1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(%funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
33 `(let ((,fn-sym (%coerce-callable-to-fun ,fn)))
37 (map-result (gensym)))
38 `(let ((,map-result (list nil)))
39 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
40 (,endtest (cdr ,map-result))
41 (setq ,temp (last (nconc ,temp ,call)))))))
44 (map-result (gensym)))
45 `(let ((,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
50 `(let ((,n-first ,(first arglists)))
51 (do-anonymous ,(do-clauses)
52 (,endtest (truly-the list ,n-first))
55 (define-source-transform mapc (function list &rest more-lists)
56 (mapfoo-transform function (cons list more-lists) nil t))
58 (define-source-transform mapcar (function list &rest more-lists)
59 (mapfoo-transform function (cons list more-lists) :list t))
61 (define-source-transform mapcan (function list &rest more-lists)
62 (mapfoo-transform function (cons list more-lists) :nconc t))
64 (define-source-transform mapl (function list &rest more-lists)
65 (mapfoo-transform function (cons list more-lists) nil nil))
67 (define-source-transform maplist (function list &rest more-lists)
68 (mapfoo-transform function (cons list more-lists) :list nil))
70 (define-source-transform mapcon (function list &rest more-lists)
71 (mapfoo-transform function (cons list more-lists) :nconc nil))
73 ;;;; mapping onto sequences: the MAP function
75 ;;; MAP is %MAP plus a check to make sure that any length specified in
76 ;;; the result type matches the actual result. We also wrap it in a
77 ;;; TRULY-THE for the most specific type we can determine.
78 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
79 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
80 (bare `(%map result-type-arg fun ,@seq-names))
81 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
82 ;; what we know about the type of the result. (Note that the
83 ;; "result type" argument is not necessarily the type of the
84 ;; result, since NIL means the result has NULL type.)
85 (result-type (if (not constant-result-type-arg-p)
87 (let ((result-type-arg-value
88 (lvar-value result-type-arg)))
89 (if (null result-type-arg-value)
91 result-type-arg-value)))))
92 `(lambda (result-type-arg fun ,@seq-names)
93 (truly-the ,result-type
94 ,(cond ((policy node (< safety 3))
95 ;; ANSI requires the length-related type check only
96 ;; when the SAFETY quality is 3... in other cases, we
97 ;; skip it, because it could be expensive.
99 ((not constant-result-type-arg-p)
100 `(sequence-of-checked-length-given-type ,bare
103 (let ((result-ctype (ir1-transform-specifier-type
105 (if (array-type-p result-ctype)
106 (let ((dims (array-type-dimensions result-ctype)))
107 (unless (and (listp dims) (= (length dims) 1))
108 (give-up-ir1-transform "invalid sequence type"))
109 (let ((dim (first dims)))
112 `(vector-of-checked-length-given-length ,bare
114 ;; FIXME: this is wrong, as not all subtypes of
115 ;; VECTOR are ARRAY-TYPEs [consider, for
116 ;; example, (OR (VECTOR T 3) (VECTOR T
117 ;; 4))]. However, it's difficult to see what we
118 ;; should put here... maybe we should
119 ;; GIVE-UP-IR1-TRANSFORM if the type is a
120 ;; subtype of VECTOR but not an ARRAY-TYPE?
123 ;;; Return a DO loop, mapping a function FUN to elements of
124 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
125 ;;; bound to sequences, INTO - a variable, which is used in
126 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
127 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
128 ;;; INDEX, containing the current position in sequences.
129 (defun build-sequence-iterator (seqs seq-names &key result into body)
130 (declare (type list seqs seq-names)
137 (let ((found-vector-p nil))
138 (flet ((process-vector (length)
139 (unless found-vector-p
140 (setq found-vector-p t)
141 (bindings `(index 0 (1+ index)))
142 (declarations `(type index index)))
143 (vector-lengths length)))
144 (loop for seq of-type lvar in seqs
145 for seq-name in seq-names
146 for type = (lvar-type seq)
147 do (cond ((csubtypep type (specifier-type 'list))
148 (with-unique-names (index)
149 (bindings `(,index ,seq-name (cdr ,index)))
150 (declarations `(type list ,index))
151 (places `(car ,index))
152 (tests `(endp ,index))))
153 ((csubtypep type (specifier-type 'vector))
154 (process-vector `(length ,seq-name))
155 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
156 (aref ,seq-name index))))
158 (give-up-ir1-transform
159 "can't determine sequence argument type"))))
161 (process-vector `(array-dimension ,into 0))))
163 (bindings `(length (min ,@(vector-lengths))))
164 (tests `(>= index length)))
166 ((or ,@(tests)) ,result)
167 (declare ,@(declarations))
168 (let ((funcall-result (funcall fun ,@(places))))
169 (declare (ignorable funcall-result))
172 ;;; Try to compile %MAP efficiently when we can determine sequence
173 ;;; argument types at compile time.
175 ;;; Note: This transform was written to allow open coding of
176 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
177 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
178 ;;; necessarily as efficient as possible. In particular, it will be
179 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
180 ;;; numeric element types. It should be straightforward to make it
181 ;;; handle that case more efficiently, but it's left as an exercise to
182 ;;; the reader, because the code is complicated enough already and I
183 ;;; don't happen to need that functionality right now. -- WHN 20000410
184 (deftransform %map ((result-type fun seq &rest seqs) * *
185 :policy (>= speed space))
187 (unless (constant-lvar-p result-type)
188 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
189 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
190 (fn-1subtypep (fn x y)
191 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
194 (give-up-ir1-transform
195 "can't analyze sequence type relationship"))))
196 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
197 (let* ((result-type-value (lvar-value result-type))
198 (result-supertype (cond ((null result-type-value) 'null)
199 ((1subtypep result-type-value 'vector)
201 ((1subtypep result-type-value 'list)
204 (give-up-ir1-transform
205 "result type unsuitable")))))
206 (cond ((and result-type-value (null seqs))
207 ;; The consing arity-1 cases can be implemented
208 ;; reasonably efficiently as function calls, and the cost
209 ;; of consing should be significantly larger than
210 ;; function call overhead, so we always compile these
211 ;; cases as full calls regardless of speed-versus-space
212 ;; optimization policy.
213 (cond ((subtypep result-type-value 'list)
214 '(%map-to-list-arity-1 fun seq))
215 ( ;; (This one can be inefficient due to COERCE, but
216 ;; the current open-coded implementation has the
218 (subtypep result-type-value 'vector)
219 `(coerce (%map-to-simple-vector-arity-1 fun seq)
220 ',result-type-value))
221 (t (bug "impossible (?) sequence type"))))
223 (let* ((seqs (cons seq seqs))
224 (seq-args (make-gensym-list (length seqs))))
225 (multiple-value-bind (push-dacc result)
226 (ecase result-supertype
227 (null (values nil nil))
228 (list (values `(push funcall-result acc)
230 (vector (values `(push funcall-result acc)
231 `(coerce (nreverse acc)
232 ',result-type-value))))
233 ;; (We use the same idiom, of returning a LAMBDA from
234 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
235 ;; FUNCALL and ALIEN-FUNCALL, and for the same
236 ;; reason: we need to get the runtime values of each
237 ;; of the &REST vars.)
238 `(lambda (result-type fun ,@seq-args)
239 (declare (ignore result-type))
240 (let ((fun (%coerce-callable-to-fun fun))
242 (declare (type list acc))
243 (declare (ignorable acc))
244 ,(build-sequence-iterator
247 :body push-dacc))))))))))
250 (deftransform map-into ((result fun &rest seqs)
254 (let ((seqs-names (mapcar (lambda (x)
258 `(lambda (result fun ,@seqs-names)
259 ,(build-sequence-iterator
261 :result '(when (array-has-fill-pointer-p result)
262 (setf (fill-pointer result) index))
264 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
265 (setf (aref result index) funcall-result)))
269 ;;; FIXME: once the confusion over doing transforms with known-complex
270 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
271 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
272 (deftransform elt ((s i) ((simple-array * (*)) *) *)
275 (deftransform elt ((s i) (list *) * :policy (< safety 3))
278 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
281 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
282 '(setf (car (nthcdr i s)) v))
284 (deftransform %check-vector-sequence-bounds ((vector start end)
287 (if (policy node (= 0 insert-array-bounds-checks))
288 '(or end (length vector))
289 '(let ((length (length vector)))
290 (if (<= 0 start (or end length) length)
292 (sequence-bounding-indices-bad-error vector start end)))))
294 (defun specialized-list-seek-function-name (function-name key-functions variant)
295 (or (find-symbol (with-output-to-string (s)
296 ;; Write "%NAME-FUN1-FUN2-FUN3", etc. Not only is
297 ;; this ever so slightly faster then FORMAT, this
298 ;; way we are also proof against *PRINT-CASE*
299 ;; frobbing and such.
301 (write-string (symbol-name function-name) s)
302 (dolist (f key-functions)
304 (write-string (symbol-name f) s))
307 (write-string (symbol-name variant) s)))
308 (load-time-value (find-package "SB!KERNEL")))
309 (bug "Unknown list item seek transform: name=~S, key-functions=~S variant=~S"
310 function-name key-functions variant)))
312 (defun transform-list-item-seek (name item list key test test-not node)
313 ;; If TEST is EQL, drop it.
314 (when (and test (lvar-for-named-function test 'eql))
316 ;; Ditto for KEY IDENTITY.
317 (when (and key (lvar-for-named-function key 'identity))
319 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
320 ;; not there at all. If it might be NIL, make up a form to that
321 ;; ensures it is a function.
322 (multiple-value-bind (key key-form)
324 (let ((key-type (lvar-type key))
325 (null-type (specifier-type 'null)))
326 (cond ((csubtypep key-type null-type)
328 ((csubtypep null-type key-type)
330 (%coerce-callable-to-fun key)
333 (values key '(%coerce-callable-to-fun key))))))
334 (let* ((c-test (cond ((and test (lvar-for-named-function test 'eq))
337 ((and (not test) (not test-not))
338 (when (eq-comparable-type-p (lvar-type item))
340 (funs (remove nil (list (and key 'key) (cond (test 'test)
341 (test-not 'test-not)))))
342 (target-expr (if key '(%funcall key target) 'target))
343 (test-expr (cond (test `(%funcall test item ,target-expr))
344 (test-not `(not (%funcall test-not item ,target-expr)))
345 (c-test `(,c-test item ,target-expr))
346 (t `(eql item ,target-expr)))))
347 (labels ((open-code (tail)
349 `(if (let ((this ',(car tail)))
352 `(and this (let ((target (car this)))
355 `(let ((target this))
360 ,(open-code (cdr tail)))))
364 `(%coerce-callable-to-fun ,fun))))
365 (let* ((cp (constant-lvar-p list))
366 (c-list (when cp (lvar-value list))))
367 (cond ((and cp c-list (member name '(assoc member))
368 (policy node (>= speed space)))
369 `(let ,(mapcar (lambda (fun) `(,fun ,(ensure-fun fun))) funs)
370 ,(open-code c-list)))
371 ((and cp (not c-list))
372 ;; constant nil list -- nothing to find!
375 ;; specialized out-of-line version
376 `(,(specialized-list-seek-function-name name funs c-test)
377 item list ,@(mapcar #'ensure-fun funs)))))))))
379 (deftransform member ((item list &key key test test-not) * * :node node)
380 (transform-list-item-seek 'member item list key test test-not node))
382 (deftransform assoc ((item list &key key test test-not) * * :node node)
383 (transform-list-item-seek 'assoc item list key test test-not node))
385 (deftransform adjoin ((item list &key key test test-not) * * :node node)
386 (transform-list-item-seek 'adjoin item list key test test-not node))
388 (deftransform memq ((item list) (t (constant-arg list)))
391 `(if (eq item ',(car tail))
395 (rec (lvar-value list))))
397 ;;; A similar transform used to apply to MEMBER and ASSOC, but since
398 ;;; TRANSFORM-LIST-ITEM-SEEK now takes care of them those transform
399 ;;; would never fire, and (%MEMBER-TEST ITEM LIST #'EQ) should be
400 ;;; almost as fast as MEMQ.
401 (deftransform delete ((item list &key test) (t list &rest t) *)
403 ;; FIXME: The scope of this transformation could be
404 ;; widened somewhat, letting it work whenever the test is
405 ;; 'EQL and we know from the type of ITEM that it #'EQ
406 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
408 ;; If TEST is EQ, apply transform, else
409 ;; if test is not EQL, then give up on transform, else
410 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
411 ;; transform, else give up on transform.
413 (unless (lvar-fun-is test '(eq))
414 (give-up-ir1-transform)))
415 ((types-equal-or-intersect (lvar-type item)
416 (specifier-type 'number))
417 (give-up-ir1-transform "Item might be a number.")))
420 (deftransform delete-if ((pred list) (t list))
422 '(do ((x list (cdr x))
425 (cond ((funcall pred (car x))
428 (rplacd splice (cdr x))))
429 (t (setq splice x)))))
431 (deftransform fill ((seq item &key (start 0) (end nil))
432 (list t &key (:start t) (:end t)))
433 '(list-fill* seq item start end))
435 (deftransform fill ((seq item &key (start 0) (end nil))
436 (vector t &key (:start t) (:end t))
439 (let ((type (lvar-type seq))
440 (element-type (type-specifier (extract-upgraded-element-type seq))))
441 (cond ((and (neq '* element-type) (policy node (> speed space)))
443 `(with-array-data ((data seq)
446 :check-fill-pointer t)
447 (declare (type (simple-array ,element-type 1) data))
448 (declare (type index start end))
449 ;; WITH-ARRAY-DATA did our range checks once and for all, so
450 ;; it'd be wasteful to check again on every AREF...
451 (declare (optimize (safety 0) (speed 3)))
452 (do ((i start (1+ i)))
454 (declare (type index i))
455 (setf (aref data i) item)))
456 ;; ... though we still need to check that the new element can fit
457 ;; into the vector in safe code. -- CSR, 2002-07-05
458 `((declare (type ,element-type item)))))
459 ((csubtypep type (specifier-type 'string))
460 '(string-fill* seq item start end))
462 '(vector-fill* seq item start end)))))
464 (deftransform fill ((seq item &key (start 0) (end nil))
465 ((and sequence (not vector) (not list)) t &key (:start t) (:end t)))
466 `(sb!sequence:fill seq item
468 :end (%check-generic-sequence-bounds seq start end)))
472 ;;; Return true if LVAR's only use is a non-NOTINLINE reference to a
473 ;;; global function with one of the specified NAMES.
474 (defun lvar-fun-is (lvar names)
475 (declare (type lvar lvar) (list names))
476 (let ((use (lvar-uses lvar)))
478 (let ((leaf (ref-leaf use)))
479 (and (global-var-p leaf)
480 (eq (global-var-kind leaf) :global-function)
481 (not (null (member (leaf-source-name leaf) names
482 :test #'equal))))))))
484 ;;; If LVAR is a constant lvar, the return the constant value. If it
485 ;;; is null, then return default, otherwise quietly give up the IR1
488 ;;; ### Probably should take an ARG and flame using the NAME.
489 (defun constant-value-or-lose (lvar &optional default)
490 (declare (type (or lvar null) lvar))
491 (cond ((not lvar) default)
492 ((constant-lvar-p lvar)
495 (give-up-ir1-transform))))
498 ;;;; hairy sequence transforms
500 ;;; FIXME: no hairy sequence transforms in SBCL?
502 ;;; There used to be a bunch of commented out code about here,
503 ;;; containing the (apparent) beginning of hairy sequence transform
504 ;;; infrastructure. People interested in implementing better sequence
505 ;;; transforms might want to look at it for inspiration, even though
506 ;;; the actual code is ancient CMUCL -- and hence bitrotted. The code
507 ;;; was deleted in 1.0.7.23.
509 ;;;; string operations
511 ;;; We transform the case-sensitive string predicates into a non-keyword
512 ;;; version. This is an IR1 transform so that we don't have to worry about
513 ;;; changing the order of evaluation.
514 (macrolet ((def (fun pred*)
515 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
518 `(,',pred* string1 string2 start1 end1 start2 end2))))
519 (def string< string<*)
520 (def string> string>*)
521 (def string<= string<=*)
522 (def string>= string>=*)
523 (def string= string=*)
524 (def string/= string/=*))
526 ;;; Return a form that tests the free variables STRING1 and STRING2
527 ;;; for the ordering relationship specified by LESSP and EQUALP. The
528 ;;; start and end are also gotten from the environment. Both strings
529 ;;; must be SIMPLE-BASE-STRINGs.
530 (macrolet ((def (name lessp equalp)
531 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
532 (simple-base-string simple-base-string t t t t) *)
533 `(let* ((end1 (if (not end1) (length string1) end1))
534 (end2 (if (not end2) (length string2) end2))
535 (index (sb!impl::%sp-string-compare
536 string1 start1 end1 string2 start2 end2)))
538 (cond ((= index end1)
539 ,(if ',lessp 'index nil))
540 ((= (+ index (- start2 start1)) end2)
541 ,(if ',lessp nil 'index))
542 ((,(if ',lessp 'char< 'char>)
543 (schar string1 index)
552 ,(if ',equalp 'end1 nil))))))
555 (def string>* nil nil)
556 (def string>=* nil t))
558 (macrolet ((def (name result-fun)
559 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
560 (simple-base-string simple-base-string t t t t) *)
562 (sb!impl::%sp-string-compare
563 string1 start1 (or end1 (length string1))
564 string2 start2 (or end2 (length string2)))))))
566 (def string/=* identity))
569 ;;;; transforms for sequence functions
571 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp. Only applies
572 ;;; to vectors based on simple arrays.
573 (def!constant vector-data-bit-offset
574 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
576 (eval-when (:compile-toplevel)
577 (defun valid-bit-bash-saetp-p (saetp)
578 ;; BIT-BASHing isn't allowed on simple vectors that contain pointers
579 (and (not (eq t (sb!vm:saetp-specifier saetp)))
580 ;; Disallowing (VECTOR NIL) also means that we won't transform
581 ;; sequence functions into bit-bashing code and we let the
582 ;; generic sequence functions signal errors if necessary.
583 (not (zerop (sb!vm:saetp-n-bits saetp)))
584 ;; Due to limitations with the current BIT-BASHing code, we can't
585 ;; BIT-BASH reliably on arrays whose element types are larger
586 ;; than the word size.
587 (<= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)))
590 ;;; FIXME: In the copy loops below, we code the loops in a strange
593 ;;; (do ((i (+ src-offset length) (1- i)))
595 ;;; (... (aref foo (1- i)) ...))
597 ;;; rather than the more natural (and seemingly more efficient):
599 ;;; (do ((i (1- (+ src-offset length)) (1- i)))
601 ;;; (... (aref foo i) ...))
603 ;;; (more efficient because we don't have to do the index adjusting on
604 ;;; every iteration of the loop)
606 ;;; We do this to avoid a suboptimality in SBCL's backend. In the
607 ;;; latter case, the backend thinks I is a FIXNUM (which it is), but
608 ;;; when used as an array index, the backend thinks I is a
609 ;;; POSITIVE-FIXNUM (which it is). However, since the backend thinks of
610 ;;; these as distinct storage classes, it cannot coerce a move from a
611 ;;; FIXNUM TN to a POSITIVE-FIXNUM TN. The practical effect of this
612 ;;; deficiency is that we have two extra moves and increased register
613 ;;; pressure, which can lead to some spectacularly bad register
614 ;;; allocation. (sub-FIXME: the register allocation even with the
615 ;;; strangely written loops is not always excellent, either...). Doing
616 ;;; it the first way, above, means that I is always thought of as a
617 ;;; POSITIVE-FIXNUM and there are no issues.
619 ;;; Besides, the *-WITH-OFFSET machinery will fold those index
620 ;;; adjustments in the first version into the array addressing at no
621 ;;; performance penalty!
623 ;;; This transform is critical to the performance of string streams. If
624 ;;; you tweak it, make sure that you compare the disassembly, if not the
625 ;;; performance of, the functions implementing string streams
626 ;;; (e.g. SB!IMPL::STRING-OUCH).
627 (eval-when (:compile-toplevel :load-toplevel :execute)
628 (defun make-replace-transform (saetp sequence-type1 sequence-type2)
629 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
630 (,sequence-type1 ,sequence-type2 &rest t)
634 ((and saetp (valid-bit-bash-saetp-p saetp)) nil)
635 ;; If the sequence types are different, SEQ1 and SEQ2 must
636 ;; be distinct arrays, and we can open code the copy loop.
637 ((not (eql sequence-type1 sequence-type2)) nil)
638 ;; If we're not bit-bashing, only allow cases where we
639 ;; can determine the order of copying up front. (There
640 ;; are actually more cases we can handle if we know the
641 ;; amount that we're copying, but this handles the
643 (t '(unless (= (constant-value-or-lose start1 0)
644 (constant-value-or-lose start2 0))
645 (give-up-ir1-transform))))
646 `(let* ((len1 (length seq1))
648 (end1 (or end1 len1))
649 (end2 (or end2 len2))
650 (replace-len1 (- end1 start1))
651 (replace-len2 (- end2 start2)))
652 ,(unless (policy node (= safety 0))
654 (unless (<= 0 start1 end1 len1)
655 (sequence-bounding-indices-bad-error seq1 start1 end1))
656 (unless (<= 0 start2 end2 len2)
657 (sequence-bounding-indices-bad-error seq2 start2 end2))))
659 ((and saetp (valid-bit-bash-saetp-p saetp))
660 (let* ((n-element-bits (sb!vm:saetp-n-bits saetp))
661 (bash-function (intern (format nil "UB~D-BASH-COPY"
663 (find-package "SB!KERNEL"))))
664 `(funcall (function ,bash-function) seq2 start2
665 seq1 start1 (min replace-len1 replace-len2))))
667 ;; We can expand the loop inline here because we
668 ;; would have given up the transform (see above)
669 ;; if we didn't have constant matching start
671 '(do ((i start1 (1+ i))
674 (min replace-len1 replace-len2))))
676 (declare (optimize (insert-array-bounds-checks 0)))
677 (setf (aref seq1 i) (aref seq2 j)))))
681 ((define-replace-transforms ()
682 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
683 for sequence-type = `(simple-array ,(sb!vm:saetp-specifier saetp) (*))
684 unless (= (sb!vm:saetp-typecode saetp) sb!vm::simple-array-nil-widetag)
685 collect (make-replace-transform saetp sequence-type sequence-type)
687 finally (return `(progn ,@forms))))
688 (define-one-transform (sequence-type1 sequence-type2)
689 (make-replace-transform nil sequence-type1 sequence-type2)))
690 (define-replace-transforms)
693 (define-one-transform (simple-array base-char (*)) (simple-array character (*)))
694 (define-one-transform (simple-array character (*)) (simple-array base-char (*)))))
696 ;;; Expand simple cases of UB<SIZE>-BASH-COPY inline. "simple" is
697 ;;; defined as those cases where we are doing word-aligned copies from
698 ;;; both the source and the destination and we are copying from the same
699 ;;; offset from both the source and the destination. (The last
700 ;;; condition is there so we can determine the direction to copy at
701 ;;; compile time rather than runtime. Remember that UB<SIZE>-BASH-COPY
702 ;;; acts like memmove, not memcpy.) These conditions may seem rather
703 ;;; restrictive, but they do catch common cases, like allocating a (* 2
704 ;;; N)-size buffer and blitting in the old N-size buffer in.
706 (defun frob-bash-transform (src src-offset
708 length n-elems-per-word)
709 (declare (ignore src dst length))
710 (let ((n-bits-per-elem (truncate sb!vm:n-word-bits n-elems-per-word)))
711 (multiple-value-bind (src-word src-elt)
712 (truncate (lvar-value src-offset) n-elems-per-word)
713 (multiple-value-bind (dst-word dst-elt)
714 (truncate (lvar-value dst-offset) n-elems-per-word)
715 ;; Avoid non-word aligned copies.
716 (unless (and (zerop src-elt) (zerop dst-elt))
717 (give-up-ir1-transform))
718 ;; Avoid copies where we would have to insert code for
719 ;; determining the direction of copying.
720 (unless (= src-word dst-word)
721 (give-up-ir1-transform))
722 ;; FIXME: The cross-compiler doesn't optimize TRUNCATE properly,
723 ;; so we have to do its work here.
724 `(let ((end (+ ,src-word ,(if (= n-elems-per-word 1)
726 `(truncate (the index length) ,n-elems-per-word)))))
727 (declare (type index end))
728 ;; Handle any bits at the end.
729 (when (logtest length (1- ,n-elems-per-word))
730 (let* ((extra (mod length ,n-elems-per-word))
731 ;; FIXME: The shift amount on this ASH is
732 ;; *always* negative, but the backend doesn't
733 ;; have a NEGATIVE-FIXNUM primitive type, so we
734 ;; wind up with a pile of code that tests the
735 ;; sign of the shift count prior to shifting when
736 ;; all we need is a simple negate and shift
738 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
739 (* (- extra ,n-elems-per-word)
741 (setf (sb!kernel:%vector-raw-bits dst end)
743 (logandc2 (sb!kernel:%vector-raw-bits dst end)
745 ,(ecase sb!c:*backend-byte-order*
747 (:big-endian `(* (- ,n-elems-per-word extra)
748 ,n-bits-per-elem)))))
749 (logand (sb!kernel:%vector-raw-bits src end)
751 ,(ecase sb!c:*backend-byte-order*
753 (:big-endian `(* (- ,n-elems-per-word extra)
754 ,n-bits-per-elem)))))))))
755 ;; Copy from the end to save a register.
758 (setf (sb!kernel:%vector-raw-bits dst (1- i))
759 (sb!kernel:%vector-raw-bits src (1- i))))
762 #.(loop for i = 1 then (* i 2)
763 collect `(deftransform ,(intern (format nil "UB~D-BASH-COPY" i)
768 ((simple-unboxed-array (*))
770 (simple-unboxed-array (*))
774 (frob-bash-transform src src-offset
775 dst dst-offset length
776 ,(truncate sb!vm:n-word-bits i))) into forms
777 until (= i sb!vm:n-word-bits)
778 finally (return `(progn ,@forms)))
780 ;;; We expand copy loops inline in SUBSEQ and COPY-SEQ if we're copying
781 ;;; arrays with elements of size >= the word size. We do this because
782 ;;; we know the arrays cannot alias (one was just consed), therefore we
783 ;;; can determine at compile time the direction to copy, and for
784 ;;; word-sized elements, UB<WORD-SIZE>-BASH-COPY will do a bit of
785 ;;; needless checking to figure out what's going on. The same
786 ;;; considerations apply if we are copying elements larger than the word
787 ;;; size, with the additional twist that doing it inline is likely to
788 ;;; cons far less than calling REPLACE and letting generic code do the
791 ;;; However, we do not do this for elements whose size is < than the
792 ;;; word size because we don't want to deal with any alignment issues
793 ;;; inline. The UB*-BASH-COPY transforms might fix things up later
796 (defun maybe-expand-copy-loop-inline (src src-offset dst dst-offset length
798 (let ((saetp (find-saetp element-type)))
800 (if (>= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)
801 (expand-aref-copy-loop src src-offset dst dst-offset length)
802 `(locally (declare (optimize (safety 0)))
803 (replace ,dst ,src :start1 ,dst-offset :start2 ,src-offset :end1 ,length)))))
805 (defun expand-aref-copy-loop (src src-offset dst dst-offset length)
806 (if (eql src-offset dst-offset)
807 `(do ((i (+ ,src-offset ,length) (1- i)))
809 (declare (optimize (insert-array-bounds-checks 0)))
810 (setf (aref ,dst (1- i)) (aref ,src (1- i))))
811 ;; KLUDGE: The compiler is not able to derive that (+ offset
812 ;; length) must be a fixnum, but arrives at (unsigned-byte 29).
813 ;; We, however, know it must be so, as by this point the bounds
814 ;; have already been checked.
815 `(do ((i (truly-the fixnum (+ ,src-offset ,length)) (1- i))
816 (j (+ ,dst-offset ,length) (1- j)))
818 (declare (optimize (insert-array-bounds-checks 0))
819 (type (integer 0 #.sb!xc:array-dimension-limit) j i))
820 (setf (aref ,dst (1- j)) (aref ,src (1- i))))))
824 (deftransform subseq ((seq start &optional end)
825 (vector t &optional t)
828 (let ((type (lvar-type seq)))
830 ((and (array-type-p type)
831 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
832 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
833 `(let* ((length (length seq))
834 (end (or end length)))
835 ,(unless (policy node (zerop insert-array-bounds-checks))
837 (unless (<= 0 start end length)
838 (sequence-bounding-indices-bad-error seq start end))))
839 (let* ((size (- end start))
840 (result (make-array size :element-type ',element-type)))
841 ,(maybe-expand-copy-loop-inline 'seq (if (constant-lvar-p start)
844 'result 0 'size element-type)
846 ((csubtypep type (specifier-type 'string))
847 '(string-subseq* seq start end))
849 '(vector-subseq* seq start end)))))
851 (deftransform subseq ((seq start &optional end)
852 (list t &optional t))
853 `(list-subseq* seq start end))
855 (deftransform subseq ((seq start &optional end)
856 ((and sequence (not vector) (not list)) t &optional t))
857 '(sb!sequence:subseq seq start end))
859 (deftransform copy-seq ((seq) (vector))
860 (let ((type (lvar-type seq)))
861 (cond ((and (array-type-p type)
862 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
863 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
864 `(let* ((length (length seq))
865 (result (make-array length :element-type ',element-type)))
866 ,(maybe-expand-copy-loop-inline 'seq 0 'result 0 'length element-type)
868 ((csubtypep type (specifier-type 'string))
869 '(string-subseq* seq 0 nil))
871 '(vector-subseq* seq 0 nil)))))
873 (deftransform copy-seq ((seq) (list))
874 '(list-copy-seq* seq))
876 (deftransform copy-seq ((seq) ((and sequence (not vector) (not list))))
877 '(sb!sequence:copy-seq seq))
879 ;;; FIXME: it really should be possible to take advantage of the
880 ;;; macros used in code/seq.lisp here to avoid duplication of code,
881 ;;; and enable even funkier transformations.
882 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2
886 (vector vector &rest t)
889 :policy (> speed (max space safety)))
891 (let ((from-end (when (lvar-p from-end)
892 (unless (constant-lvar-p from-end)
893 (give-up-ir1-transform ":FROM-END is not constant."))
894 (lvar-value from-end)))
896 (testp (lvar-p test))
897 (check-bounds-p (policy node (plusp insert-array-bounds-checks))))
899 (flet ((oops (vector start end)
900 (sequence-bounding-indices-bad-error vector start end)))
901 (let* ((len1 (length pattern))
903 (end1 (or end1 len1))
904 (end2 (or end2 len2))
906 '((key (coerce key 'function))))
908 '((test (coerce test 'function)))))
909 (declare (type index start1 start2 end1 end2))
910 ,@(when check-bounds-p
911 `((unless (<= start1 end1 len1)
912 (oops pattern start1 end1))
913 (unless (<= start2 end2 len2)
914 (oops pattern start2 end2))))
916 '(index2 (- end2 (- end1 start1)) (1- index2))
917 '(index2 start2 (1+ index2))))
922 ;; INDEX2 is FIXNUM, not an INDEX, as right before the loop
923 ;; terminates is hits -1 when :FROM-END is true and :START2
925 (declare (type fixnum index2))
926 (when (do ((index1 start1 (1+ index1))
927 (index2 index2 (1+ index2)))
929 (declare (type index index1 index2)
930 (optimize (insert-array-bounds-checks 0)))
932 '((when (= index2 end2)
933 (return-from search nil))))
938 '(funcall key (aref pattern index1))
939 '(aref pattern index1))
941 '(funcall key (aref text index2))
942 '(aref text index2)))
944 (return index2))))))))
947 ;;; Open-code CONCATENATE for strings. It would be possible to extend
948 ;;; this transform to non-strings, but I chose to just do the case that
949 ;;; should cover 95% of CONCATENATE performance complaints for now.
950 ;;; -- JES, 2007-11-17
951 (deftransform concatenate ((result-type &rest lvars)
952 (symbol &rest sequence)
954 :policy (> speed space))
955 (unless (constant-lvar-p result-type)
956 (give-up-ir1-transform))
957 (let* ((element-type (let ((type (lvar-value result-type)))
958 ;; Only handle the simple result type cases. If
959 ;; somebody does (CONCATENATE '(STRING 6) ...)
960 ;; their code won't be optimized, but nobody does
963 ((string simple-string) 'character)
964 ((base-string simple-base-string) 'base-char)
965 (t (give-up-ir1-transform)))))
966 (vars (loop for x in lvars collect (gensym)))
967 (lvar-values (loop for lvar in lvars
968 collect (when (constant-lvar-p lvar)
971 (loop for value in lvar-values
975 `(sb!impl::string-dispatch ((simple-array * (*))
978 (declare (muffle-conditions compiler-note))
982 (declare (ignorable ,@vars))
983 (let* ((.length. (+ ,@lengths))
985 (.string. (make-string .length. :element-type ',element-type)))
986 (declare (type index .length. .pos.)
987 (muffle-conditions compiler-note))
988 ,@(loop for value in lvar-values
990 collect (if (stringp value)
991 ;; Fold the array reads for constant arguments
993 ,@(loop for c across value
994 collect `(setf (aref .string.
996 collect `(incf .pos.)))
997 `(sb!impl::string-dispatch
999 (simple-array character (*))
1000 (simple-array base-char (*))
1003 (replace .string. ,var :start1 .pos.)
1004 (incf .pos. (length ,var)))))
1008 ;;;; CONS accessor DERIVE-TYPE optimizers
1010 (defoptimizer (car derive-type) ((cons))
1011 (let ((type (lvar-type cons))
1012 (null-type (specifier-type 'null)))
1013 (cond ((eq type null-type)
1016 (cons-type-car-type type)))))
1018 (defoptimizer (cdr derive-type) ((cons))
1019 (let ((type (lvar-type cons))
1020 (null-type (specifier-type 'null)))
1021 (cond ((eq type null-type)
1024 (cons-type-cdr-type type)))))
1026 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
1028 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
1029 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
1030 ;;; expansion, so we factor out the condition into this function.
1031 (defun check-inlineability-of-find-position-if (sequence from-end)
1032 (let ((ctype (lvar-type sequence)))
1033 (cond ((csubtypep ctype (specifier-type 'vector))
1034 ;; It's not worth trying to inline vector code unless we
1035 ;; know a fair amount about it at compile time.
1036 (upgraded-element-type-specifier-or-give-up sequence)
1037 (unless (constant-lvar-p from-end)
1038 (give-up-ir1-transform
1039 "FROM-END argument value not known at compile time")))
1040 ((csubtypep ctype (specifier-type 'list))
1041 ;; Inlining on lists is generally worthwhile.
1044 (give-up-ir1-transform
1045 "sequence type not known at compile time")))))
1047 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
1048 (macrolet ((def (name condition)
1049 `(deftransform ,name ((predicate sequence from-end start end key)
1050 (function list t t t function)
1052 :policy (> speed space))
1057 (declare (type index index))
1059 (if (and end (> end index))
1060 (sequence-bounding-indices-bad-error
1062 (values find position)))
1063 (let ((key-i (funcall key i)))
1064 (when (and end (>= index end))
1065 (return (values find position)))
1066 (when (>= index start)
1067 (,',condition (funcall predicate key-i)
1068 ;; This hack of dealing with non-NIL
1069 ;; FROM-END for list data by iterating
1070 ;; forward through the list and keeping
1071 ;; track of the last time we found a match
1072 ;; might be more screwy than what the user
1073 ;; expects, but it seems to be allowed by
1074 ;; the ANSI standard. (And if the user is
1075 ;; screwy enough to ask for FROM-END
1076 ;; behavior on list data, turnabout is
1079 ;; It's also not enormously efficient,
1080 ;; calling PREDICATE and KEY more often
1081 ;; than necessary; but all the
1082 ;; alternatives seem to have their own
1083 ;; efficiency problems.
1087 (return (values i index))))))
1089 (def %find-position-if when)
1090 (def %find-position-if-not unless))
1092 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
1093 ;;; without loss of efficiency. (I.e., the optimizer should be able
1094 ;;; to straighten everything out.)
1095 (deftransform %find-position ((item sequence from-end start end key test)
1098 :policy (> speed space))
1100 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
1101 ;; The order of arguments for asymmetric tests
1102 ;; (e.g. #'<, as opposed to order-independent
1103 ;; tests like #'=) is specified in the spec
1104 ;; section 17.2.1 -- the O/Zi stuff there.
1106 (funcall test-fun item i)))
1111 (%coerce-callable-to-fun key)))
1113 ;;; The inline expansions for the VECTOR case are saved as macros so
1114 ;;; that we can share them between the DEFTRANSFORMs and the default
1115 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
1116 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
1117 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
1123 (with-unique-names (offset block index n-sequence sequence end)
1124 `(let* ((,n-sequence ,sequence-arg))
1125 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
1128 :check-fill-pointer t)
1130 (macrolet ((maybe-return ()
1131 ;; WITH-ARRAY-DATA has already performed bounds
1132 ;; checking, so we can safely elide the checks
1133 ;; in the inner loop.
1134 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
1135 (aref ,sequence ,index))))
1139 (- ,index ,offset)))))))
1142 ;; (If we aren't fastidious about declaring that
1143 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
1144 ;; can send us off into never-never land, since
1145 ;; INDEX is initialized to -1.)
1146 of-type index-or-minus-1
1147 from (1- ,end) downto ,start do
1149 (loop for ,index of-type index from ,start below ,end do
1151 (values nil nil))))))
1153 (def!macro %find-position-vector-macro (item sequence
1154 from-end start end key test)
1155 (with-unique-names (element)
1156 (%find-position-or-find-position-if-vector-expansion
1162 ;; (See the LIST transform for a discussion of the correct
1163 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1164 ;; or after the checked sequence element.)
1165 `(funcall ,test ,item (funcall ,key ,element)))))
1167 (def!macro %find-position-if-vector-macro (predicate sequence
1168 from-end start end key)
1169 (with-unique-names (element)
1170 (%find-position-or-find-position-if-vector-expansion
1176 `(funcall ,predicate (funcall ,key ,element)))))
1178 (def!macro %find-position-if-not-vector-macro (predicate sequence
1179 from-end start end key)
1180 (with-unique-names (element)
1181 (%find-position-or-find-position-if-vector-expansion
1187 `(not (funcall ,predicate (funcall ,key ,element))))))
1189 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1191 (deftransform %find-position-if ((predicate sequence from-end start end key)
1192 (function vector t t t function)
1194 :policy (> speed space))
1196 (check-inlineability-of-find-position-if sequence from-end)
1197 '(%find-position-if-vector-macro predicate sequence
1198 from-end start end key))
1200 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1201 (function vector t t t function)
1203 :policy (> speed space))
1205 (check-inlineability-of-find-position-if sequence from-end)
1206 '(%find-position-if-not-vector-macro predicate sequence
1207 from-end start end key))
1209 (deftransform %find-position ((item sequence from-end start end key test)
1210 (t vector t t t function function)
1212 :policy (> speed space))
1214 (check-inlineability-of-find-position-if sequence from-end)
1215 '(%find-position-vector-macro item sequence
1216 from-end start end key test))
1218 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1219 ;;; POSITION-IF, etc.
1220 (define-source-transform effective-find-position-test (test test-not)
1221 (once-only ((test test)
1222 (test-not test-not))
1224 ((and ,test ,test-not)
1225 (error "can't specify both :TEST and :TEST-NOT"))
1226 (,test (%coerce-callable-to-fun ,test))
1228 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1229 ;; inefficient, but since the TEST-NOT option is deprecated
1230 ;; anyway, we don't care.)
1231 (complement (%coerce-callable-to-fun ,test-not)))
1233 (define-source-transform effective-find-position-key (key)
1234 (once-only ((key key))
1236 (%coerce-callable-to-fun ,key)
1239 (macrolet ((define-find-position (fun-name values-index)
1240 `(deftransform ,fun-name ((item sequence &key
1241 from-end (start 0) end
1243 (t (or list vector) &rest t))
1244 '(nth-value ,values-index
1245 (%find-position item sequence
1248 (effective-find-position-key key)
1249 (effective-find-position-test
1251 (define-find-position find 0)
1252 (define-find-position position 1))
1254 (macrolet ((define-find-position-if (fun-name values-index)
1255 `(deftransform ,fun-name ((predicate sequence &key
1258 (t (or list vector) &rest t))
1261 (%find-position-if (%coerce-callable-to-fun predicate)
1264 (effective-find-position-key key))))))
1265 (define-find-position-if find-if 0)
1266 (define-find-position-if position-if 1))
1268 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1269 ;;; didn't bother to worry about optimizing them, except note that on
1270 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1273 ;;; My understanding is that while the :test-not argument is
1274 ;;; deprecated in favour of :test (complement #'foo) because of
1275 ;;; semantic difficulties (what happens if both :test and :test-not
1276 ;;; are supplied, etc) the -if-not variants, while officially
1277 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1278 ;;; a revised standard, as there are perfectly legitimate idiomatic
1279 ;;; reasons for allowing the -if-not versions equal status,
1280 ;;; particularly remove-if-not (== filter).
1282 ;;; This is only an informal understanding, I grant you, but
1283 ;;; perhaps it's worth optimizing the -if-not versions in the same
1284 ;;; way as the others?
1286 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1287 ;;; implementation of SBCL.
1288 (macrolet ((define-find-position-if-not (fun-name values-index)
1289 `(deftransform ,fun-name ((predicate sequence &key
1292 (t (or list vector) &rest t))
1295 (%find-position-if-not (%coerce-callable-to-fun predicate)
1298 (effective-find-position-key key))))))
1299 (define-find-position-if-not find-if-not 0)
1300 (define-find-position-if-not position-if-not 1))
1302 (macrolet ((define-trimmer-transform (fun-name leftp rightp)
1303 `(deftransform ,fun-name ((char-bag string)
1306 (if (constant-lvar-p char-bag)
1307 ;; If the bag is constant, use MEMBER
1308 ;; instead of FIND, since we have a
1309 ;; deftransform for MEMBER that can
1310 ;; open-code all of the comparisons when
1311 ;; the list is constant. -- JES, 2007-12-10
1312 `(not (member (schar string index)
1313 ',(coerce (lvar-value char-bag) 'list)
1315 '(not (find (schar string index) char-bag :test #'char=)))))
1316 `(flet ((char-not-in-bag (index)
1318 (let* ((end (length string))
1319 (left-end (if ,',leftp
1320 (do ((index 0 (1+ index)))
1321 ((or (= index (the fixnum end))
1322 (char-not-in-bag index))
1324 (declare (fixnum index)))
1326 (right-end (if ,',rightp
1327 (do ((index (1- end) (1- index)))
1328 ((or (< index left-end)
1329 (char-not-in-bag index))
1331 (declare (fixnum index)))
1333 (if (and (eql left-end 0)
1334 (eql right-end (length string)))
1336 (subseq string left-end right-end))))))))
1337 (define-trimmer-transform string-left-trim t nil)
1338 (define-trimmer-transform string-right-trim nil t)
1339 (define-trimmer-transform string-trim t t))