0774febb37a5a00a83fc955880298bef93fb356d
[sbcl.git] / src / compiler / node.lisp
1 ;;;; structures for the first intermediate representation in the
2 ;;;; compiler, IR1
3
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
12
13 (in-package "SB!C")
14
15 ;;; The front-end data structure (IR1) is composed of nodes and
16 ;;; continuations. The general idea is that continuations contain
17 ;;; top-down information and nodes contain bottom-up, derived
18 ;;; information. A continuation represents a place in the code, while
19 ;;; a node represents code that does something.
20 ;;;
21 ;;; This representation is more of a flow-graph than an augmented
22 ;;; syntax tree. The evaluation order is explicitly represented in the
23 ;;; linkage by continuations, rather than being implicit in the nodes
24 ;;; which receive the the results of evaluation. This allows us to
25 ;;; decouple the flow of results from the flow of control. A
26 ;;; continuation represents both, but the continuation can represent
27 ;;; the case of a discarded result by having no DEST.
28
29 (def!struct (continuation
30              (:make-load-form-fun ignore-it)
31              (:constructor make-continuation (&optional dest)))
32   ;; an indication of the way that this continuation is currently used
33   ;;
34   ;; :UNUSED
35   ;;    A continuation for which all control-related slots have the
36   ;;    default values. A continuation is unused during IR1 conversion
37   ;;    until it is assigned a block, and may be also be temporarily
38   ;;    unused during later manipulations of IR1. In a consistent
39   ;;    state there should never be any mention of :UNUSED
40   ;;    continuations. Next can have a non-null value if the next node
41   ;;    has already been determined.
42   ;;
43   ;; :DELETED
44   ;;    A continuation that has been deleted from IR1. Any pointers into
45   ;;    IR1 are cleared. There are two conditions under which a deleted
46   ;;    continuation may appear in code:
47   ;;     -- The CONT of the LAST node in a block may be a deleted
48   ;;        continuation when the original receiver of the continuation's
49   ;;        value was deleted. Note that DEST in a deleted continuation is
50   ;;        null, so it is easy to know not to attempt delivering any
51   ;;        values to the continuation.
52   ;;     -- Unreachable code that hasn't been deleted yet may receive
53   ;;        deleted continuations. All such code will be in blocks that
54   ;;        have DELETE-P set. All unreachable code is deleted by control
55   ;;        optimization, so the backend doesn't have to worry about this.
56   ;;
57   ;; :BLOCK-START
58   ;;    The continuation that is the START of BLOCK. This is the only kind
59   ;;    of continuation that can have more than one use. The BLOCK's
60   ;;    START-USES is a list of all the uses.
61   ;;
62   ;; :DELETED-BLOCK-START
63   ;;    Like :BLOCK-START, but BLOCK has been deleted. A block
64   ;;    starting continuation is made into a deleted block start when
65   ;;    the block is deleted, but the continuation still may have
66   ;;    value semantics. Since there isn't any code left, next is
67   ;;    null.
68   ;;
69   ;; :INSIDE-BLOCK
70   ;;    A continuation that is the CONT of some node in BLOCK.
71   (kind :unused :type (member :unused :deleted :inside-block :block-start
72                               :deleted-block-start))
73   ;; The node which receives this value, if any. In a deleted
74   ;; continuation, this is null even though the node that receives
75   ;; this continuation may not yet be deleted.
76   (dest nil :type (or node null))
77   ;; If this is a NODE, then it is the node which is to be evaluated
78   ;; next. This is always null in :DELETED and :UNUSED continuations,
79   ;; and will be null in a :INSIDE-BLOCK continuation when this is the
80   ;; CONT of the LAST.
81   (next nil :type (or node null))
82   ;; an assertion on the type of this continuation's value
83   (asserted-type *wild-type* :type ctype)
84   ;; cached type of this continuation's value. If NIL, then this must
85   ;; be recomputed: see CONTINUATION-DERIVED-TYPE.
86   (%derived-type nil :type (or ctype null))
87   ;; the node where this continuation is used, if unique. This is always
88   ;; null in :DELETED and :UNUSED continuations, and is never null in
89   ;; :INSIDE-BLOCK continuations. In a :BLOCK-START continuation, the
90   ;; Block's START-USES indicate whether NIL means no uses or more
91   ;; than one use.
92   (use nil :type (or node null))
93   ;; the basic block this continuation is in. This is null only in
94   ;; :DELETED and :UNUSED continuations. Note that blocks that are
95   ;; unreachable but still in the DFO may receive deleted
96   ;; continuations, so it isn't o.k. to assume that any continuation
97   ;; that you pick up out of its DEST node has a BLOCK.
98   (block nil :type (or cblock null))
99   ;; set to true when something about this continuation's value has
100   ;; changed. See REOPTIMIZE-CONTINUATION. This provides a way for IR1
101   ;; optimize to determine which operands to a node have changed. If
102   ;; the optimizer for this node type doesn't care, it can elect not
103   ;; to clear this flag.
104   (reoptimize t :type boolean)
105   ;; an indication of what we have proven about how this contination's
106   ;; type assertion is satisfied:
107   ;;
108   ;; NIL
109   ;;    No type check is necessary (proven type is a subtype of the assertion.)
110   ;;
111   ;; T
112   ;;    A type check is needed.
113   ;;
114   ;; :DELETED
115   ;;    Don't do a type check, but believe (intersect) the assertion.
116   ;;    A T check can be changed to :DELETED if we somehow prove the
117   ;;    check is unnecessary, or if we eliminate it through a policy
118   ;;    decision.
119   ;;
120   ;; :NO-CHECK
121   ;;    Type check generation sets the slot to this if a check is
122   ;;    called for, but it believes it has proven that the check won't
123   ;;    be done for policy reasons or because a safe implementation
124   ;;    will be used. In the latter case, LTN must ensure that a safe
125   ;;    implementation *is* used.
126   ;;
127   ;; :ERROR
128   ;;    There is a compile-time type error in some use of this
129   ;;    continuation. A type check should still be generated, but be
130   ;;    careful.
131   ;;
132   ;; This is computed lazily by CONTINUATION-DERIVED-TYPE, so use
133   ;; CONTINUATION-TYPE-CHECK instead of the %'ed slot accessor.
134   (%type-check t :type (member t nil :deleted :no-check :error))
135   ;; something or other that the back end annotates this continuation with
136   (info nil)
137   ;; uses of this continuation in the lexical environment. They are
138   ;; recorded so that when one continuation is substituted for another
139   ;; the environment may be updated properly.
140   (lexenv-uses nil :type list))
141
142 (def!method print-object ((x continuation) stream)
143   (print-unreadable-object (x stream :type t :identity t)))
144
145 (defstruct (node (:constructor nil)
146                  (:copier nil))
147   ;; unique ID for debugging
148   #!+sb-show (id (new-object-id) :read-only t)
149   ;; the bottom-up derived type for this node. This does not take into
150   ;; consideration output type assertions on this node (actually on its CONT).
151   (derived-type *wild-type* :type ctype)
152   ;; True if this node needs to be optimized. This is set to true
153   ;; whenever something changes about the value of a continuation
154   ;; whose DEST is this node.
155   (reoptimize t :type boolean)
156   ;; the continuation which receives the value of this node. This also
157   ;; indicates what we do controlwise after evaluating this node. This
158   ;; may be null during IR1 conversion.
159   (cont nil :type (or continuation null))
160   ;; the continuation that this node is the next of. This is null
161   ;; during IR1 conversion when we haven't linked the node in yet or
162   ;; in nodes that have been deleted from the IR1 by UNLINK-NODE.
163   (prev nil :type (or continuation null))
164   ;; the lexical environment this node was converted in
165   (lexenv *lexenv* :type lexenv)
166   ;; a representation of the source code responsible for generating
167   ;; this node
168   ;;
169   ;; For a form introduced by compilation (does not appear in the
170   ;; original source), the path begins with a list of all the
171   ;; enclosing introduced forms. This list is from the inside out,
172   ;; with the form immediately responsible for this node at the head
173   ;; of the list.
174   ;;
175   ;; Following the introduced forms is a representation of the
176   ;; location of the enclosing original source form. This transition
177   ;; is indicated by the magic ORIGINAL-SOURCE-START marker. The first
178   ;; element of the original source is the "form number", which is the
179   ;; ordinal number of this form in a depth-first, left-to-right walk
180   ;; of the truly-top-level form in which this appears.
181   ;;
182   ;; Following is a list of integers describing the path taken through
183   ;; the source to get to this point:
184   ;;     (K L M ...) => (NTH K (NTH L (NTH M ...)))
185   ;;
186   ;; The last element in the list is the top level form number, which
187   ;; is the ordinal number (in this call to the compiler) of the truly
188   ;; top level form containing the original source.
189   (source-path *current-path* :type list)
190   ;; If this node is in a tail-recursive position, then this is set to
191   ;; T. At the end of IR1 (in physical environment analysis) this is
192   ;; computed for all nodes (after cleanup code has been emitted).
193   ;; Before then, a non-null value indicates that IR1 optimization has
194   ;; converted a tail local call to a direct transfer.
195   ;;
196   ;; If the back-end breaks tail-recursion for some reason, then it
197   ;; can null out this slot.
198   (tail-p nil :type boolean))
199
200 ;;; Flags that are used to indicate various things about a block, such
201 ;;; as what optimizations need to be done on it:
202 ;;; -- REOPTIMIZE is set when something interesting happens the uses of a
203 ;;;    continuation whose Dest is in this block. This indicates that the
204 ;;;    value-driven (forward) IR1 optimizations should be done on this block.
205 ;;; -- FLUSH-P is set when code in this block becomes potentially flushable,
206 ;;;    usually due to a continuation's DEST becoming null.
207 ;;; -- TYPE-CHECK is true when the type check phase should be run on this
208 ;;;    block. IR1 optimize can introduce new blocks after type check has
209 ;;;    already run. We need to check these blocks, but there is no point in
210 ;;;    checking blocks we have already checked.
211 ;;; -- DELETE-P is true when this block is used to indicate that this block
212 ;;;    has been determined to be unreachable and should be deleted. IR1
213 ;;;    phases should not attempt to examine or modify blocks with DELETE-P
214 ;;;    set, since they may:
215 ;;;     - be in the process of being deleted, or
216 ;;;     - have no successors, or
217 ;;;     - receive :DELETED continuations.
218 ;;; -- TYPE-ASSERTED, TEST-MODIFIED
219 ;;;    These flags are used to indicate that something in this block
220 ;;;    might be of interest to constraint propagation. TYPE-ASSERTED
221 ;;;    is set when a continuation type assertion is strengthened.
222 ;;;    TEST-MODIFIED is set whenever the test for the ending IF has
223 ;;;    changed (may be true when there is no IF.)
224 (def-boolean-attribute block
225   reoptimize flush-p type-check delete-p type-asserted test-modified)
226
227 ;;; FIXME: Tweak so that definitions of e.g. BLOCK-DELETE-P is
228 ;;; findable by grep for 'def.*block-delete-p'.
229 (macrolet ((frob (slot)
230              `(defmacro ,(symbolicate "BLOCK-" slot) (block)
231                 `(block-attributep (block-flags ,block) ,',slot))))
232   (frob reoptimize)
233   (frob flush-p)
234   (frob type-check)
235   (frob delete-p)
236   (frob type-asserted)
237   (frob test-modified))
238
239 ;;; The CBLOCK structure represents a basic block. We include
240 ;;; SSET-ELEMENT so that we can have sets of blocks. Initially the
241 ;;; SSET-ELEMENT-NUMBER is null, DFO analysis numbers in reverse DFO.
242 ;;; During IR2 conversion, IR1 blocks are re-numbered in forward emit
243 ;;; order. This latter numbering also forms the basis of the block
244 ;;; numbering in the debug-info (though that is relative to the start
245 ;;; of the function.)
246 (defstruct (cblock (:include sset-element)
247                    (:constructor make-block (start))
248                    (:constructor make-block-key)
249                    (:conc-name block-)
250                    (:predicate block-p)
251                    (:copier copy-block))
252   ;; a list of all the blocks that are predecessors/successors of this
253   ;; block. In well-formed IR1, most blocks will have one successor.
254   ;; The only exceptions are:
255   ;;  1. component head blocks (any number)
256   ;;  2. blocks ending in an IF (1 or 2)
257   ;;  3. blocks with DELETE-P set (zero)
258   (pred nil :type list)
259   (succ nil :type list)
260   ;; the continuation which heads this block (either a :BLOCK-START or
261   ;; :DELETED-BLOCK-START), or NIL when we haven't made the start
262   ;; continuation yet (and in the dummy component head and tail
263   ;; blocks)
264   (start nil :type (or continuation null))
265   ;; a list of all the nodes that have START as their CONT
266   (start-uses nil :type list)
267   ;; the last node in this block. This is NIL when we are in the
268   ;; process of building a block (and in the dummy component head and
269   ;; tail blocks.)
270   (last nil :type (or node null))
271   ;; the forward and backward links in the depth-first ordering of the
272   ;; blocks. These slots are NIL at beginning/end.
273   (next nil :type (or null cblock))
274   (prev nil :type (or null cblock))
275   ;; This block's attributes: see above.
276   (flags (block-attributes reoptimize flush-p type-check type-asserted
277                            test-modified)
278          :type attributes)
279   ;; CMU CL had a KILL slot here, documented as "set used by
280   ;; constraint propagation", which was used in constraint propagation
281   ;; as a list of LAMBDA-VARs killed, and in copy propagation as an
282   ;; SSET, representing I dunno what. I (WHN) found this confusing,
283   ;; and furthermore it caused type errors when I was trying to make
284   ;; the compiler produce fully general LAMBDA functions directly
285   ;; (instead of doing as CMU CL always did, producing extra little
286   ;; functions which return the LAMDBA you need) and therefore taking
287   ;; a new path through the compiler. So I split this into two:
288   ;;   KILL-LIST = list of LAMBDA-VARs killed, used in constraint propagation
289   ;;   KILL-SSET = an SSET value, used in copy propagation
290   (kill-list nil :type list)
291   (kill-sset nil :type (or sset null))
292   ;; other sets used in constraint propagation and/or copy propagation
293   (gen nil)
294   (in nil)
295   (out nil)
296   ;; the component this block is in, or NIL temporarily during IR1
297   ;; conversion and in deleted blocks
298   (component (progn
299                (aver-live-component *current-component*)
300                *current-component*)
301              :type (or component null))
302   ;; a flag used by various graph-walking code to determine whether
303   ;; this block has been processed already or what. We make this
304   ;; initially NIL so that FIND-INITIAL-DFO doesn't have to scan the
305   ;; entire initial component just to clear the flags.
306   (flag nil)
307   ;; some kind of info used by the back end
308   (info nil)
309   ;; If true, then constraints that hold in this block and its
310   ;; successors by merit of being tested by its IF predecessor.
311   (test-constraint nil :type (or sset null)))
312 (def!method print-object ((cblock cblock) stream)
313   (print-unreadable-object (cblock stream :type t :identity t)
314     (format stream ":START c~W" (cont-num (block-start cblock)))))
315
316 ;;; The BLOCK-ANNOTATION class is inherited (via :INCLUDE) by
317 ;;; different BLOCK-INFO annotation structures so that code
318 ;;; (specifically control analysis) can be shared.
319 (defstruct (block-annotation (:constructor nil)
320                              (:copier nil))
321   ;; The IR1 block that this block is in the INFO for.
322   (block (missing-arg) :type cblock)
323   ;; the next and previous block in emission order (not DFO). This
324   ;; determines which block we drop though to, and is also used to
325   ;; chain together overflow blocks that result from splitting of IR2
326   ;; blocks in lifetime analysis.
327   (next nil :type (or block-annotation null))
328   (prev nil :type (or block-annotation null)))
329
330 ;;; A COMPONENT structure provides a handle on a connected piece of
331 ;;; the flow graph. Most of the passes in the compiler operate on
332 ;;; COMPONENTs rather than on the entire flow graph.
333 ;;;
334 ;;; According to the CMU CL internals/front.tex, the reason for
335 ;;; separating compilation into COMPONENTs is
336 ;;;   to increase the efficiency of large block compilations. In
337 ;;;   addition to improving locality of reference and reducing the
338 ;;;   size of flow analysis problems, this allows back-end data
339 ;;;   structures to be reclaimed after the compilation of each
340 ;;;   component.
341 (defstruct (component (:copier nil))
342   ;; unique ID for debugging
343   #!+sb-show (id (new-object-id) :read-only t)
344   ;; the kind of component
345   ;;
346   ;; (The terminology here is left over from before
347   ;; sbcl-0.pre7.34.flaky5.2, when there was no such thing as
348   ;; FUNCTIONAL-HAS-EXTERNAL-REFERENCES-P, so that Python was
349   ;; incapable of building standalone :EXTERNAL functions, but instead
350   ;; had to implement things like #'CL:COMPILE as FUNCALL of a little
351   ;; toplevel stub whose sole purpose was to return an :EXTERNAL
352   ;; function.)
353   ;;
354   ;; The possibilities are:
355   ;;   NIL
356   ;;     an ordinary component, containing non-top-level code
357   ;;   :TOPLEVEL
358   ;;     a component containing only load-time code
359   ;;   :COMPLEX-TOPLEVEL
360   ;;     In the old system, before FUNCTIONAL-HAS-EXTERNAL-REFERENCES-P
361   ;;     was defined, this was necessarily a component containing both
362   ;;     top level and run-time code. Now this state is also used for
363   ;;     a component with HAS-EXTERNAL-REFERENCES-P functionals in it.
364   ;;   :INITIAL
365   ;;     the result of initial IR1 conversion, on which component
366   ;;     analysis has not been done
367   ;;   :DELETED
368   ;;     debris left over from component analysis
369   ;;
370   ;; See also COMPONENT-TOPLEVELISH-P.
371   (kind nil :type (member nil :toplevel :complex-toplevel :initial :deleted))
372   ;; the blocks that are the dummy head and tail of the DFO
373   ;;
374   ;; Entry/exit points have these blocks as their
375   ;; predecessors/successors. Null temporarily. The start and return
376   ;; from each non-deleted function is linked to the component head
377   ;; and tail. Until physical environment analysis links NLX entry
378   ;; stubs to the component head, every successor of the head is a
379   ;; function start (i.e. begins with a BIND node.)
380   (head nil :type (or null cblock))
381   (tail nil :type (or null cblock))
382   ;; This becomes a list of the CLAMBDA structures for all functions
383   ;; in this component. OPTIONAL-DISPATCHes are represented only by
384   ;; their XEP and other associated lambdas. This doesn't contain any
385   ;; deleted or LET lambdas.
386   ;;
387   ;; Note that logical associations between CLAMBDAs and COMPONENTs
388   ;; seem to exist for a while before this is initialized. See e.g.
389   ;; the NEW-FUNS slot. In particular, I got burned by writing some
390   ;; code to use this value to decide which components need
391   ;; LOCALL-ANALYZE-COMPONENT, when it turns out that
392   ;; LOCALL-ANALYZE-COMPONENT had a role in initializing this value
393   ;; (and DFO stuff does too, maybe). Also, even after it's
394   ;; initialized, it might change as CLAMBDAs are deleted or merged.
395   ;; -- WHN 2001-09-30
396   (lambdas () :type list)
397   ;; a list of FUNCTIONALs for functions that are newly converted, and
398   ;; haven't been local-call analyzed yet. Initially functions are not
399   ;; in the LAMBDAS list. Local call analysis moves them there
400   ;; (possibly as LETs, or implicitly as XEPs if an OPTIONAL-DISPATCH.)
401   ;; Between runs of local call analysis there may be some debris of
402   ;; converted or even deleted functions in this list.
403   (new-funs () :type list)
404   ;; If this is true, then there is stuff in this component that could
405   ;; benefit from further IR1 optimization.
406   (reoptimize t :type boolean)
407   ;; If this is true, then the control flow in this component was
408   ;; messed up by IR1 optimizations, so the DFO should be recomputed.
409   (reanalyze nil :type boolean)
410   ;; some sort of name for the code in this component
411   (name "<unknown>" :type simple-string)
412   ;; When I am a child, this is :NO-IR2-YET.
413   ;; In my adulthood, IR2 stores notes to itself here.
414   ;; After I have left the great wheel and am staring into the GC, this
415   ;;   is set to :DEAD to indicate that it's a gruesome error to operate
416   ;;   on me (e.g. by using me as *CURRENT-COMPONENT*, or by pushing
417   ;;   LAMBDAs onto my NEW-FUNS, as in sbcl-0.pre7.115).
418   (info :no-ir2-yet :type (or ir2-component (member :no-ir2-yet :dead)))
419   ;; the SOURCE-INFO structure describing where this component was
420   ;; compiled from
421   (source-info *source-info* :type source-info)
422   ;; count of the number of inline expansions we have done while
423   ;; compiling this component, to detect infinite or exponential
424   ;; blowups
425   (inline-expansions 0 :type index)
426   ;; a map from combination nodes to things describing how an
427   ;; optimization of the node failed. The description is an alist
428   ;; (TRANSFORM . ARGS), where TRANSFORM is the structure describing
429   ;; the transform that failed, and ARGS is either a list of format
430   ;; arguments for the note, or the FUN-TYPE that would have
431   ;; enabled the transformation but failed to match.
432   (failed-optimizations (make-hash-table :test 'eq) :type hash-table)
433   ;; This is similar to NEW-FUNS, but is used when a function has
434   ;; already been analyzed, but new references have been added by
435   ;; inline expansion. Unlike NEW-FUNS, this is not disjoint from
436   ;; COMPONENT-LAMBDAS.
437   (reanalyze-funs nil :type list))
438 (defprinter (component :identity t)
439   name
440   #!+sb-show id
441   (reanalyze :test reanalyze))
442
443 ;;; Check that COMPONENT is suitable for roles which involve adding
444 ;;; new code. (gotta love imperative programming with lotso in-place
445 ;;; side-effects...)
446 (defun aver-live-component (component)
447   ;; FIXME: As of sbcl-0.pre7.115, we're asserting that
448   ;; COMPILE-COMPONENT hasn't happened yet. Might it be even better
449   ;; (certainly stricter, possibly also correct...) to assert that
450   ;; IR1-FINALIZE hasn't happened yet?
451   (aver (not (eql (component-info component) :dead))))
452
453 ;;; Before sbcl-0.7.0, there were :TOPLEVEL things which were magical
454 ;;; in multiple ways. That's since been refactored into the orthogonal
455 ;;; properties "optimized for locall with no arguments" and "externally
456 ;;; visible/referenced (so don't delete it)". The code <0.7.0 did a lot
457 ;;; of tests a la (EQ KIND :TOP_LEVEL) in the "don't delete it?" sense;
458 ;;; this function is a sort of literal translation of those tests into
459 ;;; the new world.
460 ;;;
461 ;;; FIXME: After things settle down, bare :TOPLEVEL might go away, at
462 ;;; which time it might be possible to replace the COMPONENT-KIND
463 ;;; :TOPLEVEL mess with a flag COMPONENT-HAS-EXTERNAL-REFERENCES-P
464 ;;; along the lines of FUNCTIONAL-HAS-EXTERNAL-REFERENCES-P.
465 (defun lambda-toplevelish-p (clambda)
466   (or (eql (lambda-kind clambda) :toplevel)
467       (lambda-has-external-references-p clambda)))
468 (defun component-toplevelish-p (component)
469   (member (component-kind component)
470           '(:toplevel :complex-toplevel)))
471
472 ;;; A CLEANUP structure represents some dynamic binding action. Blocks
473 ;;; are annotated with the current CLEANUP so that dynamic bindings
474 ;;; can be removed when control is transferred out of the binding
475 ;;; environment. We arrange for changes in dynamic bindings to happen
476 ;;; at block boundaries, so that cleanup code may easily be inserted.
477 ;;; The "mess-up" action is explicitly represented by a funny function
478 ;;; call or ENTRY node.
479 ;;;
480 ;;; We guarantee that CLEANUPs only need to be done at block boundaries
481 ;;; by requiring that the exit continuations initially head their
482 ;;; blocks, and then by not merging blocks when there is a cleanup
483 ;;; change.
484 (defstruct (cleanup (:copier nil))
485   ;; the kind of thing that has to be cleaned up
486   (kind (missing-arg)
487         :type (member :special-bind :catch :unwind-protect :block :tagbody))
488   ;; the node that messes things up. This is the last node in the
489   ;; non-messed-up environment. Null only temporarily. This could be
490   ;; deleted due to unreachability.
491   (mess-up nil :type (or node null))
492   ;; a list of all the NLX-INFO structures whose NLX-INFO-CLEANUP is
493   ;; this cleanup. This is filled in by physical environment analysis.
494   (nlx-info nil :type list))
495 (defprinter (cleanup :identity t)
496   kind
497   mess-up
498   (nlx-info :test nlx-info))
499
500 ;;; A PHYSENV represents the result of physical environment analysis.
501 ;;;
502 ;;; As far as I can tell from reverse engineering, this IR1 structure
503 ;;; represents the physical environment (which is probably not the
504 ;;; standard Lispy term for this concept, but I dunno what is the
505 ;;; standard term): those things in the lexical environment which a
506 ;;; LAMBDA actually interacts with. Thus in
507 ;;;   (DEFUN FROB-THINGS (THINGS)
508 ;;;     (DOLIST (THING THINGS)
509 ;;;       (BLOCK FROBBING-ONE-THING
510 ;;;         (MAPCAR (LAMBDA (PATTERN)
511 ;;;                   (WHEN (FITS-P THING PATTERN)
512 ;;;                     (RETURN-FROM FROB-THINGS (LIST :FIT THING PATTERN))))
513 ;;;                 *PATTERNS*))))
514 ;;; the variables THINGS, THING, and PATTERN and the block names
515 ;;; FROB-THINGS and FROBBING-ONE-THING are all in the inner LAMBDA's
516 ;;; lexical environment, but of those only THING, PATTERN, and
517 ;;; FROB-THINGS are in its physical environment. In IR1, we largely
518 ;;; just collect the names of these things; in IR2 an IR2-PHYSENV
519 ;;; structure is attached to INFO and used to keep track of
520 ;;; associations between these names and less-abstract things (like
521 ;;; TNs, or eventually stack slots and registers). -- WHN 2001-09-29
522 (defstruct (physenv (:copier nil))
523   ;; the function that allocates this physical environment
524   (lambda (missing-arg) :type clambda :read-only t)
525   #| ; seems not to be used as of sbcl-0.pre7.51
526   ;; a list of all the lambdas that allocate variables in this
527   ;; physical environment
528   (lambdas nil :type list)
529   |#
530   ;; This ultimately converges to a list of all the LAMBDA-VARs and
531   ;; NLX-INFOs needed from enclosing environments by code in this
532   ;; physical environment. In the meantime, it may be
533   ;;   * NIL at object creation time
534   ;;   * a superset of the correct result, generated somewhat later
535   ;;   * smaller and smaller sets converging to the correct result as
536   ;;     we notice and delete unused elements in the superset
537   (closure nil :type list)
538   ;; a list of NLX-INFO structures describing all the non-local exits
539   ;; into this physical environment
540   (nlx-info nil :type list)
541   ;; some kind of info used by the back end
542   (info nil))
543 (defprinter (physenv :identity t)
544   lambda
545   (closure :test closure)
546   (nlx-info :test nlx-info))
547
548 ;;; An TAIL-SET structure is used to accumulate information about
549 ;;; tail-recursive local calls. The "tail set" is effectively the
550 ;;; transitive closure of the "is called tail-recursively by"
551 ;;; relation.
552 ;;;
553 ;;; All functions in the same tail set share the same TAIL-SET
554 ;;; structure. Initially each function has its own TAIL-SET, but when
555 ;;; IR1-OPTIMIZE-RETURN notices a tail local call, it joins the tail
556 ;;; sets of the called function and the calling function.
557 ;;;
558 ;;; The tail set is somewhat approximate, because it is too early to
559 ;;; be sure which calls will be tail-recursive. Any call that *might*
560 ;;; end up tail-recursive causes TAIL-SET merging.
561 (defstruct (tail-set)
562   ;; a list of all the LAMBDAs in this tail set
563   (funs nil :type list)
564   ;; our current best guess of the type returned by these functions.
565   ;; This is the union across all the functions of the return node's
566   ;; RESULT-TYPE, excluding local calls.
567   (type *wild-type* :type ctype)
568   ;; some info used by the back end
569   (info nil))
570 (defprinter (tail-set :identity t)
571   funs
572   type
573   (info :test info))
574
575 ;;; The NLX-Info structure is used to collect various information
576 ;;; about non-local exits. This is effectively an annotation on the
577 ;;; CONTINUATION, although it is accessed by searching in the
578 ;;; PHYSENV-NLX-INFO.
579 (def!struct (nlx-info (:make-load-form-fun ignore-it))
580   ;; the cleanup associated with this exit. In a catch or
581   ;; unwind-protect, this is the :CATCH or :UNWIND-PROTECT cleanup,
582   ;; and not the cleanup for the escape block. The CLEANUP-KIND of
583   ;; this thus provides a good indication of what kind of exit is
584   ;; being done.
585   (cleanup (missing-arg) :type cleanup)
586   ;; the continuation exited to (the CONT of the EXIT nodes). If this
587   ;; exit is from an escape function (CATCH or UNWIND-PROTECT), then
588   ;; physical environment analysis deletes the escape function and
589   ;; instead has the %NLX-ENTRY use this continuation.
590   ;;
591   ;; This slot is primarily an indication of where this exit delivers
592   ;; its values to (if any), but it is also used as a sort of name to
593   ;; allow us to find the NLX-Info that corresponds to a given exit.
594   ;; For this purpose, the Entry must also be used to disambiguate,
595   ;; since exits to different places may deliver their result to the
596   ;; same continuation.
597   (continuation (missing-arg) :type continuation)
598   ;; the entry stub inserted by physical environment analysis. This is
599   ;; a block containing a call to the %NLX-Entry funny function that
600   ;; has the original exit destination as its successor. Null only
601   ;; temporarily.
602   (target nil :type (or cblock null))
603   ;; some kind of info used by the back end
604   info)
605 (defprinter (nlx-info :identity t)
606   continuation
607   target
608   info)
609 \f
610 ;;;; LEAF structures
611
612 ;;; Variables, constants and functions are all represented by LEAF
613 ;;; structures. A reference to a LEAF is indicated by a REF node. This
614 ;;; allows us to easily substitute one for the other without actually
615 ;;; hacking the flow graph.
616 (def!struct (leaf (:make-load-form-fun ignore-it)
617                   (:constructor nil))
618   ;; unique ID for debugging
619   #!+sb-show (id (new-object-id) :read-only t)
620   ;; (For public access to this slot, use LEAF-SOURCE-NAME.)
621   ;;
622   ;; the name of LEAF as it appears in the source, e.g. 'FOO or '(SETF
623   ;; FOO) or 'N or '*Z*, or the special .ANONYMOUS. value if there's
624   ;; no name for this thing in the source (as can happen for
625   ;; FUNCTIONALs, e.g. for anonymous LAMBDAs or for functions for
626   ;; top-level forms; and can also happen for anonymous constants) or
627   ;; perhaps also if the match between the name and the thing is
628   ;; skewed enough (e.g. for macro functions or method functions) that
629   ;; we don't want to have that name affect compilation
630   ;;
631   ;; The value of this slot in can affect ordinary runtime behavior,
632   ;; e.g. of special variables and known functions, not just debugging.
633   ;;
634   ;; See also the LEAF-DEBUG-NAME function and the
635   ;; FUNCTIONAL-%DEBUG-NAME slot.
636   (%source-name (missing-arg)
637                 :type (or symbol (and cons (satisfies legal-fun-name-p)))
638                 :read-only t)
639   ;; the type which values of this leaf must have
640   (type *universal-type* :type ctype)
641   ;; where the TYPE information came from:
642   ;;  :DECLARED, from a declaration.
643   ;;  :ASSUMED, from uses of the object.
644   ;;  :DEFINED, from examination of the definition.
645   ;; FIXME: This should be a named type. (LEAF-WHERE-FROM? Or
646   ;; perhaps just WHERE-FROM, since it's not just used in LEAF,
647   ;; but also in various DEFINE-INFO-TYPEs in globaldb.lisp,
648   ;; and very likely elsewhere too.)
649   (where-from :assumed :type (member :declared :assumed :defined))
650   ;; list of the REF nodes for this leaf
651   (refs () :type list)
652   ;; true if there was ever a REF or SET node for this leaf. This may
653   ;; be true when REFS and SETS are null, since code can be deleted.
654   (ever-used nil :type boolean)
655   ;; some kind of info used by the back end
656   (info nil))
657
658 ;;; LEAF name operations
659 ;;;
660 ;;; KLUDGE: wants CLOS..
661 (defun leaf-has-source-name-p (leaf)
662   (not (eq (leaf-%source-name leaf)
663            '.anonymous.)))
664 (defun leaf-source-name (leaf)
665   (aver (leaf-has-source-name-p leaf))
666   (leaf-%source-name leaf))
667 (defun leaf-debug-name (leaf)
668   (if (functional-p leaf)
669       ;; FUNCTIONALs have additional %DEBUG-NAME behavior.
670       (functional-debug-name leaf)
671       ;; Other objects just use their source name.
672       ;;
673       ;; (As of sbcl-0.pre7.85, there are a few non-FUNCTIONAL
674       ;; anonymous objects, (anonymous constants..) and those would
675       ;; fail here if we ever tried to get debug names from them, but
676       ;; it looks as though it's never interesting to get debug names
677       ;; from them, so it's moot. -- WHN)
678       (leaf-source-name leaf)))
679
680 ;;; The CONSTANT structure is used to represent known constant values.
681 ;;; If NAME is not null, then it is the name of the named constant
682 ;;; which this leaf corresponds to, otherwise this is an anonymous
683 ;;; constant.
684 (def!struct (constant (:include leaf))
685   ;; the value of the constant
686   (value nil :type t))
687 (defprinter (constant :identity t)
688   (%source-name :test %source-name)
689   value)
690
691 ;;; The BASIC-VAR structure represents information common to all
692 ;;; variables which don't correspond to known local functions.
693 (def!struct (basic-var (:include leaf)
694                        (:constructor nil))
695   ;; Lists of the set nodes for this variable.
696   (sets () :type list))
697
698 ;;; The GLOBAL-VAR structure represents a value hung off of the symbol
699 ;;; NAME. We use a :CONSTANT VAR when we know that the thing is a
700 ;;; constant, but don't know what the value is at compile time.
701 (def!struct (global-var (:include basic-var))
702   ;; kind of variable described
703   (kind (missing-arg)
704         :type (member :special :global-function :global)))
705 (defprinter (global-var :identity t)
706   %source-name
707   #!+sb-show id
708   (type :test (not (eq type *universal-type*)))
709   (where-from :test (not (eq where-from :assumed)))
710   kind)
711
712 ;;; The SLOT-ACCESSOR structure represents slot accessor functions. It
713 ;;; is a subtype of GLOBAL-VAR to make it look more like a normal
714 ;;; function.
715 (def!struct (slot-accessor (:include global-var
716                                      (where-from :defined)
717                                      (kind :global-function)))
718   ;; The description of the structure that this is an accessor for.
719   (for (missing-arg) :type sb!xc:class)
720   ;; The slot description of the slot.
721   (slot (missing-arg)))
722 (defprinter (slot-accessor :identity t)
723   %source-name
724   for
725   slot)
726
727 ;;; A DEFINED-FUN represents a function that is defined in the same
728 ;;; compilation block, or that has an inline expansion, or that has a
729 ;;; non-NIL INLINEP value. Whenever we change the INLINEP state (i.e.
730 ;;; an inline proclamation) we copy the structure so that former
731 ;;; INLINEP values are preserved.
732 (def!struct (defined-fun (:include global-var
733                                    (where-from :defined)
734                                    (kind :global-function)))
735   ;; The values of INLINEP and INLINE-EXPANSION initialized from the
736   ;; global environment.
737   (inlinep nil :type inlinep)
738   (inline-expansion nil :type (or cons null))
739   ;; the block-local definition of this function (either because it
740   ;; was semi-inline, or because it was defined in this block). If
741   ;; this function is not an entry point, then this may be deleted or
742   ;; LET-converted. Null if we haven't converted the expansion yet.
743   (functional nil :type (or functional null)))
744 (defprinter (defined-fun :identity t)
745   %source-name
746   #!+sb-show id
747   inlinep
748   (functional :test functional))
749 \f
750 ;;;; function stuff
751
752 ;;; We default the WHERE-FROM and TYPE slots to :DEFINED and FUNCTION.
753 ;;; We don't normally manipulate function types for defined functions,
754 ;;; but if someone wants to know, an approximation is there.
755 (def!struct (functional (:include leaf
756                                   (%source-name '.anonymous.)
757                                   (where-from :defined)
758                                   (type (specifier-type 'function))))
759   ;; (For public access to this slot, use LEAF-DEBUG-NAME.)
760   ;;
761   ;; the name of FUNCTIONAL for debugging purposes, or NIL if we
762   ;; should just let the SOURCE-NAME fall through
763   ;; 
764   ;; Unlike the SOURCE-NAME slot, this slot's value should never
765   ;; affect ordinary code behavior, only debugging/diagnostic behavior.
766   ;;
767   ;; The value of this slot can be anything, except that it shouldn't
768   ;; be a legal function name, since otherwise debugging gets
769   ;; confusing. (If a legal function name is a good name for the
770   ;; function, it should be in %SOURCE-NAME, and then we shouldn't
771   ;; need a %DEBUG-NAME.) In SBCL as of 0.pre7.87, it's always a
772   ;; string unless it's NIL, since that's how CMU CL represented debug
773   ;; names. However, eventually I (WHN) think it we should start using
774   ;; list values instead, since they have much nicer print properties
775   ;; (abbreviation, skipping package prefixes when unneeded, and
776   ;; renaming package prefixes when we do things like renaming SB!EXT
777   ;; to SB-EXT).
778   ;;
779   ;; E.g. for the function which implements (DEFUN FOO ...), we could
780   ;; have
781   ;;   %SOURCE-NAME=FOO
782   ;;   %DEBUG-NAME=NIL
783   ;; for the function which implements the top level form
784   ;; (IN-PACKAGE :FOO) we could have
785   ;;   %SOURCE-NAME=NIL
786   ;;   %DEBUG-NAME="top level form (IN-PACKAGE :FOO)"
787   ;; for the function which implements FOO in
788   ;;   (DEFUN BAR (...) (FLET ((FOO (...) ...)) ...))
789   ;; we could have
790   ;;   %SOURCE-NAME=FOO
791   ;;   %DEBUG-NAME="FLET FOO in BAR"
792   ;; and for the function which implements FOO in
793   ;;   (DEFMACRO FOO (...) ...)
794   ;; we could have
795   ;;   %SOURCE-NAME=FOO (or maybe .ANONYMOUS.?)
796   ;;   %DEBUG-NAME="DEFMACRO FOO"
797   (%debug-name nil
798                :type (or null (not (satisfies legal-fun-name-p)))
799                :read-only t)
800   ;; some information about how this function is used. These values
801   ;; are meaningful:
802   ;;
803   ;;    NIL
804   ;;    an ordinary function, callable using local call
805   ;;
806   ;;    :LET
807   ;;    a lambda that is used in only one local call, and has in
808   ;;    effect been substituted directly inline. The return node is
809   ;;    deleted, and the result is computed with the actual result
810   ;;    continuation for the call.
811   ;;
812   ;;    :MV-LET
813   ;;    Similar to :LET, but the call is an MV-CALL.
814   ;;
815   ;;    :ASSIGNMENT
816   ;;    similar to a LET, but can have other than one call as long as
817   ;;    there is at most one non-tail call.
818   ;;
819   ;;    :OPTIONAL
820   ;;    a lambda that is an entry-point for an optional-dispatch.
821   ;;    Similar to NIL, but requires greater caution, since local call
822   ;;    analysis may create new references to this function. Also, the
823   ;;    function cannot be deleted even if it has *no* references. The
824   ;;    OPTIONAL-DISPATCH is in the LAMDBA-OPTIONAL-DISPATCH.
825   ;;
826   ;;    :EXTERNAL
827   ;;    an external entry point lambda. The function it is an entry
828   ;;    for is in the ENTRY-FUN slot.
829   ;;
830   ;;    :TOPLEVEL
831   ;;    a top level lambda, holding a compiled top level form.
832   ;;    Compiled very much like NIL, but provides an indication of
833   ;;    top level context. A :TOPLEVEL lambda should have *no*
834   ;;    references. Its ENTRY-FUN is a self-pointer.
835   ;;
836   ;;    :TOPLEVEL-XEP
837   ;;    After a component is compiled, we clobber any top level code
838   ;;    references to its non-closure XEPs with dummy FUNCTIONAL
839   ;;    structures having this kind. This prevents the retained
840   ;;    top level code from holding onto the IR for the code it
841   ;;    references.
842   ;;
843   ;;    :ESCAPE
844   ;;    :CLEANUP
845   ;;    special functions used internally by CATCH and UNWIND-PROTECT.
846   ;;    These are pretty much like a normal function (NIL), but are
847   ;;    treated specially by local call analysis and stuff. Neither
848   ;;    kind should ever be given an XEP even though they appear as
849   ;;    args to funny functions. An :ESCAPE function is never actually
850   ;;    called, and thus doesn't need to have code generated for it.
851   ;;
852   ;;    :DELETED
853   ;;    This function has been found to be uncallable, and has been
854   ;;    marked for deletion.
855   (kind nil :type (member nil :optional :deleted :external :toplevel
856                           :escape :cleanup :let :mv-let :assignment
857                           :toplevel-xep))
858   ;; Is this a function that some external entity (e.g. the fasl dumper)
859   ;; refers to, so that even when it appears to have no references, it
860   ;; shouldn't be deleted? In the old days (before
861   ;; sbcl-0.pre7.37.flaky5.2) this was sort of implicitly true when
862   ;; KIND was :TOPLEVEL. Now it must be set explicitly, both for
863   ;; :TOPLEVEL functions and for any other kind of functions that we
864   ;; want to dump or return from #'CL:COMPILE or whatever.
865   (has-external-references-p nil) 
866   ;; In a normal function, this is the external entry point (XEP)
867   ;; lambda for this function, if any. Each function that is used
868   ;; other than in a local call has an XEP, and all of the
869   ;; non-local-call references are replaced with references to the
870   ;; XEP.
871   ;;
872   ;; In an XEP lambda (indicated by the :EXTERNAL kind), this is the
873   ;; function that the XEP is an entry-point for. The body contains
874   ;; local calls to all the actual entry points in the function. In a
875   ;; :TOPLEVEL lambda (which is its own XEP) this is a self-pointer.
876   ;;
877   ;; With all other kinds, this is null.
878   (entry-fun nil :type (or functional null))
879   ;; the value of any inline/notinline declaration for a local function
880   (inlinep nil :type inlinep)
881   ;; If we have a lambda that can be used as in inline expansion for
882   ;; this function, then this is it. If there is no source-level
883   ;; lambda corresponding to this function then this is Null (but then
884   ;; INLINEP will always be NIL as well.)
885   (inline-expansion nil :type list)
886   ;; the lexical environment that the inline-expansion should be converted in
887   (lexenv *lexenv* :type lexenv)
888   ;; the original function or macro lambda list, or :UNSPECIFIED if
889   ;; this is a compiler created function
890   (arg-documentation nil :type (or list (member :unspecified)))
891   ;; various rare miscellaneous info that drives code generation & stuff
892   (plist () :type list))
893 (defprinter (functional :identity t)
894   %source-name
895   %debug-name
896   #!+sb-show id)
897
898 ;;; FUNCTIONAL name operations
899 (defun functional-debug-name (functional)
900   ;; FUNCTIONAL-%DEBUG-NAME takes precedence over FUNCTIONAL-SOURCE-NAME
901   ;; here because we want different debug names for the functions in
902   ;; DEFUN FOO and FLET FOO even though they have the same source name.
903   (or (functional-%debug-name functional)
904       ;; Note that this will cause an error if the function is
905       ;; anonymous. In SBCL (as opposed to CMU CL) we make all
906       ;; FUNCTIONALs have debug names. The CMU CL code didn't bother
907       ;; in many FUNCTIONALs, especially those which were likely to be
908       ;; optimized away before the user saw them. However, getting 
909       ;; that right requires a global understanding of the code,
910       ;; which seems bad, so we just require names for everything.
911       (leaf-source-name functional)))
912
913 ;;; The CLAMBDA only deals with required lexical arguments. Special,
914 ;;; optional, keyword and rest arguments are handled by transforming
915 ;;; into simpler stuff.
916 (def!struct (clambda (:include functional)
917                      (:conc-name lambda-)
918                      (:predicate lambda-p)
919                      (:constructor make-lambda)
920                      (:copier copy-lambda))
921   ;; list of LAMBDA-VAR descriptors for arguments
922   (vars nil :type list :read-only t)
923   ;; If this function was ever a :OPTIONAL function (an entry-point
924   ;; for an OPTIONAL-DISPATCH), then this is that OPTIONAL-DISPATCH.
925   ;; The optional dispatch will be :DELETED if this function is no
926   ;; longer :OPTIONAL.
927   (optional-dispatch nil :type (or optional-dispatch null))
928   ;; the BIND node for this LAMBDA. This node marks the beginning of
929   ;; the lambda, and serves to explicitly represent the lambda binding
930   ;; semantics within the flow graph representation. This is null in
931   ;; deleted functions, and also in LETs where we deleted the call and
932   ;; bind (because there are no variables left), but have not yet
933   ;; actually deleted the LAMBDA yet.
934   (bind nil :type (or bind null))
935   ;; the RETURN node for this LAMBDA, or NIL if it has been deleted.
936   ;; This marks the end of the lambda, receiving the result of the
937   ;; body. In a LET, the return node is deleted, and the body delivers
938   ;; the value to the actual continuation. The return may also be
939   ;; deleted if it is unreachable.
940   (return nil :type (or creturn null))
941   ;; If this CLAMBDA is a LET, then this slot holds the LAMBDA whose
942   ;; LETS list we are in, otherwise it is a self-pointer.
943   (home nil :type (or clambda null))
944   ;; all the lambdas that have been LET-substituted in this lambda.
945   ;; This is only non-null in lambdas that aren't LETs.
946   (lets nil :type list)
947   ;; all the ENTRY nodes in this function and its LETs, or null in a LET
948   (entries nil :type list)
949   ;; CLAMBDAs which are locally called by this lambda, and other
950   ;; objects (closed-over LAMBDA-VARs and XEPs) which this lambda
951   ;; depends on in such a way that DFO shouldn't put them in separate
952   ;; components.
953   (calls-or-closes nil :type list)
954   ;; the TAIL-SET that this LAMBDA is in. This is null during creation.
955   ;;
956   ;; In CMU CL, and old SBCL, this was also NILed out when LET
957   ;; conversion happened. That caused some problems, so as of
958   ;; sbcl-0.pre7.37.flaky5.2 when I was trying to get the compiler to
959   ;; emit :EXTERNAL functions directly, and so now the value
960   ;; is no longer NILed out in LET conversion, but instead copied
961   ;; (so that any further optimizations on the rest of the tail
962   ;; set won't modify the value) if necessary.
963   (tail-set nil :type (or tail-set null))
964   ;; the structure which represents the phsical environment that this
965   ;; function's variables are allocated in. This is filled in by
966   ;; physical environment analysis. In a LET, this is EQ to our home's
967   ;; physical environment.
968   (physenv nil :type (or physenv null))
969   ;; In a LET, this is the NODE-LEXENV of the combination node. We
970   ;; retain it so that if the LET is deleted (due to a lack of vars),
971   ;; we will still have caller's lexenv to figure out which cleanup is
972   ;; in effect.
973   (call-lexenv nil :type (or lexenv null)))
974 (defprinter (clambda :conc-name lambda- :identity t)
975   %source-name
976   %debug-name
977   #!+sb-show id
978   (type :test (not (eq type *universal-type*)))
979   (where-from :test (not (eq where-from :assumed)))
980   (vars :prin1 (mapcar #'leaf-source-name vars)))
981
982 ;;; The OPTIONAL-DISPATCH leaf is used to represent hairy lambdas. It
983 ;;; is a FUNCTIONAL, like LAMBDA. Each legal number of arguments has a
984 ;;; function which is called when that number of arguments is passed.
985 ;;; The function is called with all the arguments actually passed. If
986 ;;; additional arguments are legal, then the LEXPR style MORE-ENTRY
987 ;;; handles them. The value returned by the function is the value
988 ;;; which results from calling the OPTIONAL-DISPATCH.
989 ;;;
990 ;;; The theory is that each entry-point function calls the next entry
991 ;;; point tail-recursively, passing all the arguments passed in and
992 ;;; the default for the argument the entry point is for. The last
993 ;;; entry point calls the real body of the function. In the presence
994 ;;; of SUPPLIED-P args and other hair, things are more complicated. In
995 ;;; general, there is a distinct internal function that takes the
996 ;;; SUPPLIED-P args as parameters. The preceding entry point calls
997 ;;; this function with NIL filled in for the SUPPLIED-P args, while
998 ;;; the current entry point calls it with T in the SUPPLIED-P
999 ;;; positions.
1000 ;;;
1001 ;;; Note that it is easy to turn a call with a known number of
1002 ;;; arguments into a direct call to the appropriate entry-point
1003 ;;; function, so functions that are compiled together can avoid doing
1004 ;;; the dispatch.
1005 (def!struct (optional-dispatch (:include functional))
1006   ;; the original parsed argument list, for anyone who cares
1007   (arglist nil :type list)
1008   ;; true if &ALLOW-OTHER-KEYS was supplied
1009   (allowp nil :type boolean)
1010   ;; true if &KEY was specified (which doesn't necessarily mean that
1011   ;; there are any &KEY arguments..)
1012   (keyp nil :type boolean)
1013   ;; the number of required arguments. This is the smallest legal
1014   ;; number of arguments.
1015   (min-args 0 :type unsigned-byte)
1016   ;; the total number of required and optional arguments. Args at
1017   ;; positions >= to this are &REST, &KEY or illegal args.
1018   (max-args 0 :type unsigned-byte)
1019   ;; list of the LAMBDAs which are the entry points for non-rest,
1020   ;; non-key calls. The entry for MIN-ARGS is first, MIN-ARGS+1
1021   ;; second, ... MAX-ARGS last. The last entry-point always calls the
1022   ;; main entry; in simple cases it may be the main entry.
1023   (entry-points nil :type list)
1024   ;; an entry point which takes MAX-ARGS fixed arguments followed by
1025   ;; an argument context pointer and an argument count. This entry
1026   ;; point deals with listifying rest args and parsing keywords. This
1027   ;; is null when extra arguments aren't legal.
1028   (more-entry nil :type (or clambda null))
1029   ;; the main entry-point into the function, which takes all arguments
1030   ;; including keywords as fixed arguments. The format of the
1031   ;; arguments must be determined by examining the arglist. This may
1032   ;; be used by callers that supply at least MAX-ARGS arguments and
1033   ;; know what they are doing.
1034   (main-entry nil :type (or clambda null)))
1035 (defprinter (optional-dispatch :identity t)
1036   %source-name
1037   %debug-name
1038   #!+sb-show id
1039   (type :test (not (eq type *universal-type*)))
1040   (where-from :test (not (eq where-from :assumed)))
1041   arglist
1042   allowp
1043   keyp
1044   min-args
1045   max-args
1046   (entry-points :test entry-points)
1047   (more-entry :test more-entry)
1048   main-entry)
1049
1050 ;;; The ARG-INFO structure allows us to tack various information onto
1051 ;;; LAMBDA-VARs during IR1 conversion. If we use one of these things,
1052 ;;; then the var will have to be massaged a bit before it is simple
1053 ;;; and lexical.
1054 (def!struct arg-info
1055   ;; true if this arg is to be specially bound
1056   (specialp nil :type boolean)
1057   ;; the kind of argument being described. Required args only have arg
1058   ;; info structures if they are special.
1059   (kind (missing-arg)
1060         :type (member :required :optional :keyword :rest
1061                       :more-context :more-count))
1062   ;; If true, this is the VAR for SUPPLIED-P variable of a keyword or
1063   ;; optional arg. This is true for keywords with non-constant
1064   ;; defaults even when there is no user-specified supplied-p var.
1065   (supplied-p nil :type (or lambda-var null))
1066   ;; the default for a keyword or optional, represented as the
1067   ;; original Lisp code. This is set to NIL in &KEY arguments that are
1068   ;; defaulted using the SUPPLIED-P arg.
1069   (default nil :type t)
1070   ;; the actual key for a &KEY argument. Note that in ANSI CL this is
1071   ;; not necessarily a keyword: (DEFUN FOO (&KEY ((BAR BAR))) ...).
1072   (key nil :type symbol))
1073 (defprinter (arg-info :identity t)
1074   (specialp :test specialp)
1075   kind
1076   (supplied-p :test supplied-p)
1077   (default :test default)
1078   (key :test key))
1079
1080 ;;; The LAMBDA-VAR structure represents a lexical lambda variable.
1081 ;;; This structure is also used during IR1 conversion to describe
1082 ;;; lambda arguments which may ultimately turn out not to be simple
1083 ;;; and lexical.
1084 ;;;
1085 ;;; LAMBDA-VARs with no REFs are considered to be deleted; physical
1086 ;;; environment analysis isn't done on these variables, so the back
1087 ;;; end must check for and ignore unreferenced variables. Note that a
1088 ;;; deleted LAMBDA-VAR may have sets; in this case the back end is
1089 ;;; still responsible for propagating the SET-VALUE to the set's CONT.
1090 (def!struct (lambda-var (:include basic-var))
1091   ;; true if this variable has been declared IGNORE
1092   (ignorep nil :type boolean)
1093   ;; the CLAMBDA that this var belongs to. This may be null when we are
1094   ;; building a lambda during IR1 conversion.
1095   (home nil :type (or null clambda))
1096   ;; This is set by physical environment analysis if it chooses an
1097   ;; indirect (value cell) representation for this variable because it
1098   ;; is both set and closed over.
1099   (indirect nil :type boolean)
1100   ;; The following two slots are only meaningful during IR1 conversion
1101   ;; of hairy lambda vars:
1102   ;;
1103   ;; The ARG-INFO structure which holds information obtained from
1104   ;; &keyword parsing.
1105   (arg-info nil :type (or arg-info null))
1106   ;; if true, the GLOBAL-VAR structure for the special variable which
1107   ;; is to be bound to the value of this argument
1108   (specvar nil :type (or global-var null))
1109   ;; Set of the CONSTRAINTs on this variable. Used by constraint
1110   ;; propagation. This is left null by the lambda pre-pass if it
1111   ;; determine that this is a set closure variable, and is thus not a
1112   ;; good subject for flow analysis.
1113   (constraints nil :type (or sset null)))
1114 (defprinter (lambda-var :identity t)
1115   %source-name
1116   #!+sb-show id
1117   (type :test (not (eq type *universal-type*)))
1118   (where-from :test (not (eq where-from :assumed)))
1119   (ignorep :test ignorep)
1120   (arg-info :test arg-info)
1121   (specvar :test specvar))
1122 \f
1123 ;;;; basic node types
1124
1125 ;;; A REF represents a reference to a LEAF. REF-REOPTIMIZE is
1126 ;;; initially (and forever) NIL, since REFs don't receive any values
1127 ;;; and don't have any IR1 optimizer.
1128 (defstruct (ref (:include node (:reoptimize nil))
1129                 (:constructor make-ref (derived-type leaf))
1130                 (:copier nil))
1131   ;; The leaf referenced.
1132   (leaf nil :type leaf))
1133 (defprinter (ref :identity t)
1134   #!+sb-show id
1135   leaf)
1136
1137 ;;; Naturally, the IF node always appears at the end of a block.
1138 ;;; NODE-CONT is a dummy continuation, and is there only to keep
1139 ;;; people happy.
1140 (defstruct (cif (:include node)
1141                 (:conc-name if-)
1142                 (:predicate if-p)
1143                 (:constructor make-if)
1144                 (:copier copy-if))
1145   ;; CONTINUATION for the predicate
1146   (test (missing-arg) :type continuation)
1147   ;; the blocks that we execute next in true and false case,
1148   ;; respectively (may be the same)
1149   (consequent (missing-arg) :type cblock)
1150   (alternative (missing-arg) :type cblock))
1151 (defprinter (cif :conc-name if- :identity t)
1152   (test :prin1 (continuation-use test))
1153   consequent
1154   alternative)
1155
1156 (defstruct (cset (:include node
1157                            (derived-type *universal-type*))
1158                  (:conc-name set-)
1159                  (:predicate set-p)
1160                  (:constructor make-set)
1161                  (:copier copy-set))
1162   ;; descriptor for the variable set
1163   (var (missing-arg) :type basic-var)
1164   ;; continuation for the value form
1165   (value (missing-arg) :type continuation))
1166 (defprinter (cset :conc-name set- :identity t)
1167   var
1168   (value :prin1 (continuation-use value)))
1169
1170 ;;; The BASIC-COMBINATION structure is used to represent both normal
1171 ;;; and multiple value combinations. In a local function call, this
1172 ;;; node appears at the end of its block and the body of the called
1173 ;;; function appears as the successor. The NODE-CONT remains the
1174 ;;; continuation which receives the value of the call.
1175 (defstruct (basic-combination (:include node)
1176                               (:constructor nil)
1177                               (:copier nil))
1178   ;; continuation for the function
1179   (fun (missing-arg) :type continuation)
1180   ;; list of CONTINUATIONs for the args. In a local call, an argument
1181   ;; continuation may be replaced with NIL to indicate that the
1182   ;; corresponding variable is unreferenced, and thus no argument
1183   ;; value need be passed.
1184   (args nil :type list)
1185   ;; the kind of function call being made. :LOCAL means that this is a
1186   ;; local call to a function in the same component, and that argument
1187   ;; syntax checking has been done, etc. Calls to known global
1188   ;; functions are represented by storing the FUNCTION-INFO for the
1189   ;; function in this slot. :FULL is a call to an (as yet) unknown
1190   ;; function. :ERROR is like :FULL, but means that we have discovered
1191   ;; that the call contains an error, and should not be reconsidered
1192   ;; for optimization.
1193   (kind :full :type (or (member :local :full :error) function-info))
1194   ;; some kind of information attached to this node by the back end
1195   (info nil))
1196
1197 ;;; The COMBINATION node represents all normal function calls,
1198 ;;; including FUNCALL. This is distinct from BASIC-COMBINATION so that
1199 ;;; an MV-COMBINATION isn't COMBINATION-P.
1200 (defstruct (combination (:include basic-combination)
1201                         (:constructor make-combination (fun))
1202                         (:copier nil)))
1203 (defprinter (combination :identity t)
1204   #!+sb-show id
1205   (fun :prin1 (continuation-use fun))
1206   (args :prin1 (mapcar (lambda (x)
1207                          (if x
1208                              (continuation-use x)
1209                              "<deleted>"))
1210                        args)))
1211
1212 ;;; An MV-COMBINATION is to MULTIPLE-VALUE-CALL as a COMBINATION is to
1213 ;;; FUNCALL. This is used to implement all the multiple-value
1214 ;;; receiving forms.
1215 (defstruct (mv-combination (:include basic-combination)
1216                            (:constructor make-mv-combination (fun))
1217                            (:copier nil)))
1218 (defprinter (mv-combination)
1219   (fun :prin1 (continuation-use fun))
1220   (args :prin1 (mapcar #'continuation-use args)))
1221
1222 ;;; The BIND node marks the beginning of a lambda body and represents
1223 ;;; the creation and initialization of the variables.
1224 (defstruct (bind (:include node)
1225                  (:copier nil))
1226   ;; the lambda we are binding variables for. Null when we are
1227   ;; creating the LAMBDA during IR1 translation.
1228   (lambda nil :type (or clambda null)))
1229 (defprinter (bind)
1230   lambda)
1231
1232 ;;; The RETURN node marks the end of a lambda body. It collects the
1233 ;;; return values and represents the control transfer on return. This
1234 ;;; is also where we stick information used for TAIL-SET type
1235 ;;; inference.
1236 (defstruct (creturn (:include node)
1237                     (:conc-name return-)
1238                     (:predicate return-p)
1239                     (:constructor make-return)
1240                     (:copier copy-return))
1241   ;; the lambda we are returning from. Null temporarily during
1242   ;; ir1tran.
1243   (lambda nil :type (or clambda null))
1244   ;; the continuation which yields the value of the lambda
1245   (result (missing-arg) :type continuation)
1246   ;; the union of the node-derived-type of all uses of the result
1247   ;; other than by a local call, intersected with the result's
1248   ;; asserted-type. If there are no non-call uses, this is
1249   ;; *EMPTY-TYPE*
1250   (result-type *wild-type* :type ctype))
1251 (defprinter (creturn :conc-name return- :identity t)
1252   lambda
1253   result-type)
1254 \f
1255 ;;;; non-local exit support
1256 ;;;;
1257 ;;;; In IR1, we insert special nodes to mark potentially non-local
1258 ;;;; lexical exits.
1259
1260 ;;; The ENTRY node serves to mark the start of the dynamic extent of a
1261 ;;; lexical exit. It is the mess-up node for the corresponding :Entry
1262 ;;; cleanup.
1263 (defstruct (entry (:include node)
1264                   (:copier nil))
1265   ;; All of the EXIT nodes for potential non-local exits to this point.
1266   (exits nil :type list)
1267   ;; The cleanup for this entry. NULL only temporarily.
1268   (cleanup nil :type (or cleanup null)))
1269 (defprinter (entry :identity t)
1270   #!+sb-show id)
1271
1272 ;;; The EXIT node marks the place at which exit code would be emitted,
1273 ;;; if necessary. This is interposed between the uses of the exit
1274 ;;; continuation and the exit continuation's DEST. Instead of using
1275 ;;; the returned value being delivered directly to the exit
1276 ;;; continuation, it is delivered to our VALUE continuation. The
1277 ;;; original exit continuation is the exit node's CONT.
1278 (defstruct (exit (:include node)
1279                  (:copier nil))
1280   ;; the ENTRY node that this is an exit for. If null, this is a
1281   ;; degenerate exit. A degenerate exit is used to "fill" an empty
1282   ;; block (which isn't allowed in IR1.) In a degenerate exit, Value
1283   ;; is always also null.
1284   (entry nil :type (or entry null))
1285   ;; the continuation yielding the value we are to exit with. If NIL,
1286   ;; then no value is desired (as in GO).
1287   (value nil :type (or continuation null)))
1288 (defprinter (exit :identity t)
1289   #!+sb-show id
1290   (entry :test entry)
1291   (value :test value))
1292 \f
1293 ;;;; miscellaneous IR1 structures
1294
1295 (defstruct (undefined-warning
1296             #-no-ansi-print-object
1297             (:print-object (lambda (x s)
1298                              (print-unreadable-object (x s :type t)
1299                                (prin1 (undefined-warning-name x) s))))
1300             (:copier nil))
1301   ;; the name of the unknown thing
1302   (name nil :type (or symbol list))
1303   ;; the kind of reference to NAME
1304   (kind (missing-arg) :type (member :function :type :variable))
1305   ;; the number of times this thing was used
1306   (count 0 :type unsigned-byte)
1307   ;; a list of COMPILER-ERROR-CONTEXT structures describing places
1308   ;; where this thing was used. Note that we only record the first
1309   ;; *UNDEFINED-WARNING-LIMIT* calls.
1310   (warnings () :type list))
1311 \f
1312 ;;; a helper for the POLICY macro, defined late here so that the
1313 ;;; various type tests can be inlined
1314 (declaim (ftype (function ((or list lexenv node functional)) list)
1315                 %coerce-to-policy))
1316 (defun %coerce-to-policy (thing)
1317   (let ((result (etypecase thing
1318                   (list thing)
1319                   (lexenv (lexenv-policy thing))
1320                   (node (lexenv-policy (node-lexenv thing)))
1321                   (functional (lexenv-policy (functional-lexenv thing))))))
1322     ;; Test the first element of the list as a rudimentary sanity
1323     ;; that it really does look like a valid policy.
1324     (aver (or (null result) (policy-quality-name-p (caar result))))
1325     ;; Voila.
1326     result))
1327 \f
1328 ;;;; Freeze some structure types to speed type testing.
1329
1330 #!-sb-fluid
1331 (declaim (freeze-type node leaf lexenv continuation cblock component cleanup
1332                       physenv tail-set nlx-info))