last)
1815 (eq (basic-combination-kind last) :full))
1816 (let* ((fun (basic-combination-fun last))
1817 (use (lvar-uses fun))
1818 (name (and (ref-p use)
1819 (leaf-has-source-name-p (ref-leaf use))
1820 (leaf-source-name (ref-leaf use)))))
1821 (unless (or (node-tail-p last)
1822 (info :function :info name)
1823 (policy last (zerop safety)))
1824 (vop nil-fun-returned-error last 2block
1826 (emit-constant name)
1827 (multiple-value-bind (tn named)
1828 (fun-lvar-tn last 2block fun)
1831 ((not (eq (ir2-block-next 2block) (block-info target)))
1832 (vop branch last 2block (block-label target)))
1834 (register-drop-thru target))))))
1838 ;;; Convert the code in a block into VOPs.
1839 (defun ir2-convert-block (block)
1840 (declare (type cblock block))
1841 (let ((2block (block-info block)))
1842 (do-nodes (node lvar block)
1846 (let ((2lvar (lvar-info lvar)))
1847 ;; function REF in a local call is not annotated
1848 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1849 (ir2-convert-ref node 2block)))))
1851 (let ((kind (basic-combination-kind node)))
1854 (ir2-convert-local-call node 2block))
1856 (ir2-convert-full-call node 2block))
1858 (let* ((info (basic-combination-fun-info node))
1859 (fun (fun-info-ir2-convert info)))
1861 (funcall fun node 2block))
1862 ((eq (basic-combination-info node) :full)
1863 (ir2-convert-full-call node 2block))
1865 (ir2-convert-template node 2block))))))))
1867 (when (lvar-info (if-test node))
1868 (ir2-convert-if node 2block)))
1870 (let ((fun (bind-lambda node)))
1871 (when (eq (lambda-home fun) fun)
1872 (ir2-convert-bind node 2block))))
1874 (ir2-convert-return node 2block))
1876 (ir2-convert-set node 2block))
1878 (ir2-convert-cast node 2block))
1881 ((eq (basic-combination-kind node) :local)
1882 (ir2-convert-mv-bind node 2block))
1883 ((eq (lvar-fun-name (basic-combination-fun node))
1885 (ir2-convert-throw node 2block))
1887 (ir2-convert-mv-call node 2block))))
1889 (when (exit-entry node)
1890 (ir2-convert-exit node 2block)))
1892 (ir2-convert-entry node 2block)))))
1894 (finish-ir2-block block)