1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
35 (map-result (gensym)))
37 (,map-result (list nil)))
38 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
39 (,endtest (cdr ,map-result))
40 (setq ,temp (last (nconc ,temp ,call)))))))
43 (map-result (gensym)))
45 (,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
51 (,n-first ,(first arglists)))
52 (do-anonymous ,(do-clauses)
53 (,endtest (truly-the list ,n-first))
56 (define-source-transform mapc (function list &rest more-lists)
57 (mapfoo-transform function (cons list more-lists) nil t))
59 (define-source-transform mapcar (function list &rest more-lists)
60 (mapfoo-transform function (cons list more-lists) :list t))
62 (define-source-transform mapcan (function list &rest more-lists)
63 (mapfoo-transform function (cons list more-lists) :nconc t))
65 (define-source-transform mapl (function list &rest more-lists)
66 (mapfoo-transform function (cons list more-lists) nil nil))
68 (define-source-transform maplist (function list &rest more-lists)
69 (mapfoo-transform function (cons list more-lists) :list nil))
71 (define-source-transform mapcon (function list &rest more-lists)
72 (mapfoo-transform function (cons list more-lists) :nconc nil))
74 ;;;; mapping onto sequences: the MAP function
76 ;;; MAP is %MAP plus a check to make sure that any length specified in
77 ;;; the result type matches the actual result. We also wrap it in a
78 ;;; TRULY-THE for the most specific type we can determine.
79 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
80 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
81 (bare `(%map result-type-arg fun ,@seq-names))
82 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
83 ;; what we know about the type of the result. (Note that the
84 ;; "result type" argument is not necessarily the type of the
85 ;; result, since NIL means the result has NULL type.)
86 (result-type (if (not constant-result-type-arg-p)
88 (let ((result-type-arg-value
89 (lvar-value result-type-arg)))
90 (if (null result-type-arg-value)
92 result-type-arg-value)))))
93 `(lambda (result-type-arg fun ,@seq-names)
94 (truly-the ,result-type
95 ,(cond ((policy node (< safety 3))
96 ;; ANSI requires the length-related type check only
97 ;; when the SAFETY quality is 3... in other cases, we
98 ;; skip it, because it could be expensive.
100 ((not constant-result-type-arg-p)
101 `(sequence-of-checked-length-given-type ,bare
104 (let ((result-ctype (ir1-transform-specifier-type
106 (if (array-type-p result-ctype)
107 (let ((dims (array-type-dimensions result-ctype)))
108 (unless (and (listp dims) (= (length dims) 1))
109 (give-up-ir1-transform "invalid sequence type"))
110 (let ((dim (first dims)))
113 `(vector-of-checked-length-given-length ,bare
115 ;; FIXME: this is wrong, as not all subtypes of
116 ;; VECTOR are ARRAY-TYPEs [consider, for
117 ;; example, (OR (VECTOR T 3) (VECTOR T
118 ;; 4))]. However, it's difficult to see what we
119 ;; should put here... maybe we should
120 ;; GIVE-UP-IR1-TRANSFORM if the type is a
121 ;; subtype of VECTOR but not an ARRAY-TYPE?
124 ;;; Return a DO loop, mapping a function FUN to elements of
125 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
126 ;;; bound to sequences, INTO - a variable, which is used in
127 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
128 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
129 ;;; INDEX, containing the current position in sequences.
130 (defun build-sequence-iterator (seqs seq-names &key result into body)
131 (declare (type list seqs seq-names)
138 (let ((found-vector-p nil))
139 (flet ((process-vector (length)
140 (unless found-vector-p
141 (setq found-vector-p t)
142 (bindings `(index 0 (1+ index)))
143 (declarations `(type index index)))
144 (vector-lengths length)))
145 (loop for seq of-type lvar in seqs
146 for seq-name in seq-names
147 for type = (lvar-type seq)
148 do (cond ((csubtypep type (specifier-type 'list))
149 (with-unique-names (index)
150 (bindings `(,index ,seq-name (cdr ,index)))
151 (declarations `(type list ,index))
152 (places `(car ,index))
153 (tests `(endp ,index))))
154 ((csubtypep type (specifier-type 'vector))
155 (process-vector `(length ,seq-name))
156 (places `(aref ,seq-name index)))
158 (give-up-ir1-transform
159 "can't determine sequence argument type"))))
161 (process-vector `(array-dimension ,into 0))))
163 (bindings `(length (min ,@(vector-lengths))))
164 (tests `(= index length)))
166 ((or ,@(tests)) ,result)
167 (declare ,@(declarations))
168 (let ((funcall-result (funcall fun ,@(places))))
169 (declare (ignorable funcall-result))
172 ;;; Try to compile %MAP efficiently when we can determine sequence
173 ;;; argument types at compile time.
175 ;;; Note: This transform was written to allow open coding of
176 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
177 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
178 ;;; necessarily as efficient as possible. In particular, it will be
179 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
180 ;;; numeric element types. It should be straightforward to make it
181 ;;; handle that case more efficiently, but it's left as an exercise to
182 ;;; the reader, because the code is complicated enough already and I
183 ;;; don't happen to need that functionality right now. -- WHN 20000410
184 (deftransform %map ((result-type fun seq &rest seqs) * *
185 :policy (>= speed space))
187 (unless (constant-lvar-p result-type)
188 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
189 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
190 (fn-1subtypep (fn x y)
191 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
194 (give-up-ir1-transform
195 "can't analyze sequence type relationship"))))
196 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
197 (let* ((result-type-value (lvar-value result-type))
198 (result-supertype (cond ((null result-type-value) 'null)
199 ((1subtypep result-type-value 'vector)
201 ((1subtypep result-type-value 'list)
204 (give-up-ir1-transform
205 "can't determine result type")))))
206 (cond ((and result-type-value (null seqs))
207 ;; The consing arity-1 cases can be implemented
208 ;; reasonably efficiently as function calls, and the cost
209 ;; of consing should be significantly larger than
210 ;; function call overhead, so we always compile these
211 ;; cases as full calls regardless of speed-versus-space
212 ;; optimization policy.
213 (cond ((subtypep result-type-value 'list)
214 '(%map-to-list-arity-1 fun seq))
215 ( ;; (This one can be inefficient due to COERCE, but
216 ;; the current open-coded implementation has the
218 (subtypep result-type-value 'vector)
219 `(coerce (%map-to-simple-vector-arity-1 fun seq)
220 ',result-type-value))
221 (t (bug "impossible (?) sequence type"))))
223 (let* ((seqs (cons seq seqs))
224 (seq-args (make-gensym-list (length seqs))))
225 (multiple-value-bind (push-dacc result)
226 (ecase result-supertype
227 (null (values nil nil))
228 (list (values `(push funcall-result acc)
230 (vector (values `(push funcall-result acc)
231 `(coerce (nreverse acc)
232 ',result-type-value))))
233 ;; (We use the same idiom, of returning a LAMBDA from
234 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
235 ;; FUNCALL and ALIEN-FUNCALL, and for the same
236 ;; reason: we need to get the runtime values of each
237 ;; of the &REST vars.)
238 `(lambda (result-type fun ,@seq-args)
239 (declare (ignore result-type))
240 (let ((fun (%coerce-callable-to-fun fun))
242 (declare (type list acc))
243 (declare (ignorable acc))
244 ,(build-sequence-iterator
247 :body push-dacc))))))))))
250 (deftransform map-into ((result fun &rest seqs)
254 (let ((seqs-names (mapcar (lambda (x)
258 `(lambda (result fun ,@seqs-names)
259 ,(build-sequence-iterator
261 :result '(when (array-has-fill-pointer-p result)
262 (setf (fill-pointer result) index))
264 :body '(setf (aref result index) funcall-result))
268 ;;; FIXME: once the confusion over doing transforms with known-complex
269 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
270 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
271 (deftransform elt ((s i) ((simple-array * (*)) *) *)
274 (deftransform elt ((s i) (list *) * :policy (< safety 3))
277 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
280 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
281 '(setf (car (nthcdr i s)) v))
283 (deftransform %check-vector-sequence-bounds ((vector start end)
286 (if (policy node (< safety speed))
287 '(or end (length vector))
288 '(let ((length (length vector)))
289 (if (<= 0 start (or end length) length)
291 (sb!impl::signal-bounding-indices-bad-error vector start end)))))
293 (macrolet ((def (name)
294 `(deftransform ,name ((e l &key (test #'eql)) * *
296 (unless (constant-lvar-p l)
297 (give-up-ir1-transform))
299 (let ((val (lvar-value l)))
302 (and (>= speed space)
303 (<= (length val) 5))))
304 (give-up-ir1-transform))
308 `(if (funcall test e ',(car els))
316 ;;; FIXME: We have rewritten the original code that used DOLIST to this
317 ;;; more natural MACROLET. However, the original code suggested that when
318 ;;; this was done, a few bytes could be saved by a call to a shared
319 ;;; function. This remains to be done.
320 (macrolet ((def (fun eq-fun)
321 `(deftransform ,fun ((item list &key test) (t list &rest t) *)
323 ;; FIXME: The scope of this transformation could be
324 ;; widened somewhat, letting it work whenever the test is
325 ;; 'EQL and we know from the type of ITEM that it #'EQ
326 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
328 ;; If TEST is EQ, apply transform, else
329 ;; if test is not EQL, then give up on transform, else
330 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
331 ;; transform, else give up on transform.
333 (unless (lvar-fun-is test '(eq))
334 (give-up-ir1-transform)))
335 ((types-equal-or-intersect (lvar-type item)
336 (specifier-type 'number))
337 (give-up-ir1-transform "Item might be a number.")))
338 `(,',eq-fun item list))))
343 (deftransform delete-if ((pred list) (t list))
345 '(do ((x list (cdr x))
348 (cond ((funcall pred (car x))
351 (rplacd splice (cdr x))))
352 (T (setq splice x)))))
354 (deftransform fill ((seq item &key (start 0) (end (length seq)))
355 (vector t &key (:start t) (:end index))
357 :policy (> speed space))
359 (let ((element-type (upgraded-element-type-specifier-or-give-up seq)))
361 `(with-array-data ((data seq)
364 (declare (type (simple-array ,element-type 1) data))
365 (declare (type fixnum start end))
366 (do ((i start (1+ i)))
368 (declare (type index i))
369 ;; WITH-ARRAY-DATA did our range checks once and for all, so
370 ;; it'd be wasteful to check again on every AREF...
371 (declare (optimize (safety 0)))
372 (setf (aref data i) item)))
373 ;; ... though we still need to check that the new element can fit
374 ;; into the vector in safe code. -- CSR, 2002-07-05
375 `((declare (type ,element-type item))))))
379 ;;; Return true if LVAR's only use is a non-NOTINLINE reference to a
380 ;;; global function with one of the specified NAMES.
381 (defun lvar-fun-is (lvar names)
382 (declare (type lvar lvar) (list names))
383 (let ((use (lvar-uses lvar)))
385 (let ((leaf (ref-leaf use)))
386 (and (global-var-p leaf)
387 (eq (global-var-kind leaf) :global-function)
388 (not (null (member (leaf-source-name leaf) names
389 :test #'equal))))))))
391 ;;; If LVAR is a constant lvar, the return the constant value. If it
392 ;;; is null, then return default, otherwise quietly give up the IR1
395 ;;; ### Probably should take an ARG and flame using the NAME.
396 (defun constant-value-or-lose (lvar &optional default)
397 (declare (type (or lvar null) lvar))
398 (cond ((not lvar) default)
399 ((constant-lvar-p lvar)
402 (give-up-ir1-transform))))
404 ;;; FIXME: Why is this code commented out? (Why *was* it commented
405 ;;; out? We inherited this situation from cmucl-2.4.8, with no
406 ;;; explanation.) Should we just delete this code?
408 ;;; This is a frob whose job it is to make it easier to pass around
409 ;;; the arguments to IR1 transforms. It bundles together the name of
410 ;;; the argument (which should be referenced in any expansion), and
411 ;;; the continuation for that argument (or NIL if unsupplied.)
412 (defstruct (arg (:constructor %make-arg (name cont))
414 (name nil :type symbol)
415 (cont nil :type (or continuation null)))
416 (defmacro make-arg (name)
417 `(%make-arg ',name ,name))
419 ;;; If Arg is null or its CONT is null, then return Default, otherwise
420 ;;; return Arg's NAME.
421 (defun default-arg (arg default)
422 (declare (type (or arg null) arg))
423 (if (and arg (arg-cont arg))
427 ;;; If Arg is null or has no CONT, return the default. Otherwise, Arg's
428 ;;; CONT must be a constant continuation whose value we return. If not, we
430 (defun arg-constant-value (arg default)
431 (declare (type (or arg null) arg))
432 (if (and arg (arg-cont arg))
433 (let ((cont (arg-cont arg)))
434 (unless (constant-continuation-p cont)
435 (give-up-ir1-transform "Argument is not constant: ~S."
437 (continuation-value from-end))
440 ;;; If Arg is a constant and is EQL to X, then return T, otherwise NIL. If
441 ;;; Arg is NIL or its CONT is NIL, then compare to the default.
442 (defun arg-eql (arg default x)
443 (declare (type (or arg null) x))
444 (if (and arg (arg-cont arg))
445 (let ((cont (arg-cont arg)))
446 (and (constant-continuation-p cont)
447 (eql (continuation-value cont) x)))
450 (defstruct (iterator (:copier nil))
451 ;; The kind of iterator.
452 (kind nil (member :normal :result))
453 ;; A list of LET* bindings to create the initial state.
454 (binds nil :type list)
455 ;; A list of declarations for Binds.
456 (decls nil :type list)
457 ;; A form that returns the current value. This may be set with SETF to set
458 ;; the current value.
459 (current (error "Must specify CURRENT."))
460 ;; In a :NORMAL iterator, a form that tests whether there is a current value.
462 ;; In a :RESULT iterator, a form that truncates the result at the current
463 ;; position and returns it.
465 ;; A form that returns the initial total number of values. The result is
466 ;; undefined after NEXT has been evaluated.
467 (length (error "Must specify LENGTH."))
468 ;; A form that advances the state to the next value. It is an error to call
469 ;; this when the iterator is Done.
470 (next (error "Must specify NEXT.")))
472 ;;; Type of an index var that can go negative (in the from-end case.)
473 (deftype neg-index ()
474 `(integer -1 ,most-positive-fixnum))
476 ;;; Return an ITERATOR structure describing how to iterate over an arbitrary
477 ;;; sequence. Sequence is a variable bound to the sequence, and Type is the
478 ;;; type of the sequence. If true, INDEX is a variable that should be bound to
479 ;;; the index of the current element in the sequence.
481 ;;; If we can't tell whether the sequence is a list or a vector, or whether
482 ;;; the iteration is forward or backward, then GIVE-UP.
483 (defun make-sequence-iterator (sequence type &key start end from-end index)
484 (declare (symbol sequence) (type ctype type)
485 (type (or arg null) start end from-end)
486 (type (or symbol null) index))
487 (let ((from-end (arg-constant-value from-end nil)))
488 (cond ((csubtypep type (specifier-type 'vector))
489 (let* ((n-stop (gensym))
490 (n-idx (or index (gensym)))
491 (start (default-arg 0 start))
492 (end (default-arg `(length ,sequence) end)))
495 :binds `((,n-idx ,(if from-end `(1- ,end) ,start))
496 (,n-stop ,(if from-end `(1- ,start) ,end)))
497 :decls `((type neg-index ,n-idx ,n-stop))
498 :current `(aref ,sequence ,n-idx)
499 :done `(,(if from-end '<= '>=) ,n-idx ,n-stop)
501 ,(if from-end `(1- ,n-idx) `(1+ ,n-idx)))
504 `(- ,n-stop ,n-idx)))))
505 ((csubtypep type (specifier-type 'list))
506 (let* ((n-stop (if (and end (not from-end)) (gensym) nil))
508 (start-p (not (arg-eql start 0 0)))
509 (end-p (not (arg-eql end nil nil)))
510 (start (default-arg start 0))
511 (end (default-arg end nil)))
515 (if (or start-p end-p)
516 `(nreverse (subseq ,sequence ,start
517 ,@(when end `(,end))))
518 `(reverse ,sequence))
520 `(nthcdr ,start ,sequence)
523 `((,n-stop (nthcdr (the index
527 `((,index ,(if from-end `(1- ,end) start)))))
529 :decls `((list ,n-current ,n-end)
530 ,@(when index `((type neg-index ,index))))
531 :current `(car ,n-current)
532 :done `(eq ,n-current ,n-stop)
533 :length `(- ,(or end `(length ,sequence)) ,start)
535 (setq ,n-current (cdr ,n-current))
542 (give-up-ir1-transform
543 "can't tell whether sequence is a list or a vector")))))
545 ;;; Make an iterator used for constructing result sequences. Name is a
546 ;;; variable to be bound to the result sequence. Type is the type of result
547 ;;; sequence to make. Length is an expression to be evaluated to get the
548 ;;; maximum length of the result (not evaluated in list case.)
549 (defun make-result-sequence-iterator (name type length)
550 (declare (symbol name) (type ctype type))
552 ;;; Define each NAME as a local macro that will call the value of the
553 ;;; function arg with the given arguments. If the argument isn't known to be a
554 ;;; function, give them an efficiency note and reference a coerced version.
555 (defmacro coerce-funs (specs &body body)
557 "COERCE-FUNCTIONS ({(Name Fun-Arg Default)}*) Form*"
561 `(let ((body (progn ,@body))
562 (n-fun (arg-name ,(second spec)))
563 (fun-cont (arg-cont ,(second spec))))
564 (cond ((not fun-cont)
565 `(macrolet ((,',(first spec) (&rest args)
566 `(,',',(third spec) ,@args)))
568 ((not (csubtypep (continuation-type fun-cont)
569 (specifier-type 'function)))
570 (when (policy *compiler-error-context*
571 (> speed inhibit-warnings))
573 "~S may not be a function, so must coerce at run-time."
575 (once-only ((n-fun `(if (functionp ,n-fun)
577 (symbol-function ,n-fun))))
578 `(macrolet ((,',(first spec) (&rest args)
579 `(funcall ,',n-fun ,@args)))
582 `(macrolet ((,',(first spec) (&rest args)
583 `(funcall ,',n-fun ,@args)))
586 ;;; Wrap code around the result of the body to define Name as a local macro
587 ;;; that returns true when its arguments satisfy the test according to the Args
588 ;;; Test and Test-Not. If both Test and Test-Not are supplied, abort the
590 (defmacro with-sequence-test ((name test test-not) &body body)
591 `(let ((not-p (arg-cont ,test-not)))
592 (when (and (arg-cont ,test) not-p)
593 (abort-ir1-transform "Both ~S and ~S were supplied."
595 (arg-name ,test-not)))
596 (coerce-funs ((,name (if not-p ,test-not ,test) eql))
600 ;;;; hairy sequence transforms
602 ;;; FIXME: no hairy sequence transforms in SBCL?
604 ;;;; string operations
606 ;;; We transform the case-sensitive string predicates into a non-keyword
607 ;;; version. This is an IR1 transform so that we don't have to worry about
608 ;;; changing the order of evaluation.
609 (macrolet ((def (fun pred*)
610 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
613 `(,',pred* string1 string2 start1 end1 start2 end2))))
614 (def string< string<*)
615 (def string> string>*)
616 (def string<= string<=*)
617 (def string>= string>=*)
618 (def string= string=*)
619 (def string/= string/=*))
621 ;;; Return a form that tests the free variables STRING1 and STRING2
622 ;;; for the ordering relationship specified by LESSP and EQUALP. The
623 ;;; start and end are also gotten from the environment. Both strings
624 ;;; must be SIMPLE-BASE-STRINGs.
625 (macrolet ((def (name lessp equalp)
626 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
627 (simple-base-string simple-base-string t t t t) *)
628 `(let* ((end1 (if (not end1) (length string1) end1))
629 (end2 (if (not end2) (length string2) end2))
630 (index (sb!impl::%sp-string-compare
631 string1 start1 end1 string2 start2 end2)))
633 (cond ((= index ,(if ',lessp 'end1 'end2)) index)
634 ((= index ,(if ',lessp 'end2 'end1)) nil)
635 ((,(if ',lessp 'char< 'char>)
636 (schar string1 index)
645 ,(if ',equalp 'end1 nil))))))
648 (def string>* nil nil)
649 (def string>=* nil t))
651 (macrolet ((def (name result-fun)
652 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
653 (simple-base-string simple-base-string t t t t) *)
655 (sb!impl::%sp-string-compare
656 string1 start1 (or end1 (length string1))
657 string2 start2 (or end2 (length string2)))))))
659 (def string/=* identity))
662 ;;;; string-only transforms for sequence functions
664 ;;;; Note: CMU CL had more of these, including transforms for
665 ;;;; functions which cons. In SBCL, we've gotten rid of most of the
666 ;;;; transforms for functions which cons, since our GC overhead is
667 ;;;; sufficiently large that it doesn't seem worth it to try to
668 ;;;; economize on function call overhead or on the overhead of runtime
669 ;;;; type dispatch in AREF. The exception is CONCATENATE, since
670 ;;;; a full call to CONCATENATE would have to look up the sequence
671 ;;;; type, which can be really slow.
673 ;;;; FIXME: It would be nicer for these transforms to work for any
674 ;;;; calls when all arguments are vectors with the same element type,
675 ;;;; rather than restricting them to STRINGs only.
677 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp
679 ;;; FIXME: Add a comment telling whether this holds for all vectors
680 ;;; or only for vectors based on simple arrays (non-adjustable, etc.).
681 (def!constant vector-data-bit-offset
682 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
684 (deftransform replace ((string1 string2 &key (start1 0) (start2 0)
686 (simple-base-string simple-base-string &rest t)
688 ;; FIXME: consider replacing this policy test
689 ;; with some tests for the STARTx and ENDx
690 ;; indices being valid, conditional on high
693 ;; FIXME: It turns out that this transform is
694 ;; critical for the performance of string
695 ;; streams. Make this more explicit.
696 :policy (< (max safety space) 3))
698 (declare (optimize (safety 0)))
699 (bit-bash-copy string2
701 (+ (the index (* start2 sb!vm:n-byte-bits))
702 ,vector-data-bit-offset))
705 (+ (the index (* start1 sb!vm:n-byte-bits))
706 ,vector-data-bit-offset))
708 (* (min (the index (- (or end1 (length string1))
710 (the index (- (or end2 (length string2))
715 ;;; KLUDGE: This isn't the nicest way of achieving efficient string
716 ;;; streams, but it does work; a more general framework for this kind
717 ;;; of optimization, as well as better handling of the possible
718 ;;; keyword arguments, would be nice.
720 (deftransform replace ((string1 string2 &key (start1 0) (start2 0)
722 ((simple-array character (*))
723 (simple-array character (*))
726 ;; FIXME: consider replacing this policy test
727 ;; with some tests for the STARTx and ENDx
728 ;; indices being valid, conditional on high
731 ;; FIXME: It turns out that this transform is
732 ;; critical for the performance of string
733 ;; streams. Make this more explicit.
734 :policy (< (max safety space) 3))
735 `(sb!impl::simple-character-string-replace-from-simple-character-string*
736 string1 string2 start1 end1 start2 end2))
738 ;;; FIXME: this would be a valid transform for certain excluded cases:
739 ;;; * :TEST 'CHAR= or :TEST #'CHAR=
740 ;;; * :TEST 'EQL or :TEST #'EQL
741 ;;; * :FROM-END NIL (or :FROM-END non-NIL, with a little ingenuity)
742 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2)
743 (simple-string simple-string &rest t)
745 :policy (> speed (max space safety)))
747 (let ((end1 (or end1 (length pattern)))
748 (end2 (or end2 (length text))))
749 (do ((index2 start2 (1+ index2)))
750 ((>= index2 end2) nil)
751 (when (do ((index1 start1 (1+ index1))
752 (index2 index2 (1+ index2)))
754 (when (= index2 end2)
755 (return-from search nil))
756 (when (char/= (char pattern index1) (char text index2))
760 ;;; FIXME: It seems as though it should be possible to make a DEFUN
761 ;;; %CONCATENATE (with a DEFTRANSFORM to translate constant RTYPE to
762 ;;; CTYPE before calling %CONCATENATE) which is comparably efficient,
763 ;;; at least once DYNAMIC-EXTENT works.
765 ;;; FIXME: currently KLUDGEed because of bug 188
767 ;;; FIXME: disabled for sb-unicode: probably want it back
769 (deftransform concatenate ((rtype &rest sequences)
770 (t &rest (or simple-base-string
771 (simple-array nil (*))))
773 :policy (< safety 3))
774 (loop for rest-seqs on sequences
775 for n-seq = (gensym "N-SEQ")
776 for n-length = (gensym "N-LENGTH")
777 for start = vector-data-bit-offset then next-start
778 for next-start = (gensym "NEXT-START")
779 collect n-seq into args
780 collect `(,n-length (* (length ,n-seq) sb!vm:n-byte-bits)) into lets
781 collect n-length into all-lengths
782 collect next-start into starts
783 collect `(if (and (typep ,n-seq '(simple-array nil (*)))
785 (error 'nil-array-accessed-error)
786 (bit-bash-copy ,n-seq ,vector-data-bit-offset
787 res ,start ,n-length))
789 collect `(setq ,next-start (+ ,start ,n-length)) into forms
792 `(lambda (rtype ,@args)
793 (declare (ignore rtype))
795 (res (make-string (truncate (the index (+ ,@all-lengths))
797 :element-type 'base-char)))
798 (declare (type index ,@all-lengths))
799 (let (,@(mapcar (lambda (name) `(,name 0)) starts))
800 (declare (type index ,@starts))
804 ;;;; CONS accessor DERIVE-TYPE optimizers
806 (defoptimizer (car derive-type) ((cons))
807 (let ((type (lvar-type cons))
808 (null-type (specifier-type 'null)))
809 (cond ((eq type null-type)
812 (cons-type-car-type type)))))
814 (defoptimizer (cdr derive-type) ((cons))
815 (let ((type (lvar-type cons))
816 (null-type (specifier-type 'null)))
817 (cond ((eq type null-type)
820 (cons-type-cdr-type type)))))
822 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
824 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
825 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
826 ;;; expansion, so we factor out the condition into this function.
827 (defun check-inlineability-of-find-position-if (sequence from-end)
828 (let ((ctype (lvar-type sequence)))
829 (cond ((csubtypep ctype (specifier-type 'vector))
830 ;; It's not worth trying to inline vector code unless we
831 ;; know a fair amount about it at compile time.
832 (upgraded-element-type-specifier-or-give-up sequence)
833 (unless (constant-lvar-p from-end)
834 (give-up-ir1-transform
835 "FROM-END argument value not known at compile time")))
836 ((csubtypep ctype (specifier-type 'list))
837 ;; Inlining on lists is generally worthwhile.
840 (give-up-ir1-transform
841 "sequence type not known at compile time")))))
843 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
844 (macrolet ((def (name condition)
845 `(deftransform ,name ((predicate sequence from-end start end key)
846 (function list t t t function)
848 :policy (> speed space))
853 (declare (type index index))
855 (if (and end (> end index))
856 (sb!impl::signal-bounding-indices-bad-error
858 (values find position)))
859 (let ((key-i (funcall key i)))
860 (when (and end (>= index end))
861 (return (values find position)))
862 (when (>= index start)
863 (,',condition (funcall predicate key-i)
864 ;; This hack of dealing with non-NIL
865 ;; FROM-END for list data by iterating
866 ;; forward through the list and keeping
867 ;; track of the last time we found a match
868 ;; might be more screwy than what the user
869 ;; expects, but it seems to be allowed by
870 ;; the ANSI standard. (And if the user is
871 ;; screwy enough to ask for FROM-END
872 ;; behavior on list data, turnabout is
875 ;; It's also not enormously efficient,
876 ;; calling PREDICATE and KEY more often
877 ;; than necessary; but all the
878 ;; alternatives seem to have their own
879 ;; efficiency problems.
883 (return (values i index))))))
885 (def %find-position-if when)
886 (def %find-position-if-not unless))
888 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
889 ;;; without loss of efficiency. (I.e., the optimizer should be able
890 ;;; to straighten everything out.)
891 (deftransform %find-position ((item sequence from-end start end key test)
894 :policy (> speed space))
896 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
897 ;; The order of arguments for asymmetric tests
898 ;; (e.g. #'<, as opposed to order-independent
899 ;; tests like #'=) is specified in the spec
900 ;; section 17.2.1 -- the O/Zi stuff there.
902 (funcall test-fun item i)))
907 (%coerce-callable-to-fun key)))
909 ;;; The inline expansions for the VECTOR case are saved as macros so
910 ;;; that we can share them between the DEFTRANSFORMs and the default
911 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
912 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
913 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
919 (with-unique-names (offset block index n-sequence sequence n-end end)
920 `(let ((,n-sequence ,sequence-arg)
922 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
924 (,end (%check-vector-sequence-bounds
925 ,n-sequence ,start ,n-end)))
927 (macrolet ((maybe-return ()
928 '(let ((,element (aref ,sequence ,index)))
932 (- ,index ,offset)))))))
935 ;; (If we aren't fastidious about declaring that
936 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
937 ;; can send us off into never-never land, since
938 ;; INDEX is initialized to -1.)
939 of-type index-or-minus-1
940 from (1- ,end) downto ,start do
942 (loop for ,index of-type index from ,start below ,end do
944 (values nil nil))))))
946 (def!macro %find-position-vector-macro (item sequence
947 from-end start end key test)
948 (with-unique-names (element)
949 (%find-position-or-find-position-if-vector-expansion
955 ;; (See the LIST transform for a discussion of the correct
956 ;; argument order, i.e. whether the searched-for ,ITEM goes before
957 ;; or after the checked sequence element.)
958 `(funcall ,test ,item (funcall ,key ,element)))))
960 (def!macro %find-position-if-vector-macro (predicate sequence
961 from-end start end key)
962 (with-unique-names (element)
963 (%find-position-or-find-position-if-vector-expansion
969 `(funcall ,predicate (funcall ,key ,element)))))
971 (def!macro %find-position-if-not-vector-macro (predicate sequence
972 from-end start end key)
973 (with-unique-names (element)
974 (%find-position-or-find-position-if-vector-expansion
980 `(not (funcall ,predicate (funcall ,key ,element))))))
982 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
984 (deftransform %find-position-if ((predicate sequence from-end start end key)
985 (function vector t t t function)
987 :policy (> speed space))
989 (check-inlineability-of-find-position-if sequence from-end)
990 '(%find-position-if-vector-macro predicate sequence
991 from-end start end key))
993 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
994 (function vector t t t function)
996 :policy (> speed space))
998 (check-inlineability-of-find-position-if sequence from-end)
999 '(%find-position-if-not-vector-macro predicate sequence
1000 from-end start end key))
1002 (deftransform %find-position ((item sequence from-end start end key test)
1003 (t vector t t t function function)
1005 :policy (> speed space))
1007 (check-inlineability-of-find-position-if sequence from-end)
1008 '(%find-position-vector-macro item sequence
1009 from-end start end key test))
1011 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1012 ;;; POSITION-IF, etc.
1013 (define-source-transform effective-find-position-test (test test-not)
1014 (once-only ((test test)
1015 (test-not test-not))
1017 ((and ,test ,test-not)
1018 (error "can't specify both :TEST and :TEST-NOT"))
1019 (,test (%coerce-callable-to-fun ,test))
1021 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1022 ;; inefficient, but since the TEST-NOT option is deprecated
1023 ;; anyway, we don't care.)
1024 (complement (%coerce-callable-to-fun ,test-not)))
1026 (define-source-transform effective-find-position-key (key)
1027 (once-only ((key key))
1029 (%coerce-callable-to-fun ,key)
1032 (macrolet ((define-find-position (fun-name values-index)
1033 `(deftransform ,fun-name ((item sequence &key
1034 from-end (start 0) end
1036 '(nth-value ,values-index
1037 (%find-position item sequence
1040 (effective-find-position-key key)
1041 (effective-find-position-test
1043 (define-find-position find 0)
1044 (define-find-position position 1))
1046 (macrolet ((define-find-position-if (fun-name values-index)
1047 `(deftransform ,fun-name ((predicate sequence &key
1052 (%find-position-if (%coerce-callable-to-fun predicate)
1055 (effective-find-position-key key))))))
1056 (define-find-position-if find-if 0)
1057 (define-find-position-if position-if 1))
1059 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1060 ;;; didn't bother to worry about optimizing them, except note that on
1061 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1064 ;;; My understanding is that while the :test-not argument is
1065 ;;; deprecated in favour of :test (complement #'foo) because of
1066 ;;; semantic difficulties (what happens if both :test and :test-not
1067 ;;; are supplied, etc) the -if-not variants, while officially
1068 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1069 ;;; a revised standard, as there are perfectly legitimate idiomatic
1070 ;;; reasons for allowing the -if-not versions equal status,
1071 ;;; particularly remove-if-not (== filter).
1073 ;;; This is only an informal understanding, I grant you, but
1074 ;;; perhaps it's worth optimizing the -if-not versions in the same
1075 ;;; way as the others?
1077 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1078 ;;; implementation of SBCL.
1079 (macrolet ((define-find-position-if-not (fun-name values-index)
1080 `(deftransform ,fun-name ((predicate sequence &key
1085 (%find-position-if-not (%coerce-callable-to-fun predicate)
1088 (effective-find-position-key key))))))
1089 (define-find-position-if-not find-if-not 0)
1090 (define-find-position-if-not position-if-not 1))