1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
41 (template-or-lose name)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
52 (emit-move-template node block (type-check-template type) value result)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (let* ((leaf (tn-leaf res))
60 (dx (when leaf (leaf-dynamic-extent leaf))))
61 (when (and dx (neq :truly dx) (leaf-has-source-name-p leaf))
62 (compiler-notify "cannot stack allocate value cell for ~S" (leaf-source-name leaf)))
63 (vop make-value-cell node block value
70 ;;; Return the TN that holds the value of THING in the environment ENV.
71 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
73 (defun find-in-physenv (thing physenv)
74 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
77 ;; I think that a failure of this assertion means that we're
78 ;; trying to access a variable which was improperly closed
79 ;; over. The PHYSENV describes a physical environment. Every
80 ;; variable that a form refers to should either be in its
81 ;; physical environment directly, or grabbed from a
82 ;; surrounding physical environment when it was closed over.
83 ;; The ASSOC expression above finds closed-over variables, so
84 ;; if we fell through the ASSOC expression, it wasn't closed
85 ;; over. Therefore, it must be in our physical environment
86 ;; directly. If instead it is in some other physical
87 ;; environment, then it's bogus for us to reference it here
88 ;; without it being closed over. -- WHN 2001-09-29
89 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
92 (aver (eq physenv (block-physenv (nlx-info-target thing))))
93 (ir2-nlx-info-home (nlx-info-info thing)))
96 (entry-info-closure-tn (lambda-info thing))))
97 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
99 ;;; If LEAF already has a constant TN, return that, otherwise make a
101 (defun constant-tn (leaf)
102 (declare (type constant leaf))
104 (setf (leaf-info leaf)
105 (make-constant-tn leaf))))
107 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
108 ;;; isn't directly represented by a TN. ENV is the environment that
109 ;;; the reference is done in.
110 (defun leaf-tn (leaf env)
111 (declare (type leaf leaf) (type physenv env))
114 (unless (lambda-var-indirect leaf)
115 (find-in-physenv leaf env)))
116 (constant (constant-tn leaf))
119 ;;; This is used to conveniently get a handle on a constant TN during
120 ;;; IR2 conversion. It returns a constant TN representing the Lisp
122 (defun emit-constant (value)
123 (constant-tn (find-constant value)))
125 ;;; Convert a REF node. The reference must not be delayed.
126 (defun ir2-convert-ref (node block)
127 (declare (type ref node) (type ir2-block block))
128 (let* ((lvar (node-lvar node))
129 (leaf (ref-leaf node))
130 (locs (lvar-result-tns
131 lvar (list (primitive-type (leaf-type leaf)))))
135 (let ((tn (find-in-physenv leaf (node-physenv node))))
136 (if (lambda-var-indirect leaf)
137 (vop value-cell-ref node block tn res)
138 (emit-move node block tn res))))
140 (emit-move node block (constant-tn leaf) res))
142 (ir2-convert-closure node block leaf res))
144 (let ((unsafe (policy node (zerop safety)))
145 (name (leaf-source-name leaf)))
146 (ecase (global-var-kind leaf)
148 (aver (symbolp name))
149 (let ((name-tn (emit-constant name)))
150 (if (or unsafe (info :variable :always-bound name))
151 (vop fast-symbol-value node block name-tn res)
152 (vop symbol-value node block name-tn res))))
154 (aver (symbolp name))
155 (let ((name-tn (emit-constant name)))
156 (if (or unsafe (info :variable :always-bound name))
157 (vop fast-symbol-global-value node block name-tn res)
158 (vop symbol-global-value node block name-tn res))))
160 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
162 (vop fdefn-fun node block fdefn-tn res)
163 (vop safe-fdefn-fun node block fdefn-tn res))))))))
164 (move-lvar-result node block locs lvar))
167 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
168 (defun assertions-on-ir2-converted-clambda (clambda)
169 ;; This assertion was sort of an experiment. It would be nice and
170 ;; sane and easier to understand things if it were *always* true,
171 ;; but experimentally I observe that it's only *almost* always
172 ;; true. -- WHN 2001-01-02
174 (aver (eql (lambda-component clambda)
175 (block-component (ir2-block-block ir2-block))))
176 ;; Check for some weirdness which came up in bug
179 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
180 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
182 ;; * treats every HANDLEless :ENTRY record into a
184 ;; * expects every patch to correspond to an
185 ;; IR2-COMPONENT-ENTRIES record.
186 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
187 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
188 ;; was a HANDLEless :ENTRY record which didn't correspond to an
189 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
190 ;; when it's caught at dump time, so this assertion tries to catch
192 (aver (member clambda
193 (component-lambdas (lambda-component clambda))))
194 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
195 ;; used as a queue for stuff pending to do in IR1, and now that
196 ;; we're doing IR2 it should've been completely flushed (but
198 (aver (null (component-new-functionals (lambda-component clambda))))
201 ;;; Emit code to load a function object implementing FUNCTIONAL into
202 ;;; RES. This gets interesting when the referenced function is a
203 ;;; closure: we must make the closure and move the closed-over values
206 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
207 ;;; for the called function, since local call analysis converts all
208 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
211 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
212 ;;; don't initialize that slot. This can happen with closures over
213 ;;; top level variables, where optimization of the closure deleted the
214 ;;; variable. Since we committed to the closure format when we
215 ;;; pre-analyzed the top level code, we just leave an empty slot.
216 (defun ir2-convert-closure (ref ir2-block functional res)
217 (declare (type ref ref)
218 (type ir2-block ir2-block)
219 (type functional functional)
221 (aver (not (eql (functional-kind functional) :deleted)))
222 (unless (leaf-info functional)
223 (setf (leaf-info functional)
224 (make-entry-info :name (functional-debug-name functional))))
225 (let ((closure (etypecase functional
227 (assertions-on-ir2-converted-clambda functional)
228 (physenv-closure (get-lambda-physenv functional)))
230 (aver (eq (functional-kind functional) :toplevel-xep))
234 (let* ((physenv (node-physenv ref))
235 (tn (find-in-physenv functional physenv)))
236 (emit-move ref ir2-block tn res)))
238 (let ((entry (make-load-time-constant-tn :entry functional)))
239 (emit-move ref ir2-block entry res)))))
242 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
243 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
244 (when (lvar-dynamic-extent leaves)
245 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
246 (setf (ir2-lvar-kind info) :delayed)
247 (setf (lvar-info leaves) info)
248 (setf (ir2-lvar-stack-pointer info)
249 (make-stack-pointer-tn)))))
251 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
252 (let ((dx-p (lvar-dynamic-extent leaves)))
255 (vop current-stack-pointer call 2block
256 (ir2-lvar-stack-pointer (lvar-info leaves))))
257 (dolist (leaf (lvar-value leaves))
258 (binding* ((xep (functional-entry-fun leaf) :exit-if-null)
259 (nil (aver (xep-p xep)))
260 (entry-info (lambda-info xep) :exit-if-null)
261 (tn (entry-info-closure-tn entry-info) :exit-if-null)
262 (closure (physenv-closure (get-lambda-physenv xep)))
263 (entry (make-load-time-constant-tn :entry xep)))
264 (let ((this-env (node-physenv call))
265 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
266 (vop make-closure call 2block entry (length closure)
268 (loop for what in closure and n from 0 do
269 (unless (and (lambda-var-p what)
270 (null (leaf-refs what)))
271 ;; In LABELS a closure may refer to another closure
272 ;; in the same group, so we must be sure that we
273 ;; store a closure only after its creation.
275 ;; TODO: Here is a simple solution: we postpone
276 ;; putting of all closures after all creations
277 ;; (though it may require more registers).
279 (delayed (list tn (find-in-physenv what this-env) n))
280 (vop closure-init call 2block
282 (find-in-physenv what this-env)
284 (loop for (tn what n) in (delayed)
285 do (vop closure-init call 2block
289 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
290 ;;; deliver the value to that lvar. If the var is a lexical variable
291 ;;; with no refs, then we don't actually set anything, since the
292 ;;; variable has been deleted.
293 (defun ir2-convert-set (node block)
294 (declare (type cset node) (type ir2-block block))
295 (let* ((lvar (node-lvar node))
296 (leaf (set-var node))
297 (val (lvar-tn node block (set-value node)))
300 lvar (list (primitive-type (leaf-type leaf))))
304 (when (leaf-refs leaf)
305 (let ((tn (find-in-physenv leaf (node-physenv node))))
306 (if (lambda-var-indirect leaf)
307 (vop value-cell-set node block tn val)
308 (emit-move node block val tn)))))
310 (aver (symbolp (leaf-source-name leaf)))
311 (ecase (global-var-kind leaf)
313 (vop set node block (emit-constant (leaf-source-name leaf)) val))
315 (vop %set-symbol-global-value node
316 block (emit-constant (leaf-source-name leaf)) val)))))
318 (emit-move node block val (first locs))
319 (move-lvar-result node block locs lvar)))
322 ;;;; utilities for receiving fixed values
324 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
325 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
326 ;;; single-value lvar.
328 ;;; The primitive-type of the result will always be the same as the
329 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
330 ;;; TNs that satisfy the operand primitive-type restriction. We may
331 ;;; have to make a temporary of the desired type and move the actual
332 ;;; lvar TN into it. This happens when we delete a type check in
333 ;;; unsafe code or when we locally know something about the type of an
334 ;;; argument variable.
335 (defun lvar-tn (node block lvar)
336 (declare (type node node) (type ir2-block block) (type lvar lvar))
337 (let* ((2lvar (lvar-info lvar))
339 (ecase (ir2-lvar-kind 2lvar)
341 (let ((ref (lvar-uses lvar)))
342 (leaf-tn (ref-leaf ref) (node-physenv ref))))
344 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
345 (first (ir2-lvar-locs 2lvar)))))
346 (ptype (ir2-lvar-primitive-type 2lvar)))
348 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
350 (let ((temp (make-normal-tn ptype)))
351 (emit-move node block lvar-tn temp)
354 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
355 ;;; TNs holding the values of LVAR with PTYPES as their primitive
356 ;;; types. LVAR must be annotated for the same number of fixed values
357 ;;; are there are PTYPES.
359 ;;; If the lvar has a type check, check the values into temps and
360 ;;; return the temps. When we have more values than assertions, we
361 ;;; move the extra values with no check.
362 (defun lvar-tns (node block lvar ptypes)
363 (declare (type node node) (type ir2-block block)
364 (type lvar lvar) (list ptypes))
365 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
366 (nlocs (length locs)))
367 (aver (= nlocs (length ptypes)))
369 (mapcar (lambda (from to-type)
370 (if (eq (tn-primitive-type from) to-type)
372 (let ((temp (make-normal-tn to-type)))
373 (emit-move node block from temp)
378 ;;;; utilities for delivering values to lvars
380 ;;; Return a list of TNs with the specifier TYPES that can be used as
381 ;;; result TNs to evaluate an expression into LVAR. This is used
382 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
385 ;;; If the lvar isn't annotated (meaning the values are discarded) or
386 ;;; is unknown-values, the then we make temporaries for each supplied
387 ;;; value, providing a place to compute the result in until we decide
388 ;;; what to do with it (if anything.)
390 ;;; If the lvar is fixed-values, and wants the same number of values
391 ;;; as the user wants to deliver, then we just return the
392 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
393 ;;; discarded TNs. We always return a TN of the specified type, using
394 ;;; the lvar locs only when they are of the correct type.
395 (defun lvar-result-tns (lvar types)
396 (declare (type (or lvar null) lvar) (type list types))
398 (mapcar #'make-normal-tn types)
399 (let ((2lvar (lvar-info lvar)))
400 (ecase (ir2-lvar-kind 2lvar)
402 (let* ((locs (ir2-lvar-locs 2lvar))
403 (nlocs (length locs))
404 (ntypes (length types)))
405 (if (and (= nlocs ntypes)
406 (do ((loc locs (cdr loc))
407 (type types (cdr type)))
409 (unless (eq (tn-primitive-type (car loc)) (car type))
412 (mapcar (lambda (loc type)
413 (if (eq (tn-primitive-type loc) type)
415 (make-normal-tn type)))
418 (mapcar #'make-normal-tn
419 (subseq types nlocs)))
423 (mapcar #'make-normal-tn types))))))
425 ;;; Make the first N standard value TNs, returning them in a list.
426 (defun make-standard-value-tns (n)
427 (declare (type unsigned-byte n))
430 (res (standard-arg-location i)))
433 ;;; Return a list of TNs wired to the standard value passing
434 ;;; conventions that can be used to receive values according to the
435 ;;; unknown-values convention. This is used with together
436 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
439 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
440 ;;; an empty list of temporaries.
442 ;;; If the lvar is annotated, then it must be :FIXED.
443 (defun standard-result-tns (lvar)
444 (declare (type (or lvar null) lvar))
446 (let ((2lvar (lvar-info lvar)))
447 (ecase (ir2-lvar-kind 2lvar)
449 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
452 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
453 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
454 ;;; doing the appropriate coercions.
455 (defun move-results-coerced (node block src dest)
456 (declare (type node node) (type ir2-block block) (list src dest))
457 (let ((nsrc (length src))
458 (ndest (length dest)))
459 (mapc (lambda (from to)
461 (emit-move node block from to)))
463 (append src (make-list (- ndest nsrc)
464 :initial-element (emit-constant nil)))
469 ;;; Move each SRC TN into the corresponding DEST TN, checking types
470 ;;; and defaulting any unsupplied source values to NIL
471 (defun move-results-checked (node block src dest types)
472 (declare (type node node) (type ir2-block block) (list src dest types))
473 (let ((nsrc (length src))
474 (ndest (length dest))
475 (ntypes (length types)))
476 (mapc (lambda (from to type)
478 (emit-type-check node block from to type)
479 (emit-move node block from to)))
481 (append src (make-list (- ndest nsrc)
482 :initial-element (emit-constant nil)))
486 (append types (make-list (- ndest ntypes)))
490 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
491 ;;; the specified lvar. NODE and BLOCK provide context for emitting
492 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
493 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
496 ;;; If the lvar is fixed values, then move the results into the lvar
497 ;;; locations. If the lvar is unknown values, then do the moves into
498 ;;; the standard value locations, and use PUSH-VALUES to put the
499 ;;; values on the stack.
500 (defun move-lvar-result (node block results lvar)
501 (declare (type node node) (type ir2-block block)
502 (list results) (type (or lvar null) lvar))
504 (let ((2lvar (lvar-info lvar)))
505 (ecase (ir2-lvar-kind 2lvar)
507 (let ((locs (ir2-lvar-locs 2lvar)))
508 (unless (eq locs results)
509 (move-results-coerced node block results locs))))
511 (let* ((nvals (length results))
512 (locs (make-standard-value-tns nvals)))
513 (move-results-coerced node block results locs)
514 (vop* push-values node block
515 ((reference-tn-list locs nil))
516 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
521 (defun ir2-convert-cast (node block)
522 (declare (type cast node)
523 (type ir2-block block))
524 (binding* ((lvar (node-lvar node) :exit-if-null)
525 (2lvar (lvar-info lvar))
526 (value (cast-value node))
527 (2value (lvar-info value)))
528 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
529 ((eq (ir2-lvar-kind 2lvar) :unknown)
530 (aver (eq (ir2-lvar-kind 2value) :unknown))
531 (aver (not (cast-type-check node)))
532 (move-results-coerced node block
533 (ir2-lvar-locs 2value)
534 (ir2-lvar-locs 2lvar)))
535 ((eq (ir2-lvar-kind 2lvar) :fixed)
536 (aver (eq (ir2-lvar-kind 2value) :fixed))
537 (if (cast-type-check node)
538 (move-results-checked node block
539 (ir2-lvar-locs 2value)
540 (ir2-lvar-locs 2lvar)
541 (multiple-value-bind (check types)
542 (cast-check-types node nil)
543 (aver (eq check :simple))
545 (move-results-coerced node block
546 (ir2-lvar-locs 2value)
547 (ir2-lvar-locs 2lvar))))
548 (t (bug "CAST cannot be :DELAYED.")))))
550 ;;;; template conversion
552 ;;; Build a TN-REFS list that represents access to the values of the
553 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
554 ;;; are returned in the second value as a list rather than being
555 ;;; accessed as a normal argument. NODE and BLOCK provide the context
556 ;;; for emitting any necessary type-checking code.
557 (defun reference-args (node block args template)
558 (declare (type node node) (type ir2-block block) (list args)
559 (type template template))
560 (collect ((info-args))
563 (do ((args args (cdr args))
564 (types (template-arg-types template) (cdr types)))
566 (let ((type (first types))
568 (if (and (consp type) (eq (car type) ':constant))
569 (info-args (lvar-value arg))
570 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
572 (setf (tn-ref-across last) ref)
576 (values (the (or tn-ref null) first) (info-args)))))
578 ;;; Convert a conditional template. We try to exploit any
579 ;;; drop-through, but emit an unconditional branch afterward if we
580 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
582 (defun ir2-convert-conditional (node block template args info-args if not-p)
583 (declare (type node node) (type ir2-block block)
584 (type template template) (type (or tn-ref null) args)
585 (list info-args) (type cif if) (type boolean not-p))
586 (let ((consequent (if-consequent if))
587 (alternative (if-alternative if))
588 (flags (and (consp (template-result-types template))
589 (rest (template-result-types template)))))
590 (aver (= (template-info-arg-count template)
591 (+ (length info-args)
594 (rotatef consequent alternative)
596 (when (drop-thru-p if consequent)
597 (rotatef consequent alternative)
600 (emit-template node block template args nil
601 (list* (block-label consequent) not-p
603 (unless (drop-thru-p if alternative)
604 (vop branch node block (block-label alternative))))
606 (emit-template node block template args nil info-args)
607 (vop branch-if node block (block-label consequent) flags not-p)
608 (unless (drop-thru-p if alternative)
609 (vop branch node block (block-label alternative)))))))
611 ;;; Convert an IF that isn't the DEST of a conditional template.
612 (defun ir2-convert-if (node block)
613 (declare (type ir2-block block) (type cif node))
614 (let* ((test (if-test node))
615 (test-ref (reference-tn (lvar-tn node block test) nil))
616 (nil-ref (reference-tn (emit-constant nil) nil)))
617 (setf (tn-ref-across test-ref) nil-ref)
618 (ir2-convert-conditional node block (template-or-lose 'if-eq)
619 test-ref () node t)))
621 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
622 ;;; describing the result types we want for a template call. We are really
623 ;;; only interested in the number of results required: in normal case
624 ;;; TEMPLATE-RESULTS-OK has already checked them.
625 (defun find-template-result-types (call rtypes)
626 (let* ((type (node-derived-type call))
628 (mapcar #'primitive-type
629 (if (values-type-p type)
630 (append (args-type-required type)
631 (args-type-optional type))
633 (primitive-t *backend-t-primitive-type*))
634 (loop for rtype in rtypes
635 for type = (or (pop types) primitive-t)
638 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
639 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
640 ;;; fixed values and has locations that satisfy the result restrictions. This
641 ;;; can fail when there is a type check or a values count mismatch.
642 (defun make-template-result-tns (call lvar rtypes)
643 (declare (type combination call) (type (or lvar null) lvar)
645 (let ((2lvar (when lvar (lvar-info lvar))))
646 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
647 (let ((locs (ir2-lvar-locs 2lvar)))
648 (if (and (= (length rtypes) (length locs))
649 (do ((loc locs (cdr loc))
650 (rtypes rtypes (cdr rtypes)))
652 (unless (operand-restriction-ok
654 (tn-primitive-type (car loc))
660 (find-template-result-types call rtypes))))
663 (find-template-result-types call rtypes)))))
665 ;;; Get the operands into TNs, make TN-REFs for them, and then call
666 ;;; the template emit function.
667 (defun ir2-convert-template (call block)
668 (declare (type combination call) (type ir2-block block))
669 (let* ((template (combination-info call))
670 (lvar (node-lvar call))
671 (rtypes (template-result-types template)))
672 (multiple-value-bind (args info-args)
673 (reference-args call block (combination-args call) template)
674 (aver (not (template-more-results-type template)))
675 (if (template-conditional-p template)
676 (ir2-convert-conditional call block template args info-args
677 (lvar-dest lvar) nil)
678 (let* ((results (make-template-result-tns call lvar rtypes))
679 (r-refs (reference-tn-list results t)))
680 (aver (= (length info-args)
681 (template-info-arg-count template)))
682 (when (and lvar (lvar-dynamic-extent lvar))
683 (vop current-stack-pointer call block
684 (ir2-lvar-stack-pointer (lvar-info lvar))))
685 (when (emit-step-p call)
686 (vop sb!vm::step-instrument-before-vop call block))
688 (emit-template call block template args r-refs info-args)
689 (emit-template call block template args r-refs))
690 (move-lvar-result call block results lvar)))))
693 ;;; We don't have to do much because operand count checking is done by
694 ;;; IR1 conversion. The only difference between this and the function
695 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
697 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
698 (let* ((template (lvar-value template))
699 (info (lvar-value info))
700 (lvar (node-lvar call))
701 (rtypes (template-result-types template))
702 (results (make-template-result-tns call lvar rtypes))
703 (r-refs (reference-tn-list results t)))
704 (multiple-value-bind (args info-args)
705 (reference-args call block (cddr (combination-args call)) template)
706 (aver (not (template-more-results-type template)))
707 (aver (not (template-conditional-p template)))
708 (aver (null info-args))
711 (emit-template call block template args r-refs info)
712 (emit-template call block template args r-refs))
714 (move-lvar-result call block results lvar)))
717 (defoptimizer (%%primitive derive-type) ((template info &rest args))
718 (let ((type (template-type (lvar-value template))))
719 (if (fun-type-p type)
720 (fun-type-returns type)
725 ;;; Convert a LET by moving the argument values into the variables.
726 ;;; Since a LET doesn't have any passing locations, we move the
727 ;;; arguments directly into the variables. We must also allocate any
728 ;;; indirect value cells, since there is no function prologue to do
730 (defun ir2-convert-let (node block fun)
731 (declare (type combination node) (type ir2-block block) (type clambda fun))
732 (mapc (lambda (var arg)
734 (let ((src (lvar-tn node block arg))
735 (dest (leaf-info var)))
736 (if (lambda-var-indirect var)
737 (emit-make-value-cell node block src dest)
738 (emit-move node block src dest)))))
739 (lambda-vars fun) (basic-combination-args node))
742 ;;; Emit any necessary moves into assignment temps for a local call to
743 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
744 ;;; values, and (possibly EQ) TNs that are the actual destination of
745 ;;; the arguments. When necessary, we allocate temporaries for
746 ;;; arguments to preserve parallel assignment semantics. These lists
747 ;;; exclude unused arguments and include implicit environment
748 ;;; arguments, i.e. they exactly correspond to the arguments passed.
750 ;;; OLD-FP is the TN currently holding the value we want to pass as
751 ;;; OLD-FP. If null, then the call is to the same environment (an
752 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
753 ;;; environment alone.
754 (defun emit-psetq-moves (node block fun old-fp)
755 (declare (type combination node) (type ir2-block block) (type clambda fun)
756 (type (or tn null) old-fp))
757 (let ((actuals (mapcar (lambda (x)
759 (lvar-tn node block x)))
760 (combination-args node))))
763 (dolist (var (lambda-vars fun))
764 (let ((actual (pop actuals))
765 (loc (leaf-info var)))
768 ((lambda-var-indirect var)
770 (make-normal-tn *backend-t-primitive-type*)))
771 (emit-make-value-cell node block actual temp)
773 ((member actual (locs))
774 (let ((temp (make-normal-tn (tn-primitive-type loc))))
775 (emit-move node block actual temp)
782 (let ((this-1env (node-physenv node))
783 (called-env (physenv-info (lambda-physenv fun))))
784 (dolist (thing (ir2-physenv-closure called-env))
785 (temps (find-in-physenv (car thing) this-1env))
788 (locs (ir2-physenv-old-fp called-env))))
790 (values (temps) (locs)))))
792 ;;; A tail-recursive local call is done by emitting moves of stuff
793 ;;; into the appropriate passing locations. After setting up the args
794 ;;; and environment, we just move our return-pc into the called
795 ;;; function's passing location.
796 (defun ir2-convert-tail-local-call (node block fun)
797 (declare (type combination node) (type ir2-block block) (type clambda fun))
798 (let ((this-env (physenv-info (node-physenv node))))
799 (multiple-value-bind (temps locs)
800 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
802 (mapc (lambda (temp loc)
803 (emit-move node block temp loc))
806 (emit-move node block
807 (ir2-physenv-return-pc this-env)
808 (ir2-physenv-return-pc-pass
810 (lambda-physenv fun)))))
814 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
815 ;;; except that the caller and callee environment are the same, so we
816 ;;; don't need to mess with the environment locations, return PC, etc.
817 (defun ir2-convert-assignment (node block fun)
818 (declare (type combination node) (type ir2-block block) (type clambda fun))
819 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
821 (mapc (lambda (temp loc)
822 (emit-move node block temp loc))
826 ;;; Do stuff to set up the arguments to a non-tail local call
827 ;;; (including implicit environment args.) We allocate a frame
828 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
829 ;;; the values to pass and the list of passing location TNs.
830 (defun ir2-convert-local-call-args (node block fun)
831 (declare (type combination node) (type ir2-block block) (type clambda fun))
832 (let ((fp (make-stack-pointer-tn))
833 (nfp (make-number-stack-pointer-tn))
834 (old-fp (make-stack-pointer-tn)))
835 (multiple-value-bind (temps locs)
836 (emit-psetq-moves node block fun old-fp)
837 (vop current-fp node block old-fp)
838 (vop allocate-frame node block
839 (physenv-info (lambda-physenv fun))
841 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
843 ;;; Handle a non-TR known-values local call. We emit the call, then
844 ;;; move the results to the lvar's destination.
845 (defun ir2-convert-local-known-call (node block fun returns lvar start)
846 (declare (type node node) (type ir2-block block) (type clambda fun)
847 (type return-info returns) (type (or lvar null) lvar)
849 (multiple-value-bind (fp nfp temps arg-locs)
850 (ir2-convert-local-call-args node block fun)
851 (let ((locs (return-info-locations returns)))
852 (vop* known-call-local node block
853 (fp nfp (reference-tn-list temps nil))
854 ((reference-tn-list locs t))
855 arg-locs (physenv-info (lambda-physenv fun)) start)
856 (move-lvar-result node block locs lvar)))
859 ;;; Handle a non-TR unknown-values local call. We do different things
860 ;;; depending on what kind of values the lvar wants.
862 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
863 ;;; specifying the lvar's LOCS as the VOP results so that we don't
864 ;;; have to do anything after the call.
866 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
867 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
869 (defun ir2-convert-local-unknown-call (node block fun lvar start)
870 (declare (type node node) (type ir2-block block) (type clambda fun)
871 (type (or lvar null) lvar) (type label start))
872 (multiple-value-bind (fp nfp temps arg-locs)
873 (ir2-convert-local-call-args node block fun)
874 (let ((2lvar (and lvar (lvar-info lvar)))
875 (env (physenv-info (lambda-physenv fun)))
876 (temp-refs (reference-tn-list temps nil)))
877 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
878 (vop* multiple-call-local node block (fp nfp temp-refs)
879 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
881 (let ((locs (standard-result-tns lvar)))
882 (vop* call-local node block
884 ((reference-tn-list locs t))
885 arg-locs env start (length locs))
886 (move-lvar-result node block locs lvar)))))
889 ;;; Dispatch to the appropriate function, depending on whether we have
890 ;;; a let, tail or normal call. If the function doesn't return, call
891 ;;; it using the unknown-value convention. We could compile it as a
892 ;;; tail call, but that might seem confusing in the debugger.
893 (defun ir2-convert-local-call (node block)
894 (declare (type combination node) (type ir2-block block))
895 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
896 (kind (functional-kind fun)))
897 (cond ((eq kind :let)
898 (ir2-convert-let node block fun))
899 ((eq kind :assignment)
900 (ir2-convert-assignment node block fun))
902 (ir2-convert-tail-local-call node block fun))
904 (let ((start (block-label (lambda-block fun)))
905 (returns (tail-set-info (lambda-tail-set fun)))
906 (lvar (node-lvar node)))
908 (return-info-kind returns)
911 (ir2-convert-local-unknown-call node block fun lvar start))
913 (ir2-convert-local-known-call node block fun returns
919 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
920 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
921 ;;; true if the thing is named (false if it is a function).
923 ;;; There are two interesting non-named cases:
924 ;;; -- We know it's a function. No check needed: return the
926 ;;; -- We don't know what it is.
927 (defun fun-lvar-tn (node block lvar)
928 (declare (ignore node block))
929 (declare (type lvar lvar))
930 (let ((2lvar (lvar-info lvar)))
931 (if (eq (ir2-lvar-kind 2lvar) :delayed)
932 (let ((name (lvar-fun-name lvar t)))
934 (values (make-load-time-constant-tn :fdefinition name) t))
935 (let* ((locs (ir2-lvar-locs 2lvar))
937 (function-ptype (primitive-type-or-lose 'function)))
938 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
939 (= (length locs) 1)))
940 (aver (eq (tn-primitive-type loc) function-ptype))
943 ;;; Set up the args to NODE in the current frame, and return a TN-REF
944 ;;; list for the passing locations.
945 (defun move-tail-full-call-args (node block)
946 (declare (type combination node) (type ir2-block block))
947 (let ((args (basic-combination-args node))
950 (dotimes (num (length args))
951 (let ((loc (standard-arg-location num)))
952 (emit-move node block (lvar-tn node block (elt args num)) loc)
953 (let ((ref (reference-tn loc nil)))
955 (setf (tn-ref-across last) ref)
960 ;;; Move the arguments into the passing locations and do a (possibly
961 ;;; named) tail call.
962 (defun ir2-convert-tail-full-call (node block)
963 (declare (type combination node) (type ir2-block block))
964 (let* ((env (physenv-info (node-physenv node)))
965 (args (basic-combination-args node))
966 (nargs (length args))
967 (pass-refs (move-tail-full-call-args node block))
968 (old-fp (ir2-physenv-old-fp env))
969 (return-pc (ir2-physenv-return-pc env)))
971 (multiple-value-bind (fun-tn named)
972 (fun-lvar-tn node block (basic-combination-fun node))
974 (vop* tail-call-named node block
975 (fun-tn old-fp return-pc pass-refs)
979 (vop* tail-call node block
980 (fun-tn old-fp return-pc pass-refs)
983 (emit-step-p node)))))
987 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
988 (defun ir2-convert-full-call-args (node block)
989 (declare (type combination node) (type ir2-block block))
990 (let* ((args (basic-combination-args node))
991 (fp (make-stack-pointer-tn))
992 (nargs (length args)))
993 (vop allocate-full-call-frame node block nargs fp)
998 (locs (standard-arg-location num))
999 (let ((ref (reference-tn (lvar-tn node block (elt args num))
1002 (setf (tn-ref-across last) ref)
1006 (values fp first (locs) nargs)))))
1008 ;;; Do full call when a fixed number of values are desired. We make
1009 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
1010 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
1011 (defun ir2-convert-fixed-full-call (node block)
1012 (declare (type combination node) (type ir2-block block))
1013 (multiple-value-bind (fp args arg-locs nargs)
1014 (ir2-convert-full-call-args node block)
1015 (let* ((lvar (node-lvar node))
1016 (locs (standard-result-tns lvar))
1017 (loc-refs (reference-tn-list locs t))
1018 (nvals (length locs)))
1019 (multiple-value-bind (fun-tn named)
1020 (fun-lvar-tn node block (basic-combination-fun node))
1022 (vop* call-named node block (fp fun-tn args) (loc-refs)
1023 arg-locs nargs nvals (emit-step-p node))
1024 (vop* call node block (fp fun-tn args) (loc-refs)
1025 arg-locs nargs nvals (emit-step-p node)))
1026 (move-lvar-result node block locs lvar))))
1029 ;;; Do full call when unknown values are desired.
1030 (defun ir2-convert-multiple-full-call (node block)
1031 (declare (type combination node) (type ir2-block block))
1032 (multiple-value-bind (fp args arg-locs nargs)
1033 (ir2-convert-full-call-args node block)
1034 (let* ((lvar (node-lvar node))
1035 (locs (ir2-lvar-locs (lvar-info lvar)))
1036 (loc-refs (reference-tn-list locs t)))
1037 (multiple-value-bind (fun-tn named)
1038 (fun-lvar-tn node block (basic-combination-fun node))
1040 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1041 arg-locs nargs (emit-step-p node))
1042 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1043 arg-locs nargs (emit-step-p node))))))
1046 ;;; stuff to check in PONDER-FULL-CALL
1048 ;;; These came in handy when troubleshooting cold boot after making
1049 ;;; major changes in the package structure: various transforms and
1050 ;;; VOPs and stuff got attached to the wrong symbol, so that
1051 ;;; references to the right symbol were bogusly translated as full
1052 ;;; calls instead of primitives, sending the system off into infinite
1053 ;;; space. Having a report on all full calls generated makes it easier
1054 ;;; to figure out what form caused the problem this time.
1055 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1056 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1058 ;;; Do some checks (and store some notes relevant for future checks)
1060 ;;; * Is this a full call to something we have reason to know should
1061 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1062 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1064 ;;; * Is this a full call to (SETF FOO) which might conflict with
1065 ;;; a DEFSETF or some such thing elsewhere in the program?
1066 (defun ponder-full-call (node)
1067 (let* ((lvar (basic-combination-fun node))
1068 (fname (lvar-fun-name lvar t)))
1069 (declare (type (or symbol cons) fname))
1071 #!+sb-show (unless (gethash fname *full-called-fnames*)
1072 (setf (gethash fname *full-called-fnames*) t))
1073 #!+sb-show (when *show-full-called-fnames-p*
1074 (/show "converting full call to named function" fname)
1075 (/show (basic-combination-args node))
1076 (/show (policy node speed) (policy node safety))
1077 (/show (policy node compilation-speed))
1078 (let ((arg-types (mapcar (lambda (lvar)
1082 (basic-combination-args node))))
1085 ;; When illegal code is compiled, all sorts of perverse paths
1086 ;; through the compiler can be taken, and it's much harder -- and
1087 ;; probably pointless -- to guarantee that always-optimized-away
1088 ;; functions are actually optimized away. Thus, we skip the check
1091 ;; check to see if we know anything about the function
1092 (let ((info (info :function :info fname)))
1093 ;; if we know something, check to see if the full call was valid
1094 (when (and info (ir1-attributep (fun-info-attributes info)
1095 always-translatable))
1096 (/show (policy node speed) (policy node safety))
1097 (/show (policy node compilation-speed))
1098 (bug "full call to ~S" fname))))
1101 (aver (legal-fun-name-p fname))
1102 (destructuring-bind (setfoid &rest stem) fname
1103 (when (eq setfoid 'setf)
1104 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1106 ;;; If the call is in a tail recursive position and the return
1107 ;;; convention is standard, then do a tail full call. If one or fewer
1108 ;;; values are desired, then use a single-value call, otherwise use a
1109 ;;; multiple-values call.
1110 (defun ir2-convert-full-call (node block)
1111 (declare (type combination node) (type ir2-block block))
1112 (ponder-full-call node)
1113 (cond ((node-tail-p node)
1114 (ir2-convert-tail-full-call node block))
1115 ((let ((lvar (node-lvar node)))
1117 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1118 (ir2-convert-multiple-full-call node block))
1120 (ir2-convert-fixed-full-call node block)))
1123 ;;;; entering functions
1125 ;;; Do all the stuff that needs to be done on XEP entry:
1126 ;;; -- Create frame.
1127 ;;; -- Copy any more arg.
1128 ;;; -- Set up the environment, accessing any closure variables.
1129 ;;; -- Move args from the standard passing locations to their internal
1131 (defun init-xep-environment (node block fun)
1132 (declare (type bind node) (type ir2-block block) (type clambda fun))
1133 (let ((start-label (entry-info-offset (leaf-info fun)))
1134 (env (physenv-info (node-physenv node))))
1135 (let ((ef (functional-entry-fun fun)))
1136 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1137 ;; Special case the xep-allocate-frame + copy-more-arg case.
1138 (vop xep-allocate-frame node block start-label t)
1139 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1141 ;; No more args, so normal entry.
1142 (vop xep-allocate-frame node block start-label nil)))
1143 (if (ir2-physenv-closure env)
1144 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1145 (vop setup-closure-environment node block start-label closure)
1147 (dolist (loc (ir2-physenv-closure env))
1148 (vop closure-ref node block closure (incf n) (cdr loc)))))
1149 (vop setup-environment node block start-label)))
1151 (unless (eq (functional-kind fun) :toplevel)
1152 (let ((vars (lambda-vars fun))
1154 (when (leaf-refs (first vars))
1155 (emit-move node block (make-arg-count-location)
1156 (leaf-info (first vars))))
1157 (dolist (arg (rest vars))
1158 (when (leaf-refs arg)
1159 (let ((pass (standard-arg-location n))
1160 (home (leaf-info arg)))
1161 (if (lambda-var-indirect arg)
1162 (emit-make-value-cell node block pass home)
1163 (emit-move node block pass home))))
1166 (emit-move node block (make-old-fp-passing-location t)
1167 (ir2-physenv-old-fp env)))
1171 ;;; Emit function prolog code. This is only called on bind nodes for
1172 ;;; functions that allocate environments. All semantics of let calls
1173 ;;; are handled by IR2-CONVERT-LET.
1175 ;;; If not an XEP, all we do is move the return PC from its passing
1176 ;;; location, since in a local call, the caller allocates the frame
1177 ;;; and sets up the arguments.
1178 (defun ir2-convert-bind (node block)
1179 (declare (type bind node) (type ir2-block block))
1180 (let* ((fun (bind-lambda node))
1181 (env (physenv-info (lambda-physenv fun))))
1182 (aver (member (functional-kind fun)
1183 '(nil :external :optional :toplevel :cleanup)))
1186 (init-xep-environment node block fun)
1188 (when *collect-dynamic-statistics*
1189 (vop count-me node block *dynamic-counts-tn*
1190 (block-number (ir2-block-block block)))))
1194 (ir2-physenv-return-pc-pass env)
1195 (ir2-physenv-return-pc env))
1197 #!+unwind-to-frame-and-call-vop
1198 (when (and (lambda-allow-instrumenting fun)
1199 (not (lambda-inline-expanded fun))
1201 (policy fun (>= insert-debug-catch 2)))
1202 (vop sb!vm::bind-sentinel node block))
1204 (let ((lab (gen-label)))
1205 (setf (ir2-physenv-environment-start env) lab)
1206 (vop note-environment-start node block lab)))
1210 ;;;; function return
1212 ;;; Do stuff to return from a function with the specified values and
1213 ;;; convention. If the return convention is :FIXED and we aren't
1214 ;;; returning from an XEP, then we do a known return (letting
1215 ;;; representation selection insert the correct move-arg VOPs.)
1216 ;;; Otherwise, we use the unknown-values convention. If there is a
1217 ;;; fixed number of return values, then use RETURN, otherwise use
1218 ;;; RETURN-MULTIPLE.
1219 (defun ir2-convert-return (node block)
1220 (declare (type creturn node) (type ir2-block block))
1221 (let* ((lvar (return-result node))
1222 (2lvar (lvar-info lvar))
1223 (lvar-kind (ir2-lvar-kind 2lvar))
1224 (fun (return-lambda node))
1225 (env (physenv-info (lambda-physenv fun)))
1226 (old-fp (ir2-physenv-old-fp env))
1227 (return-pc (ir2-physenv-return-pc env))
1228 (returns (tail-set-info (lambda-tail-set fun))))
1229 #!+unwind-to-frame-and-call-vop
1230 (when (and (lambda-allow-instrumenting fun)
1231 (not (lambda-inline-expanded fun))
1232 (policy fun (>= insert-debug-catch 2)))
1233 (vop sb!vm::unbind-sentinel node block))
1235 ((and (eq (return-info-kind returns) :fixed)
1237 (let ((locs (lvar-tns node block lvar
1238 (return-info-types returns))))
1239 (vop* known-return node block
1240 (old-fp return-pc (reference-tn-list locs nil))
1242 (return-info-locations returns))))
1243 ((eq lvar-kind :fixed)
1244 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1245 (lvar-locs (lvar-tns node block lvar types))
1246 (nvals (length lvar-locs))
1247 (locs (make-standard-value-tns nvals)))
1248 (mapc (lambda (val loc)
1249 (emit-move node block val loc))
1253 (vop return-single node block old-fp return-pc (car locs))
1254 (vop* return node block
1255 (old-fp return-pc (reference-tn-list locs nil))
1259 (aver (eq lvar-kind :unknown))
1260 (vop* return-multiple node block
1262 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1269 ;;;; These are used by the debugger to find the top function on the
1270 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1271 ;;;; function as multiple values.
1273 (defoptimizer (%caller-frame ir2-convert) (() node block)
1274 (let ((ir2-physenv (physenv-info (node-physenv node))))
1275 (move-lvar-result node block
1276 (list (ir2-physenv-old-fp ir2-physenv))
1279 (defoptimizer (%caller-pc ir2-convert) (() node block)
1280 (let ((ir2-physenv (physenv-info (node-physenv node))))
1281 (move-lvar-result node block
1282 (list (ir2-physenv-return-pc ir2-physenv))
1285 ;;;; multiple values
1287 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1288 ;;; the lvar for the correct number of values (with the lvar user
1289 ;;; responsible for defaulting), we can just pick them up from the
1291 (defun ir2-convert-mv-bind (node block)
1292 (declare (type mv-combination node) (type ir2-block block))
1293 (let* ((lvar (first (basic-combination-args node)))
1294 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1295 (vars (lambda-vars fun)))
1296 (aver (eq (functional-kind fun) :mv-let))
1297 (mapc (lambda (src var)
1298 (when (leaf-refs var)
1299 (let ((dest (leaf-info var)))
1300 (if (lambda-var-indirect var)
1301 (emit-make-value-cell node block src dest)
1302 (emit-move node block src dest)))))
1303 (lvar-tns node block lvar
1305 (primitive-type (leaf-type x)))
1310 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1311 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1312 ;;; the first argument: all the other argument lvar TNs are
1313 ;;; ignored. This is because we require all of the values globs to be
1314 ;;; contiguous and on stack top.
1315 (defun ir2-convert-mv-call (node block)
1316 (declare (type mv-combination node) (type ir2-block block))
1317 (aver (basic-combination-args node))
1318 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1319 (start (first (ir2-lvar-locs start-lvar)))
1320 (tails (and (node-tail-p node)
1321 (lambda-tail-set (node-home-lambda node))))
1322 (lvar (node-lvar node))
1323 (2lvar (and lvar (lvar-info lvar))))
1324 (multiple-value-bind (fun named)
1325 (fun-lvar-tn node block (basic-combination-fun node))
1326 (aver (and (not named)
1327 (eq (ir2-lvar-kind start-lvar) :unknown)))
1330 (let ((env (physenv-info (node-physenv node))))
1331 (vop tail-call-variable node block start fun
1332 (ir2-physenv-old-fp env)
1333 (ir2-physenv-return-pc env))))
1335 (eq (ir2-lvar-kind 2lvar) :unknown))
1336 (vop* multiple-call-variable node block (start fun nil)
1337 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1338 (emit-step-p node)))
1340 (let ((locs (standard-result-tns lvar)))
1341 (vop* call-variable node block (start fun nil)
1342 ((reference-tn-list locs t)) (length locs)
1344 (move-lvar-result node block locs lvar)))))))
1346 ;;; Reset the stack pointer to the start of the specified
1347 ;;; unknown-values lvar (discarding it and all values globs on top of
1349 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1350 (let* ((lvar (lvar-value %lvar))
1351 (2lvar (lvar-info lvar)))
1352 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1353 (vop reset-stack-pointer node block
1354 (first (ir2-lvar-locs 2lvar))))
1355 ((lvar-dynamic-extent lvar)
1356 (vop reset-stack-pointer node block
1357 (ir2-lvar-stack-pointer 2lvar)))
1358 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1361 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1364 (let* ( ;; pointer immediately after the nipped block
1365 (after (lvar-value last-nipped))
1366 (2after (lvar-info after))
1367 ;; pointer to the first nipped word
1368 (first (lvar-value last-preserved))
1369 (2first (lvar-info first))
1371 (moved-tns (loop for lvar-ref in moved
1372 for lvar = (lvar-value lvar-ref)
1373 for 2lvar = (lvar-info lvar)
1375 collect (first (ir2-lvar-locs 2lvar)))))
1376 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1377 (lvar-dynamic-extent after)))
1378 (aver (eq (ir2-lvar-kind 2first) :unknown))
1379 (when *check-consistency*
1380 ;; we cannot move stack-allocated DX objects
1381 (dolist (moved-lvar moved)
1382 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1384 (flet ((nip-aligned (nipped)
1385 (vop* %%nip-values node block
1387 (first (ir2-lvar-locs 2first))
1388 (reference-tn-list moved-tns nil))
1389 ((reference-tn-list moved-tns t)))))
1390 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1391 (nip-aligned (first (ir2-lvar-locs 2after))))
1392 ((lvar-dynamic-extent after)
1393 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1395 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1397 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1398 (defoptimizer (values ir2-convert) ((&rest values) node block)
1399 (let ((tns (mapcar (lambda (x)
1400 (lvar-tn node block x))
1402 (move-lvar-result node block tns (node-lvar node))))
1404 ;;; In the normal case where unknown values are desired, we use the
1405 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1406 ;;; for a fixed number of values, we punt by doing a full call to the
1407 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1408 ;;; defaulting any unsupplied values. It seems unworthwhile to
1409 ;;; optimize this case.
1410 (defoptimizer (values-list ir2-convert) ((list) node block)
1411 (let* ((lvar (node-lvar node))
1412 (2lvar (and lvar (lvar-info lvar))))
1414 (eq (ir2-lvar-kind 2lvar) :unknown))
1415 (let ((locs (ir2-lvar-locs 2lvar)))
1416 (vop* values-list node block
1417 ((lvar-tn node block list) nil)
1418 ((reference-tn-list locs t)))))
1419 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1420 (eq (ir2-lvar-kind 2lvar) :fixed)))
1421 (ir2-convert-full-call node block)))))
1423 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1424 (binding* ((lvar (node-lvar node) :exit-if-null)
1425 (2lvar (lvar-info lvar)))
1426 (ecase (ir2-lvar-kind 2lvar)
1427 (:fixed (ir2-convert-full-call node block))
1429 (let ((locs (ir2-lvar-locs 2lvar)))
1430 (vop* %more-arg-values node block
1431 ((lvar-tn node block context)
1432 (lvar-tn node block start)
1433 (lvar-tn node block count)
1435 ((reference-tn-list locs t))))))))
1437 ;;;; special binding
1439 ;;; This is trivial, given our assumption of a shallow-binding
1441 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1442 (let ((name (leaf-source-name (lvar-value var))))
1443 (vop bind node block (lvar-tn node block value)
1444 (emit-constant name))))
1445 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1446 (vop unbind node block))
1448 ;;; ### It's not clear that this really belongs in this file, or
1449 ;;; should really be done this way, but this is the least violation of
1450 ;;; abstraction in the current setup. We don't want to wire
1451 ;;; shallow-binding assumptions into IR1tran.
1452 (def-ir1-translator progv
1453 ((vars vals &body body) start next result)
1456 (with-unique-names (bind unbind)
1457 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1460 (labels ((,unbind (vars)
1461 (declare (optimize (speed 2) (debug 0)))
1462 (let ((unbound-marker (%primitive make-other-immediate-type
1463 0 sb!vm:unbound-marker-widetag)))
1465 ;; CLHS says "bound and then made to have no value" -- user
1466 ;; should not be able to tell the difference between that and this.
1467 (about-to-modify-symbol-value var 'progv)
1468 (%primitive bind unbound-marker var))))
1470 (declare (optimize (speed 2) (debug 0)
1471 (insert-debug-catch 0)))
1473 ((null vals) (,unbind vars))
1475 (let ((val (car vals))
1477 (about-to-modify-symbol-value var 'progv val t)
1478 (%primitive bind val var))
1479 (,bind (cdr vars) (cdr vals))))))
1480 (,bind ,vars ,vals))
1483 ;; Technically ANSI CL doesn't allow declarations at the
1484 ;; start of the cleanup form. SBCL happens to allow for
1485 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1486 ;; is implemented; the cleanup forms are directly spliced
1487 ;; into an FLET definition body. And a declaration here
1488 ;; actually has exactly the right scope for what we need
1489 ;; (ensure that debug instrumentation is not emitted for the
1490 ;; cleanup function). -- JES, 2007-06-16
1491 (declare (optimize (insert-debug-catch 0)))
1492 (%primitive unbind-to-here ,n-save-bs))))))
1496 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1497 ;;; environment. Note that this is never called on the escape exits
1498 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1500 (defun ir2-convert-exit (node block)
1501 (declare (type exit node) (type ir2-block block))
1502 (let* ((nlx (exit-nlx-info node))
1503 (loc (find-in-physenv nlx (node-physenv node)))
1504 (temp (make-stack-pointer-tn))
1505 (value (exit-value node)))
1506 (if (nlx-info-safe-p nlx)
1507 (vop value-cell-ref node block loc temp)
1508 (emit-move node block loc temp))
1510 (let ((locs (ir2-lvar-locs (lvar-info value))))
1511 (vop unwind node block temp (first locs) (second locs)))
1512 (let ((0-tn (emit-constant 0)))
1513 (vop unwind node block temp 0-tn 0-tn))))
1517 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1518 ;;; being entirely deleted.
1519 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1521 ;;; This function invalidates a lexical exit on exiting from the
1522 ;;; dynamic extent. This is done by storing 0 into the indirect value
1523 ;;; cell that holds the closed unwind block.
1524 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1525 (let ((nlx (lvar-value info)))
1526 (when (nlx-info-safe-p nlx)
1527 (vop value-cell-set node block
1528 (find-in-physenv nlx (node-physenv node))
1529 (emit-constant 0)))))
1531 ;;; We have to do a spurious move of no values to the result lvar so
1532 ;;; that lifetime analysis won't get confused.
1533 (defun ir2-convert-throw (node block)
1534 (declare (type mv-combination node) (type ir2-block block))
1535 (let ((args (basic-combination-args node)))
1536 (check-catch-tag-type (first args))
1537 (vop* throw node block
1538 ((lvar-tn node block (first args))
1540 (ir2-lvar-locs (lvar-info (second args)))
1543 (move-lvar-result node block () (node-lvar node))
1546 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1547 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1548 ;;; the target PC by passing in the label to the vop. The vop is
1549 ;;; responsible for building a return-PC object.
1550 (defun emit-nlx-start (node block info tag)
1551 (declare (type node node) (type ir2-block block) (type nlx-info info)
1552 (type (or lvar null) tag))
1553 (let* ((2info (nlx-info-info info))
1554 (kind (cleanup-kind (nlx-info-cleanup info)))
1555 (block-tn (physenv-live-tn
1556 (make-normal-tn (primitive-type-or-lose 'catch-block))
1557 (node-physenv node)))
1558 (res (make-stack-pointer-tn))
1559 (target-label (ir2-nlx-info-target 2info)))
1561 (vop current-binding-pointer node block
1562 (car (ir2-nlx-info-dynamic-state 2info)))
1563 (vop* save-dynamic-state node block
1565 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1566 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1570 (vop make-catch-block node block block-tn
1571 (lvar-tn node block tag) target-label res))
1572 ((:unwind-protect :block :tagbody)
1573 (vop make-unwind-block node block block-tn target-label res)))
1577 (if (nlx-info-safe-p info)
1578 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1579 (emit-move node block res (ir2-nlx-info-home 2info))))
1581 (vop set-unwind-protect node block block-tn))
1586 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1587 (defun ir2-convert-entry (node block)
1588 (declare (type entry node) (type ir2-block block))
1590 (dolist (exit (entry-exits node))
1591 (let ((info (exit-nlx-info exit)))
1593 (not (memq info nlxes))
1594 (member (cleanup-kind (nlx-info-cleanup info))
1595 '(:block :tagbody)))
1597 (emit-nlx-start node block info nil)))))
1600 ;;; Set up the unwind block for these guys.
1601 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1602 (check-catch-tag-type tag)
1603 (emit-nlx-start node block (lvar-value info-lvar) tag))
1604 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1605 (emit-nlx-start node block (lvar-value info-lvar) nil))
1607 ;;; Emit the entry code for a non-local exit. We receive values and
1608 ;;; restore dynamic state.
1610 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1611 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1612 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1613 ;;; values, make the appropriate number of temps in the standard
1614 ;;; values locations and use the other variant, delivering the temps
1615 ;;; to the lvar using MOVE-LVAR-RESULT.
1617 ;;; In the UNWIND-PROTECT case, we deliver the first register
1618 ;;; argument, the argument count and the argument pointer to our lvar
1619 ;;; as multiple values. These values are the block exited to and the
1620 ;;; values start and count.
1622 ;;; After receiving values, we restore dynamic state. Except in the
1623 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1624 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1625 ;;; pointer alone, since the thrown values are still out there.
1626 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1627 (let* ((info (lvar-value info-lvar))
1628 (lvar (node-lvar node))
1629 (2info (nlx-info-info info))
1630 (top-loc (ir2-nlx-info-save-sp 2info))
1631 (start-loc (make-nlx-entry-arg-start-location))
1632 (count-loc (make-arg-count-location))
1633 (target (ir2-nlx-info-target 2info)))
1635 (ecase (cleanup-kind (nlx-info-cleanup info))
1636 ((:catch :block :tagbody)
1637 (let ((2lvar (and lvar (lvar-info lvar))))
1638 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1639 (vop* nlx-entry-multiple node block
1640 (top-loc start-loc count-loc nil)
1641 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1643 (let ((locs (standard-result-tns lvar)))
1644 (vop* nlx-entry node block
1645 (top-loc start-loc count-loc nil)
1646 ((reference-tn-list locs t))
1649 (move-lvar-result node block locs lvar)))))
1651 (let ((block-loc (standard-arg-location 0)))
1652 (vop uwp-entry node block target block-loc start-loc count-loc)
1655 (list block-loc start-loc count-loc)
1659 (when *collect-dynamic-statistics*
1660 (vop count-me node block *dynamic-counts-tn*
1661 (block-number (ir2-block-block block))))
1663 (vop* restore-dynamic-state node block
1664 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1666 (vop unbind-to-here node block
1667 (car (ir2-nlx-info-dynamic-state 2info)))))
1669 ;;;; n-argument functions
1671 (macrolet ((def (name)
1672 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1673 (let* ((refs (move-tail-full-call-args node block))
1674 (lvar (node-lvar node))
1675 (res (lvar-result-tns
1677 (list (primitive-type (specifier-type 'list))))))
1678 (when (and lvar (lvar-dynamic-extent lvar))
1679 (vop current-stack-pointer node block
1680 (ir2-lvar-stack-pointer (lvar-info lvar))))
1681 (vop* ,name node block (refs) ((first res) nil)
1683 (move-lvar-result node block res lvar)))))
1688 ;;; Convert the code in a component into VOPs.
1689 (defun ir2-convert (component)
1690 (declare (type component component))
1691 (let (#!+sb-dyncount
1692 (*dynamic-counts-tn*
1693 (when *collect-dynamic-statistics*
1695 (block-number (block-next (component-head component))))
1696 (counts (make-array blocks
1697 :element-type '(unsigned-byte 32)
1698 :initial-element 0))
1699 (info (make-dyncount-info
1700 :for (component-name component)
1701 :costs (make-array blocks
1702 :element-type '(unsigned-byte 32)
1705 (setf (ir2-component-dyncount-info (component-info component))
1707 (emit-constant info)
1708 (emit-constant counts)))))
1710 (declare (type index num))
1711 (do-ir2-blocks (2block component)
1712 (let ((block (ir2-block-block 2block)))
1713 (when (block-start block)
1714 (setf (block-number block) num)
1716 (when *collect-dynamic-statistics*
1717 (let ((first-node (block-start-node block)))
1718 (unless (or (and (bind-p first-node)
1719 (xep-p (bind-lambda first-node)))
1721 (node-lvar first-node))
1726 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1728 (ir2-convert-block block)
1732 ;;; If necessary, emit a terminal unconditional branch to go to the
1733 ;;; successor block. If the successor is the component tail, then
1734 ;;; there isn't really any successor, but if the end is an unknown,
1735 ;;; non-tail call, then we emit an error trap just in case the
1736 ;;; function really does return.
1737 (defun finish-ir2-block (block)
1738 (declare (type cblock block))
1739 (let* ((2block (block-info block))
1740 (last (block-last block))
1741 (succ (block-succ block)))
1743 (aver (singleton-p succ))
1744 (let ((target (first succ)))
1745 (cond ((eq target (component-tail (block-component block)))
1746 (when (and (basic-combination-p last)
1747 (eq (basic-combination-kind last) :full))
1748 (let* ((fun (basic-combination-fun last))
1749 (use (lvar-uses fun))
1750 (name (and (ref-p use)
1751 (leaf-has-source-name-p (ref-leaf use))
1752 (leaf-source-name (ref-leaf use)))))
1753 (unless (or (node-tail-p last)
1754 (info :function :info name)
1755 (policy last (zerop safety)))
1756 (vop nil-fun-returned-error last 2block
1758 (emit-constant name)
1759 (multiple-value-bind (tn named)
1760 (fun-lvar-tn last 2block fun)
1763 ((not (eq (ir2-block-next 2block) (block-info target)))
1764 (vop branch last 2block (block-label target)))))))
1768 ;;; Convert the code in a block into VOPs.
1769 (defun ir2-convert-block (block)
1770 (declare (type cblock block))
1771 (let ((2block (block-info block)))
1772 (do-nodes (node lvar block)
1776 (let ((2lvar (lvar-info lvar)))
1777 ;; function REF in a local call is not annotated
1778 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1779 (ir2-convert-ref node 2block)))))
1781 (let ((kind (basic-combination-kind node)))
1784 (ir2-convert-local-call node 2block))
1786 (ir2-convert-full-call node 2block))
1788 (let* ((info (basic-combination-fun-info node))
1789 (fun (fun-info-ir2-convert info)))
1791 (funcall fun node 2block))
1792 ((eq (basic-combination-info node) :full)
1793 (ir2-convert-full-call node 2block))
1795 (ir2-convert-template node 2block))))))))
1797 (when (lvar-info (if-test node))
1798 (ir2-convert-if node 2block)))
1800 (let ((fun (bind-lambda node)))
1801 (when (eq (lambda-home fun) fun)
1802 (ir2-convert-bind node 2block))))
1804 (ir2-convert-return node 2block))
1806 (ir2-convert-set node 2block))
1808 (ir2-convert-cast node 2block))
1811 ((eq (basic-combination-kind node) :local)
1812 (ir2-convert-mv-bind node 2block))
1813 ((eq (lvar-fun-name (basic-combination-fun node))
1815 (ir2-convert-throw node 2block))
1817 (ir2-convert-mv-call node 2block))))
1819 (when (exit-entry node)
1820 (ir2-convert-exit node 2block)))
1822 (ir2-convert-entry node 2block)))))
1824 (finish-ir2-block block)