1 ;;;; This file contains the virtual-machine-independent parts of the
2 ;;;; code which does the actual translation of nodes to VOPs.
4 ;;;; This software is part of the SBCL system. See the README file for
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
15 ;;;; moves and type checks
17 ;;; Move X to Y unless they are EQ.
18 (defun emit-move (node block x y)
19 (declare (type node node) (type ir2-block block) (type tn x y))
21 (vop move node block x y))
24 ;;; Determine whether we should emit a single-stepper breakpoint
25 ;;; around a call / before a vop.
26 (defun emit-step-p (node)
27 (if (and (policy node (> insert-step-conditions 1))
28 (typep node 'combination))
29 (combination-step-info node)
32 ;;; If there is any CHECK-xxx template for TYPE, then return it,
33 ;;; otherwise return NIL.
34 (defun type-check-template (type)
35 (declare (type ctype type))
36 (multiple-value-bind (check-ptype exact) (primitive-type type)
38 (primitive-type-check check-ptype)
39 (let ((name (hairy-type-check-template-name type)))
41 (template-or-lose name)
44 ;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
45 ;;; yielding the checked result in RESULT. VALUE and result may be of
46 ;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
47 ;;; other type checks should have been converted to an explicit type
49 (defun emit-type-check (node block value result type)
50 (declare (type tn value result) (type node node) (type ir2-block block)
52 (emit-move-template node block (type-check-template type) value result)
55 ;;; Allocate an indirect value cell.
56 (defevent make-value-cell-event "Allocate heap value cell for lexical var.")
57 (defun emit-make-value-cell (node block value res)
58 (event make-value-cell-event node)
59 (let ((leaf (tn-leaf res)))
60 (vop make-value-cell node block value
62 (and leaf (eq :truly (leaf-dynamic-extent leaf)))
67 ;;; Return the TN that holds the value of THING in the environment ENV.
68 (declaim (ftype (function ((or nlx-info lambda-var clambda) physenv) tn)
70 (defun find-in-physenv (thing physenv)
71 (or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
74 ;; I think that a failure of this assertion means that we're
75 ;; trying to access a variable which was improperly closed
76 ;; over. The PHYSENV describes a physical environment. Every
77 ;; variable that a form refers to should either be in its
78 ;; physical environment directly, or grabbed from a
79 ;; surrounding physical environment when it was closed over.
80 ;; The ASSOC expression above finds closed-over variables, so
81 ;; if we fell through the ASSOC expression, it wasn't closed
82 ;; over. Therefore, it must be in our physical environment
83 ;; directly. If instead it is in some other physical
84 ;; environment, then it's bogus for us to reference it here
85 ;; without it being closed over. -- WHN 2001-09-29
86 (aver (eq physenv (lambda-physenv (lambda-var-home thing))))
89 (aver (eq physenv (block-physenv (nlx-info-target thing))))
90 (ir2-nlx-info-home (nlx-info-info thing)))
93 (entry-info-closure-tn (lambda-info thing))))
94 (bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
96 ;;; If LEAF already has a constant TN, return that, otherwise make a
98 (defun constant-tn (leaf)
99 (declare (type constant leaf))
101 (setf (leaf-info leaf)
102 (make-constant-tn leaf))))
104 ;;; Return a TN that represents the value of LEAF, or NIL if LEAF
105 ;;; isn't directly represented by a TN. ENV is the environment that
106 ;;; the reference is done in.
107 (defun leaf-tn (leaf env)
108 (declare (type leaf leaf) (type physenv env))
111 (unless (lambda-var-indirect leaf)
112 (find-in-physenv leaf env)))
113 (constant (constant-tn leaf))
116 ;;; This is used to conveniently get a handle on a constant TN during
117 ;;; IR2 conversion. It returns a constant TN representing the Lisp
119 (defun emit-constant (value)
120 (constant-tn (find-constant value)))
122 ;;; Convert a REF node. The reference must not be delayed.
123 (defun ir2-convert-ref (node block)
124 (declare (type ref node) (type ir2-block block))
125 (let* ((lvar (node-lvar node))
126 (leaf (ref-leaf node))
127 (locs (lvar-result-tns
128 lvar (list (primitive-type (leaf-type leaf)))))
132 (let ((tn (find-in-physenv leaf (node-physenv node))))
133 (if (lambda-var-indirect leaf)
134 (vop value-cell-ref node block tn res)
135 (emit-move node block tn res))))
137 (emit-move node block (constant-tn leaf) res))
139 (ir2-convert-closure node block leaf res))
141 (let ((unsafe (policy node (zerop safety)))
142 (name (leaf-source-name leaf)))
143 (ecase (global-var-kind leaf)
145 (aver (symbolp name))
146 (let ((name-tn (emit-constant name)))
148 (vop fast-symbol-value node block name-tn res)
149 (vop symbol-value node block name-tn res))))
151 (let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
153 (vop fdefn-fun node block fdefn-tn res)
154 (vop safe-fdefn-fun node block fdefn-tn res))))))))
155 (move-lvar-result node block locs lvar))
158 ;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
159 (defun assertions-on-ir2-converted-clambda (clambda)
160 ;; This assertion was sort of an experiment. It would be nice and
161 ;; sane and easier to understand things if it were *always* true,
162 ;; but experimentally I observe that it's only *almost* always
163 ;; true. -- WHN 2001-01-02
165 (aver (eql (lambda-component clambda)
166 (block-component (ir2-block-block ir2-block))))
167 ;; Check for some weirdness which came up in bug
170 ;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
171 ;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
173 ;; * treats every HANDLEless :ENTRY record into a
175 ;; * expects every patch to correspond to an
176 ;; IR2-COMPONENT-ENTRIES record.
177 ;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
178 ;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
179 ;; was a HANDLEless :ENTRY record which didn't correspond to an
180 ;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
181 ;; when it's caught at dump time, so this assertion tries to catch
183 (aver (member clambda
184 (component-lambdas (lambda-component clambda))))
185 ;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
186 ;; used as a queue for stuff pending to do in IR1, and now that
187 ;; we're doing IR2 it should've been completely flushed (but
189 (aver (null (component-new-functionals (lambda-component clambda))))
192 ;;; Emit code to load a function object implementing FUNCTIONAL into
193 ;;; RES. This gets interesting when the referenced function is a
194 ;;; closure: we must make the closure and move the closed-over values
197 ;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
198 ;;; for the called function, since local call analysis converts all
199 ;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
202 ;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
203 ;;; don't initialize that slot. This can happen with closures over
204 ;;; top level variables, where optimization of the closure deleted the
205 ;;; variable. Since we committed to the closure format when we
206 ;;; pre-analyzed the top level code, we just leave an empty slot.
207 (defun ir2-convert-closure (ref ir2-block functional res)
208 (declare (type ref ref)
209 (type ir2-block ir2-block)
210 (type functional functional)
212 (aver (not (eql (functional-kind functional) :deleted)))
213 (unless (leaf-info functional)
214 (setf (leaf-info functional)
215 (make-entry-info :name (functional-debug-name functional))))
216 (let ((closure (etypecase functional
218 (assertions-on-ir2-converted-clambda functional)
219 (physenv-closure (get-lambda-physenv functional)))
221 (aver (eq (functional-kind functional) :toplevel-xep))
225 (let* ((physenv (node-physenv ref))
226 (tn (find-in-physenv functional physenv)))
227 (emit-move ref ir2-block tn res)))
229 (let ((entry (make-load-time-constant-tn :entry functional)))
230 (emit-move ref ir2-block entry res)))))
233 (defoptimizer (%allocate-closures ltn-annotate) ((leaves) node ltn-policy)
234 ltn-policy ; a hack to effectively (DECLARE (IGNORE LTN-POLICY))
235 (when (lvar-dynamic-extent leaves)
236 (let ((info (make-ir2-lvar *backend-t-primitive-type*)))
237 (setf (ir2-lvar-kind info) :delayed)
238 (setf (lvar-info leaves) info)
239 (setf (ir2-lvar-stack-pointer info)
240 (make-stack-pointer-tn)))))
242 (defoptimizer (%allocate-closures ir2-convert) ((leaves) call 2block)
243 (let ((dx-p (lvar-dynamic-extent leaves)))
246 (vop current-stack-pointer call 2block
247 (ir2-lvar-stack-pointer (lvar-info leaves))))
248 (dolist (leaf (lvar-value leaves))
249 (binding* ((xep (functional-entry-fun leaf) :exit-if-null)
250 (nil (aver (xep-p xep)))
251 (entry-info (lambda-info xep) :exit-if-null)
252 (tn (entry-info-closure-tn entry-info) :exit-if-null)
253 (closure (physenv-closure (get-lambda-physenv xep)))
254 (entry (make-load-time-constant-tn :entry xep)))
255 (let ((this-env (node-physenv call))
256 (leaf-dx-p (and dx-p (leaf-dynamic-extent leaf))))
257 (vop make-closure call 2block entry (length closure)
259 (loop for what in closure and n from 0 do
260 (unless (and (lambda-var-p what)
261 (null (leaf-refs what)))
262 ;; In LABELS a closure may refer to another closure
263 ;; in the same group, so we must be sure that we
264 ;; store a closure only after its creation.
266 ;; TODO: Here is a simple solution: we postpone
267 ;; putting of all closures after all creations
268 ;; (though it may require more registers).
270 (delayed (list tn (find-in-physenv what this-env) n))
271 (vop closure-init call 2block
273 (find-in-physenv what this-env)
275 (loop for (tn what n) in (delayed)
276 do (vop closure-init call 2block
280 ;;; Convert a SET node. If the NODE's LVAR is annotated, then we also
281 ;;; deliver the value to that lvar. If the var is a lexical variable
282 ;;; with no refs, then we don't actually set anything, since the
283 ;;; variable has been deleted.
284 (defun ir2-convert-set (node block)
285 (declare (type cset node) (type ir2-block block))
286 (let* ((lvar (node-lvar node))
287 (leaf (set-var node))
288 (val (lvar-tn node block (set-value node)))
291 lvar (list (primitive-type (leaf-type leaf))))
295 (when (leaf-refs leaf)
296 (let ((tn (find-in-physenv leaf (node-physenv node))))
297 (if (lambda-var-indirect leaf)
298 (vop value-cell-set node block tn val)
299 (emit-move node block val tn)))))
301 (ecase (global-var-kind leaf)
303 (aver (symbolp (leaf-source-name leaf)))
304 (vop set node block (emit-constant (leaf-source-name leaf)) val)))))
306 (emit-move node block val (first locs))
307 (move-lvar-result node block locs lvar)))
310 ;;;; utilities for receiving fixed values
312 ;;; Return a TN that can be referenced to get the value of LVAR. LVAR
313 ;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
314 ;;; single-value lvar.
316 ;;; The primitive-type of the result will always be the same as the
317 ;;; IR2-LVAR-PRIMITIVE-TYPE, ensuring that VOPs are always called with
318 ;;; TNs that satisfy the operand primitive-type restriction. We may
319 ;;; have to make a temporary of the desired type and move the actual
320 ;;; lvar TN into it. This happens when we delete a type check in
321 ;;; unsafe code or when we locally know something about the type of an
322 ;;; argument variable.
323 (defun lvar-tn (node block lvar)
324 (declare (type node node) (type ir2-block block) (type lvar lvar))
325 (let* ((2lvar (lvar-info lvar))
327 (ecase (ir2-lvar-kind 2lvar)
329 (let ((ref (lvar-uses lvar)))
330 (leaf-tn (ref-leaf ref) (node-physenv ref))))
332 (aver (= (length (ir2-lvar-locs 2lvar)) 1))
333 (first (ir2-lvar-locs 2lvar)))))
334 (ptype (ir2-lvar-primitive-type 2lvar)))
336 (cond ((eq (tn-primitive-type lvar-tn) ptype) lvar-tn)
338 (let ((temp (make-normal-tn ptype)))
339 (emit-move node block lvar-tn temp)
342 ;;; This is similar to LVAR-TN, but hacks multiple values. We return
343 ;;; TNs holding the values of LVAR with PTYPES as their primitive
344 ;;; types. LVAR must be annotated for the same number of fixed values
345 ;;; are there are PTYPES.
347 ;;; If the lvar has a type check, check the values into temps and
348 ;;; return the temps. When we have more values than assertions, we
349 ;;; move the extra values with no check.
350 (defun lvar-tns (node block lvar ptypes)
351 (declare (type node node) (type ir2-block block)
352 (type lvar lvar) (list ptypes))
353 (let* ((locs (ir2-lvar-locs (lvar-info lvar)))
354 (nlocs (length locs)))
355 (aver (= nlocs (length ptypes)))
357 (mapcar (lambda (from to-type)
358 (if (eq (tn-primitive-type from) to-type)
360 (let ((temp (make-normal-tn to-type)))
361 (emit-move node block from temp)
366 ;;;; utilities for delivering values to lvars
368 ;;; Return a list of TNs with the specifier TYPES that can be used as
369 ;;; result TNs to evaluate an expression into LVAR. This is used
370 ;;; together with MOVE-LVAR-RESULT to deliver fixed values to
373 ;;; If the lvar isn't annotated (meaning the values are discarded) or
374 ;;; is unknown-values, the then we make temporaries for each supplied
375 ;;; value, providing a place to compute the result in until we decide
376 ;;; what to do with it (if anything.)
378 ;;; If the lvar is fixed-values, and wants the same number of values
379 ;;; as the user wants to deliver, then we just return the
380 ;;; IR2-LVAR-LOCS. Otherwise we make a new list padded as necessary by
381 ;;; discarded TNs. We always return a TN of the specified type, using
382 ;;; the lvar locs only when they are of the correct type.
383 (defun lvar-result-tns (lvar types)
384 (declare (type (or lvar null) lvar) (type list types))
386 (mapcar #'make-normal-tn types)
387 (let ((2lvar (lvar-info lvar)))
388 (ecase (ir2-lvar-kind 2lvar)
390 (let* ((locs (ir2-lvar-locs 2lvar))
391 (nlocs (length locs))
392 (ntypes (length types)))
393 (if (and (= nlocs ntypes)
394 (do ((loc locs (cdr loc))
395 (type types (cdr type)))
397 (unless (eq (tn-primitive-type (car loc)) (car type))
400 (mapcar (lambda (loc type)
401 (if (eq (tn-primitive-type loc) type)
403 (make-normal-tn type)))
406 (mapcar #'make-normal-tn
407 (subseq types nlocs)))
411 (mapcar #'make-normal-tn types))))))
413 ;;; Make the first N standard value TNs, returning them in a list.
414 (defun make-standard-value-tns (n)
415 (declare (type unsigned-byte n))
418 (res (standard-arg-location i)))
421 ;;; Return a list of TNs wired to the standard value passing
422 ;;; conventions that can be used to receive values according to the
423 ;;; unknown-values convention. This is used with together
424 ;;; MOVE-LVAR-RESULT for delivering unknown values to a fixed values
427 ;;; If the lvar isn't annotated, then we treat as 0-values, returning
428 ;;; an empty list of temporaries.
430 ;;; If the lvar is annotated, then it must be :FIXED.
431 (defun standard-result-tns (lvar)
432 (declare (type (or lvar null) lvar))
434 (let ((2lvar (lvar-info lvar)))
435 (ecase (ir2-lvar-kind 2lvar)
437 (make-standard-value-tns (length (ir2-lvar-locs 2lvar))))))
440 ;;; Just move each SRC TN into the corresponding DEST TN, defaulting
441 ;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
442 ;;; doing the appropriate coercions.
443 (defun move-results-coerced (node block src dest)
444 (declare (type node node) (type ir2-block block) (list src dest))
445 (let ((nsrc (length src))
446 (ndest (length dest)))
447 (mapc (lambda (from to)
449 (emit-move node block from to)))
451 (append src (make-list (- ndest nsrc)
452 :initial-element (emit-constant nil)))
457 ;;; Move each SRC TN into the corresponding DEST TN, checking types
458 ;;; and defaulting any unsupplied source values to NIL
459 (defun move-results-checked (node block src dest types)
460 (declare (type node node) (type ir2-block block) (list src dest types))
461 (let ((nsrc (length src))
462 (ndest (length dest))
463 (ntypes (length types)))
464 (mapc (lambda (from to type)
466 (emit-type-check node block from to type)
467 (emit-move node block from to)))
469 (append src (make-list (- ndest nsrc)
470 :initial-element (emit-constant nil)))
474 (append types (make-list (- ndest ntypes)))
478 ;;; If necessary, emit coercion code needed to deliver the RESULTS to
479 ;;; the specified lvar. NODE and BLOCK provide context for emitting
480 ;;; code. Although usually obtained from STANDARD-RESULT-TNs or
481 ;;; LVAR-RESULT-TNs, RESULTS my be a list of any type or
484 ;;; If the lvar is fixed values, then move the results into the lvar
485 ;;; locations. If the lvar is unknown values, then do the moves into
486 ;;; the standard value locations, and use PUSH-VALUES to put the
487 ;;; values on the stack.
488 (defun move-lvar-result (node block results lvar)
489 (declare (type node node) (type ir2-block block)
490 (list results) (type (or lvar null) lvar))
492 (let ((2lvar (lvar-info lvar)))
493 (ecase (ir2-lvar-kind 2lvar)
495 (let ((locs (ir2-lvar-locs 2lvar)))
496 (unless (eq locs results)
497 (move-results-coerced node block results locs))))
499 (let* ((nvals (length results))
500 (locs (make-standard-value-tns nvals)))
501 (move-results-coerced node block results locs)
502 (vop* push-values node block
503 ((reference-tn-list locs nil))
504 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
509 (defun ir2-convert-cast (node block)
510 (declare (type cast node)
511 (type ir2-block block))
512 (binding* ((lvar (node-lvar node) :exit-if-null)
513 (2lvar (lvar-info lvar))
514 (value (cast-value node))
515 (2value (lvar-info value)))
516 (cond ((eq (ir2-lvar-kind 2lvar) :unused))
517 ((eq (ir2-lvar-kind 2lvar) :unknown)
518 (aver (eq (ir2-lvar-kind 2value) :unknown))
519 (aver (not (cast-type-check node)))
520 (move-results-coerced node block
521 (ir2-lvar-locs 2value)
522 (ir2-lvar-locs 2lvar)))
523 ((eq (ir2-lvar-kind 2lvar) :fixed)
524 (aver (eq (ir2-lvar-kind 2value) :fixed))
525 (if (cast-type-check node)
526 (move-results-checked node block
527 (ir2-lvar-locs 2value)
528 (ir2-lvar-locs 2lvar)
529 (multiple-value-bind (check types)
530 (cast-check-types node nil)
531 (aver (eq check :simple))
533 (move-results-coerced node block
534 (ir2-lvar-locs 2value)
535 (ir2-lvar-locs 2lvar))))
536 (t (bug "CAST cannot be :DELAYED.")))))
538 ;;;; template conversion
540 ;;; Build a TN-REFS list that represents access to the values of the
541 ;;; specified list of lvars ARGS for TEMPLATE. Any :CONSTANT arguments
542 ;;; are returned in the second value as a list rather than being
543 ;;; accessed as a normal argument. NODE and BLOCK provide the context
544 ;;; for emitting any necessary type-checking code.
545 (defun reference-args (node block args template)
546 (declare (type node node) (type ir2-block block) (list args)
547 (type template template))
548 (collect ((info-args))
551 (do ((args args (cdr args))
552 (types (template-arg-types template) (cdr types)))
554 (let ((type (first types))
556 (if (and (consp type) (eq (car type) ':constant))
557 (info-args (lvar-value arg))
558 (let ((ref (reference-tn (lvar-tn node block arg) nil)))
560 (setf (tn-ref-across last) ref)
564 (values (the (or tn-ref null) first) (info-args)))))
566 ;;; Convert a conditional template. We try to exploit any
567 ;;; drop-through, but emit an unconditional branch afterward if we
568 ;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
570 (defun ir2-convert-conditional (node block template args info-args if not-p)
571 (declare (type node node) (type ir2-block block)
572 (type template template) (type (or tn-ref null) args)
573 (list info-args) (type cif if) (type boolean not-p))
574 (let ((consequent (if-consequent if))
575 (alternative (if-alternative if))
576 (flags (and (consp (template-result-types template))
577 (rest (template-result-types template)))))
578 (aver (= (template-info-arg-count template)
579 (+ (length info-args)
582 (rotatef consequent alternative)
584 (when (drop-thru-p if consequent)
585 (rotatef consequent alternative)
588 (emit-template node block template args nil
589 (list* (block-label consequent) not-p
591 (unless (drop-thru-p if alternative)
592 (vop branch node block (block-label alternative))))
594 (emit-template node block template args nil info-args)
595 (vop branch-if node block (block-label consequent) flags not-p)
596 (unless (drop-thru-p if alternative)
597 (vop branch node block (block-label alternative)))))))
599 ;;; Convert an IF that isn't the DEST of a conditional template.
600 (defun ir2-convert-if (node block)
601 (declare (type ir2-block block) (type cif node))
602 (let* ((test (if-test node))
603 (test-ref (reference-tn (lvar-tn node block test) nil))
604 (nil-ref (reference-tn (emit-constant nil) nil)))
605 (setf (tn-ref-across test-ref) nil-ref)
606 (ir2-convert-conditional node block (template-or-lose 'if-eq)
607 test-ref () node t)))
609 ;;; Return a list of primitive-types that we can pass to LVAR-RESULT-TNS
610 ;;; describing the result types we want for a template call. We are really
611 ;;; only interested in the number of results required: in normal case
612 ;;; TEMPLATE-RESULTS-OK has already checked them.
613 (defun find-template-result-types (call rtypes)
614 (let* ((type (node-derived-type call))
616 (mapcar #'primitive-type
617 (if (values-type-p type)
618 (append (args-type-required type)
619 (args-type-optional type))
621 (primitive-t *backend-t-primitive-type*))
622 (loop for rtype in rtypes
623 for type = (or (pop types) primitive-t)
626 ;;; Return a list of TNs usable in a CALL to TEMPLATE delivering values to
627 ;;; LVAR. As an efficiency hack, we pick off the common case where the LVAR is
628 ;;; fixed values and has locations that satisfy the result restrictions. This
629 ;;; can fail when there is a type check or a values count mismatch.
630 (defun make-template-result-tns (call lvar rtypes)
631 (declare (type combination call) (type (or lvar null) lvar)
633 (let ((2lvar (when lvar (lvar-info lvar))))
634 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :fixed))
635 (let ((locs (ir2-lvar-locs 2lvar)))
636 (if (and (= (length rtypes) (length locs))
637 (do ((loc locs (cdr loc))
638 (rtypes rtypes (cdr rtypes)))
640 (unless (operand-restriction-ok
642 (tn-primitive-type (car loc))
648 (find-template-result-types call rtypes))))
651 (find-template-result-types call rtypes)))))
653 ;;; Get the operands into TNs, make TN-REFs for them, and then call
654 ;;; the template emit function.
655 (defun ir2-convert-template (call block)
656 (declare (type combination call) (type ir2-block block))
657 (let* ((template (combination-info call))
658 (lvar (node-lvar call))
659 (rtypes (template-result-types template)))
660 (multiple-value-bind (args info-args)
661 (reference-args call block (combination-args call) template)
662 (aver (not (template-more-results-type template)))
663 (if (template-conditional-p template)
664 (ir2-convert-conditional call block template args info-args
665 (lvar-dest lvar) nil)
666 (let* ((results (make-template-result-tns call lvar rtypes))
667 (r-refs (reference-tn-list results t)))
668 (aver (= (length info-args)
669 (template-info-arg-count template)))
670 (when (and lvar (lvar-dynamic-extent lvar))
671 (vop current-stack-pointer call block
672 (ir2-lvar-stack-pointer (lvar-info lvar))))
673 (when (emit-step-p call)
674 (vop sb!vm::step-instrument-before-vop call block))
676 (emit-template call block template args r-refs info-args)
677 (emit-template call block template args r-refs))
678 (move-lvar-result call block results lvar)))))
681 ;;; We don't have to do much because operand count checking is done by
682 ;;; IR1 conversion. The only difference between this and the function
683 ;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
685 (defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
686 (let* ((template (lvar-value template))
687 (info (lvar-value info))
688 (lvar (node-lvar call))
689 (rtypes (template-result-types template))
690 (results (make-template-result-tns call lvar rtypes))
691 (r-refs (reference-tn-list results t)))
692 (multiple-value-bind (args info-args)
693 (reference-args call block (cddr (combination-args call)) template)
694 (aver (not (template-more-results-type template)))
695 (aver (not (template-conditional-p template)))
696 (aver (null info-args))
699 (emit-template call block template args r-refs info)
700 (emit-template call block template args r-refs))
702 (move-lvar-result call block results lvar)))
705 (defoptimizer (%%primitive derive-type) ((template info &rest args))
706 (let ((type (template-type (lvar-value template))))
707 (if (fun-type-p type)
708 (fun-type-returns type)
713 ;;; Convert a LET by moving the argument values into the variables.
714 ;;; Since a LET doesn't have any passing locations, we move the
715 ;;; arguments directly into the variables. We must also allocate any
716 ;;; indirect value cells, since there is no function prologue to do
718 (defun ir2-convert-let (node block fun)
719 (declare (type combination node) (type ir2-block block) (type clambda fun))
720 (mapc (lambda (var arg)
722 (let ((src (lvar-tn node block arg))
723 (dest (leaf-info var)))
724 (if (lambda-var-indirect var)
725 (emit-make-value-cell node block src dest)
726 (emit-move node block src dest)))))
727 (lambda-vars fun) (basic-combination-args node))
730 ;;; Emit any necessary moves into assignment temps for a local call to
731 ;;; FUN. We return two lists of TNs: TNs holding the actual argument
732 ;;; values, and (possibly EQ) TNs that are the actual destination of
733 ;;; the arguments. When necessary, we allocate temporaries for
734 ;;; arguments to preserve parallel assignment semantics. These lists
735 ;;; exclude unused arguments and include implicit environment
736 ;;; arguments, i.e. they exactly correspond to the arguments passed.
738 ;;; OLD-FP is the TN currently holding the value we want to pass as
739 ;;; OLD-FP. If null, then the call is to the same environment (an
740 ;;; :ASSIGNMENT), so we only move the arguments, and leave the
741 ;;; environment alone.
742 (defun emit-psetq-moves (node block fun old-fp)
743 (declare (type combination node) (type ir2-block block) (type clambda fun)
744 (type (or tn null) old-fp))
745 (let ((actuals (mapcar (lambda (x)
747 (lvar-tn node block x)))
748 (combination-args node))))
751 (dolist (var (lambda-vars fun))
752 (let ((actual (pop actuals))
753 (loc (leaf-info var)))
756 ((lambda-var-indirect var)
758 (make-normal-tn *backend-t-primitive-type*)))
759 (emit-make-value-cell node block actual temp)
761 ((member actual (locs))
762 (let ((temp (make-normal-tn (tn-primitive-type loc))))
763 (emit-move node block actual temp)
770 (let ((this-1env (node-physenv node))
771 (called-env (physenv-info (lambda-physenv fun))))
772 (dolist (thing (ir2-physenv-closure called-env))
773 (temps (find-in-physenv (car thing) this-1env))
776 (locs (ir2-physenv-old-fp called-env))))
778 (values (temps) (locs)))))
780 ;;; A tail-recursive local call is done by emitting moves of stuff
781 ;;; into the appropriate passing locations. After setting up the args
782 ;;; and environment, we just move our return-pc into the called
783 ;;; function's passing location.
784 (defun ir2-convert-tail-local-call (node block fun)
785 (declare (type combination node) (type ir2-block block) (type clambda fun))
786 (let ((this-env (physenv-info (node-physenv node))))
787 (multiple-value-bind (temps locs)
788 (emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
790 (mapc (lambda (temp loc)
791 (emit-move node block temp loc))
794 (emit-move node block
795 (ir2-physenv-return-pc this-env)
796 (ir2-physenv-return-pc-pass
798 (lambda-physenv fun)))))
802 ;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
803 ;;; except that the caller and callee environment are the same, so we
804 ;;; don't need to mess with the environment locations, return PC, etc.
805 (defun ir2-convert-assignment (node block fun)
806 (declare (type combination node) (type ir2-block block) (type clambda fun))
807 (multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
809 (mapc (lambda (temp loc)
810 (emit-move node block temp loc))
814 ;;; Do stuff to set up the arguments to a non-tail local call
815 ;;; (including implicit environment args.) We allocate a frame
816 ;;; (returning the FP and NFP), and also compute the TN-REFS list for
817 ;;; the values to pass and the list of passing location TNs.
818 (defun ir2-convert-local-call-args (node block fun)
819 (declare (type combination node) (type ir2-block block) (type clambda fun))
820 (let ((fp (make-stack-pointer-tn))
821 (nfp (make-number-stack-pointer-tn))
822 (old-fp (make-stack-pointer-tn)))
823 (multiple-value-bind (temps locs)
824 (emit-psetq-moves node block fun old-fp)
825 (vop current-fp node block old-fp)
826 (vop allocate-frame node block
827 (physenv-info (lambda-physenv fun))
829 (values fp nfp temps (mapcar #'make-alias-tn locs)))))
831 ;;; Handle a non-TR known-values local call. We emit the call, then
832 ;;; move the results to the lvar's destination.
833 (defun ir2-convert-local-known-call (node block fun returns lvar start)
834 (declare (type node node) (type ir2-block block) (type clambda fun)
835 (type return-info returns) (type (or lvar null) lvar)
837 (multiple-value-bind (fp nfp temps arg-locs)
838 (ir2-convert-local-call-args node block fun)
839 (let ((locs (return-info-locations returns)))
840 (vop* known-call-local node block
841 (fp nfp (reference-tn-list temps nil))
842 ((reference-tn-list locs t))
843 arg-locs (physenv-info (lambda-physenv fun)) start)
844 (move-lvar-result node block locs lvar)))
847 ;;; Handle a non-TR unknown-values local call. We do different things
848 ;;; depending on what kind of values the lvar wants.
850 ;;; If LVAR is :UNKNOWN, then we use the "multiple-" variant, directly
851 ;;; specifying the lvar's LOCS as the VOP results so that we don't
852 ;;; have to do anything after the call.
854 ;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
855 ;;; then call MOVE-LVAR-RESULT to do any necessary type checks or
857 (defun ir2-convert-local-unknown-call (node block fun lvar start)
858 (declare (type node node) (type ir2-block block) (type clambda fun)
859 (type (or lvar null) lvar) (type label start))
860 (multiple-value-bind (fp nfp temps arg-locs)
861 (ir2-convert-local-call-args node block fun)
862 (let ((2lvar (and lvar (lvar-info lvar)))
863 (env (physenv-info (lambda-physenv fun)))
864 (temp-refs (reference-tn-list temps nil)))
865 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
866 (vop* multiple-call-local node block (fp nfp temp-refs)
867 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
869 (let ((locs (standard-result-tns lvar)))
870 (vop* call-local node block
872 ((reference-tn-list locs t))
873 arg-locs env start (length locs))
874 (move-lvar-result node block locs lvar)))))
877 ;;; Dispatch to the appropriate function, depending on whether we have
878 ;;; a let, tail or normal call. If the function doesn't return, call
879 ;;; it using the unknown-value convention. We could compile it as a
880 ;;; tail call, but that might seem confusing in the debugger.
881 (defun ir2-convert-local-call (node block)
882 (declare (type combination node) (type ir2-block block))
883 (let* ((fun (ref-leaf (lvar-uses (basic-combination-fun node))))
884 (kind (functional-kind fun)))
885 (cond ((eq kind :let)
886 (ir2-convert-let node block fun))
887 ((eq kind :assignment)
888 (ir2-convert-assignment node block fun))
890 (ir2-convert-tail-local-call node block fun))
892 (let ((start (block-label (lambda-block fun)))
893 (returns (tail-set-info (lambda-tail-set fun)))
894 (lvar (node-lvar node)))
896 (return-info-kind returns)
899 (ir2-convert-local-unknown-call node block fun lvar start))
901 (ir2-convert-local-known-call node block fun returns
907 ;;; Given a function lvar FUN, return (VALUES TN-TO-CALL NAMED-P),
908 ;;; where TN-TO-CALL is a TN holding the thing that we call NAMED-P is
909 ;;; true if the thing is named (false if it is a function).
911 ;;; There are two interesting non-named cases:
912 ;;; -- We know it's a function. No check needed: return the
914 ;;; -- We don't know what it is.
915 (defun fun-lvar-tn (node block lvar)
916 (declare (ignore node block))
917 (declare (type lvar lvar))
918 (let ((2lvar (lvar-info lvar)))
919 (if (eq (ir2-lvar-kind 2lvar) :delayed)
920 (let ((name (lvar-fun-name lvar t)))
922 (values (make-load-time-constant-tn :fdefinition name) t))
923 (let* ((locs (ir2-lvar-locs 2lvar))
925 (function-ptype (primitive-type-or-lose 'function)))
926 (aver (and (eq (ir2-lvar-kind 2lvar) :fixed)
927 (= (length locs) 1)))
928 (aver (eq (tn-primitive-type loc) function-ptype))
931 ;;; Set up the args to NODE in the current frame, and return a TN-REF
932 ;;; list for the passing locations.
933 (defun move-tail-full-call-args (node block)
934 (declare (type combination node) (type ir2-block block))
935 (let ((args (basic-combination-args node))
938 (dotimes (num (length args))
939 (let ((loc (standard-arg-location num)))
940 (emit-move node block (lvar-tn node block (elt args num)) loc)
941 (let ((ref (reference-tn loc nil)))
943 (setf (tn-ref-across last) ref)
948 ;;; Move the arguments into the passing locations and do a (possibly
949 ;;; named) tail call.
950 (defun ir2-convert-tail-full-call (node block)
951 (declare (type combination node) (type ir2-block block))
952 (let* ((env (physenv-info (node-physenv node)))
953 (args (basic-combination-args node))
954 (nargs (length args))
955 (pass-refs (move-tail-full-call-args node block))
956 (old-fp (ir2-physenv-old-fp env))
957 (return-pc (ir2-physenv-return-pc env)))
959 (multiple-value-bind (fun-tn named)
960 (fun-lvar-tn node block (basic-combination-fun node))
962 (vop* tail-call-named node block
963 (fun-tn old-fp return-pc pass-refs)
967 (vop* tail-call node block
968 (fun-tn old-fp return-pc pass-refs)
971 (emit-step-p node)))))
975 ;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
976 (defun ir2-convert-full-call-args (node block)
977 (declare (type combination node) (type ir2-block block))
978 (let* ((args (basic-combination-args node))
979 (fp (make-stack-pointer-tn))
980 (nargs (length args)))
981 (vop allocate-full-call-frame node block nargs fp)
986 (locs (standard-arg-location num))
987 (let ((ref (reference-tn (lvar-tn node block (elt args num))
990 (setf (tn-ref-across last) ref)
994 (values fp first (locs) nargs)))))
996 ;;; Do full call when a fixed number of values are desired. We make
997 ;;; STANDARD-RESULT-TNS for our lvar, then deliver the result using
998 ;;; MOVE-LVAR-RESULT. We do named or normal call, as appropriate.
999 (defun ir2-convert-fixed-full-call (node block)
1000 (declare (type combination node) (type ir2-block block))
1001 (multiple-value-bind (fp args arg-locs nargs)
1002 (ir2-convert-full-call-args node block)
1003 (let* ((lvar (node-lvar node))
1004 (locs (standard-result-tns lvar))
1005 (loc-refs (reference-tn-list locs t))
1006 (nvals (length locs)))
1007 (multiple-value-bind (fun-tn named)
1008 (fun-lvar-tn node block (basic-combination-fun node))
1010 (vop* call-named node block (fp fun-tn args) (loc-refs)
1011 arg-locs nargs nvals (emit-step-p node))
1012 (vop* call node block (fp fun-tn args) (loc-refs)
1013 arg-locs nargs nvals (emit-step-p node)))
1014 (move-lvar-result node block locs lvar))))
1017 ;;; Do full call when unknown values are desired.
1018 (defun ir2-convert-multiple-full-call (node block)
1019 (declare (type combination node) (type ir2-block block))
1020 (multiple-value-bind (fp args arg-locs nargs)
1021 (ir2-convert-full-call-args node block)
1022 (let* ((lvar (node-lvar node))
1023 (locs (ir2-lvar-locs (lvar-info lvar)))
1024 (loc-refs (reference-tn-list locs t)))
1025 (multiple-value-bind (fun-tn named)
1026 (fun-lvar-tn node block (basic-combination-fun node))
1028 (vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
1029 arg-locs nargs (emit-step-p node))
1030 (vop* multiple-call node block (fp fun-tn args) (loc-refs)
1031 arg-locs nargs (emit-step-p node))))))
1034 ;;; stuff to check in PONDER-FULL-CALL
1036 ;;; These came in handy when troubleshooting cold boot after making
1037 ;;; major changes in the package structure: various transforms and
1038 ;;; VOPs and stuff got attached to the wrong symbol, so that
1039 ;;; references to the right symbol were bogusly translated as full
1040 ;;; calls instead of primitives, sending the system off into infinite
1041 ;;; space. Having a report on all full calls generated makes it easier
1042 ;;; to figure out what form caused the problem this time.
1043 #!+sb-show (defvar *show-full-called-fnames-p* nil)
1044 #!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
1046 ;;; Do some checks (and store some notes relevant for future checks)
1048 ;;; * Is this a full call to something we have reason to know should
1049 ;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
1050 ;;; longer try to ensure this behavior when *FAILURE-P* has already
1052 ;;; * Is this a full call to (SETF FOO) which might conflict with
1053 ;;; a DEFSETF or some such thing elsewhere in the program?
1054 (defun ponder-full-call (node)
1055 (let* ((lvar (basic-combination-fun node))
1056 (fname (lvar-fun-name lvar t)))
1057 (declare (type (or symbol cons) fname))
1059 #!+sb-show (unless (gethash fname *full-called-fnames*)
1060 (setf (gethash fname *full-called-fnames*) t))
1061 #!+sb-show (when *show-full-called-fnames-p*
1062 (/show "converting full call to named function" fname)
1063 (/show (basic-combination-args node))
1064 (/show (policy node speed) (policy node safety))
1065 (/show (policy node compilation-speed))
1066 (let ((arg-types (mapcar (lambda (lvar)
1070 (basic-combination-args node))))
1073 ;; When illegal code is compiled, all sorts of perverse paths
1074 ;; through the compiler can be taken, and it's much harder -- and
1075 ;; probably pointless -- to guarantee that always-optimized-away
1076 ;; functions are actually optimized away. Thus, we skip the check
1079 ;; check to see if we know anything about the function
1080 (let ((info (info :function :info fname)))
1081 ;; if we know something, check to see if the full call was valid
1082 (when (and info (ir1-attributep (fun-info-attributes info)
1083 always-translatable))
1084 (/show (policy node speed) (policy node safety))
1085 (/show (policy node compilation-speed))
1086 (bug "full call to ~S" fname))))
1089 (aver (legal-fun-name-p fname))
1090 (destructuring-bind (setfoid &rest stem) fname
1091 (when (eq setfoid 'setf)
1092 (setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
1094 ;;; If the call is in a tail recursive position and the return
1095 ;;; convention is standard, then do a tail full call. If one or fewer
1096 ;;; values are desired, then use a single-value call, otherwise use a
1097 ;;; multiple-values call.
1098 (defun ir2-convert-full-call (node block)
1099 (declare (type combination node) (type ir2-block block))
1100 (ponder-full-call node)
1101 (cond ((node-tail-p node)
1102 (ir2-convert-tail-full-call node block))
1103 ((let ((lvar (node-lvar node)))
1105 (eq (ir2-lvar-kind (lvar-info lvar)) :unknown)))
1106 (ir2-convert-multiple-full-call node block))
1108 (ir2-convert-fixed-full-call node block)))
1111 ;;;; entering functions
1113 ;;; Do all the stuff that needs to be done on XEP entry:
1114 ;;; -- Create frame.
1115 ;;; -- Copy any more arg.
1116 ;;; -- Set up the environment, accessing any closure variables.
1117 ;;; -- Move args from the standard passing locations to their internal
1119 (defun init-xep-environment (node block fun)
1120 (declare (type bind node) (type ir2-block block) (type clambda fun))
1121 (let ((start-label (entry-info-offset (leaf-info fun)))
1122 (env (physenv-info (node-physenv node))))
1123 (let ((ef (functional-entry-fun fun)))
1124 (cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
1125 ;; Special case the xep-allocate-frame + copy-more-arg case.
1126 (vop xep-allocate-frame node block start-label t)
1127 (vop copy-more-arg node block (optional-dispatch-max-args ef)))
1129 ;; No more args, so normal entry.
1130 (vop xep-allocate-frame node block start-label nil)))
1131 (if (ir2-physenv-closure env)
1132 (let ((closure (make-normal-tn *backend-t-primitive-type*)))
1133 (vop setup-closure-environment node block start-label closure)
1135 (dolist (loc (ir2-physenv-closure env))
1136 (vop closure-ref node block closure (incf n) (cdr loc)))))
1137 (vop setup-environment node block start-label)))
1139 (unless (eq (functional-kind fun) :toplevel)
1140 (let ((vars (lambda-vars fun))
1142 (when (leaf-refs (first vars))
1143 (emit-move node block (make-arg-count-location)
1144 (leaf-info (first vars))))
1145 (dolist (arg (rest vars))
1146 (when (leaf-refs arg)
1147 (let ((pass (standard-arg-location n))
1148 (home (leaf-info arg)))
1149 (if (lambda-var-indirect arg)
1150 (emit-make-value-cell node block pass home)
1151 (emit-move node block pass home))))
1154 (emit-move node block (make-old-fp-passing-location t)
1155 (ir2-physenv-old-fp env)))
1159 ;;; Emit function prolog code. This is only called on bind nodes for
1160 ;;; functions that allocate environments. All semantics of let calls
1161 ;;; are handled by IR2-CONVERT-LET.
1163 ;;; If not an XEP, all we do is move the return PC from its passing
1164 ;;; location, since in a local call, the caller allocates the frame
1165 ;;; and sets up the arguments.
1166 (defun ir2-convert-bind (node block)
1167 (declare (type bind node) (type ir2-block block))
1168 (let* ((fun (bind-lambda node))
1169 (env (physenv-info (lambda-physenv fun))))
1170 (aver (member (functional-kind fun)
1171 '(nil :external :optional :toplevel :cleanup)))
1174 (init-xep-environment node block fun)
1176 (when *collect-dynamic-statistics*
1177 (vop count-me node block *dynamic-counts-tn*
1178 (block-number (ir2-block-block block)))))
1182 (ir2-physenv-return-pc-pass env)
1183 (ir2-physenv-return-pc env))
1185 #!+unwind-to-frame-and-call-vop
1186 (when (and (lambda-allow-instrumenting fun)
1187 (not (lambda-inline-expanded fun))
1189 (policy fun (>= insert-debug-catch 2)))
1190 (vop sb!vm::bind-sentinel node block))
1192 (let ((lab (gen-label)))
1193 (setf (ir2-physenv-environment-start env) lab)
1194 (vop note-environment-start node block lab)))
1198 ;;;; function return
1200 ;;; Do stuff to return from a function with the specified values and
1201 ;;; convention. If the return convention is :FIXED and we aren't
1202 ;;; returning from an XEP, then we do a known return (letting
1203 ;;; representation selection insert the correct move-arg VOPs.)
1204 ;;; Otherwise, we use the unknown-values convention. If there is a
1205 ;;; fixed number of return values, then use RETURN, otherwise use
1206 ;;; RETURN-MULTIPLE.
1207 (defun ir2-convert-return (node block)
1208 (declare (type creturn node) (type ir2-block block))
1209 (let* ((lvar (return-result node))
1210 (2lvar (lvar-info lvar))
1211 (lvar-kind (ir2-lvar-kind 2lvar))
1212 (fun (return-lambda node))
1213 (env (physenv-info (lambda-physenv fun)))
1214 (old-fp (ir2-physenv-old-fp env))
1215 (return-pc (ir2-physenv-return-pc env))
1216 (returns (tail-set-info (lambda-tail-set fun))))
1217 #!+unwind-to-frame-and-call-vop
1218 (when (and (lambda-allow-instrumenting fun)
1219 (not (lambda-inline-expanded fun))
1220 (policy fun (>= insert-debug-catch 2)))
1221 (vop sb!vm::unbind-sentinel node block))
1223 ((and (eq (return-info-kind returns) :fixed)
1225 (let ((locs (lvar-tns node block lvar
1226 (return-info-types returns))))
1227 (vop* known-return node block
1228 (old-fp return-pc (reference-tn-list locs nil))
1230 (return-info-locations returns))))
1231 ((eq lvar-kind :fixed)
1232 (let* ((types (mapcar #'tn-primitive-type (ir2-lvar-locs 2lvar)))
1233 (lvar-locs (lvar-tns node block lvar types))
1234 (nvals (length lvar-locs))
1235 (locs (make-standard-value-tns nvals)))
1236 (mapc (lambda (val loc)
1237 (emit-move node block val loc))
1241 (vop return-single node block old-fp return-pc (car locs))
1242 (vop* return node block
1243 (old-fp return-pc (reference-tn-list locs nil))
1247 (aver (eq lvar-kind :unknown))
1248 (vop* return-multiple node block
1250 (reference-tn-list (ir2-lvar-locs 2lvar) nil))
1257 ;;;; These are used by the debugger to find the top function on the
1258 ;;;; stack. They return the OLD-FP and RETURN-PC for the current
1259 ;;;; function as multiple values.
1261 (defoptimizer (%caller-frame ir2-convert) (() node block)
1262 (let ((ir2-physenv (physenv-info (node-physenv node))))
1263 (move-lvar-result node block
1264 (list (ir2-physenv-old-fp ir2-physenv))
1267 (defoptimizer (%caller-pc ir2-convert) (() node block)
1268 (let ((ir2-physenv (physenv-info (node-physenv node))))
1269 (move-lvar-result node block
1270 (list (ir2-physenv-return-pc ir2-physenv))
1273 ;;;; multiple values
1275 ;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
1276 ;;; the lvar for the correct number of values (with the lvar user
1277 ;;; responsible for defaulting), we can just pick them up from the
1279 (defun ir2-convert-mv-bind (node block)
1280 (declare (type mv-combination node) (type ir2-block block))
1281 (let* ((lvar (first (basic-combination-args node)))
1282 (fun (ref-leaf (lvar-uses (basic-combination-fun node))))
1283 (vars (lambda-vars fun)))
1284 (aver (eq (functional-kind fun) :mv-let))
1285 (mapc (lambda (src var)
1286 (when (leaf-refs var)
1287 (let ((dest (leaf-info var)))
1288 (if (lambda-var-indirect var)
1289 (emit-make-value-cell node block src dest)
1290 (emit-move node block src dest)))))
1291 (lvar-tns node block lvar
1293 (primitive-type (leaf-type x)))
1298 ;;; Emit the appropriate fixed value, unknown value or tail variant of
1299 ;;; CALL-VARIABLE. Note that we only need to pass the values start for
1300 ;;; the first argument: all the other argument lvar TNs are
1301 ;;; ignored. This is because we require all of the values globs to be
1302 ;;; contiguous and on stack top.
1303 (defun ir2-convert-mv-call (node block)
1304 (declare (type mv-combination node) (type ir2-block block))
1305 (aver (basic-combination-args node))
1306 (let* ((start-lvar (lvar-info (first (basic-combination-args node))))
1307 (start (first (ir2-lvar-locs start-lvar)))
1308 (tails (and (node-tail-p node)
1309 (lambda-tail-set (node-home-lambda node))))
1310 (lvar (node-lvar node))
1311 (2lvar (and lvar (lvar-info lvar))))
1312 (multiple-value-bind (fun named)
1313 (fun-lvar-tn node block (basic-combination-fun node))
1314 (aver (and (not named)
1315 (eq (ir2-lvar-kind start-lvar) :unknown)))
1318 (let ((env (physenv-info (node-physenv node))))
1319 (vop tail-call-variable node block start fun
1320 (ir2-physenv-old-fp env)
1321 (ir2-physenv-return-pc env))))
1323 (eq (ir2-lvar-kind 2lvar) :unknown))
1324 (vop* multiple-call-variable node block (start fun nil)
1325 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1326 (emit-step-p node)))
1328 (let ((locs (standard-result-tns lvar)))
1329 (vop* call-variable node block (start fun nil)
1330 ((reference-tn-list locs t)) (length locs)
1332 (move-lvar-result node block locs lvar)))))))
1334 ;;; Reset the stack pointer to the start of the specified
1335 ;;; unknown-values lvar (discarding it and all values globs on top of
1337 (defoptimizer (%pop-values ir2-convert) ((%lvar) node block)
1338 (let* ((lvar (lvar-value %lvar))
1339 (2lvar (lvar-info lvar)))
1340 (cond ((eq (ir2-lvar-kind 2lvar) :unknown)
1341 (vop reset-stack-pointer node block
1342 (first (ir2-lvar-locs 2lvar))))
1343 ((lvar-dynamic-extent lvar)
1344 (vop reset-stack-pointer node block
1345 (ir2-lvar-stack-pointer 2lvar)))
1346 (t (bug "Trying to pop a not stack-allocated LVAR ~S."
1349 (defoptimizer (%nip-values ir2-convert) ((last-nipped last-preserved
1352 (let* ( ;; pointer immediately after the nipped block
1353 (after (lvar-value last-nipped))
1354 (2after (lvar-info after))
1355 ;; pointer to the first nipped word
1356 (first (lvar-value last-preserved))
1357 (2first (lvar-info first))
1359 (moved-tns (loop for lvar-ref in moved
1360 for lvar = (lvar-value lvar-ref)
1361 for 2lvar = (lvar-info lvar)
1363 collect (first (ir2-lvar-locs 2lvar)))))
1364 (aver (or (eq (ir2-lvar-kind 2after) :unknown)
1365 (lvar-dynamic-extent after)))
1366 (aver (eq (ir2-lvar-kind 2first) :unknown))
1367 (when *check-consistency*
1368 ;; we cannot move stack-allocated DX objects
1369 (dolist (moved-lvar moved)
1370 (aver (eq (ir2-lvar-kind (lvar-info (lvar-value moved-lvar)))
1372 (flet ((nip-aligned (nipped)
1373 (vop* %%nip-values node block
1375 (first (ir2-lvar-locs 2first))
1376 (reference-tn-list moved-tns nil))
1377 ((reference-tn-list moved-tns t)))))
1378 (cond ((eq (ir2-lvar-kind 2after) :unknown)
1379 (nip-aligned (first (ir2-lvar-locs 2after))))
1380 ((lvar-dynamic-extent after)
1381 (nip-aligned (ir2-lvar-stack-pointer 2after)))
1383 (bug "Trying to nip a not stack-allocated LVAR ~S." after))))))
1385 ;;; Deliver the values TNs to LVAR using MOVE-LVAR-RESULT.
1386 (defoptimizer (values ir2-convert) ((&rest values) node block)
1387 (let ((tns (mapcar (lambda (x)
1388 (lvar-tn node block x))
1390 (move-lvar-result node block tns (node-lvar node))))
1392 ;;; In the normal case where unknown values are desired, we use the
1393 ;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
1394 ;;; for a fixed number of values, we punt by doing a full call to the
1395 ;;; VALUES-LIST function. This gets the full call VOP to deal with
1396 ;;; defaulting any unsupplied values. It seems unworthwhile to
1397 ;;; optimize this case.
1398 (defoptimizer (values-list ir2-convert) ((list) node block)
1399 (let* ((lvar (node-lvar node))
1400 (2lvar (and lvar (lvar-info lvar))))
1402 (eq (ir2-lvar-kind 2lvar) :unknown))
1403 (let ((locs (ir2-lvar-locs 2lvar)))
1404 (vop* values-list node block
1405 ((lvar-tn node block list) nil)
1406 ((reference-tn-list locs t)))))
1407 (t (aver (or (not 2lvar) ; i.e. we want to check the argument
1408 (eq (ir2-lvar-kind 2lvar) :fixed)))
1409 (ir2-convert-full-call node block)))))
1411 (defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
1412 (binding* ((lvar (node-lvar node) :exit-if-null)
1413 (2lvar (lvar-info lvar)))
1414 (ecase (ir2-lvar-kind 2lvar)
1415 (:fixed (ir2-convert-full-call node block))
1417 (let ((locs (ir2-lvar-locs 2lvar)))
1418 (vop* %more-arg-values node block
1419 ((lvar-tn node block context)
1420 (lvar-tn node block start)
1421 (lvar-tn node block count)
1423 ((reference-tn-list locs t))))))))
1425 ;;;; special binding
1427 ;;; This is trivial, given our assumption of a shallow-binding
1429 (defoptimizer (%special-bind ir2-convert) ((var value) node block)
1430 (let ((name (leaf-source-name (lvar-value var))))
1431 (vop bind node block (lvar-tn node block value)
1432 (emit-constant name))))
1433 (defoptimizer (%special-unbind ir2-convert) ((var) node block)
1434 (vop unbind node block))
1436 ;;; ### It's not clear that this really belongs in this file, or
1437 ;;; should really be done this way, but this is the least violation of
1438 ;;; abstraction in the current setup. We don't want to wire
1439 ;;; shallow-binding assumptions into IR1tran.
1440 (def-ir1-translator progv
1441 ((vars vals &body body) start next result)
1444 (with-unique-names (bind unbind)
1445 (once-only ((n-save-bs '(%primitive current-binding-pointer)))
1448 (labels ((,unbind (vars)
1449 (declare (optimize (speed 2) (debug 0)))
1450 (let ((unbound-marker (%primitive make-other-immediate-type
1451 0 sb!vm:unbound-marker-widetag)))
1453 ;; CLHS says "bound and then made to have no value" -- user
1454 ;; should not be able to tell the difference between that and this.
1455 (about-to-modify-symbol-value var "bind ~S")
1456 (%primitive bind unbound-marker var))))
1458 (declare (optimize (speed 2) (debug 0)
1459 (insert-debug-catch 0)))
1461 ((null vals) (,unbind vars))
1463 (let ((val (car vals))
1465 (about-to-modify-symbol-value var "bind ~S" val)
1466 (%primitive bind val var))
1467 (,bind (cdr vars) (cdr vals))))))
1468 (,bind ,vars ,vals))
1471 ;; Technically ANSI CL doesn't allow declarations at the
1472 ;; start of the cleanup form. SBCL happens to allow for
1473 ;; them, due to the way the UNWIND-PROTECT ir1 translation
1474 ;; is implemented; the cleanup forms are directly spliced
1475 ;; into an FLET definition body. And a declaration here
1476 ;; actually has exactly the right scope for what we need
1477 ;; (ensure that debug instrumentation is not emitted for the
1478 ;; cleanup function). -- JES, 2007-06-16
1479 (declare (optimize (insert-debug-catch 0)))
1480 (%primitive unbind-to-here ,n-save-bs))))))
1484 ;;; Convert a non-local lexical exit. First find the NLX-INFO in our
1485 ;;; environment. Note that this is never called on the escape exits
1486 ;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
1488 (defun ir2-convert-exit (node block)
1489 (declare (type exit node) (type ir2-block block))
1490 (let* ((nlx (exit-nlx-info node))
1491 (loc (find-in-physenv nlx (node-physenv node)))
1492 (temp (make-stack-pointer-tn))
1493 (value (exit-value node)))
1494 (if (nlx-info-safe-p nlx)
1495 (vop value-cell-ref node block loc temp)
1496 (emit-move node block loc temp))
1498 (let ((locs (ir2-lvar-locs (lvar-info value))))
1499 (vop unwind node block temp (first locs) (second locs)))
1500 (let ((0-tn (emit-constant 0)))
1501 (vop unwind node block temp 0-tn 0-tn))))
1505 ;;; %CLEANUP-POINT doesn't do anything except prevent the body from
1506 ;;; being entirely deleted.
1507 (defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
1509 ;;; This function invalidates a lexical exit on exiting from the
1510 ;;; dynamic extent. This is done by storing 0 into the indirect value
1511 ;;; cell that holds the closed unwind block.
1512 (defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
1513 (let ((nlx (lvar-value info)))
1514 (when (nlx-info-safe-p nlx)
1515 (vop value-cell-set node block
1516 (find-in-physenv nlx (node-physenv node))
1517 (emit-constant 0)))))
1519 ;;; We have to do a spurious move of no values to the result lvar so
1520 ;;; that lifetime analysis won't get confused.
1521 (defun ir2-convert-throw (node block)
1522 (declare (type mv-combination node) (type ir2-block block))
1523 (let ((args (basic-combination-args node)))
1524 (check-catch-tag-type (first args))
1525 (vop* throw node block
1526 ((lvar-tn node block (first args))
1528 (ir2-lvar-locs (lvar-info (second args)))
1531 (move-lvar-result node block () (node-lvar node))
1534 ;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
1535 ;;; exit, and TAG is the lvar for the catch tag (if any.) We get at
1536 ;;; the target PC by passing in the label to the vop. The vop is
1537 ;;; responsible for building a return-PC object.
1538 (defun emit-nlx-start (node block info tag)
1539 (declare (type node node) (type ir2-block block) (type nlx-info info)
1540 (type (or lvar null) tag))
1541 (let* ((2info (nlx-info-info info))
1542 (kind (cleanup-kind (nlx-info-cleanup info)))
1543 (block-tn (physenv-live-tn
1544 (make-normal-tn (primitive-type-or-lose 'catch-block))
1545 (node-physenv node)))
1546 (res (make-stack-pointer-tn))
1547 (target-label (ir2-nlx-info-target 2info)))
1549 (vop current-binding-pointer node block
1550 (car (ir2-nlx-info-dynamic-state 2info)))
1551 (vop* save-dynamic-state node block
1553 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
1554 (vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
1558 (vop make-catch-block node block block-tn
1559 (lvar-tn node block tag) target-label res))
1560 ((:unwind-protect :block :tagbody)
1561 (vop make-unwind-block node block block-tn target-label res)))
1565 (if (nlx-info-safe-p info)
1566 (emit-make-value-cell node block res (ir2-nlx-info-home 2info))
1567 (emit-move node block res (ir2-nlx-info-home 2info))))
1569 (vop set-unwind-protect node block block-tn))
1574 ;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
1575 (defun ir2-convert-entry (node block)
1576 (declare (type entry node) (type ir2-block block))
1578 (dolist (exit (entry-exits node))
1579 (let ((info (exit-nlx-info exit)))
1581 (not (memq info nlxes))
1582 (member (cleanup-kind (nlx-info-cleanup info))
1583 '(:block :tagbody)))
1585 (emit-nlx-start node block info nil)))))
1588 ;;; Set up the unwind block for these guys.
1589 (defoptimizer (%catch ir2-convert) ((info-lvar tag) node block)
1590 (check-catch-tag-type tag)
1591 (emit-nlx-start node block (lvar-value info-lvar) tag))
1592 (defoptimizer (%unwind-protect ir2-convert) ((info-lvar cleanup) node block)
1593 (emit-nlx-start node block (lvar-value info-lvar) nil))
1595 ;;; Emit the entry code for a non-local exit. We receive values and
1596 ;;; restore dynamic state.
1598 ;;; In the case of a lexical exit or CATCH, we look at the exit lvar's
1599 ;;; kind to determine which flavor of entry VOP to emit. If unknown
1600 ;;; values, emit the xxx-MULTIPLE variant to the lvar locs. If fixed
1601 ;;; values, make the appropriate number of temps in the standard
1602 ;;; values locations and use the other variant, delivering the temps
1603 ;;; to the lvar using MOVE-LVAR-RESULT.
1605 ;;; In the UNWIND-PROTECT case, we deliver the first register
1606 ;;; argument, the argument count and the argument pointer to our lvar
1607 ;;; as multiple values. These values are the block exited to and the
1608 ;;; values start and count.
1610 ;;; After receiving values, we restore dynamic state. Except in the
1611 ;;; UNWIND-PROTECT case, the values receiving restores the stack
1612 ;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
1613 ;;; pointer alone, since the thrown values are still out there.
1614 (defoptimizer (%nlx-entry ir2-convert) ((info-lvar) node block)
1615 (let* ((info (lvar-value info-lvar))
1616 (lvar (node-lvar node))
1617 (2info (nlx-info-info info))
1618 (top-loc (ir2-nlx-info-save-sp 2info))
1619 (start-loc (make-nlx-entry-arg-start-location))
1620 (count-loc (make-arg-count-location))
1621 (target (ir2-nlx-info-target 2info)))
1623 (ecase (cleanup-kind (nlx-info-cleanup info))
1624 ((:catch :block :tagbody)
1625 (let ((2lvar (and lvar (lvar-info lvar))))
1626 (if (and 2lvar (eq (ir2-lvar-kind 2lvar) :unknown))
1627 (vop* nlx-entry-multiple node block
1628 (top-loc start-loc count-loc nil)
1629 ((reference-tn-list (ir2-lvar-locs 2lvar) t))
1631 (let ((locs (standard-result-tns lvar)))
1632 (vop* nlx-entry node block
1633 (top-loc start-loc count-loc nil)
1634 ((reference-tn-list locs t))
1637 (move-lvar-result node block locs lvar)))))
1639 (let ((block-loc (standard-arg-location 0)))
1640 (vop uwp-entry node block target block-loc start-loc count-loc)
1643 (list block-loc start-loc count-loc)
1647 (when *collect-dynamic-statistics*
1648 (vop count-me node block *dynamic-counts-tn*
1649 (block-number (ir2-block-block block))))
1651 (vop* restore-dynamic-state node block
1652 ((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
1654 (vop unbind-to-here node block
1655 (car (ir2-nlx-info-dynamic-state 2info)))))
1657 ;;;; n-argument functions
1659 (macrolet ((def (name)
1660 `(defoptimizer (,name ir2-convert) ((&rest args) node block)
1661 (let* ((refs (move-tail-full-call-args node block))
1662 (lvar (node-lvar node))
1663 (res (lvar-result-tns
1665 (list (primitive-type (specifier-type 'list))))))
1666 (when (and lvar (lvar-dynamic-extent lvar))
1667 (vop current-stack-pointer node block
1668 (ir2-lvar-stack-pointer (lvar-info lvar))))
1669 (vop* ,name node block (refs) ((first res) nil)
1671 (move-lvar-result node block res lvar)))))
1676 ;;; Convert the code in a component into VOPs.
1677 (defun ir2-convert (component)
1678 (declare (type component component))
1679 (let (#!+sb-dyncount
1680 (*dynamic-counts-tn*
1681 (when *collect-dynamic-statistics*
1683 (block-number (block-next (component-head component))))
1684 (counts (make-array blocks
1685 :element-type '(unsigned-byte 32)
1686 :initial-element 0))
1687 (info (make-dyncount-info
1688 :for (component-name component)
1689 :costs (make-array blocks
1690 :element-type '(unsigned-byte 32)
1693 (setf (ir2-component-dyncount-info (component-info component))
1695 (emit-constant info)
1696 (emit-constant counts)))))
1698 (declare (type index num))
1699 (do-ir2-blocks (2block component)
1700 (let ((block (ir2-block-block 2block)))
1701 (when (block-start block)
1702 (setf (block-number block) num)
1704 (when *collect-dynamic-statistics*
1705 (let ((first-node (block-start-node block)))
1706 (unless (or (and (bind-p first-node)
1707 (xep-p (bind-lambda first-node)))
1709 (node-lvar first-node))
1714 #!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
1716 (ir2-convert-block block)
1720 ;;; If necessary, emit a terminal unconditional branch to go to the
1721 ;;; successor block. If the successor is the component tail, then
1722 ;;; there isn't really any successor, but if the end is an unknown,
1723 ;;; non-tail call, then we emit an error trap just in case the
1724 ;;; function really does return.
1725 (defun finish-ir2-block (block)
1726 (declare (type cblock block))
1727 (let* ((2block (block-info block))
1728 (last (block-last block))
1729 (succ (block-succ block)))
1731 (aver (singleton-p succ))
1732 (let ((target (first succ)))
1733 (cond ((eq target (component-tail (block-component block)))
1734 (when (and (basic-combination-p last)
1735 (eq (basic-combination-kind last) :full))
1736 (let* ((fun (basic-combination-fun last))
1737 (use (lvar-uses fun))
1738 (name (and (ref-p use)
1739 (leaf-has-source-name-p (ref-leaf use))
1740 (leaf-source-name (ref-leaf use)))))
1741 (unless (or (node-tail-p last)
1742 (info :function :info name)
1743 (policy last (zerop safety)))
1744 (vop nil-fun-returned-error last 2block
1746 (emit-constant name)
1747 (multiple-value-bind (tn named)
1748 (fun-lvar-tn last 2block fun)
1751 ((not (eq (ir2-block-next 2block) (block-info target)))
1752 (vop branch last 2block (block-label target)))))))
1756 ;;; Convert the code in a block into VOPs.
1757 (defun ir2-convert-block (block)
1758 (declare (type cblock block))
1759 (let ((2block (block-info block)))
1760 (do-nodes (node lvar block)
1764 (let ((2lvar (lvar-info lvar)))
1765 ;; function REF in a local call is not annotated
1766 (when (and 2lvar (not (eq (ir2-lvar-kind 2lvar) :delayed)))
1767 (ir2-convert-ref node 2block)))))
1769 (let ((kind (basic-combination-kind node)))
1772 (ir2-convert-local-call node 2block))
1774 (ir2-convert-full-call node 2block))
1776 (let* ((info (basic-combination-fun-info node))
1777 (fun (fun-info-ir2-convert info)))
1779 (funcall fun node 2block))
1780 ((eq (basic-combination-info node) :full)
1781 (ir2-convert-full-call node 2block))
1783 (ir2-convert-template node 2block))))))))
1785 (when (lvar-info (if-test node))
1786 (ir2-convert-if node 2block)))
1788 (let ((fun (bind-lambda node)))
1789 (when (eq (lambda-home fun) fun)
1790 (ir2-convert-bind node 2block))))
1792 (ir2-convert-return node 2block))
1794 (ir2-convert-set node 2block))
1796 (ir2-convert-cast node 2block))
1799 ((eq (basic-combination-kind node) :local)
1800 (ir2-convert-mv-bind node 2block))
1801 ((eq (lvar-fun-name (basic-combination-fun node))
1803 (ir2-convert-throw node 2block))
1805 (ir2-convert-mv-call node 2block))))
1807 (when (exit-entry node)
1808 (ir2-convert-exit node 2block)))
1810 (ir2-convert-entry node 2block)))))
1812 (finish-ir2-block block)