1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; If there is any CHECK-xxx template for TYPE, then return it,
25 ;;; otherwise return NIL.
26 (defun type-check-template (type)
27 (declare (type ctype type))
28 (multiple-value-bind (check-ptype exact) (primitive-type type)
30 (primitive-type-check check-ptype)
31 (let ((name (hairy-type-check-template-name type)))
33 (template-or-lose name)
36 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
37 ;;; yielding the checked result in RESULT. VALUE and result may be of
38 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
39 ;;; other type checks should have been converted to an explicit type
41 (defun emit-type-check (node block value result type)
42 (declare (type tn value result) (type node node) (type ir2-block block)
44 (emit-move-template node block (type-check-template type) value result)
47 ;;; Allocate an indirect value cell. Maybe do some clever stack
48 ;;; allocation someday.
50 ;;; FIXME: DO-MAKE-VALUE-CELL is a bad name, since it doesn't make
51 ;;; clear what's the distinction between it and the MAKE-VALUE-CELL
52 ;;; VOP, and since the DO- further connotes iteration, which has
53 ;;; nothing to do with this. Clearer, more systematic names, anyone?
54 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
55 (defun do-make-value-cell (node block value res)
56 (event make-value-cell-event node)
57 (vop make-value-cell node block value res))
61 ;;; Return the TN that holds the value of THING in the environment ENV.
62 (declaim (ftype (function ((or nlx-info lambda-var) physenv) tn)
64 (defun find-in-physenv (thing physenv)
65 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
68 ;; I think that a failure of this assertion means that we're
69 ;; trying to access a variable which was improperly closed
70 ;; over. The PHYSENV describes a physical environment. Every
71 ;; variable that a form refers to should either be in its
72 ;; physical environment directly, or grabbed from a
73 ;; surrounding physical environment when it was closed over.
74 ;; The ASSOC expression above finds closed-over variables, so
75 ;; if we fell through the ASSOC expression, it wasn't closed
76 ;; over. Therefore, it must be in our physical environment
77 ;; directly. If instead it is in some other physical
78 ;; environment, then it's bogus for us to reference it here
79 ;; without it being closed over. -- WHN 2001-09-29
80 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
83 (aver (eq physenv (block-physenv (nlx-info-target thing))))
84 (ir2-nlx-info-home (nlx-info-info thing))))
85 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
87 ;;; If LEAF already has a constant TN, return that, otherwise make a
89 (defun constant-tn (leaf)
90 (declare (type constant leaf))
92 (setf (leaf-info leaf)
93 (make-constant-tn leaf))))
95 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
96 ;;; isn't directly represented by a TN. ENV is the environment that
97 ;;; the reference is done in.
98 (defun leaf-tn (leaf env)
99 (declare (type leaf leaf) (type physenv env))
102 (unless (lambda-var-indirect leaf)
103 (find-in-physenv leaf env)))
104 (constant (constant-tn leaf))
107 ;;; This is used to conveniently get a handle on a constant TN during
108 ;;; IR2 conversion. It returns a constant TN representing the Lisp
110 (defun emit-constant (value)
111 (constant-tn (find-constant value)))
113 ;;; Convert a REF node. The reference must not be delayed.
114 (defun ir2-convert-ref (node block)
115 (declare (type ref node) (type ir2-block block))
116 (let* ((lvar (node-lvar node))
117 (leaf (ref-leaf node))
118 (locs (lvar-result-tns
119 lvar (list (primitive-type (leaf-type leaf)))))
123 (let ((tn (find-in-physenv leaf (node-physenv node))))
124 (if (lambda-var-indirect leaf)
125 (vop value-cell-ref node block tn res)
126 (emit-move node block tn res))))
128 (if (legal-immediate-constant-p leaf)
129 (emit-move node block (constant-tn leaf) res)
130 (let* ((name (leaf-source-name leaf))
131 (name-tn (emit-constant name)))
132 (if (policy node (zerop safety))
133 (vop fast-symbol-value node block name-tn res)
134 (vop symbol-value node block name-tn res)))))
136 (ir2-convert-closure node block leaf res))
138 (let ((unsafe (policy node (zerop safety)))
139 (name (leaf-source-name leaf)))
140 (ecase (global-var-kind leaf)
142 (aver (symbolp name))
143 (let ((name-tn (emit-constant name)))
145 (vop fast-symbol-value node block name-tn res)
146 (vop symbol-value node block name-tn res))))
148 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
150 (vop fdefn-fun node block fdefn-tn res)
151 (vop safe-fdefn-fun node block fdefn-tn res))))))))
152 (move-lvar-result node block locs lvar))
155 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
156 (defun assertions-on-ir2-converted-clambda (clambda)
157 ;; This assertion was sort of an experiment. It would be nice and
158 ;; sane and easier to understand things if it were *always* true,
159 ;; but experimentally I observe that it's only *almost* always
160 ;; true. -- WHN 2001-01-02
162 (aver (eql (lambda-component clambda)
163 (block-component (ir2-block-block ir2-block))))
164 ;; Check for some weirdness which came up in bug
167 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
168 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
170 ;; * treats every HANDLEless :ENTRY record into a
172 ;; * expects every patch to correspond to an
173 ;; IR2-COMPONENT-ENTRIES record.
174 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
175 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
176 ;; was a HANDLEless :ENTRY record which didn't correspond to an
177 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
178 ;; when it's caught at dump time, so this assertion tries to catch
180 (aver (member clambda
181 (component-lambdas (lambda-component clambda))))
182 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
183 ;; used as a queue for stuff pending to do in IR1, and now that
184 ;; we're doing IR2 it should've been completely flushed (but
186 (aver (null (component-new-functionals (lambda-component clambda))))
189 ;;; Emit code to load a function object implementing FUNCTIONAL into
190 ;;; RES. This gets interesting when the referenced function is a
191 ;;; closure: we must make the closure and move the closed-over values
194 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
195 ;;; for the called function, since local call analysis converts all
196 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
199 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
200 ;;; don't initialize that slot. This can happen with closures over
201 ;;; top level variables, where optimization of the closure deleted the
202 ;;; variable. Since we committed to the closure format when we
203 ;;; pre-analyzed the top level code, we just leave an empty slot.
204 (defun ir2-convert-closure (ref ir2-block functional res)
205 (declare (type ref ref)
206 (type ir2-block ir2-block)
207 (type functional functional)
209 (aver (not (eql (functional-kind functional) :deleted)))
210 (unless (leaf-info functional)
211 (setf (leaf-info functional)
212 (make-entry-info :name (functional-debug-name functional))))
213 (let ((entry (make-load-time-constant-tn :entry functional))
214 (closure (etypecase functional
216 (assertions-on-ir2-converted-clambda functional)
217 (physenv-closure (get-lambda-physenv functional)))
219 (aver (eq (functional-kind functional) :toplevel-xep))
223 (let ((this-env (node-physenv ref)))
224 (vop make-closure ref ir2-block entry (length closure) res)
225 (loop for what in closure and n from 0 do
226 (unless (and (lambda-var-p what)
227 (null (leaf-refs what)))
228 (vop closure-init ref ir2-block
230 (find-in-physenv what this-env)
233 (emit-move ref ir2-block entry res))))
236 ;;; Convert a SET node. If the NODE's CONT is annotated, then we also
237 ;;; deliver the value to that continuation. If the var is a lexical
238 ;;; variable with no refs, then we don't actually set anything, since
239 ;;; the variable has been deleted.
240 (defun ir2-convert-set (node block)
241 (declare (type cset node) (type ir2-block block))
242 (let* ((lvar (node-lvar node))
243 (leaf (set-var node))
244 (val (lvar-tn node block (set-value node)))
247 lvar (list (primitive-type (leaf-type leaf))))
251 (when (leaf-refs leaf)
252 (let ((tn (find-in-physenv leaf (node-physenv node))))
253 (if (lambda-var-indirect leaf)
254 (vop value-cell-set node block tn val)
255 (emit-move node block val tn)))))
257 (ecase (global-var-kind leaf)
259 (aver (symbolp (leaf-source-name leaf)))
260 (vop set node block (emit-constant (leaf-source-name leaf)) val)))))
262 (emit-move node block val (first locs))
263 (move-lvar-result node block locs lvar)))
266 ;;;; utilities for receiving fixed values
268 ;;; Return a TN that can be referenced to get the value of CONT. CONT
269 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
270 ;;; single-value continuation. If a type check is called for, do it.
272 ;;; The primitive-type of the result will always be the same as the
273 ;;; IR2-CONTINUATION-PRIMITIVE-TYPE, ensuring that VOPs are always
274 ;;; called with TNs that satisfy the operand primitive-type
275 ;;; restriction. We may have to make a temporary of the desired type
276 ;;; and move the actual continuation TN into it. This happens when we
277 ;;; delete a type check in unsafe code or when we locally know
278 ;;; something about the type of an argument variable.
279 (defun lvar-tn (node block lvar)
280 (declare (type node node) (type ir2-block block) (type lvar lvar))
281 (let* ((2lvar (lvar-info lvar))
283 (ecase (ir2-lvar-kind 2lvar)
285 (let ((ref (lvar-uses lvar)))
286 (leaf-tn (ref-leaf ref) (node-physenv ref))))
288 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
289 (first (ir2-lvar-locs 2lvar)))))
290 (ptype (ir2-lvar-primitive-type 2lvar)))
292 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
294 (let ((temp (make-normal-tn ptype)))
295 (emit-move node block lvar-tn temp)
298 ;;; This is similar to CONTINUATION-TN, but hacks multiple values. We
299 ;;; return continuations holding the values of CONT with PTYPES as
300 ;;; their primitive types. CONT must be annotated for the same number
301 ;;; of fixed values are there are PTYPES.
303 ;;; If the continuation has a type check, check the values into temps
304 ;;; and return the temps. When we have more values than assertions, we
305 ;;; move the extra values with no check.
306 (defun lvar-tns (node block lvar ptypes)
307 (declare (type node node) (type ir2-block block)
308 (type lvar lvar) (list ptypes))
309 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
310 (nlocs (length locs)))
311 (aver (= nlocs (length ptypes)))
313 (mapcar (lambda (from to-type)
314 (if (eq (tn-primitive-type from) to-type)
316 (let ((temp (make-normal-tn to-type)))
317 (emit-move node block from temp)
322 ;;;; utilities for delivering values to continuations
324 ;;; Return a list of TNs with the specifier TYPES that can be used as
325 ;;; result TNs to evaluate an expression into the continuation CONT.
326 ;;; This is used together with MOVE-CONTINUATION-RESULT to deliver
327 ;;; fixed values to a continuation.
329 ;;; If the continuation isn't annotated (meaning the values are
330 ;;; discarded) or is unknown-values, the then we make temporaries for
331 ;;; each supplied value, providing a place to compute the result in
332 ;;; until we decide what to do with it (if anything.)
334 ;;; If the continuation is fixed-values, and wants the same number of
335 ;;; values as the user wants to deliver, then we just return the
336 ;;; IR2-CONTINUATION-LOCS. Otherwise we make a new list padded as
337 ;;; necessary by discarded TNs. We always return a TN of the specified
338 ;;; type, using the continuation locs only when they are of the
340 (defun lvar-result-tns (lvar types)
341 (declare (type (or lvar null) lvar) (type list types))
343 (mapcar #'make-normal-tn types)
344 (let ((2lvar (lvar-info lvar)))
345 (ecase (ir2-lvar-kind 2lvar)
347 (let* ((locs (ir2-lvar-locs 2lvar))
348 (nlocs (length locs))
349 (ntypes (length types)))
350 (if (and (= nlocs ntypes)
351 (do ((loc locs (cdr loc))
352 (type types (cdr type)))
354 (unless (eq (tn-primitive-type (car loc)) (car type))
357 (mapcar (lambda (loc type)
358 (if (eq (tn-primitive-type loc) type)
360 (make-normal-tn type)))
363 (mapcar #'make-normal-tn
364 (subseq types nlocs)))
368 (mapcar #'make-normal-tn types))))))
370 ;;; Make the first N standard value TNs, returning them in a list.
371 (defun make-standard-value-tns (n)
372 (declare (type unsigned-byte n))
375 (res (standard-arg-location i)))
378 ;;; Return a list of TNs wired to the standard value passing
379 ;;; conventions that can be used to receive values according to the
380 ;;; unknown-values convention. This is used with together
381 ;;; MOVE-CONTINUATION-RESULT for delivering unknown values to a fixed
382 ;;; values continuation.
384 ;;; If the continuation isn't annotated, then we treat as 0-values,
385 ;;; returning an empty list of temporaries.
387 ;;; If the continuation is annotated, then it must be :FIXED.
388 (defun standard-result-tns (lvar)
389 (declare (type (or lvar null) lvar))
391 (let ((2lvar (lvar-info lvar)))
392 (ecase (ir2-lvar-kind 2lvar)
394 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
397 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
398 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
399 ;;; doing the appropriate coercions.
400 (defun move-results-coerced (node block src dest)
401 (declare (type node node) (type ir2-block block) (list src dest))
402 (let ((nsrc (length src))
403 (ndest (length dest)))
404 (mapc (lambda (from to)
406 (emit-move node block from to)))
408 (append src (make-list (- ndest nsrc)
409 :initial-element (emit-constant nil)))
414 ;;; Move each SRC TN into the corresponding DEST TN, checking types
415 ;;; and defaulting any unsupplied source values to NIL
416 (defun move-results-checked (node block src dest types)
417 (declare (type node node) (type ir2-block block) (list src dest types))
418 (let ((nsrc (length src))
419 (ndest (length dest))
420 (ntypes (length types)))
421 (mapc (lambda (from to type)
423 (emit-type-check node block from to type)
424 (emit-move node block from to)))
426 (append src (make-list (- ndest nsrc)
427 :initial-element (emit-constant nil)))
431 (append types (make-list (- ndest ntypes)))
435 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
436 ;;; the specified continuation. NODE and BLOCK provide context for
437 ;;; emitting code. Although usually obtained from STANDARD-RESULT-TNs
438 ;;; or CONTINUATION-RESULT-TNs, RESULTS my be a list of any type or
441 ;;; If the continuation is fixed values, then move the results into
442 ;;; the continuation locations. If the continuation is unknown values,
443 ;;; then do the moves into the standard value locations, and use
444 ;;; PUSH-VALUES to put the values on the stack.
445 (defun move-lvar-result (node block results lvar)
446 (declare (type node node) (type ir2-block block)
447 (list results) (type (or lvar null) lvar))
449 (let ((2lvar (lvar-info lvar)))
450 (ecase (ir2-lvar-kind 2lvar)
452 (let ((locs (ir2-lvar-locs 2lvar)))
453 (unless (eq locs results)
454 (move-results-coerced node block results locs))))
456 (let* ((nvals (length results))
457 (locs (make-standard-value-tns nvals)))
458 (move-results-coerced node block results locs)
459 (vop* push-values node block
460 ((reference-tn-list locs nil))
461 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
466 (defun ir2-convert-cast (node block)
467 (declare (type cast node)
468 (type ir2-block block))
469 (binding* ((lvar (node-lvar node) :exit-if-null)
470 (2lvar (lvar-info lvar))
471 (value (cast-value node))
472 (2value (lvar-info value)))
473 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
474 ((eq (ir2-lvar-kind 2lvar) :unknown)
475 (aver (eq (ir2-lvar-kind 2value) :unknown))
476 (aver (not (cast-type-check node)))
477 (move-results-coerced node block
478 (ir2-lvar-locs 2value)
479 (ir2-lvar-locs 2lvar)))
480 ((eq (ir2-lvar-kind 2lvar) :fixed)
481 (aver (eq (ir2-lvar-kind 2value) :fixed))
482 (if (cast-type-check node)
483 (move-results-checked node block
484 (ir2-lvar-locs 2value)
485 (ir2-lvar-locs 2lvar)
486 (multiple-value-bind (check types)
487 (cast-check-types node nil)
488 (aver (eq check :simple))
490 (move-results-coerced node block
491 (ir2-lvar-locs 2value)
492 (ir2-lvar-locs 2lvar))))
493 (t (bug "CAST cannot be :DELAYED.")))))
495 ;;;; template conversion
497 ;;; Build a TN-REFS list that represents access to the values of the
498 ;;; specified list of continuations ARGS for TEMPLATE. Any :CONSTANT
499 ;;; arguments are returned in the second value as a list rather than
500 ;;; being accessed as a normal argument. NODE and BLOCK provide the
501 ;;; context for emitting any necessary type-checking code.
502 (defun reference-args (node block args template)
503 (declare (type node node) (type ir2-block block) (list args)
504 (type template template))
505 (collect ((info-args))
508 (do ((args args (cdr args))
509 (types (template-arg-types template) (cdr types)))
511 (let ((type (first types))
513 (if (and (consp type) (eq (car type) ':constant))
514 (info-args (lvar-value arg))
515 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
517 (setf (tn-ref-across last) ref)
521 (values (the (or tn-ref null) first) (info-args)))))
523 ;;; Convert a conditional template. We try to exploit any
524 ;;; drop-through, but emit an unconditional branch afterward if we
525 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
527 (defun ir2-convert-conditional (node block template args info-args if not-p)
528 (declare (type node node) (type ir2-block block)
529 (type template template) (type (or tn-ref null) args)
530 (list info-args) (type cif if) (type boolean not-p))
531 (aver (= (template-info-arg-count template) (+ (length info-args) 2)))
532 (let ((consequent (if-consequent if))
533 (alternative (if-alternative if)))
534 (cond ((drop-thru-p if consequent)
535 (emit-template node block template args nil
536 (list* (block-label alternative) (not not-p)
539 (emit-template node block template args nil
540 (list* (block-label consequent) not-p info-args))
541 (unless (drop-thru-p if alternative)
542 (vop branch node block (block-label alternative)))))))
544 ;;; Convert an IF that isn't the DEST of a conditional template.
545 (defun ir2-convert-if (node block)
546 (declare (type ir2-block block) (type cif node))
547 (let* ((test (if-test node))
548 (test-ref (reference-tn (lvar-tn node block test) nil))
549 (nil-ref (reference-tn (emit-constant nil) nil)))
550 (setf (tn-ref-across test-ref) nil-ref)
551 (ir2-convert-conditional node block (template-or-lose 'if-eq)
552 test-ref () node t)))
554 ;;; Return a list of primitive-types that we can pass to
555 ;;; CONTINUATION-RESULT-TNS describing the result types we want for a
556 ;;; template call. We duplicate here the determination of output type
557 ;;; that was done in initially selecting the template, so we know that
558 ;;; the types we find are allowed by the template output type
560 (defun find-template-result-types (call template rtypes)
561 (declare (type combination call)
562 (type template template) (list rtypes))
563 (let* ((dtype (node-derived-type call))
565 (types (mapcar #'primitive-type
566 (if (values-type-p type)
567 (append (values-type-required type)
568 (values-type-optional type))
570 (let ((nvals (length rtypes))
571 (ntypes (length types)))
572 (cond ((< ntypes nvals)
574 (make-list (- nvals ntypes)
575 :initial-element *backend-t-primitive-type*)))
577 (subseq types 0 nvals))
581 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
582 ;;; values to CONT. As an efficiency hack, we pick off the common case
583 ;;; where the continuation is fixed values and has locations that
584 ;;; satisfy the result restrictions. This can fail when there is a
585 ;;; type check or a values count mismatch.
586 (defun make-template-result-tns (call lvar template rtypes)
587 (declare (type combination call) (type (or lvar null) lvar)
588 (type template template) (list rtypes))
589 (let ((2lvar (when lvar (lvar-info lvar))))
590 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
591 (let ((locs (ir2-lvar-locs 2lvar)))
592 (if (and (= (length rtypes) (length locs))
593 (do ((loc locs (cdr loc))
594 (rtype rtypes (cdr rtype)))
596 (unless (operand-restriction-ok
598 (tn-primitive-type (car loc))
604 (find-template-result-types call template rtypes))))
607 (find-template-result-types call template rtypes)))))
609 ;;; Get the operands into TNs, make TN-REFs for them, and then call
610 ;;; the template emit function.
611 (defun ir2-convert-template (call block)
612 (declare (type combination call) (type ir2-block block))
613 (let* ((template (combination-info call))
614 (lvar (node-lvar call))
615 (rtypes (template-result-types template)))
616 (multiple-value-bind (args info-args)
617 (reference-args call block (combination-args call) template)
618 (aver (not (template-more-results-type template)))
619 (if (eq rtypes :conditional)
620 (ir2-convert-conditional call block template args info-args
621 (lvar-dest lvar) nil)
622 (let* ((results (make-template-result-tns call lvar template rtypes))
623 (r-refs (reference-tn-list results t)))
624 (aver (= (length info-args)
625 (template-info-arg-count template)))
627 (emit-template call block template args r-refs info-args)
628 (emit-template call block template args r-refs))
629 (move-lvar-result call block results lvar)))))
632 ;;; We don't have to do much because operand count checking is done by
633 ;;; IR1 conversion. The only difference between this and the function
634 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
636 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
637 (let* ((template (lvar-value template))
638 (info (lvar-value info))
639 (lvar (node-lvar call))
640 (rtypes (template-result-types template))
641 (results (make-template-result-tns call lvar template rtypes))
642 (r-refs (reference-tn-list results t)))
643 (multiple-value-bind (args info-args)
644 (reference-args call block (cddr (combination-args call)) template)
645 (aver (not (template-more-results-type template)))
646 (aver (not (eq rtypes :conditional)))
647 (aver (null info-args))
650 (emit-template call block template args r-refs info)
651 (emit-template call block template args r-refs))
653 (move-lvar-result call block results lvar)))
658 ;;; Convert a LET by moving the argument values into the variables.
659 ;;; Since a LET doesn't have any passing locations, we move the
660 ;;; arguments directly into the variables. We must also allocate any
661 ;;; indirect value cells, since there is no function prologue to do
663 (defun ir2-convert-let (node block fun)
664 (declare (type combination node) (type ir2-block block) (type clambda fun))
665 (mapc (lambda (var arg)
667 (let ((src (lvar-tn node block arg))
668 (dest (leaf-info var)))
669 (if (lambda-var-indirect var)
670 (do-make-value-cell node block src dest)
671 (emit-move node block src dest)))))
672 (lambda-vars fun) (basic-combination-args node))
675 ;;; Emit any necessary moves into assignment temps for a local call to
676 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
677 ;;; values, and (possibly EQ) TNs that are the actual destination of
678 ;;; the arguments. When necessary, we allocate temporaries for
679 ;;; arguments to preserve parallel assignment semantics. These lists
680 ;;; exclude unused arguments and include implicit environment
681 ;;; arguments, i.e. they exactly correspond to the arguments passed.
683 ;;; OLD-FP is the TN currently holding the value we want to pass as
684 ;;; OLD-FP. If null, then the call is to the same environment (an
685 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
686 ;;; environment alone.
687 (defun emit-psetq-moves (node block fun old-fp)
688 (declare (type combination node) (type ir2-block block) (type clambda fun)
689 (type (or tn null) old-fp))
690 (let ((actuals (mapcar (lambda (x)
692 (lvar-tn node block x)))
693 (combination-args node))))
696 (dolist (var (lambda-vars fun))
697 (let ((actual (pop actuals))
698 (loc (leaf-info var)))
701 ((lambda-var-indirect var)
703 (make-normal-tn *backend-t-primitive-type*)))
704 (do-make-value-cell node block actual temp)
706 ((member actual (locs))
707 (let ((temp (make-normal-tn (tn-primitive-type loc))))
708 (emit-move node block actual temp)
715 (let ((this-1env (node-physenv node))
716 (called-env (physenv-info (lambda-physenv fun))))
717 (dolist (thing (ir2-physenv-closure called-env))
718 (temps (find-in-physenv (car thing) this-1env))
721 (locs (ir2-physenv-old-fp called-env))))
723 (values (temps) (locs)))))
725 ;;; A tail-recursive local call is done by emitting moves of stuff
726 ;;; into the appropriate passing locations. After setting up the args
727 ;;; and environment, we just move our return-pc into the called
728 ;;; function's passing location.
729 (defun ir2-convert-tail-local-call (node block fun)
730 (declare (type combination node) (type ir2-block block) (type clambda fun))
731 (let ((this-env (physenv-info (node-physenv node))))
732 (multiple-value-bind (temps locs)
733 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
735 (mapc (lambda (temp loc)
736 (emit-move node block temp loc))
739 (emit-move node block
740 (ir2-physenv-return-pc this-env)
741 (ir2-physenv-return-pc-pass
743 (lambda-physenv fun)))))
747 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
748 ;;; except that the caller and callee environment are the same, so we
749 ;;; don't need to mess with the environment locations, return PC, etc.
750 (defun ir2-convert-assignment (node block fun)
751 (declare (type combination node) (type ir2-block block) (type clambda fun))
752 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
754 (mapc (lambda (temp loc)
755 (emit-move node block temp loc))
759 ;;; Do stuff to set up the arguments to a non-tail local call
760 ;;; (including implicit environment args.) We allocate a frame
761 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
762 ;;; the values to pass and the list of passing location TNs.
763 (defun ir2-convert-local-call-args (node block fun)
764 (declare (type combination node) (type ir2-block block) (type clambda fun))
765 (let ((fp (make-stack-pointer-tn))
766 (nfp (make-number-stack-pointer-tn))
767 (old-fp (make-stack-pointer-tn)))
768 (multiple-value-bind (temps locs)
769 (emit-psetq-moves node block fun old-fp)
770 (vop current-fp node block old-fp)
771 (vop allocate-frame node block
772 (physenv-info (lambda-physenv fun))
774 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
776 ;;; Handle a non-TR known-values local call. We emit the call, then
777 ;;; move the results to the continuation's destination.
778 (defun ir2-convert-local-known-call (node block fun returns lvar start)
779 (declare (type node node) (type ir2-block block) (type clambda fun)
780 (type return-info returns) (type (or lvar null) lvar)
782 (multiple-value-bind (fp nfp temps arg-locs)
783 (ir2-convert-local-call-args node block fun)
784 (let ((locs (return-info-locations returns)))
785 (vop* known-call-local node block
786 (fp nfp (reference-tn-list temps nil))
787 ((reference-tn-list locs t))
788 arg-locs (physenv-info (lambda-physenv fun)) start)
789 (move-lvar-result node block locs lvar)))
792 ;;; Handle a non-TR unknown-values local call. We do different things
793 ;;; depending on what kind of values the continuation wants.
795 ;;; If CONT is :UNKNOWN, then we use the "multiple-" variant, directly
796 ;;; specifying the continuation's LOCS as the VOP results so that we
797 ;;; don't have to do anything after the call.
799 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
800 ;;; then call MOVE-CONTINUATION-RESULT to do any necessary type checks
802 (defun ir2-convert-local-unknown-call (node block fun lvar start)
803 (declare (type node node) (type ir2-block block) (type clambda fun)
804 (type (or lvar null) lvar) (type label start))
805 (multiple-value-bind (fp nfp temps arg-locs)
806 (ir2-convert-local-call-args node block fun)
807 (let ((2lvar (and lvar (lvar-info lvar)))
808 (env (physenv-info (lambda-physenv fun)))
809 (temp-refs (reference-tn-list temps nil)))
810 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
811 (vop* multiple-call-local node block (fp nfp temp-refs)
812 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
814 (let ((locs (standard-result-tns lvar)))
815 (vop* call-local node block
817 ((reference-tn-list locs t))
818 arg-locs env start (length locs))
819 (move-lvar-result node block locs lvar)))))
822 ;;; Dispatch to the appropriate function, depending on whether we have
823 ;;; a let, tail or normal call. If the function doesn't return, call
824 ;;; it using the unknown-value convention. We could compile it as a
825 ;;; tail call, but that might seem confusing in the debugger.
826 (defun ir2-convert-local-call (node block)
827 (declare (type combination node) (type ir2-block block))
828 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
829 (kind (functional-kind fun)))
830 (cond ((eq kind :let)
831 (ir2-convert-let node block fun))
832 ((eq kind :assignment)
833 (ir2-convert-assignment node block fun))
835 (ir2-convert-tail-local-call node block fun))
837 (let ((start (block-label (lambda-block fun)))
838 (returns (tail-set-info (lambda-tail-set fun)))
839 (lvar (node-lvar node)))
841 (return-info-kind returns)
844 (ir2-convert-local-unknown-call node block fun lvar start))
846 (ir2-convert-local-known-call node block fun returns
852 ;;; Given a function continuation FUN, return (VALUES TN-TO-CALL
853 ;;; NAMED-P), where TN-TO-CALL is a TN holding the thing that we call
854 ;;; NAMED-P is true if the thing is named (false if it is a function).
856 ;;; There are two interesting non-named cases:
857 ;;; -- We know it's a function. No check needed: return the
858 ;;; continuation LOC.
859 ;;; -- We don't know what it is.
860 (defun fun-lvar-tn (node block lvar)
861 (declare (type lvar lvar))
862 (let ((2lvar (lvar-info lvar)))
863 (if (eq (ir2-lvar-kind 2lvar) :delayed)
864 (let ((name (lvar-fun-name lvar t)))
866 (values (make-load-time-constant-tn :fdefinition name) t))
867 (let* ((locs (ir2-lvar-locs 2lvar))
869 (function-ptype (primitive-type-or-lose 'function)))
870 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
871 (= (length locs) 1)))
872 (aver (eq (tn-primitive-type loc) function-ptype))
875 ;;; Set up the args to NODE in the current frame, and return a TN-REF
876 ;;; list for the passing locations.
877 (defun move-tail-full-call-args (node block)
878 (declare (type combination node) (type ir2-block block))
879 (let ((args (basic-combination-args node))
882 (dotimes (num (length args))
883 (let ((loc (standard-arg-location num)))
884 (emit-move node block (lvar-tn node block (elt args num)) loc)
885 (let ((ref (reference-tn loc nil)))
887 (setf (tn-ref-across last) ref)
892 ;;; Move the arguments into the passing locations and do a (possibly
893 ;;; named) tail call.
894 (defun ir2-convert-tail-full-call (node block)
895 (declare (type combination node) (type ir2-block block))
896 (let* ((env (physenv-info (node-physenv node)))
897 (args (basic-combination-args node))
898 (nargs (length args))
899 (pass-refs (move-tail-full-call-args node block))
900 (old-fp (ir2-physenv-old-fp env))
901 (return-pc (ir2-physenv-return-pc env)))
903 (multiple-value-bind (fun-tn named)
904 (fun-lvar-tn node block (basic-combination-fun node))
906 (vop* tail-call-named node block
907 (fun-tn old-fp return-pc pass-refs)
910 (vop* tail-call node block
911 (fun-tn old-fp return-pc pass-refs)
917 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
918 (defun ir2-convert-full-call-args (node block)
919 (declare (type combination node) (type ir2-block block))
920 (let* ((args (basic-combination-args node))
921 (fp (make-stack-pointer-tn))
922 (nargs (length args)))
923 (vop allocate-full-call-frame node block nargs fp)
928 (locs (standard-arg-location num))
929 (let ((ref (reference-tn (lvar-tn node block (elt args num))
932 (setf (tn-ref-across last) ref)
936 (values fp first (locs) nargs)))))
938 ;;; Do full call when a fixed number of values are desired. We make
939 ;;; STANDARD-RESULT-TNS for our continuation, then deliver the result
940 ;;; using MOVE-CONTINUATION-RESULT. We do named or normal call, as
942 (defun ir2-convert-fixed-full-call (node block)
943 (declare (type combination node) (type ir2-block block))
944 (multiple-value-bind (fp args arg-locs nargs)
945 (ir2-convert-full-call-args node block)
946 (let* ((lvar (node-lvar node))
947 (locs (standard-result-tns lvar))
948 (loc-refs (reference-tn-list locs t))
949 (nvals (length locs)))
950 (multiple-value-bind (fun-tn named)
951 (fun-lvar-tn node block (basic-combination-fun node))
953 (vop* call-named node block (fp fun-tn args) (loc-refs)
954 arg-locs nargs nvals)
955 (vop* call node block (fp fun-tn args) (loc-refs)
956 arg-locs nargs nvals))
957 (move-lvar-result node block locs lvar))))
960 ;;; Do full call when unknown values are desired.
961 (defun ir2-convert-multiple-full-call (node block)
962 (declare (type combination node) (type ir2-block block))
963 (multiple-value-bind (fp args arg-locs nargs)
964 (ir2-convert-full-call-args node block)
965 (let* ((lvar (node-lvar node))
966 (locs (ir2-lvar-locs (lvar-info lvar)))
967 (loc-refs (reference-tn-list locs t)))
968 (multiple-value-bind (fun-tn named)
969 (fun-lvar-tn node block (basic-combination-fun node))
971 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
973 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
977 ;;; stuff to check in PONDER-FULL-CALL
979 ;;; There are some things which are intended always to be optimized
980 ;;; away by DEFTRANSFORMs and such, and so never compiled into full
981 ;;; calls. This has been a source of bugs so many times that it seems
982 ;;; worth listing some of them here so that we can check the list
983 ;;; whenever we compile a full call.
985 ;;; FIXME: It might be better to represent this property by setting a
986 ;;; flag in DEFKNOWN, instead of representing it by membership in this
988 (defvar *always-optimized-away*
989 '(;; This should always be DEFTRANSFORMed away, but wasn't in a bug
990 ;; reported to cmucl-imp 2000-06-20.
992 ;; These should always turn into VOPs, but wasn't in a bug which
993 ;; appeared when LTN-POLICY stuff was being tweaked in
994 ;; sbcl-0.6.9.16. in sbcl-0.6.0
998 ;;; more stuff to check in PONDER-FULL-CALL
1000 ;;; These came in handy when troubleshooting cold boot after making
1001 ;;; major changes in the package structure: various transforms and
1002 ;;; VOPs and stuff got attached to the wrong symbol, so that
1003 ;;; references to the right symbol were bogusly translated as full
1004 ;;; calls instead of primitives, sending the system off into infinite
1005 ;;; space. Having a report on all full calls generated makes it easier
1006 ;;; to figure out what form caused the problem this time.
1007 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1008 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1010 ;;; Do some checks (and store some notes relevant for future checks)
1012 ;;; * Is this a full call to something we have reason to know should
1013 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1014 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1016 ;;; * Is this a full call to (SETF FOO) which might conflict with
1017 ;;; a DEFSETF or some such thing elsewhere in the program?
1018 (defun ponder-full-call (node)
1019 (let* ((lvar (basic-combination-fun node))
1020 (fname (lvar-fun-name lvar t)))
1021 (declare (type (or symbol cons) fname))
1023 #!+sb-show (unless (gethash fname *full-called-fnames*)
1024 (setf (gethash fname *full-called-fnames*) t))
1025 #!+sb-show (when *show-full-called-fnames-p*
1026 (/show "converting full call to named function" fname)
1027 (/show (basic-combination-args node))
1028 (/show (policy node speed) (policy node safety))
1029 (/show (policy node compilation-speed))
1030 (let ((arg-types (mapcar (lambda (lvar)
1034 (basic-combination-args node))))
1037 ;; When illegal code is compiled, all sorts of perverse paths
1038 ;; through the compiler can be taken, and it's much harder -- and
1039 ;; probably pointless -- to guarantee that always-optimized-away
1040 ;; functions are actually optimized away. Thus, we skip the check
1043 (when (memq fname *always-optimized-away*)
1044 (/show (policy node speed) (policy node safety))
1045 (/show (policy node compilation-speed))
1046 (bug "full call to ~S" fname)))
1049 (aver (legal-fun-name-p fname))
1050 (destructuring-bind (setfoid &rest stem) fname
1051 (when (eq setfoid 'setf)
1052 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1054 ;;; If the call is in a tail recursive position and the return
1055 ;;; convention is standard, then do a tail full call. If one or fewer
1056 ;;; values are desired, then use a single-value call, otherwise use a
1057 ;;; multiple-values call.
1058 (defun ir2-convert-full-call (node block)
1059 (declare (type combination node) (type ir2-block block))
1060 (ponder-full-call node)
1061 (cond ((node-tail-p node)
1062 (ir2-convert-tail-full-call node block))
1063 ((let ((lvar (node-lvar node)))
1065 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1066 (ir2-convert-multiple-full-call node block))
1068 (ir2-convert-fixed-full-call node block)))
1071 ;;;; entering functions
1073 ;;; Do all the stuff that needs to be done on XEP entry:
1074 ;;; -- Create frame.
1075 ;;; -- Copy any more arg.
1076 ;;; -- Set up the environment, accessing any closure variables.
1077 ;;; -- Move args from the standard passing locations to their internal
1079 (defun init-xep-environment (node block fun)
1080 (declare (type bind node) (type ir2-block block) (type clambda fun))
1081 (let ((start-label (entry-info-offset (leaf-info fun)))
1082 (env (physenv-info (node-physenv node))))
1083 (let ((ef (functional-entry-fun fun)))
1084 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1085 ;; Special case the xep-allocate-frame + copy-more-arg case.
1086 (vop xep-allocate-frame node block start-label t)
1087 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1089 ;; No more args, so normal entry.
1090 (vop xep-allocate-frame node block start-label nil)))
1091 (if (ir2-physenv-closure env)
1092 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1093 (vop setup-closure-environment node block start-label closure)
1094 (when (getf (functional-plist ef) :fin-function)
1095 (vop funcallable-instance-lexenv node block closure closure))
1097 (dolist (loc (ir2-physenv-closure env))
1098 (vop closure-ref node block closure (incf n) (cdr loc)))))
1099 (vop setup-environment node block start-label)))
1101 (unless (eq (functional-kind fun) :toplevel)
1102 (let ((vars (lambda-vars fun))
1104 (when (leaf-refs (first vars))
1105 (emit-move node block (make-arg-count-location)
1106 (leaf-info (first vars))))
1107 (dolist (arg (rest vars))
1108 (when (leaf-refs arg)
1109 (let ((pass (standard-arg-location n))
1110 (home (leaf-info arg)))
1111 (if (lambda-var-indirect arg)
1112 (do-make-value-cell node block pass home)
1113 (emit-move node block pass home))))
1116 (emit-move node block (make-old-fp-passing-location t)
1117 (ir2-physenv-old-fp env)))
1121 ;;; Emit function prolog code. This is only called on bind nodes for
1122 ;;; functions that allocate environments. All semantics of let calls
1123 ;;; are handled by IR2-CONVERT-LET.
1125 ;;; If not an XEP, all we do is move the return PC from its passing
1126 ;;; location, since in a local call, the caller allocates the frame
1127 ;;; and sets up the arguments.
1128 (defun ir2-convert-bind (node block)
1129 (declare (type bind node) (type ir2-block block))
1130 (let* ((fun (bind-lambda node))
1131 (env (physenv-info (lambda-physenv fun))))
1132 (aver (member (functional-kind fun)
1133 '(nil :external :optional :toplevel :cleanup)))
1136 (init-xep-environment node block fun)
1138 (when *collect-dynamic-statistics*
1139 (vop count-me node block *dynamic-counts-tn*
1140 (block-number (ir2-block-block block)))))
1144 (ir2-physenv-return-pc-pass env)
1145 (ir2-physenv-return-pc env))
1147 (let ((lab (gen-label)))
1148 (setf (ir2-physenv-environment-start env) lab)
1149 (vop note-environment-start node block lab)))
1153 ;;;; function return
1155 ;;; Do stuff to return from a function with the specified values and
1156 ;;; convention. If the return convention is :FIXED and we aren't
1157 ;;; returning from an XEP, then we do a known return (letting
1158 ;;; representation selection insert the correct move-arg VOPs.)
1159 ;;; Otherwise, we use the unknown-values convention. If there is a
1160 ;;; fixed number of return values, then use RETURN, otherwise use
1161 ;;; RETURN-MULTIPLE.
1162 (defun ir2-convert-return (node block)
1163 (declare (type creturn node) (type ir2-block block))
1164 (let* ((lvar (return-result node))
1165 (2lvar (lvar-info lvar))
1166 (lvar-kind (ir2-lvar-kind 2lvar))
1167 (fun (return-lambda node))
1168 (env (physenv-info (lambda-physenv fun)))
1169 (old-fp (ir2-physenv-old-fp env))
1170 (return-pc (ir2-physenv-return-pc env))
1171 (returns (tail-set-info (lambda-tail-set fun))))
1173 ((and (eq (return-info-kind returns) :fixed)
1175 (let ((locs (lvar-tns node block lvar
1176 (return-info-types returns))))
1177 (vop* known-return node block
1178 (old-fp return-pc (reference-tn-list locs nil))
1180 (return-info-locations returns))))
1181 ((eq lvar-kind :fixed)
1182 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1183 (lvar-locs (lvar-tns node block lvar types))
1184 (nvals (length lvar-locs))
1185 (locs (make-standard-value-tns nvals)))
1186 (mapc (lambda (val loc)
1187 (emit-move node block val loc))
1191 (vop return-single node block old-fp return-pc (car locs))
1192 (vop* return node block
1193 (old-fp return-pc (reference-tn-list locs nil))
1197 (aver (eq lvar-kind :unknown))
1198 (vop* return-multiple node block
1200 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1207 ;;; This is used by the debugger to find the top function on the
1208 ;;; stack. It returns the OLD-FP and RETURN-PC for the current
1209 ;;; function as multiple values.
1210 (defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block)
1211 (let ((ir2-physenv (physenv-info (node-physenv node))))
1212 (move-lvar-result node block
1213 (list (ir2-physenv-old-fp ir2-physenv)
1214 (ir2-physenv-return-pc ir2-physenv))
1217 ;;;; multiple values
1219 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1220 ;;; the lvarinuation for the correct number of values (with the
1221 ;;; continuation user responsible for defaulting), we can just pick
1222 ;;; them up from the continuation.
1223 (defun ir2-convert-mv-bind (node block)
1224 (declare (type mv-combination node) (type ir2-block block))
1225 (let* ((lvar (first (basic-combination-args node)))
1226 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1227 (vars (lambda-vars fun)))
1228 (aver (eq (functional-kind fun) :mv-let))
1229 (mapc (lambda (src var)
1230 (when (leaf-refs var)
1231 (let ((dest (leaf-info var)))
1232 (if (lambda-var-indirect var)
1233 (do-make-value-cell node block src dest)
1234 (emit-move node block src dest)))))
1235 (lvar-tns node block lvar
1237 (primitive-type (leaf-type x)))
1242 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1243 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1244 ;;; the first argument: all the other argument continuation TNs are
1245 ;;; ignored. This is because we require all of the values globs to be
1246 ;;; contiguous and on stack top.
1247 (defun ir2-convert-mv-call (node block)
1248 (declare (type mv-combination node) (type ir2-block block))
1249 (aver (basic-combination-args node))
1250 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1251 (start (first (ir2-lvar-locs start-lvar)))
1252 (tails (and (node-tail-p node)
1253 (lambda-tail-set (node-home-lambda node))))
1254 (lvar (node-lvar node))
1255 (2lvar (and lvar (lvar-info lvar))))
1256 (multiple-value-bind (fun named)
1257 (fun-lvar-tn node block (basic-combination-fun node))
1258 (aver (and (not named)
1259 (eq (ir2-lvar-kind start-lvar) :unknown)))
1262 (let ((env (physenv-info (node-physenv node))))
1263 (vop tail-call-variable node block start fun
1264 (ir2-physenv-old-fp env)
1265 (ir2-physenv-return-pc env))))
1267 (eq (ir2-lvar-kind 2lvar) :unknown))
1268 (vop* multiple-call-variable node block (start fun nil)
1269 ((reference-tn-list (ir2-lvar-locs 2lvar) t))))
1271 (let ((locs (standard-result-tns lvar)))
1272 (vop* call-variable node block (start fun nil)
1273 ((reference-tn-list locs t)) (length locs))
1274 (move-lvar-result node block locs lvar)))))))
1276 ;;; Reset the stack pointer to the start of the specified
1277 ;;; unknown-values continuation (discarding it and all values globs on
1279 (defoptimizer (%pop-values ir2-convert) ((lvar) node block)
1280 (let ((2lvar (lvar-info (lvar-value lvar))))
1281 (aver (eq (ir2-lvar-kind 2lvar) :unknown))
1282 (vop reset-stack-pointer node block
1283 (first (ir2-lvar-locs 2lvar)))))
1285 ;;; Deliver the values TNs to CONT using MOVE-CONTINUATION-RESULT.
1286 (defoptimizer (values ir2-convert) ((&rest values) node block)
1287 (let ((tns (mapcar (lambda (x)
1288 (lvar-tn node block x))
1290 (move-lvar-result node block tns (node-lvar node))))
1292 ;;; In the normal case where unknown values are desired, we use the
1293 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1294 ;;; for a fixed number of values, we punt by doing a full call to the
1295 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1296 ;;; defaulting any unsupplied values. It seems unworthwhile to
1297 ;;; optimize this case.
1298 (defoptimizer (values-list ir2-convert) ((list) node block)
1299 (let* ((lvar (node-lvar node))
1300 (2lvar (and lvar (lvar-info lvar))))
1302 (eq (ir2-lvar-kind 2lvar) :unknown))
1303 (let ((locs (ir2-lvar-locs 2lvar)))
1304 (vop* values-list node block
1305 ((lvar-tn node block list) nil)
1306 ((reference-tn-list locs t)))))
1307 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1308 (eq (ir2-lvar-kind 2lvar) :fixed)))
1309 (ir2-convert-full-call node block)))))
1311 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1312 (binding* ((lvar (node-lvar node) :exit-if-null)
1313 (2lvar (lvar-info lvar)))
1314 (ecase (ir2-lvar-kind 2lvar)
1315 (:fixed (ir2-convert-full-call node block))
1317 (let ((locs (ir2-lvar-locs 2lvar)))
1318 (vop* %more-arg-values node block
1319 ((lvar-tn node block context)
1320 (lvar-tn node block start)
1321 (lvar-tn node block count)
1323 ((reference-tn-list locs t))))))))
1325 ;;;; special binding
1327 ;;; This is trivial, given our assumption of a shallow-binding
1329 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1330 (let ((name (leaf-source-name (lvar-value var))))
1331 (vop bind node block (lvar-tn node block value)
1332 (emit-constant name))))
1333 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1334 (vop unbind node block))
1336 ;;; ### It's not clear that this really belongs in this file, or
1337 ;;; should really be done this way, but this is the least violation of
1338 ;;; abstraction in the current setup. We don't want to wire
1339 ;;; shallow-binding assumptions into IR1tran.
1340 (def-ir1-translator progv
1341 ((vars vals &body body) start next result)
1344 (with-unique-names (bind unbind)
1345 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1348 (labels ((,unbind (vars)
1349 (declare (optimize (speed 2) (debug 0)))
1351 (%primitive bind nil var)
1354 (declare (optimize (speed 2) (debug 0)))
1356 ((null vals) (,unbind vars))
1360 (,bind (cdr vars) (cdr vals))))))
1361 (,bind ,vars ,vals))
1364 (%primitive unbind-to-here ,n-save-bs))))))
1368 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1369 ;;; environment. Note that this is never called on the escape exits
1370 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1372 (defun ir2-convert-exit (node block)
1373 (declare (type exit node) (type ir2-block block))
1374 (let ((loc (find-in-physenv (find-nlx-info node)
1375 (node-physenv node)))
1376 (temp (make-stack-pointer-tn))
1377 (value (exit-value node)))
1378 (vop value-cell-ref node block loc temp)
1380 (let ((locs (ir2-lvar-locs (lvar-info value))))
1381 (vop unwind node block temp (first locs) (second locs)))
1382 (let ((0-tn (emit-constant 0)))
1383 (vop unwind node block temp 0-tn 0-tn))))
1387 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1388 ;;; being entirely deleted.
1389 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1391 ;;; This function invalidates a lexical exit on exiting from the
1392 ;;; dynamic extent. This is done by storing 0 into the indirect value
1393 ;;; cell that holds the closed unwind block.
1394 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1395 (vop value-cell-set node block
1396 (find-in-physenv (lvar-value info) (node-physenv node))
1399 ;;; We have to do a spurious move of no values to the result
1400 ;;; continuation so that lifetime analysis won't get confused.
1401 (defun ir2-convert-throw (node block)
1402 (declare (type mv-combination node) (type ir2-block block))
1403 (let ((args (basic-combination-args node)))
1404 (check-catch-tag-type (first args))
1405 (vop* throw node block
1406 ((lvar-tn node block (first args))
1408 (ir2-lvar-locs (lvar-info (second args)))
1411 (move-lvar-result node block () (node-lvar node))
1414 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1415 ;;; exit, and TAG is the continuation for the catch tag (if any.) We
1416 ;;; get at the target PC by passing in the label to the vop. The vop
1417 ;;; is responsible for building a return-PC object.
1418 (defun emit-nlx-start (node block info tag)
1419 (declare (type node node) (type ir2-block block) (type nlx-info info)
1420 (type (or lvar null) tag))
1421 (let* ((2info (nlx-info-info info))
1422 (kind (cleanup-kind (nlx-info-cleanup info)))
1423 (block-tn (physenv-live-tn
1424 (make-normal-tn (primitive-type-or-lose 'catch-block))
1425 (node-physenv node)))
1426 (res (make-stack-pointer-tn))
1427 (target-label (ir2-nlx-info-target 2info)))
1429 (vop current-binding-pointer node block
1430 (car (ir2-nlx-info-dynamic-state 2info)))
1431 (vop* save-dynamic-state node block
1433 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1434 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1438 (vop make-catch-block node block block-tn
1439 (lvar-tn node block tag) target-label res))
1440 ((:unwind-protect :block :tagbody)
1441 (vop make-unwind-block node block block-tn target-label res)))
1445 (do-make-value-cell node block res (ir2-nlx-info-home 2info)))
1447 (vop set-unwind-protect node block block-tn))
1452 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1453 (defun ir2-convert-entry (node block)
1454 (declare (type entry node) (type ir2-block block))
1455 (dolist (exit (entry-exits node))
1456 (let ((info (find-nlx-info exit)))
1458 (member (cleanup-kind (nlx-info-cleanup info))
1459 '(:block :tagbody)))
1460 (emit-nlx-start node block info nil))))
1463 ;;; Set up the unwind block for these guys.
1464 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1465 (check-catch-tag-type tag)
1466 (emit-nlx-start node block (lvar-value info-lvar) tag))
1467 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1468 (emit-nlx-start node block (lvar-value info-lvar) nil))
1470 ;;; Emit the entry code for a non-local exit. We receive values and
1471 ;;; restore dynamic state.
1473 ;;; In the case of a lexical exit or CATCH, we look at the exit
1474 ;;; continuation's kind to determine which flavor of entry VOP to
1475 ;;; emit. If unknown values, emit the xxx-MULTIPLE variant to the
1476 ;;; continuation locs. If fixed values, make the appropriate number of
1477 ;;; temps in the standard values locations and use the other variant,
1478 ;;; delivering the temps to the continuation using
1479 ;;; MOVE-CONTINUATION-RESULT.
1481 ;;; In the UNWIND-PROTECT case, we deliver the first register
1482 ;;; argument, the argument count and the argument pointer to our
1483 ;;; continuation as multiple values. These values are the block exited
1484 ;;; to and the values start and count.
1486 ;;; After receiving values, we restore dynamic state. Except in the
1487 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1488 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1489 ;;; pointer alone, since the thrown values are still out there.
1490 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1491 (let* ((info (lvar-value info-lvar))
1492 (lvar (nlx-info-lvar info))
1493 (2info (nlx-info-info info))
1494 (top-loc (ir2-nlx-info-save-sp 2info))
1495 (start-loc (make-nlx-entry-arg-start-location))
1496 (count-loc (make-arg-count-location))
1497 (target (ir2-nlx-info-target 2info)))
1499 (ecase (cleanup-kind (nlx-info-cleanup info))
1500 ((:catch :block :tagbody)
1501 (let ((2lvar (and lvar (lvar-info lvar))))
1502 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1503 (vop* nlx-entry-multiple node block
1504 (top-loc start-loc count-loc nil)
1505 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1507 (let ((locs (standard-result-tns lvar)))
1508 (vop* nlx-entry node block
1509 (top-loc start-loc count-loc nil)
1510 ((reference-tn-list locs t))
1513 (move-lvar-result node block locs lvar)))))
1515 (let ((block-loc (standard-arg-location 0)))
1516 (vop uwp-entry node block target block-loc start-loc count-loc)
1519 (list block-loc start-loc count-loc)
1523 (when *collect-dynamic-statistics*
1524 (vop count-me node block *dynamic-counts-tn*
1525 (block-number (ir2-block-block block))))
1527 (vop* restore-dynamic-state node block
1528 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1530 (vop unbind-to-here node block
1531 (car (ir2-nlx-info-dynamic-state 2info)))))
1533 ;;;; n-argument functions
1535 (macrolet ((def (name)
1536 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1537 (let* ((refs (move-tail-full-call-args node block))
1538 (lvar (node-lvar node))
1539 (res (lvar-result-tns
1541 (list (primitive-type (specifier-type 'list))))))
1542 (vop* ,name node block (refs) ((first res) nil)
1544 (move-lvar-result node block res lvar)))))
1548 ;;; Convert the code in a component into VOPs.
1549 (defun ir2-convert (component)
1550 (declare (type component component))
1551 (let (#!+sb-dyncount
1552 (*dynamic-counts-tn*
1553 (when *collect-dynamic-statistics*
1555 (block-number (block-next (component-head component))))
1556 (counts (make-array blocks
1557 :element-type '(unsigned-byte 32)
1558 :initial-element 0))
1559 (info (make-dyncount-info
1560 :for (component-name component)
1561 :costs (make-array blocks
1562 :element-type '(unsigned-byte 32)
1565 (setf (ir2-component-dyncount-info (component-info component))
1567 (emit-constant info)
1568 (emit-constant counts)))))
1570 (declare (type index num))
1571 (do-ir2-blocks (2block component)
1572 (let ((block (ir2-block-block 2block)))
1573 (when (block-start block)
1574 (setf (block-number block) num)
1576 (when *collect-dynamic-statistics*
1577 (let ((first-node (block-start-node block)))
1578 (unless (or (and (bind-p first-node)
1579 (xep-p (bind-lambda first-node)))
1581 (node-lvar first-node))
1586 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1588 (ir2-convert-block block)
1592 ;;; If necessary, emit a terminal unconditional branch to go to the
1593 ;;; successor block. If the successor is the component tail, then
1594 ;;; there isn't really any successor, but if the end is an unknown,
1595 ;;; non-tail call, then we emit an error trap just in case the
1596 ;;; function really does return.
1597 (defun finish-ir2-block (block)
1598 (declare (type cblock block))
1599 (let* ((2block (block-info block))
1600 (last (block-last block))
1601 (succ (block-succ block)))
1603 (aver (singleton-p succ))
1604 (let ((target (first succ)))
1605 (cond ((eq target (component-tail (block-component block)))
1606 (when (and (basic-combination-p last)
1607 (eq (basic-combination-kind last) :full))
1608 (let* ((fun (basic-combination-fun last))
1609 (use (lvar-uses fun))
1610 (name (and (ref-p use)
1611 (leaf-has-source-name-p (ref-leaf use))
1612 (leaf-source-name (ref-leaf use)))))
1613 (unless (or (node-tail-p last)
1614 (info :function :info name)
1615 (policy last (zerop safety)))
1616 (vop nil-fun-returned-error last 2block
1618 (emit-constant name)
1619 (multiple-value-bind (tn named)
1620 (fun-lvar-tn last 2block fun)
1623 ((not (eq (ir2-block-next 2block) (block-info target)))
1624 (vop branch last 2block (block-label target)))))))
1628 ;;; Convert the code in a block into VOPs.
1629 (defun ir2-convert-block (block)
1630 (declare (type cblock block))
1631 (let ((2block (block-info block)))
1632 (do-nodes (node lvar block)
1636 (let ((2lvar (lvar-info lvar)))
1637 ;; function REF in a local call is not annotated
1638 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1639 (ir2-convert-ref node 2block)))))
1641 (let ((kind (basic-combination-kind node)))
1644 (ir2-convert-local-call node 2block))
1646 (ir2-convert-full-call node 2block))
1648 (let ((fun (fun-info-ir2-convert kind)))
1650 (funcall fun node 2block))
1651 ((eq (basic-combination-info node) :full)
1652 (ir2-convert-full-call node 2block))
1654 (ir2-convert-template node 2block))))))))
1656 (when (lvar-info (if-test node))
1657 (ir2-convert-if node 2block)))
1659 (let ((fun (bind-lambda node)))
1660 (when (eq (lambda-home fun) fun)
1661 (ir2-convert-bind node 2block))))
1663 (ir2-convert-return node 2block))
1665 (ir2-convert-set node 2block))
1667 (ir2-convert-cast node 2block))
1670 ((eq (basic-combination-kind node) :local)
1671 (ir2-convert-mv-bind node 2block))
1672 ((eq (lvar-fun-name (basic-combination-fun node))
1674 (ir2-convert-throw node 2block))
1676 (ir2-convert-mv-call node 2block))))
1678 (when (exit-entry node)
1679 (ir2-convert-exit node 2block)))
1681 (ir2-convert-entry node 2block)))))
1683 (finish-ir2-block block)