1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
35 (map-result (gensym)))
37 (,map-result (list nil)))
38 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
39 (,endtest (cdr ,map-result))
40 (setq ,temp (last (nconc ,temp ,call)))))))
43 (map-result (gensym)))
45 (,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
51 (,n-first ,(first arglists)))
52 (do-anonymous ,(do-clauses)
53 (,endtest (truly-the list ,n-first))
56 (define-source-transform mapc (function list &rest more-lists)
57 (mapfoo-transform function (cons list more-lists) nil t))
59 (define-source-transform mapcar (function list &rest more-lists)
60 (mapfoo-transform function (cons list more-lists) :list t))
62 (define-source-transform mapcan (function list &rest more-lists)
63 (mapfoo-transform function (cons list more-lists) :nconc t))
65 (define-source-transform mapl (function list &rest more-lists)
66 (mapfoo-transform function (cons list more-lists) nil nil))
68 (define-source-transform maplist (function list &rest more-lists)
69 (mapfoo-transform function (cons list more-lists) :list nil))
71 (define-source-transform mapcon (function list &rest more-lists)
72 (mapfoo-transform function (cons list more-lists) :nconc nil))
74 ;;;; mapping onto sequences: the MAP function
76 ;;; MAP is %MAP plus a check to make sure that any length specified in
77 ;;; the result type matches the actual result. We also wrap it in a
78 ;;; TRULY-THE for the most specific type we can determine.
79 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
80 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
81 (bare `(%map result-type-arg fun ,@seq-names))
82 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
83 ;; what we know about the type of the result. (Note that the
84 ;; "result type" argument is not necessarily the type of the
85 ;; result, since NIL means the result has NULL type.)
86 (result-type (if (not constant-result-type-arg-p)
88 (let ((result-type-arg-value
89 (lvar-value result-type-arg)))
90 (if (null result-type-arg-value)
92 result-type-arg-value)))))
93 `(lambda (result-type-arg fun ,@seq-names)
94 (truly-the ,result-type
95 ,(cond ((policy node (< safety 3))
96 ;; ANSI requires the length-related type check only
97 ;; when the SAFETY quality is 3... in other cases, we
98 ;; skip it, because it could be expensive.
100 ((not constant-result-type-arg-p)
101 `(sequence-of-checked-length-given-type ,bare
104 (let ((result-ctype (ir1-transform-specifier-type
106 (if (array-type-p result-ctype)
107 (let ((dims (array-type-dimensions result-ctype)))
108 (unless (and (listp dims) (= (length dims) 1))
109 (give-up-ir1-transform "invalid sequence type"))
110 (let ((dim (first dims)))
113 `(vector-of-checked-length-given-length ,bare
115 ;; FIXME: this is wrong, as not all subtypes of
116 ;; VECTOR are ARRAY-TYPEs [consider, for
117 ;; example, (OR (VECTOR T 3) (VECTOR T
118 ;; 4))]. However, it's difficult to see what we
119 ;; should put here... maybe we should
120 ;; GIVE-UP-IR1-TRANSFORM if the type is a
121 ;; subtype of VECTOR but not an ARRAY-TYPE?
124 ;;; Return a DO loop, mapping a function FUN to elements of
125 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
126 ;;; bound to sequences, INTO - a variable, which is used in
127 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
128 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
129 ;;; INDEX, containing the current position in sequences.
130 (defun build-sequence-iterator (seqs seq-names &key result into body)
131 (declare (type list seqs seq-names)
138 (let ((found-vector-p nil))
139 (flet ((process-vector (length)
140 (unless found-vector-p
141 (setq found-vector-p t)
142 (bindings `(index 0 (1+ index)))
143 (declarations `(type index index)))
144 (vector-lengths length)))
145 (loop for seq of-type lvar in seqs
146 for seq-name in seq-names
147 for type = (lvar-type seq)
148 do (cond ((csubtypep type (specifier-type 'list))
149 (with-unique-names (index)
150 (bindings `(,index ,seq-name (cdr ,index)))
151 (declarations `(type list ,index))
152 (places `(car ,index))
153 (tests `(endp ,index))))
154 ((csubtypep type (specifier-type 'vector))
155 (process-vector `(length ,seq-name))
156 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
157 (aref ,seq-name index))))
159 (give-up-ir1-transform
160 "can't determine sequence argument type"))))
162 (process-vector `(array-dimension ,into 0))))
164 (bindings `(length (min ,@(vector-lengths))))
165 (tests `(>= index length)))
167 ((or ,@(tests)) ,result)
168 (declare ,@(declarations))
169 (let ((funcall-result (funcall fun ,@(places))))
170 (declare (ignorable funcall-result))
173 ;;; Try to compile %MAP efficiently when we can determine sequence
174 ;;; argument types at compile time.
176 ;;; Note: This transform was written to allow open coding of
177 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
178 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
179 ;;; necessarily as efficient as possible. In particular, it will be
180 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
181 ;;; numeric element types. It should be straightforward to make it
182 ;;; handle that case more efficiently, but it's left as an exercise to
183 ;;; the reader, because the code is complicated enough already and I
184 ;;; don't happen to need that functionality right now. -- WHN 20000410
185 (deftransform %map ((result-type fun seq &rest seqs) * *
186 :policy (>= speed space))
188 (unless (constant-lvar-p result-type)
189 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
190 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
191 (fn-1subtypep (fn x y)
192 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
195 (give-up-ir1-transform
196 "can't analyze sequence type relationship"))))
197 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
198 (let* ((result-type-value (lvar-value result-type))
199 (result-supertype (cond ((null result-type-value) 'null)
200 ((1subtypep result-type-value 'vector)
202 ((1subtypep result-type-value 'list)
205 (give-up-ir1-transform
206 "result type unsuitable")))))
207 (cond ((and result-type-value (null seqs))
208 ;; The consing arity-1 cases can be implemented
209 ;; reasonably efficiently as function calls, and the cost
210 ;; of consing should be significantly larger than
211 ;; function call overhead, so we always compile these
212 ;; cases as full calls regardless of speed-versus-space
213 ;; optimization policy.
214 (cond ((subtypep result-type-value 'list)
215 '(%map-to-list-arity-1 fun seq))
216 ( ;; (This one can be inefficient due to COERCE, but
217 ;; the current open-coded implementation has the
219 (subtypep result-type-value 'vector)
220 `(coerce (%map-to-simple-vector-arity-1 fun seq)
221 ',result-type-value))
222 (t (bug "impossible (?) sequence type"))))
224 (let* ((seqs (cons seq seqs))
225 (seq-args (make-gensym-list (length seqs))))
226 (multiple-value-bind (push-dacc result)
227 (ecase result-supertype
228 (null (values nil nil))
229 (list (values `(push funcall-result acc)
231 (vector (values `(push funcall-result acc)
232 `(coerce (nreverse acc)
233 ',result-type-value))))
234 ;; (We use the same idiom, of returning a LAMBDA from
235 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
236 ;; FUNCALL and ALIEN-FUNCALL, and for the same
237 ;; reason: we need to get the runtime values of each
238 ;; of the &REST vars.)
239 `(lambda (result-type fun ,@seq-args)
240 (declare (ignore result-type))
241 (let ((fun (%coerce-callable-to-fun fun))
243 (declare (type list acc))
244 (declare (ignorable acc))
245 ,(build-sequence-iterator
248 :body push-dacc))))))))))
251 (deftransform map-into ((result fun &rest seqs)
255 (let ((seqs-names (mapcar (lambda (x)
259 `(lambda (result fun ,@seqs-names)
260 ,(build-sequence-iterator
262 :result '(when (array-has-fill-pointer-p result)
263 (setf (fill-pointer result) index))
265 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
266 (setf (aref result index) funcall-result)))
270 ;;; FIXME: once the confusion over doing transforms with known-complex
271 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
272 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
273 (deftransform elt ((s i) ((simple-array * (*)) *) *)
276 (deftransform elt ((s i) (list *) * :policy (< safety 3))
279 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
282 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
283 '(setf (car (nthcdr i s)) v))
285 (deftransform %check-vector-sequence-bounds ((vector start end)
288 (if (policy node (< safety speed))
289 '(or end (length vector))
290 '(let ((length (length vector)))
291 (if (<= 0 start (or end length) length)
293 (sb!impl::signal-bounding-indices-bad-error vector start end)))))
295 (macrolet ((def (name)
296 `(deftransform ,name ((e l &key (test #'eql)) * *
298 (unless (constant-lvar-p l)
299 (give-up-ir1-transform))
301 (let ((val (lvar-value l)))
304 (and (>= speed space)
305 (<= (length val) 5))))
306 (give-up-ir1-transform))
310 `(if (funcall test e ',(car els))
318 ;;; FIXME: We have rewritten the original code that used DOLIST to this
319 ;;; more natural MACROLET. However, the original code suggested that when
320 ;;; this was done, a few bytes could be saved by a call to a shared
321 ;;; function. This remains to be done.
322 (macrolet ((def (fun eq-fun)
323 `(deftransform ,fun ((item list &key test) (t list &rest t) *)
325 ;; FIXME: The scope of this transformation could be
326 ;; widened somewhat, letting it work whenever the test is
327 ;; 'EQL and we know from the type of ITEM that it #'EQ
328 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
330 ;; If TEST is EQ, apply transform, else
331 ;; if test is not EQL, then give up on transform, else
332 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
333 ;; transform, else give up on transform.
335 (unless (lvar-fun-is test '(eq))
336 (give-up-ir1-transform)))
337 ((types-equal-or-intersect (lvar-type item)
338 (specifier-type 'number))
339 (give-up-ir1-transform "Item might be a number.")))
340 `(,',eq-fun item list))))
345 (deftransform delete-if ((pred list) (t list))
347 '(do ((x list (cdr x))
350 (cond ((funcall pred (car x))
353 (rplacd splice (cdr x))))
354 (t (setq splice x)))))
356 (deftransform fill ((seq item &key (start 0) (end (length seq)))
357 (vector t &key (:start t) (:end index))
359 :policy (> speed space))
361 (let ((element-type (upgraded-element-type-specifier-or-give-up seq)))
363 `(with-array-data ((data seq)
366 (declare (type (simple-array ,element-type 1) data))
367 (declare (type fixnum start end))
368 (do ((i start (1+ i)))
370 (declare (type index i))
371 ;; WITH-ARRAY-DATA did our range checks once and for all, so
372 ;; it'd be wasteful to check again on every AREF...
373 (declare (optimize (safety 0)))
374 (setf (aref data i) item)))
375 ;; ... though we still need to check that the new element can fit
376 ;; into the vector in safe code. -- CSR, 2002-07-05
377 `((declare (type ,element-type item))))))
381 ;;; Return true if LVAR's only use is a non-NOTINLINE reference to a
382 ;;; global function with one of the specified NAMES.
383 (defun lvar-fun-is (lvar names)
384 (declare (type lvar lvar) (list names))
385 (let ((use (lvar-uses lvar)))
387 (let ((leaf (ref-leaf use)))
388 (and (global-var-p leaf)
389 (eq (global-var-kind leaf) :global-function)
390 (not (null (member (leaf-source-name leaf) names
391 :test #'equal))))))))
393 ;;; If LVAR is a constant lvar, the return the constant value. If it
394 ;;; is null, then return default, otherwise quietly give up the IR1
397 ;;; ### Probably should take an ARG and flame using the NAME.
398 (defun constant-value-or-lose (lvar &optional default)
399 (declare (type (or lvar null) lvar))
400 (cond ((not lvar) default)
401 ((constant-lvar-p lvar)
404 (give-up-ir1-transform))))
406 ;;; FIXME: Why is this code commented out? (Why *was* it commented
407 ;;; out? We inherited this situation from cmucl-2.4.8, with no
408 ;;; explanation.) Should we just delete this code?
410 ;;; This is a frob whose job it is to make it easier to pass around
411 ;;; the arguments to IR1 transforms. It bundles together the name of
412 ;;; the argument (which should be referenced in any expansion), and
413 ;;; the continuation for that argument (or NIL if unsupplied.)
414 (defstruct (arg (:constructor %make-arg (name cont))
416 (name nil :type symbol)
417 (cont nil :type (or continuation null)))
418 (defmacro make-arg (name)
419 `(%make-arg ',name ,name))
421 ;;; If Arg is null or its CONT is null, then return Default, otherwise
422 ;;; return Arg's NAME.
423 (defun default-arg (arg default)
424 (declare (type (or arg null) arg))
425 (if (and arg (arg-cont arg))
429 ;;; If Arg is null or has no CONT, return the default. Otherwise, Arg's
430 ;;; CONT must be a constant continuation whose value we return. If not, we
432 (defun arg-constant-value (arg default)
433 (declare (type (or arg null) arg))
434 (if (and arg (arg-cont arg))
435 (let ((cont (arg-cont arg)))
436 (unless (constant-continuation-p cont)
437 (give-up-ir1-transform "Argument is not constant: ~S."
439 (continuation-value from-end))
442 ;;; If Arg is a constant and is EQL to X, then return T, otherwise NIL. If
443 ;;; Arg is NIL or its CONT is NIL, then compare to the default.
444 (defun arg-eql (arg default x)
445 (declare (type (or arg null) x))
446 (if (and arg (arg-cont arg))
447 (let ((cont (arg-cont arg)))
448 (and (constant-continuation-p cont)
449 (eql (continuation-value cont) x)))
452 (defstruct (iterator (:copier nil))
453 ;; The kind of iterator.
454 (kind nil (member :normal :result))
455 ;; A list of LET* bindings to create the initial state.
456 (binds nil :type list)
457 ;; A list of declarations for Binds.
458 (decls nil :type list)
459 ;; A form that returns the current value. This may be set with SETF to set
460 ;; the current value.
461 (current (error "Must specify CURRENT."))
462 ;; In a :NORMAL iterator, a form that tests whether there is a current value.
464 ;; In a :RESULT iterator, a form that truncates the result at the current
465 ;; position and returns it.
467 ;; A form that returns the initial total number of values. The result is
468 ;; undefined after NEXT has been evaluated.
469 (length (error "Must specify LENGTH."))
470 ;; A form that advances the state to the next value. It is an error to call
471 ;; this when the iterator is Done.
472 (next (error "Must specify NEXT.")))
474 ;;; Type of an index var that can go negative (in the from-end case.)
475 (deftype neg-index ()
476 `(integer -1 ,most-positive-fixnum))
478 ;;; Return an ITERATOR structure describing how to iterate over an arbitrary
479 ;;; sequence. Sequence is a variable bound to the sequence, and Type is the
480 ;;; type of the sequence. If true, INDEX is a variable that should be bound to
481 ;;; the index of the current element in the sequence.
483 ;;; If we can't tell whether the sequence is a list or a vector, or whether
484 ;;; the iteration is forward or backward, then GIVE-UP.
485 (defun make-sequence-iterator (sequence type &key start end from-end index)
486 (declare (symbol sequence) (type ctype type)
487 (type (or arg null) start end from-end)
488 (type (or symbol null) index))
489 (let ((from-end (arg-constant-value from-end nil)))
490 (cond ((csubtypep type (specifier-type 'vector))
491 (let* ((n-stop (gensym))
492 (n-idx (or index (gensym)))
493 (start (default-arg 0 start))
494 (end (default-arg `(length ,sequence) end)))
497 :binds `((,n-idx ,(if from-end `(1- ,end) ,start))
498 (,n-stop ,(if from-end `(1- ,start) ,end)))
499 :decls `((type neg-index ,n-idx ,n-stop))
500 :current `(aref ,sequence ,n-idx)
501 :done `(,(if from-end '<= '>=) ,n-idx ,n-stop)
503 ,(if from-end `(1- ,n-idx) `(1+ ,n-idx)))
506 `(- ,n-stop ,n-idx)))))
507 ((csubtypep type (specifier-type 'list))
508 (let* ((n-stop (if (and end (not from-end)) (gensym) nil))
510 (start-p (not (arg-eql start 0 0)))
511 (end-p (not (arg-eql end nil nil)))
512 (start (default-arg start 0))
513 (end (default-arg end nil)))
517 (if (or start-p end-p)
518 `(nreverse (subseq ,sequence ,start
519 ,@(when end `(,end))))
520 `(reverse ,sequence))
522 `(nthcdr ,start ,sequence)
525 `((,n-stop (nthcdr (the index
529 `((,index ,(if from-end `(1- ,end) start)))))
531 :decls `((list ,n-current ,n-end)
532 ,@(when index `((type neg-index ,index))))
533 :current `(car ,n-current)
534 :done `(eq ,n-current ,n-stop)
535 :length `(- ,(or end `(length ,sequence)) ,start)
537 (setq ,n-current (cdr ,n-current))
544 (give-up-ir1-transform
545 "can't tell whether sequence is a list or a vector")))))
547 ;;; Make an iterator used for constructing result sequences. Name is a
548 ;;; variable to be bound to the result sequence. Type is the type of result
549 ;;; sequence to make. Length is an expression to be evaluated to get the
550 ;;; maximum length of the result (not evaluated in list case.)
551 (defun make-result-sequence-iterator (name type length)
552 (declare (symbol name) (type ctype type))
554 ;;; Define each NAME as a local macro that will call the value of the
555 ;;; function arg with the given arguments. If the argument isn't known to be a
556 ;;; function, give them an efficiency note and reference a coerced version.
557 (defmacro coerce-funs (specs &body body)
559 "COERCE-FUNCTIONS ({(Name Fun-Arg Default)}*) Form*"
563 `(let ((body (progn ,@body))
564 (n-fun (arg-name ,(second spec)))
565 (fun-cont (arg-cont ,(second spec))))
566 (cond ((not fun-cont)
567 `(macrolet ((,',(first spec) (&rest args)
568 `(,',',(third spec) ,@args)))
570 ((not (csubtypep (continuation-type fun-cont)
571 (specifier-type 'function)))
572 (when (policy *compiler-error-context*
573 (> speed inhibit-warnings))
575 "~S may not be a function, so must coerce at run-time."
577 (once-only ((n-fun `(if (functionp ,n-fun)
579 (symbol-function ,n-fun))))
580 `(macrolet ((,',(first spec) (&rest args)
581 `(funcall ,',n-fun ,@args)))
584 `(macrolet ((,',(first spec) (&rest args)
585 `(funcall ,',n-fun ,@args)))
588 ;;; Wrap code around the result of the body to define Name as a local macro
589 ;;; that returns true when its arguments satisfy the test according to the Args
590 ;;; Test and Test-Not. If both Test and Test-Not are supplied, abort the
592 (defmacro with-sequence-test ((name test test-not) &body body)
593 `(let ((not-p (arg-cont ,test-not)))
594 (when (and (arg-cont ,test) not-p)
595 (abort-ir1-transform "Both ~S and ~S were supplied."
597 (arg-name ,test-not)))
598 (coerce-funs ((,name (if not-p ,test-not ,test) eql))
602 ;;;; hairy sequence transforms
604 ;;; FIXME: no hairy sequence transforms in SBCL?
606 ;;;; string operations
608 ;;; We transform the case-sensitive string predicates into a non-keyword
609 ;;; version. This is an IR1 transform so that we don't have to worry about
610 ;;; changing the order of evaluation.
611 (macrolet ((def (fun pred*)
612 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
615 `(,',pred* string1 string2 start1 end1 start2 end2))))
616 (def string< string<*)
617 (def string> string>*)
618 (def string<= string<=*)
619 (def string>= string>=*)
620 (def string= string=*)
621 (def string/= string/=*))
623 ;;; Return a form that tests the free variables STRING1 and STRING2
624 ;;; for the ordering relationship specified by LESSP and EQUALP. The
625 ;;; start and end are also gotten from the environment. Both strings
626 ;;; must be SIMPLE-BASE-STRINGs.
627 (macrolet ((def (name lessp equalp)
628 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
629 (simple-base-string simple-base-string t t t t) *)
630 `(let* ((end1 (if (not end1) (length string1) end1))
631 (end2 (if (not end2) (length string2) end2))
632 (index (sb!impl::%sp-string-compare
633 string1 start1 end1 string2 start2 end2)))
635 (cond ((= index end1)
636 ,(if ',lessp 'index nil))
637 ((= (+ index (- start2 start1)) end2)
638 ,(if ',lessp nil 'index))
639 ((,(if ',lessp 'char< 'char>)
640 (schar string1 index)
649 ,(if ',equalp 'end1 nil))))))
652 (def string>* nil nil)
653 (def string>=* nil t))
655 (macrolet ((def (name result-fun)
656 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
657 (simple-base-string simple-base-string t t t t) *)
659 (sb!impl::%sp-string-compare
660 string1 start1 (or end1 (length string1))
661 string2 start2 (or end2 (length string2)))))))
663 (def string/=* identity))
666 ;;;; transforms for sequence functions
668 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp. Only applies
669 ;;; to vectors based on simple arrays.
670 (def!constant vector-data-bit-offset
671 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
673 (eval-when (:compile-toplevel)
674 (defun valid-bit-bash-saetp-p (saetp)
675 ;; BIT-BASHing isn't allowed on simple vectors that contain pointers
676 (and (not (eq t (sb!vm:saetp-specifier saetp)))
677 ;; Disallowing (VECTOR NIL) also means that we won't transform
678 ;; sequence functions into bit-bashing code and we let the
679 ;; generic sequence functions signal errors if necessary.
680 (not (zerop (sb!vm:saetp-n-bits saetp)))
681 ;; Due to limitations with the current BIT-BASHing code, we can't
682 ;; BIT-BASH reliably on arrays whose element types are larger
683 ;; than the word size.
684 (<= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)))
687 ;;; FIXME: In the copy loops below, we code the loops in a strange
690 ;;; (do ((i (+ src-offset length) (1- i)))
692 ;;; (... (aref foo (1- i)) ...))
694 ;;; rather than the more natural (and seemingly more efficient):
696 ;;; (do ((i (1- (+ src-offset length)) (1- i)))
698 ;;; (... (aref foo i) ...))
700 ;;; (more efficient because we don't have to do the index adjusting on
701 ;;; every iteration of the loop)
703 ;;; We do this to avoid a suboptimality in SBCL's backend. In the
704 ;;; latter case, the backend thinks I is a FIXNUM (which it is), but
705 ;;; when used as an array index, the backend thinks I is a
706 ;;; POSITIVE-FIXNUM (which it is). However, since the backend thinks of
707 ;;; these as distinct storage classes, it cannot coerce a move from a
708 ;;; FIXNUM TN to a POSITIVE-FIXNUM TN. The practical effect of this
709 ;;; deficiency is that we have two extra moves and increased register
710 ;;; pressure, which can lead to some spectacularly bad register
711 ;;; allocation. (sub-FIXME: the register allocation even with the
712 ;;; strangely written loops is not always excellent, either...). Doing
713 ;;; it the first way, above, means that I is always thought of as a
714 ;;; POSITIVE-FIXNUM and there are no issues.
716 ;;; Besides, the *-WITH-OFFSET machinery will fold those index
717 ;;; adjustments in the first version into the array addressing at no
718 ;;; performance penalty!
720 ;;; This transform is critical to the performance of string streams. If
721 ;;; you tweak it, make sure that you compare the disassembly, if not the
722 ;;; performance of, the functions implementing string streams
723 ;;; (e.g. SB!IMPL::STRING-OUCH).
725 ((define-replace-transforms ()
726 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
727 for sequence-type = `(simple-array ,(sb!vm:saetp-specifier saetp) (*))
728 unless (= (sb!vm:saetp-typecode saetp) sb!vm::simple-array-nil-widetag)
730 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
731 (,sequence-type ,sequence-type &rest t)
735 ((valid-bit-bash-saetp-p saetp) nil)
736 ;; If we're not bit-bashing, only allow cases where we
737 ;; can determine the order of copying up front. (There
738 ;; are actually more cases we can handle if we know the
739 ;; amount that we're copying, but this handles the
741 (t '(unless (= (constant-value-or-lose start1 0)
742 (constant-value-or-lose start2 0))
743 (give-up-ir1-transform))))
744 `(let* ((len1 (length seq1))
746 (end1 (or end1 len1))
747 (end2 (or end2 len2))
748 (replace-len1 (- end1 start1))
749 (replace-len2 (- end2 start2)))
750 ,(unless (policy node (= safety 0))
752 (unless (<= 0 start1 end1 len1)
753 (sb!impl::signal-bounding-indices-bad-error seq1 start1 end1))
754 (unless (<= 0 start2 end2 len2)
755 (sb!impl::signal-bounding-indices-bad-error seq2 start2 end2))))
757 ((valid-bit-bash-saetp-p saetp)
758 (let* ((n-element-bits (sb!vm:saetp-n-bits saetp))
759 (bash-function (intern (format nil "UB~D-BASH-COPY" n-element-bits)
760 (find-package "SB!KERNEL"))))
761 `(funcall (function ,bash-function) seq2 start2
762 seq1 start1 (min replace-len1 replace-len2))))
764 ;; We can expand the loop inline here because we
765 ;; would have given up the transform (see above)
766 ;; if we didn't have constant matching start
768 '(do ((i start1 (1+ i))
770 (min replace-len1 replace-len2))))
772 (declare (optimize (insert-array-bounds-checks 0)))
773 (setf (aref seq1 i) (aref seq2 i)))))
776 finally (return `(progn ,@forms)))))
777 (define-replace-transforms))
779 ;;; Expand simple cases of UB<SIZE>-BASH-COPY inline. "simple" is
780 ;;; defined as those cases where we are doing word-aligned copies from
781 ;;; both the source and the destination and we are copying from the same
782 ;;; offset from both the source and the destination. (The last
783 ;;; condition is there so we can determine the direction to copy at
784 ;;; compile time rather than runtime. Remember that UB<SIZE>-BASH-COPY
785 ;;; acts like memmove, not memcpy.) These conditions may seem rather
786 ;;; restrictive, but they do catch common cases, like allocating a (* 2
787 ;;; N)-size buffer and blitting in the old N-size buffer in.
789 (defun frob-bash-transform (src src-offset
791 length n-elems-per-word)
792 (declare (ignore src dst length))
793 (let ((n-bits-per-elem (truncate sb!vm:n-word-bits n-elems-per-word)))
794 (multiple-value-bind (src-word src-elt)
795 (truncate (lvar-value src-offset) n-elems-per-word)
796 (multiple-value-bind (dst-word dst-elt)
797 (truncate (lvar-value dst-offset) n-elems-per-word)
798 ;; Avoid non-word aligned copies.
799 (unless (and (zerop src-elt) (zerop dst-elt))
800 (give-up-ir1-transform))
801 ;; Avoid copies where we would have to insert code for
802 ;; determining the direction of copying.
803 (unless (= src-word dst-word)
804 (give-up-ir1-transform))
805 ;; FIXME: The cross-compiler doesn't optimize TRUNCATE properly,
806 ;; so we have to do its work here.
807 `(let ((end (+ ,src-word ,(if (= n-elems-per-word 1)
809 `(truncate (the index length) ,n-elems-per-word)))))
810 (declare (type index end))
811 ;; Handle any bits at the end.
812 (when (logtest length (1- ,n-elems-per-word))
813 (let* ((extra (mod length ,n-elems-per-word))
814 ;; FIXME: The shift amount on this ASH is
815 ;; *always* negative, but the backend doesn't
816 ;; have a NEGATIVE-FIXNUM primitive type, so we
817 ;; wind up with a pile of code that tests the
818 ;; sign of the shift count prior to shifting when
819 ;; all we need is a simple negate and shift
821 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
822 (* (- extra ,n-elems-per-word)
824 (setf (sb!kernel:%vector-raw-bits dst end)
826 (logandc2 (sb!kernel:%vector-raw-bits dst end)
828 ,(ecase sb!c:*backend-byte-order*
830 (:big-endian `(* (- ,n-elems-per-word extra)
831 ,n-bits-per-elem)))))
832 (logand (sb!kernel:%vector-raw-bits src end)
834 ,(ecase sb!c:*backend-byte-order*
836 (:big-endian `(* (- ,n-elems-per-word extra)
837 ,n-bits-per-elem)))))))))
838 ;; Copy from the end to save a register.
841 (setf (sb!kernel:%vector-raw-bits dst (1- i))
842 (sb!kernel:%vector-raw-bits src (1- i)))))))))
844 #.(loop for i = 1 then (* i 2)
845 collect `(deftransform ,(intern (format nil "UB~D-BASH-COPY" i)
850 ((simple-unboxed-array (*))
852 (simple-unboxed-array (*))
856 (frob-bash-transform src src-offset
857 dst dst-offset length
858 ,(truncate sb!vm:n-word-bits i))) into forms
859 until (= i sb!vm:n-word-bits)
860 finally (return `(progn ,@forms)))
862 ;;; We expand copy loops inline in SUBSEQ and COPY-SEQ if we're copying
863 ;;; arrays with elements of size >= the word size. We do this because
864 ;;; we know the arrays cannot alias (one was just consed), therefore we
865 ;;; can determine at compile time the direction to copy, and for
866 ;;; word-sized elements, UB<WORD-SIZE>-BASH-COPY will do a bit of
867 ;;; needless checking to figure out what's going on. The same
868 ;;; considerations apply if we are copying elements larger than the word
869 ;;; size, with the additional twist that doing it inline is likely to
870 ;;; cons far less than calling REPLACE and letting generic code do the
873 ;;; However, we do not do this for elements whose size is < than the
874 ;;; word size because we don't want to deal with any alignment issues
875 ;;; inline. The UB*-BASH-COPY transforms might fix things up later
878 (defun maybe-expand-copy-loop-inline (src src-offset dst dst-offset length
880 (let ((saetp (find-saetp element-type)))
882 (if (>= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)
883 (expand-aref-copy-loop src src-offset dst dst-offset length)
884 `(locally (declare (optimize (safety 0)))
885 (replace ,dst ,src :start1 ,dst-offset :start2 ,src-offset :end1 ,length)))))
887 (defun expand-aref-copy-loop (src src-offset dst dst-offset length)
888 (if (eql src-offset dst-offset)
889 `(do ((i (+ ,src-offset ,length) (1- i)))
891 (declare (optimize (insert-array-bounds-checks 0)))
892 (setf (aref ,dst (1- i)) (aref ,src (1- i))))
893 ;; KLUDGE: The compiler is not able to derive that (+ offset
894 ;; length) must be a fixnum, but arrives at (unsigned-byte 29).
895 ;; We, however, know it must be so, as by this point the bounds
896 ;; have already been checked.
897 `(do ((i (truly-the fixnum (+ ,src-offset ,length)) (1- i))
898 (j (+ ,dst-offset ,length) (1- j)))
900 (declare (optimize (insert-array-bounds-checks 0))
901 (type (integer 0 #.sb!xc:array-dimension-limit) j i))
902 (setf (aref ,dst (1- j)) (aref ,src (1- i))))))
904 (deftransform subseq ((seq start &optional end)
905 ((or (simple-unboxed-array (*)) simple-vector) t &optional t)
907 (let ((array-type (lvar-type seq)))
908 (unless (array-type-p array-type)
909 (give-up-ir1-transform))
910 (let ((element-type (type-specifier (array-type-specialized-element-type array-type))))
911 `(let* ((length (length seq))
912 (end (or end length)))
913 ,(unless (policy node (= safety 0))
915 (unless (<= 0 start end length)
916 (sb!impl::signal-bounding-indices-bad-error seq start end))))
917 (let* ((size (- end start))
918 (result (make-array size :element-type ',element-type)))
919 ,(maybe-expand-copy-loop-inline 'seq 'start 'result 0 'size element-type)
922 (deftransform copy-seq ((seq) ((or (simple-unboxed-array (*)) simple-vector)) *)
923 (let ((array-type (lvar-type seq)))
924 (unless (array-type-p array-type)
925 (give-up-ir1-transform))
926 (let ((element-type (type-specifier (array-type-specialized-element-type array-type))))
927 `(let* ((length (length seq))
928 (result (make-array length :element-type ',element-type)))
929 ,(maybe-expand-copy-loop-inline 'seq 0 'result 0 'length element-type)
932 ;;; FIXME: it really should be possible to take advantage of the
933 ;;; macros used in code/seq.lisp here to avoid duplication of code,
934 ;;; and enable even funkier transformations.
935 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2
939 (vector vector &rest t)
941 :policy (> speed (max space safety)))
943 (let ((from-end (when (lvar-p from-end)
944 (unless (constant-lvar-p from-end)
945 (give-up-ir1-transform ":FROM-END is not constant."))
946 (lvar-value from-end)))
948 (testp (lvar-p test)))
950 (let ((end1 (or end1 (length pattern)))
951 (end2 (or end2 (length text)))
953 '((key (coerce key 'function))))
955 '((test (coerce test 'function)))))
956 (declare (type index start1 start2 end1 end2))
958 '(index2 (- end2 (- end1 start1)) (1- index2))
959 '(index2 start2 (1+ index2))))
964 ;; INDEX2 is FIXNUM, not an INDEX, as right before the loop
965 ;; terminates is hits -1 when :FROM-END is true and :START2
967 (declare (type fixnum index2))
968 (when (do ((index1 start1 (1+ index1))
969 (index2 index2 (1+ index2)))
971 (declare (type index index1 index2))
973 '((when (= index2 end2)
974 (return-from search nil))))
979 '(funcall key (aref pattern index1))
980 '(aref pattern index1))
982 '(funcall key (aref text index2))
983 '(aref text index2)))
985 (return index2)))))))
987 ;;; FIXME: It seems as though it should be possible to make a DEFUN
988 ;;; %CONCATENATE (with a DEFTRANSFORM to translate constant RTYPE to
989 ;;; CTYPE before calling %CONCATENATE) which is comparably efficient,
990 ;;; at least once DYNAMIC-EXTENT works.
992 ;;; FIXME: currently KLUDGEed because of bug 188
994 ;;; FIXME: disabled for sb-unicode: probably want it back
996 (deftransform concatenate ((rtype &rest sequences)
997 (t &rest (or simple-base-string
998 (simple-array nil (*))))
1000 :policy (< safety 3))
1001 (loop for rest-seqs on sequences
1002 for n-seq = (gensym "N-SEQ")
1003 for n-length = (gensym "N-LENGTH")
1004 for start = 0 then next-start
1005 for next-start = (gensym "NEXT-START")
1006 collect n-seq into args
1007 collect `(,n-length (length ,n-seq)) into lets
1008 collect n-length into all-lengths
1009 collect next-start into starts
1010 collect `(if (and (typep ,n-seq '(simple-array nil (*)))
1012 (error 'nil-array-accessed-error)
1013 (#.(let* ((i (position 'character sb!kernel::*specialized-array-element-types*))
1014 (saetp (aref sb!vm:*specialized-array-element-type-properties* i))
1015 (n-bits (sb!vm:saetp-n-bits saetp)))
1016 (intern (format nil "UB~D-BASH-COPY" n-bits)
1018 ,n-seq 0 res ,start ,n-length))
1020 collect `(setq ,next-start (+ ,start ,n-length)) into forms
1023 `(lambda (rtype ,@args)
1024 (declare (ignore rtype))
1026 (res (make-string (the index (+ ,@all-lengths))
1027 :element-type 'base-char)))
1028 (declare (type index ,@all-lengths))
1029 (let (,@(mapcar (lambda (name) `(,name 0)) starts))
1030 (declare (type index ,@starts))
1034 ;;;; CONS accessor DERIVE-TYPE optimizers
1036 (defoptimizer (car derive-type) ((cons))
1037 (let ((type (lvar-type cons))
1038 (null-type (specifier-type 'null)))
1039 (cond ((eq type null-type)
1042 (cons-type-car-type type)))))
1044 (defoptimizer (cdr derive-type) ((cons))
1045 (let ((type (lvar-type cons))
1046 (null-type (specifier-type 'null)))
1047 (cond ((eq type null-type)
1050 (cons-type-cdr-type type)))))
1052 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
1054 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
1055 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
1056 ;;; expansion, so we factor out the condition into this function.
1057 (defun check-inlineability-of-find-position-if (sequence from-end)
1058 (let ((ctype (lvar-type sequence)))
1059 (cond ((csubtypep ctype (specifier-type 'vector))
1060 ;; It's not worth trying to inline vector code unless we
1061 ;; know a fair amount about it at compile time.
1062 (upgraded-element-type-specifier-or-give-up sequence)
1063 (unless (constant-lvar-p from-end)
1064 (give-up-ir1-transform
1065 "FROM-END argument value not known at compile time")))
1066 ((csubtypep ctype (specifier-type 'list))
1067 ;; Inlining on lists is generally worthwhile.
1070 (give-up-ir1-transform
1071 "sequence type not known at compile time")))))
1073 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
1074 (macrolet ((def (name condition)
1075 `(deftransform ,name ((predicate sequence from-end start end key)
1076 (function list t t t function)
1078 :policy (> speed space))
1083 (declare (type index index))
1085 (if (and end (> end index))
1086 (sb!impl::signal-bounding-indices-bad-error
1088 (values find position)))
1089 (let ((key-i (funcall key i)))
1090 (when (and end (>= index end))
1091 (return (values find position)))
1092 (when (>= index start)
1093 (,',condition (funcall predicate key-i)
1094 ;; This hack of dealing with non-NIL
1095 ;; FROM-END for list data by iterating
1096 ;; forward through the list and keeping
1097 ;; track of the last time we found a match
1098 ;; might be more screwy than what the user
1099 ;; expects, but it seems to be allowed by
1100 ;; the ANSI standard. (And if the user is
1101 ;; screwy enough to ask for FROM-END
1102 ;; behavior on list data, turnabout is
1105 ;; It's also not enormously efficient,
1106 ;; calling PREDICATE and KEY more often
1107 ;; than necessary; but all the
1108 ;; alternatives seem to have their own
1109 ;; efficiency problems.
1113 (return (values i index))))))
1115 (def %find-position-if when)
1116 (def %find-position-if-not unless))
1118 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
1119 ;;; without loss of efficiency. (I.e., the optimizer should be able
1120 ;;; to straighten everything out.)
1121 (deftransform %find-position ((item sequence from-end start end key test)
1124 :policy (> speed space))
1126 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
1127 ;; The order of arguments for asymmetric tests
1128 ;; (e.g. #'<, as opposed to order-independent
1129 ;; tests like #'=) is specified in the spec
1130 ;; section 17.2.1 -- the O/Zi stuff there.
1132 (funcall test-fun item i)))
1137 (%coerce-callable-to-fun key)))
1139 ;;; The inline expansions for the VECTOR case are saved as macros so
1140 ;;; that we can share them between the DEFTRANSFORMs and the default
1141 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
1142 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
1143 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
1149 (with-unique-names (offset block index n-sequence sequence n-end end)
1150 `(let ((,n-sequence ,sequence-arg)
1152 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
1154 (,end (%check-vector-sequence-bounds
1155 ,n-sequence ,start ,n-end)))
1157 (macrolet ((maybe-return ()
1158 ;; WITH-ARRAY-DATA has already performed bounds
1159 ;; checking, so we can safely elide the checks
1160 ;; in the inner loop.
1161 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
1162 (aref ,sequence ,index))))
1166 (- ,index ,offset)))))))
1169 ;; (If we aren't fastidious about declaring that
1170 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
1171 ;; can send us off into never-never land, since
1172 ;; INDEX is initialized to -1.)
1173 of-type index-or-minus-1
1174 from (1- ,end) downto ,start do
1176 (loop for ,index of-type index from ,start below ,end do
1178 (values nil nil))))))
1180 (def!macro %find-position-vector-macro (item sequence
1181 from-end start end key test)
1182 (with-unique-names (element)
1183 (%find-position-or-find-position-if-vector-expansion
1189 ;; (See the LIST transform for a discussion of the correct
1190 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1191 ;; or after the checked sequence element.)
1192 `(funcall ,test ,item (funcall ,key ,element)))))
1194 (def!macro %find-position-if-vector-macro (predicate sequence
1195 from-end start end key)
1196 (with-unique-names (element)
1197 (%find-position-or-find-position-if-vector-expansion
1203 `(funcall ,predicate (funcall ,key ,element)))))
1205 (def!macro %find-position-if-not-vector-macro (predicate sequence
1206 from-end start end key)
1207 (with-unique-names (element)
1208 (%find-position-or-find-position-if-vector-expansion
1214 `(not (funcall ,predicate (funcall ,key ,element))))))
1216 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1218 (deftransform %find-position-if ((predicate sequence from-end start end key)
1219 (function vector t t t function)
1221 :policy (> speed space))
1223 (check-inlineability-of-find-position-if sequence from-end)
1224 '(%find-position-if-vector-macro predicate sequence
1225 from-end start end key))
1227 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1228 (function vector t t t function)
1230 :policy (> speed space))
1232 (check-inlineability-of-find-position-if sequence from-end)
1233 '(%find-position-if-not-vector-macro predicate sequence
1234 from-end start end key))
1236 (deftransform %find-position ((item sequence from-end start end key test)
1237 (t vector t t t function function)
1239 :policy (> speed space))
1241 (check-inlineability-of-find-position-if sequence from-end)
1242 '(%find-position-vector-macro item sequence
1243 from-end start end key test))
1245 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1246 ;;; POSITION-IF, etc.
1247 (define-source-transform effective-find-position-test (test test-not)
1248 (once-only ((test test)
1249 (test-not test-not))
1251 ((and ,test ,test-not)
1252 (error "can't specify both :TEST and :TEST-NOT"))
1253 (,test (%coerce-callable-to-fun ,test))
1255 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1256 ;; inefficient, but since the TEST-NOT option is deprecated
1257 ;; anyway, we don't care.)
1258 (complement (%coerce-callable-to-fun ,test-not)))
1260 (define-source-transform effective-find-position-key (key)
1261 (once-only ((key key))
1263 (%coerce-callable-to-fun ,key)
1266 (macrolet ((define-find-position (fun-name values-index)
1267 `(deftransform ,fun-name ((item sequence &key
1268 from-end (start 0) end
1270 (t (or list vector) &rest t))
1271 '(nth-value ,values-index
1272 (%find-position item sequence
1275 (effective-find-position-key key)
1276 (effective-find-position-test
1278 (define-find-position find 0)
1279 (define-find-position position 1))
1281 (macrolet ((define-find-position-if (fun-name values-index)
1282 `(deftransform ,fun-name ((predicate sequence &key
1285 (t (or list vector) &rest t))
1288 (%find-position-if (%coerce-callable-to-fun predicate)
1291 (effective-find-position-key key))))))
1292 (define-find-position-if find-if 0)
1293 (define-find-position-if position-if 1))
1295 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1296 ;;; didn't bother to worry about optimizing them, except note that on
1297 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1300 ;;; My understanding is that while the :test-not argument is
1301 ;;; deprecated in favour of :test (complement #'foo) because of
1302 ;;; semantic difficulties (what happens if both :test and :test-not
1303 ;;; are supplied, etc) the -if-not variants, while officially
1304 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1305 ;;; a revised standard, as there are perfectly legitimate idiomatic
1306 ;;; reasons for allowing the -if-not versions equal status,
1307 ;;; particularly remove-if-not (== filter).
1309 ;;; This is only an informal understanding, I grant you, but
1310 ;;; perhaps it's worth optimizing the -if-not versions in the same
1311 ;;; way as the others?
1313 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1314 ;;; implementation of SBCL.
1315 (macrolet ((define-find-position-if-not (fun-name values-index)
1316 `(deftransform ,fun-name ((predicate sequence &key
1319 (t (or list vector) &rest t))
1322 (%find-position-if-not (%coerce-callable-to-fun predicate)
1325 (effective-find-position-key key))))))
1326 (define-find-position-if-not find-if-not 0)
1327 (define-find-position-if-not position-if-not 1))