1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(%funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
33 `(let ((,fn-sym (%coerce-callable-to-fun ,fn)))
37 (map-result (gensym)))
38 `(let ((,map-result (list nil)))
39 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
40 (,endtest (cdr ,map-result))
41 (setq ,temp (last (nconc ,temp ,call)))))))
44 (map-result (gensym)))
45 `(let ((,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
50 `(let ((,n-first ,(first arglists)))
51 (do-anonymous ,(do-clauses)
52 (,endtest (truly-the list ,n-first))
55 (define-source-transform mapc (function list &rest more-lists)
56 (mapfoo-transform function (cons list more-lists) nil t))
58 (define-source-transform mapcar (function list &rest more-lists)
59 (mapfoo-transform function (cons list more-lists) :list t))
61 (define-source-transform mapcan (function list &rest more-lists)
62 (mapfoo-transform function (cons list more-lists) :nconc t))
64 (define-source-transform mapl (function list &rest more-lists)
65 (mapfoo-transform function (cons list more-lists) nil nil))
67 (define-source-transform maplist (function list &rest more-lists)
68 (mapfoo-transform function (cons list more-lists) :list nil))
70 (define-source-transform mapcon (function list &rest more-lists)
71 (mapfoo-transform function (cons list more-lists) :nconc nil))
73 ;;;; mapping onto sequences: the MAP function
75 ;;; MAP is %MAP plus a check to make sure that any length specified in
76 ;;; the result type matches the actual result. We also wrap it in a
77 ;;; TRULY-THE for the most specific type we can determine.
78 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
79 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
80 (bare `(%map result-type-arg fun ,@seq-names))
81 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
82 ;; what we know about the type of the result. (Note that the
83 ;; "result type" argument is not necessarily the type of the
84 ;; result, since NIL means the result has NULL type.)
85 (result-type (if (not constant-result-type-arg-p)
87 (let ((result-type-arg-value
88 (lvar-value result-type-arg)))
89 (if (null result-type-arg-value)
91 result-type-arg-value)))))
92 `(lambda (result-type-arg fun ,@seq-names)
93 (truly-the ,result-type
94 ,(cond ((policy node (< safety 3))
95 ;; ANSI requires the length-related type check only
96 ;; when the SAFETY quality is 3... in other cases, we
97 ;; skip it, because it could be expensive.
99 ((not constant-result-type-arg-p)
100 `(sequence-of-checked-length-given-type ,bare
103 (let ((result-ctype (ir1-transform-specifier-type
105 (if (array-type-p result-ctype)
106 (let ((dims (array-type-dimensions result-ctype)))
107 (unless (and (listp dims) (= (length dims) 1))
108 (give-up-ir1-transform "invalid sequence type"))
109 (let ((dim (first dims)))
112 `(vector-of-checked-length-given-length ,bare
114 ;; FIXME: this is wrong, as not all subtypes of
115 ;; VECTOR are ARRAY-TYPEs [consider, for
116 ;; example, (OR (VECTOR T 3) (VECTOR T
117 ;; 4))]. However, it's difficult to see what we
118 ;; should put here... maybe we should
119 ;; GIVE-UP-IR1-TRANSFORM if the type is a
120 ;; subtype of VECTOR but not an ARRAY-TYPE?
123 ;;; Return a DO loop, mapping a function FUN to elements of
124 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
125 ;;; bound to sequences, INTO - a variable, which is used in
126 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
127 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
128 ;;; INDEX, containing the current position in sequences.
129 (defun build-sequence-iterator (seqs seq-names &key result into body)
130 (declare (type list seqs seq-names)
137 (let ((found-vector-p nil))
138 (flet ((process-vector (length)
139 (unless found-vector-p
140 (setq found-vector-p t)
141 (bindings `(index 0 (1+ index)))
142 (declarations `(type index index)))
143 (vector-lengths length)))
144 (loop for seq of-type lvar in seqs
145 for seq-name in seq-names
146 for type = (lvar-type seq)
147 do (cond ((csubtypep type (specifier-type 'list))
148 (with-unique-names (index)
149 (bindings `(,index ,seq-name (cdr ,index)))
150 (declarations `(type list ,index))
151 (places `(car ,index))
152 (tests `(endp ,index))))
153 ((csubtypep type (specifier-type 'vector))
154 (process-vector `(length ,seq-name))
155 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
156 (aref ,seq-name index))))
158 (give-up-ir1-transform
159 "can't determine sequence argument type"))))
161 (process-vector `(array-dimension ,into 0))))
163 (bindings `(length (min ,@(vector-lengths))))
164 (tests `(>= index length)))
166 ((or ,@(tests)) ,result)
167 (declare ,@(declarations))
168 (let ((funcall-result (funcall fun ,@(places))))
169 (declare (ignorable funcall-result))
172 ;;; Try to compile %MAP efficiently when we can determine sequence
173 ;;; argument types at compile time.
175 ;;; Note: This transform was written to allow open coding of
176 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
177 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
178 ;;; necessarily as efficient as possible. In particular, it will be
179 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
180 ;;; numeric element types. It should be straightforward to make it
181 ;;; handle that case more efficiently, but it's left as an exercise to
182 ;;; the reader, because the code is complicated enough already and I
183 ;;; don't happen to need that functionality right now. -- WHN 20000410
184 (deftransform %map ((result-type fun seq &rest seqs) * *
185 :policy (>= speed space))
187 (unless (constant-lvar-p result-type)
188 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
189 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
190 (fn-1subtypep (fn x y)
191 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
194 (give-up-ir1-transform
195 "can't analyze sequence type relationship"))))
196 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
197 (let* ((result-type-value (lvar-value result-type))
198 (result-supertype (cond ((null result-type-value) 'null)
199 ((1subtypep result-type-value 'vector)
201 ((1subtypep result-type-value 'list)
204 (give-up-ir1-transform
205 "result type unsuitable")))))
206 (cond ((and result-type-value (null seqs))
207 ;; The consing arity-1 cases can be implemented
208 ;; reasonably efficiently as function calls, and the cost
209 ;; of consing should be significantly larger than
210 ;; function call overhead, so we always compile these
211 ;; cases as full calls regardless of speed-versus-space
212 ;; optimization policy.
213 (cond ((subtypep result-type-value 'list)
214 '(%map-to-list-arity-1 fun seq))
215 ( ;; (This one can be inefficient due to COERCE, but
216 ;; the current open-coded implementation has the
218 (subtypep result-type-value 'vector)
219 `(coerce (%map-to-simple-vector-arity-1 fun seq)
220 ',result-type-value))
221 (t (bug "impossible (?) sequence type"))))
223 (let* ((seqs (cons seq seqs))
224 (seq-args (make-gensym-list (length seqs))))
225 (multiple-value-bind (push-dacc result)
226 (ecase result-supertype
227 (null (values nil nil))
228 (list (values `(push funcall-result acc)
230 (vector (values `(push funcall-result acc)
231 `(coerce (nreverse acc)
232 ',result-type-value))))
233 ;; (We use the same idiom, of returning a LAMBDA from
234 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
235 ;; FUNCALL and ALIEN-FUNCALL, and for the same
236 ;; reason: we need to get the runtime values of each
237 ;; of the &REST vars.)
238 `(lambda (result-type fun ,@seq-args)
239 (declare (ignore result-type))
240 (let ((fun (%coerce-callable-to-fun fun))
242 (declare (type list acc))
243 (declare (ignorable acc))
244 ,(build-sequence-iterator
247 :body push-dacc))))))))))
250 (deftransform map-into ((result fun &rest seqs)
254 (let ((seqs-names (mapcar (lambda (x)
258 `(lambda (result fun ,@seqs-names)
259 ,(build-sequence-iterator
261 :result '(when (array-has-fill-pointer-p result)
262 (setf (fill-pointer result) index))
264 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
265 (setf (aref result index) funcall-result)))
269 ;;; FIXME: once the confusion over doing transforms with known-complex
270 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
271 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
272 (deftransform elt ((s i) ((simple-array * (*)) *) *)
275 (deftransform elt ((s i) (list *) * :policy (< safety 3))
278 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
281 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
282 '(setf (car (nthcdr i s)) v))
284 (deftransform %check-vector-sequence-bounds ((vector start end)
287 (if (policy node (= 0 insert-array-bounds-checks))
288 '(or end (length vector))
289 '(let ((length (length vector)))
290 (if (<= 0 start (or end length) length)
292 (sequence-bounding-indices-bad-error vector start end)))))
294 (def!type eq-comparable-type ()
295 '(or fixnum (not number)))
297 ;;; True if EQL comparisons involving type can be simplified to EQ.
298 (defun eq-comparable-type-p (type)
299 (csubtypep type (specifier-type 'eq-comparable-type)))
301 (defun specialized-list-seek-function-name (function-name key-functions &optional variant)
302 (or (find-symbol (with-output-to-string (s)
303 ;; Write "%NAME-FUN1-FUN2-FUN3", etc. Not only is
304 ;; this ever so slightly faster then FORMAT, this
305 ;; way we are also proof against *PRINT-CASE*
306 ;; frobbing and such.
308 (write-string (symbol-name function-name) s)
309 (dolist (f key-functions)
311 (write-string (symbol-name f) s))
314 (write-string (symbol-name variant) s)))
315 (load-time-value (find-package "SB!KERNEL")))
316 (bug "Unknown list item seek transform: name=~S, key-functions=~S variant=~S"
317 function-name key-functions variant)))
319 (defun transform-list-item-seek (name item list key test test-not node)
320 (when (and test test-not)
321 (abort-ir1-transform "Both ~S and ~S supplied to ~S." :test :test-not name))
322 ;; If TEST is EQL, drop it.
323 (when (and test (lvar-fun-is test '(eql)))
325 ;; Ditto for KEY IDENTITY.
326 (when (and key (lvar-fun-is key '(identity)))
328 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
329 ;; not there at all. If it might be NIL, make up a form to that
330 ;; ensures it is a function.
331 (multiple-value-bind (key key-form)
333 (let ((key-type (lvar-type key))
334 (null-type (specifier-type 'null)))
335 (cond ((csubtypep key-type null-type)
337 ((csubtypep null-type key-type)
339 (%coerce-callable-to-fun key)
342 (values key (ensure-lvar-fun-form key 'key))))))
343 (let* ((c-test (cond ((and test (lvar-fun-is test '(eq)))
346 ((and (not test) (not test-not))
347 (when (eq-comparable-type-p (lvar-type item))
349 (funs (delete nil (list (when key (list key 'key))
350 (when test (list test 'test))
351 (when test-not (list test-not 'test-not)))))
352 (target-expr (if key '(%funcall key target) 'target))
353 (test-expr (cond (test `(%funcall test item ,target-expr))
354 (test-not `(not (%funcall test-not item ,target-expr)))
355 (c-test `(,c-test item ,target-expr))
356 (t `(eql item ,target-expr)))))
357 (labels ((open-code (tail)
359 `(if (let ((this ',(car tail)))
362 (let ((cxx (if (eq name 'assoc) 'car 'cdr)))
363 `(and this (let ((target (,cxx this)))
366 `(let ((target this))
369 ((assoc rassoc) (car tail))
371 ,(open-code (cdr tail)))))
373 (if (eq 'key (second args))
375 (apply #'ensure-lvar-fun-form args))))
376 (let* ((cp (constant-lvar-p list))
377 (c-list (when cp (lvar-value list))))
378 (cond ((and cp c-list (member name '(assoc rassoc member))
379 (policy node (>= speed space)))
380 `(let ,(mapcar (lambda (fun) `(,(second fun) ,(ensure-fun fun))) funs)
381 ,(open-code c-list)))
382 ((and cp (not c-list))
384 (if (eq name 'adjoin)
388 ;; specialized out-of-line version
389 `(,(specialized-list-seek-function-name name (mapcar #'second funs) c-test)
390 item list ,@(mapcar #'ensure-fun funs)))))))))
392 (defun transform-list-pred-seek (name pred list key node)
393 ;; If KEY is IDENTITY, drop it.
394 (when (and key (lvar-fun-is key '(identity)))
396 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
397 ;; not there at all. If it might be NIL, make up a form to that
398 ;; ensures it is a function.
399 (multiple-value-bind (key key-form)
401 (let ((key-type (lvar-type key))
402 (null-type (specifier-type 'null)))
403 (cond ((csubtypep key-type null-type)
405 ((csubtypep null-type key-type)
407 (%coerce-callable-to-fun key)
410 (values key (ensure-lvar-fun-form key 'key))))))
411 (let ((test-expr `(%funcall pred ,(if key '(%funcall key target) 'target)))
412 (pred-expr (ensure-lvar-fun-form pred 'pred)))
413 (when (member name '(member-if-not assoc-if-not rassoc-if-not))
414 (setf test-expr `(not ,test-expr)))
415 (labels ((open-code (tail)
417 `(if (let ((this ',(car tail)))
419 ((assoc-if assoc-if-not rassoc-if rassoc-if-not)
420 (let ((cxx (if (member name '(assoc-if assoc-if-not)) 'car 'cdr)))
421 `(and this (let ((target (,cxx this)))
423 ((member-if member-if-not)
424 `(let ((target this))
427 ((assoc-if assoc-if-not rassoc-if rassoc-if-not)
429 ((member-if member-if-not)
431 ,(open-code (cdr tail))))))
432 (let* ((cp (constant-lvar-p list))
433 (c-list (when cp (lvar-value list))))
434 (cond ((and cp c-list (policy node (>= speed space)))
435 `(let ((pred ,pred-expr)
436 ,@(when key `((key ,key-form))))
437 ,(open-code c-list)))
438 ((and cp (not c-list))
439 ;; constant nil list -- nothing to find!
442 ;; specialized out-of-line version
443 `(,(specialized-list-seek-function-name name (when key '(key)))
444 ,pred-expr list ,@(when key (list key-form))))))))))
446 (macrolet ((def (name &optional if/if-not)
447 (let ((basic (symbolicate "%" name))
448 (basic-eq (symbolicate "%" name "-EQ"))
449 (basic-key (symbolicate "%" name "-KEY"))
450 (basic-key-eq (symbolicate "%" name "-KEY-EQ")))
452 (deftransform ,name ((item list &key key test test-not) * * :node node)
453 (transform-list-item-seek ',name item list key test test-not node))
454 (deftransform ,basic ((item list) (eq-comparable-type t))
455 `(,',basic-eq item list))
456 (deftransform ,basic-key ((item list) (eq-comparable-type t))
457 `(,',basic-key-eq item list))
459 (let ((if-name (symbolicate name "-IF"))
460 (if-not-name (symbolicate name "-IF-NOT")))
461 `((deftransform ,if-name ((pred list &key key) * * :node node)
462 (transform-list-pred-seek ',if-name pred list key node))
463 (deftransform ,if-not-name ((pred list &key key) * * :node node)
464 (transform-list-pred-seek ',if-not-name pred list key node)))))))))
470 (deftransform memq ((item list) (t (constant-arg list)))
473 `(if (eq item ',(car tail))
477 (rec (lvar-value list))))
479 ;;; A similar transform used to apply to MEMBER and ASSOC, but since
480 ;;; TRANSFORM-LIST-ITEM-SEEK now takes care of them those transform
481 ;;; would never fire, and (%MEMBER-TEST ITEM LIST #'EQ) should be
482 ;;; almost as fast as MEMQ.
483 (deftransform delete ((item list &key test) (t list &rest t) *)
485 ;; FIXME: The scope of this transformation could be
486 ;; widened somewhat, letting it work whenever the test is
487 ;; 'EQL and we know from the type of ITEM that it #'EQ
488 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
490 ;; If TEST is EQ, apply transform, else
491 ;; if test is not EQL, then give up on transform, else
492 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
493 ;; transform, else give up on transform.
495 (unless (lvar-fun-is test '(eq))
496 (give-up-ir1-transform)))
497 ((types-equal-or-intersect (lvar-type item)
498 (specifier-type 'number))
499 (give-up-ir1-transform "Item might be a number.")))
502 (deftransform delete-if ((pred list) (t list))
504 '(do ((x list (cdr x))
507 (cond ((funcall pred (car x))
510 (rplacd splice (cdr x))))
511 (t (setq splice x)))))
513 (deftransform fill ((seq item &key (start 0) (end nil))
514 (list t &key (:start t) (:end t)))
515 '(list-fill* seq item start end))
517 (deftransform fill ((seq item &key (start 0) (end nil))
518 (vector t &key (:start t) (:end t))
521 (let* ((type (lvar-type seq))
522 (element-ctype (array-type-upgraded-element-type type))
523 (element-type (type-specifier element-ctype))
524 (saetp (unless (eq *wild-type* element-ctype)
525 (find-saetp-by-ctype element-ctype))))
526 (cond ((eq *wild-type* element-ctype)
527 (delay-ir1-transform node :constraint)
528 `(vector-fill* seq item start end))
529 ((and saetp (sb!vm::valid-bit-bash-saetp-p saetp))
530 (let* ((n-bits (sb!vm:saetp-n-bits saetp))
531 (basher-name (format nil "UB~D-BASH-FILL" n-bits))
532 (basher (or (find-symbol basher-name
533 (load-time-value (find-package :sb!kernel)))
535 "Unknown fill basher, please report to sbcl-devel: ~A"
537 (kind (cond ((sb!vm:saetp-fixnum-p saetp) :tagged)
538 ((member element-type '(character base-char)) :char)
539 ((eq element-type 'single-float) :single-float)
540 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
541 ((eq element-type 'double-float) :double-float)
542 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
543 ((equal element-type '(complex single-float))
544 :complex-single-float)
546 (aver (integer-type-p element-ctype))
548 ;; BASH-VALUE is a word that we can repeatedly smash
549 ;; on the array: for less-than-word sized elements it
550 ;; contains multiple copies of the fill item.
552 (if (constant-lvar-p item)
553 (let ((tmp (lvar-value item)))
554 (unless (ctypep tmp element-ctype)
555 (abort-ir1-transform "~S is not ~S" tmp element-type))
560 (ash tmp sb!vm:n-fixnum-tag-bits))
566 (single-float-bits tmp))
567 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
569 (logior (ash (double-float-high-bits tmp) 32)
570 (double-float-low-bits tmp)))
571 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
572 (:complex-single-float
573 (logior (ash (single-float-bits (imagpart tmp)) 32)
575 (single-float-bits (realpart tmp))))))))
577 (loop for i of-type sb!vm:word from n-bits by n-bits
578 until (= i sb!vm:n-word-bits)
579 do (setf res (ldb (byte sb!vm:n-word-bits 0)
580 (logior res (ash bits i)))))
583 (delay-ir1-transform node :constraint)
584 `(let* ((bits (ldb (byte ,n-bits 0)
587 `(ash item ,sb!vm:n-fixnum-tag-bits))
593 `(single-float-bits item))
594 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
596 `(logior (ash (double-float-high-bits item) 32)
597 (double-float-low-bits item)))
598 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
599 (:complex-single-float
600 `(logior (ash (single-float-bits (imagpart item)) 32)
602 (single-float-bits (realpart item))))))))
604 (declare (type sb!vm:word res))
605 ,@(unless (= sb!vm:n-word-bits n-bits)
606 `((loop for i of-type sb!vm:word from ,n-bits by ,n-bits
607 until (= i sb!vm:n-word-bits)
609 (ldb (byte ,sb!vm:n-word-bits 0)
610 (logior res (ash bits (truly-the (integer 0 ,(- sb!vm:n-word-bits n-bits)) i))))))))
613 `(with-array-data ((data seq)
616 :check-fill-pointer t)
617 (declare (type (simple-array ,element-type 1) data))
618 (declare (type index start end))
619 (declare (optimize (safety 0) (speed 3))
620 (muffle-conditions compiler-note))
621 (,basher ,bash-value data start (- end start))
623 `((declare (type ,element-type item))))))
624 ((policy node (> speed space))
626 `(with-array-data ((data seq)
629 :check-fill-pointer t)
630 (declare (type (simple-array ,element-type 1) data))
631 (declare (type index start end))
632 ;; WITH-ARRAY-DATA did our range checks once and for all, so
633 ;; it'd be wasteful to check again on every AREF...
634 (declare (optimize (safety 0) (speed 3)))
635 (do ((i start (1+ i)))
637 (declare (type index i))
638 (setf (aref data i) item)))
639 ;; ... though we still need to check that the new element can fit
640 ;; into the vector in safe code. -- CSR, 2002-07-05
641 `((declare (type ,element-type item)))))
642 ((csubtypep type (specifier-type 'string))
643 '(string-fill* seq item start end))
645 '(vector-fill* seq item start end)))))
647 (deftransform fill ((seq item &key (start 0) (end nil))
648 ((and sequence (not vector) (not list)) t &key (:start t) (:end t)))
649 `(sb!sequence:fill seq item
651 :end (%check-generic-sequence-bounds seq start end)))
653 ;;;; hairy sequence transforms
655 ;;; FIXME: no hairy sequence transforms in SBCL?
657 ;;; There used to be a bunch of commented out code about here,
658 ;;; containing the (apparent) beginning of hairy sequence transform
659 ;;; infrastructure. People interested in implementing better sequence
660 ;;; transforms might want to look at it for inspiration, even though
661 ;;; the actual code is ancient CMUCL -- and hence bitrotted. The code
662 ;;; was deleted in 1.0.7.23.
664 ;;;; string operations
666 ;;; We transform the case-sensitive string predicates into a non-keyword
667 ;;; version. This is an IR1 transform so that we don't have to worry about
668 ;;; changing the order of evaluation.
669 (macrolet ((def (fun pred*)
670 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
673 `(,',pred* string1 string2 start1 end1 start2 end2))))
674 (def string< string<*)
675 (def string> string>*)
676 (def string<= string<=*)
677 (def string>= string>=*)
678 (def string= string=*)
679 (def string/= string/=*))
681 ;;; Return a form that tests the free variables STRING1 and STRING2
682 ;;; for the ordering relationship specified by LESSP and EQUALP. The
683 ;;; start and end are also gotten from the environment. Both strings
684 ;;; must be SIMPLE-BASE-STRINGs.
685 (macrolet ((def (name lessp equalp)
686 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
687 (simple-base-string simple-base-string t t t t) *)
688 `(let* ((end1 (if (not end1) (length string1) end1))
689 (end2 (if (not end2) (length string2) end2))
690 (index (sb!impl::%sp-string-compare
691 string1 start1 end1 string2 start2 end2)))
693 (cond ((= index end1)
694 ,(if ',lessp 'index nil))
695 ((= (+ index (- start2 start1)) end2)
696 ,(if ',lessp nil 'index))
697 ((,(if ',lessp 'char< 'char>)
698 (schar string1 index)
707 ,(if ',equalp 'end1 nil))))))
710 (def string>* nil nil)
711 (def string>=* nil t))
713 (macrolet ((def (name result-fun)
714 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
715 (simple-base-string simple-base-string t t t t) *)
717 (sb!impl::%sp-string-compare
718 string1 start1 (or end1 (length string1))
719 string2 start2 (or end2 (length string2)))))))
721 (def string/=* identity))
724 ;;;; transforms for sequence functions
726 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp. Only applies
727 ;;; to vectors based on simple arrays.
728 (def!constant vector-data-bit-offset
729 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
731 ;;; FIXME: In the copy loops below, we code the loops in a strange
734 ;;; (do ((i (+ src-offset length) (1- i)))
736 ;;; (... (aref foo (1- i)) ...))
738 ;;; rather than the more natural (and seemingly more efficient):
740 ;;; (do ((i (1- (+ src-offset length)) (1- i)))
742 ;;; (... (aref foo i) ...))
744 ;;; (more efficient because we don't have to do the index adjusting on
745 ;;; every iteration of the loop)
747 ;;; We do this to avoid a suboptimality in SBCL's backend. In the
748 ;;; latter case, the backend thinks I is a FIXNUM (which it is), but
749 ;;; when used as an array index, the backend thinks I is a
750 ;;; POSITIVE-FIXNUM (which it is). However, since the backend thinks of
751 ;;; these as distinct storage classes, it cannot coerce a move from a
752 ;;; FIXNUM TN to a POSITIVE-FIXNUM TN. The practical effect of this
753 ;;; deficiency is that we have two extra moves and increased register
754 ;;; pressure, which can lead to some spectacularly bad register
755 ;;; allocation. (sub-FIXME: the register allocation even with the
756 ;;; strangely written loops is not always excellent, either...). Doing
757 ;;; it the first way, above, means that I is always thought of as a
758 ;;; POSITIVE-FIXNUM and there are no issues.
760 ;;; Besides, the *-WITH-OFFSET machinery will fold those index
761 ;;; adjustments in the first version into the array addressing at no
762 ;;; performance penalty!
764 ;;; This transform is critical to the performance of string streams. If
765 ;;; you tweak it, make sure that you compare the disassembly, if not the
766 ;;; performance of, the functions implementing string streams
767 ;;; (e.g. SB!IMPL::STRING-OUCH).
768 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
769 (defun make-replace-transform (saetp sequence-type1 sequence-type2)
770 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
771 (,sequence-type1 ,sequence-type2 &rest t)
774 `(let* ((len1 (length seq1))
776 (end1 (or end1 len1))
777 (end2 (or end2 len2))
778 (replace-len (min (- end1 start1) (- end2 start2))))
779 ,(unless (policy node (= insert-array-bounds-checks 0))
781 (unless (<= 0 start1 end1 len1)
782 (sequence-bounding-indices-bad-error seq1 start1 end1))
783 (unless (<= 0 start2 end2 len2)
784 (sequence-bounding-indices-bad-error seq2 start2 end2))))
786 ((and saetp (sb!vm:valid-bit-bash-saetp-p saetp))
787 (let* ((n-element-bits (sb!vm:saetp-n-bits saetp))
788 (bash-function (intern (format nil "UB~D-BASH-COPY"
790 (find-package "SB!KERNEL"))))
791 `(funcall (function ,bash-function) seq2 start2
792 seq1 start1 replace-len)))
795 ;; If the sequence types are different, SEQ1 and
796 ;; SEQ2 must be distinct arrays.
797 ,(eql sequence-type1 sequence-type2)
798 (eq seq1 seq2) (> start1 start2))
799 (do ((i (truly-the index (+ start1 replace-len -1))
801 (j (truly-the index (+ start2 replace-len -1))
804 (declare (optimize (insert-array-bounds-checks 0)))
805 (setf (aref seq1 i) (aref seq2 j)))
806 (do ((i start1 (1+ i))
808 (end (+ start1 replace-len)))
810 (declare (optimize (insert-array-bounds-checks 0)))
811 (setf (aref seq1 i) (aref seq2 j))))))
815 ((define-replace-transforms ()
816 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
817 for sequence-type = `(simple-array ,(sb!vm:saetp-specifier saetp) (*))
818 unless (= (sb!vm:saetp-typecode saetp) sb!vm::simple-array-nil-widetag)
819 collect (make-replace-transform saetp sequence-type sequence-type)
821 finally (return `(progn ,@forms))))
822 (define-one-transform (sequence-type1 sequence-type2)
823 (make-replace-transform nil sequence-type1 sequence-type2)))
824 (define-replace-transforms)
827 (define-one-transform (simple-array base-char (*)) (simple-array character (*)))
828 (define-one-transform (simple-array character (*)) (simple-array base-char (*)))))
830 ;;; Expand simple cases of UB<SIZE>-BASH-COPY inline. "simple" is
831 ;;; defined as those cases where we are doing word-aligned copies from
832 ;;; both the source and the destination and we are copying from the same
833 ;;; offset from both the source and the destination. (The last
834 ;;; condition is there so we can determine the direction to copy at
835 ;;; compile time rather than runtime. Remember that UB<SIZE>-BASH-COPY
836 ;;; acts like memmove, not memcpy.) These conditions may seem rather
837 ;;; restrictive, but they do catch common cases, like allocating a (* 2
838 ;;; N)-size buffer and blitting in the old N-size buffer in.
840 (defun frob-bash-transform (src src-offset
842 length n-elems-per-word)
843 (declare (ignore src dst length))
844 (let ((n-bits-per-elem (truncate sb!vm:n-word-bits n-elems-per-word)))
845 (multiple-value-bind (src-word src-elt)
846 (truncate (lvar-value src-offset) n-elems-per-word)
847 (multiple-value-bind (dst-word dst-elt)
848 (truncate (lvar-value dst-offset) n-elems-per-word)
849 ;; Avoid non-word aligned copies.
850 (unless (and (zerop src-elt) (zerop dst-elt))
851 (give-up-ir1-transform))
852 ;; Avoid copies where we would have to insert code for
853 ;; determining the direction of copying.
854 (unless (= src-word dst-word)
855 (give-up-ir1-transform))
856 ;; FIXME: The cross-compiler doesn't optimize TRUNCATE properly,
857 ;; so we have to do its work here.
858 `(let ((end (+ ,src-word ,(if (= n-elems-per-word 1)
860 `(truncate (the index length) ,n-elems-per-word)))))
861 (declare (type index end))
862 ;; Handle any bits at the end.
863 (when (logtest length (1- ,n-elems-per-word))
864 (let* ((extra (mod length ,n-elems-per-word))
865 ;; FIXME: The shift amount on this ASH is
866 ;; *always* negative, but the backend doesn't
867 ;; have a NEGATIVE-FIXNUM primitive type, so we
868 ;; wind up with a pile of code that tests the
869 ;; sign of the shift count prior to shifting when
870 ;; all we need is a simple negate and shift
872 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
873 (* (- extra ,n-elems-per-word)
875 (setf (sb!kernel:%vector-raw-bits dst end)
877 (logandc2 (sb!kernel:%vector-raw-bits dst end)
879 ,(ecase sb!c:*backend-byte-order*
881 (:big-endian `(* (- ,n-elems-per-word extra)
882 ,n-bits-per-elem)))))
883 (logand (sb!kernel:%vector-raw-bits src end)
885 ,(ecase sb!c:*backend-byte-order*
887 (:big-endian `(* (- ,n-elems-per-word extra)
888 ,n-bits-per-elem)))))))))
889 ;; Copy from the end to save a register.
892 (setf (sb!kernel:%vector-raw-bits dst (1- i))
893 (sb!kernel:%vector-raw-bits src (1- i))))
896 #.(loop for i = 1 then (* i 2)
897 collect `(deftransform ,(intern (format nil "UB~D-BASH-COPY" i)
902 ((simple-unboxed-array (*))
904 (simple-unboxed-array (*))
908 (frob-bash-transform src src-offset
909 dst dst-offset length
910 ,(truncate sb!vm:n-word-bits i))) into forms
911 until (= i sb!vm:n-word-bits)
912 finally (return `(progn ,@forms)))
914 ;;; We expand copy loops inline in SUBSEQ and COPY-SEQ if we're copying
915 ;;; arrays with elements of size >= the word size. We do this because
916 ;;; we know the arrays cannot alias (one was just consed), therefore we
917 ;;; can determine at compile time the direction to copy, and for
918 ;;; word-sized elements, UB<WORD-SIZE>-BASH-COPY will do a bit of
919 ;;; needless checking to figure out what's going on. The same
920 ;;; considerations apply if we are copying elements larger than the word
921 ;;; size, with the additional twist that doing it inline is likely to
922 ;;; cons far less than calling REPLACE and letting generic code do the
925 ;;; However, we do not do this for elements whose size is < than the
926 ;;; word size because we don't want to deal with any alignment issues
927 ;;; inline. The UB*-BASH-COPY transforms might fix things up later
930 (defun maybe-expand-copy-loop-inline (src src-offset dst dst-offset length
932 (let ((saetp (find-saetp element-type)))
934 (if (>= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)
935 (expand-aref-copy-loop src src-offset dst dst-offset length)
936 `(locally (declare (optimize (safety 0)))
937 (replace ,dst ,src :start1 ,dst-offset :start2 ,src-offset :end1 ,length)))))
939 (defun expand-aref-copy-loop (src src-offset dst dst-offset length)
940 (if (eql src-offset dst-offset)
941 `(do ((i (+ ,src-offset ,length) (1- i)))
943 (declare (optimize (insert-array-bounds-checks 0)))
944 (setf (aref ,dst (1- i)) (aref ,src (1- i))))
945 ;; KLUDGE: The compiler is not able to derive that (+ offset
946 ;; length) must be a fixnum, but arrives at (unsigned-byte 29).
947 ;; We, however, know it must be so, as by this point the bounds
948 ;; have already been checked.
949 `(do ((i (truly-the fixnum (+ ,src-offset ,length)) (1- i))
950 (j (+ ,dst-offset ,length) (1- j)))
952 (declare (optimize (insert-array-bounds-checks 0))
953 (type (integer 0 #.sb!xc:array-dimension-limit) j i))
954 (setf (aref ,dst (1- j)) (aref ,src (1- i))))))
958 (deftransform subseq ((seq start &optional end)
959 (vector t &optional t)
962 (let ((type (lvar-type seq)))
964 ((and (array-type-p type)
965 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
966 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
967 `(let* ((length (length seq))
968 (end (or end length)))
969 ,(unless (policy node (zerop insert-array-bounds-checks))
971 (unless (<= 0 start end length)
972 (sequence-bounding-indices-bad-error seq start end))))
973 (let* ((size (- end start))
974 (result (make-array size :element-type ',element-type)))
975 ,(maybe-expand-copy-loop-inline 'seq (if (constant-lvar-p start)
978 'result 0 'size element-type)
980 ((csubtypep type (specifier-type 'string))
981 '(string-subseq* seq start end))
983 '(vector-subseq* seq start end)))))
985 (deftransform subseq ((seq start &optional end)
986 (list t &optional t))
987 `(list-subseq* seq start end))
989 (deftransform subseq ((seq start &optional end)
990 ((and sequence (not vector) (not list)) t &optional t))
991 '(sb!sequence:subseq seq start end))
993 (deftransform copy-seq ((seq) (vector))
994 (let ((type (lvar-type seq)))
995 (cond ((and (array-type-p type)
996 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
997 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
998 `(let* ((length (length seq))
999 (result (make-array length :element-type ',element-type)))
1000 ,(maybe-expand-copy-loop-inline 'seq 0 'result 0 'length element-type)
1002 ((csubtypep type (specifier-type 'string))
1003 '(string-subseq* seq 0 nil))
1005 '(vector-subseq* seq 0 nil)))))
1007 (deftransform copy-seq ((seq) (list))
1008 '(list-copy-seq* seq))
1010 (deftransform copy-seq ((seq) ((and sequence (not vector) (not list))))
1011 '(sb!sequence:copy-seq seq))
1013 ;;; FIXME: it really should be possible to take advantage of the
1014 ;;; macros used in code/seq.lisp here to avoid duplication of code,
1015 ;;; and enable even funkier transformations.
1016 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2
1020 (vector vector &rest t)
1023 :policy (> speed (max space safety)))
1025 (let ((from-end (when (lvar-p from-end)
1026 (unless (constant-lvar-p from-end)
1027 (give-up-ir1-transform ":FROM-END is not constant."))
1028 (lvar-value from-end)))
1030 (testp (lvar-p test))
1031 (check-bounds-p (policy node (plusp insert-array-bounds-checks))))
1033 (flet ((oops (vector start end)
1034 (sequence-bounding-indices-bad-error vector start end)))
1035 (let* ((len1 (length pattern))
1036 (len2 (length text))
1037 (end1 (or end1 len1))
1038 (end2 (or end2 len2))
1040 '((key (coerce key 'function))))
1042 '((test (coerce test 'function)))))
1043 (declare (type index start1 start2 end1 end2))
1044 ,@(when check-bounds-p
1045 `((unless (<= start1 end1 len1)
1046 (oops pattern start1 end1))
1047 (unless (<= start2 end2 len2)
1048 (oops pattern start2 end2))))
1050 '(index2 (- end2 (- end1 start1)) (1- index2))
1051 '(index2 start2 (1+ index2))))
1056 ;; INDEX2 is FIXNUM, not an INDEX, as right before the loop
1057 ;; terminates is hits -1 when :FROM-END is true and :START2
1059 (declare (type fixnum index2))
1060 (when (do ((index1 start1 (1+ index1))
1061 (index2 index2 (1+ index2)))
1062 ((>= index1 end1) t)
1063 (declare (type index index1 index2)
1064 (optimize (insert-array-bounds-checks 0)))
1066 '((when (= index2 end2)
1067 (return-from search nil))))
1068 (unless (,@(if testp
1072 '(funcall key (aref pattern index1))
1073 '(aref pattern index1))
1075 '(funcall key (aref text index2))
1076 '(aref text index2)))
1078 (return index2))))))))
1081 ;;; Open-code CONCATENATE for strings. It would be possible to extend
1082 ;;; this transform to non-strings, but I chose to just do the case that
1083 ;;; should cover 95% of CONCATENATE performance complaints for now.
1084 ;;; -- JES, 2007-11-17
1086 ;;; Only handle the simple result type cases. If somebody does (CONCATENATE
1087 ;;; '(STRING 6) ...) their code won't be optimized, but nobody does that in
1090 ;;; Limit full open coding based on length of constant sequences. Default
1091 ;;; value is chosen so that other parts of to compiler (constraint propagation
1092 ;;; mainly) won't go nonlinear too badly. It's not an exact number -- but
1093 ;;; in the right ballpark.
1094 (defvar *concatenate-open-code-limit* 129)
1096 (deftransform concatenate ((result-type &rest lvars)
1098 (member string simple-string base-string simple-base-string))
1101 (let ((vars (loop for x in lvars collect (gensym)))
1102 (type (lvar-value result-type)))
1103 (if (policy node (<= speed space))
1105 `(lambda (.dummy. ,@vars)
1106 (declare (ignore .dummy.))
1108 ((string simple-string)
1109 `(%concatenate-to-string ,@vars))
1110 ((base-string simple-base-string)
1111 `(%concatenate-to-base-string ,@vars))))
1113 (let* ((element-type (ecase type
1114 ((string simple-string) 'character)
1115 ((base-string simple-base-string) 'base-char)))
1116 (lvar-values (loop for lvar in lvars
1117 collect (when (constant-lvar-p lvar)
1118 (lvar-value lvar))))
1120 (loop for value in lvar-values
1124 `(sb!impl::string-dispatch ((simple-array * (*))
1127 (declare (muffle-conditions compiler-note))
1131 (declare (ignorable ,@vars))
1132 (declare (optimize (insert-array-bounds-checks 0)))
1133 (let* ((.length. (+ ,@lengths))
1135 (.string. (make-string .length. :element-type ',element-type)))
1136 (declare (type index .length. .pos.)
1137 (muffle-conditions compiler-note))
1138 ,@(loop for value in lvar-values
1140 collect (if (and (stringp value)
1141 (< (length value) *concatenate-open-code-limit*))
1142 ;; Fold the array reads for constant arguments
1144 ,@(loop for c across value
1147 ;; Without truly-the we get massive numbers
1148 ;; of pointless error traps.
1149 `(setf (aref .string.
1150 (truly-the index (+ .pos. ,i)))
1152 (incf .pos. ,(length value)))
1153 `(sb!impl::string-dispatch
1155 (simple-array character (*))
1156 (simple-array base-char (*))
1159 (replace .string. ,var :start1 .pos.)
1160 (incf .pos. (length ,var)))))
1164 ;;;; CONS accessor DERIVE-TYPE optimizers
1166 (defoptimizer (car derive-type) ((cons))
1167 ;; This and CDR needs to use LVAR-CONSERVATIVE-TYPE because type inference
1168 ;; gets confused by things like (SETF CAR).
1169 (let ((type (lvar-conservative-type cons))
1170 (null-type (specifier-type 'null)))
1171 (cond ((eq type null-type)
1174 (cons-type-car-type type)))))
1176 (defoptimizer (cdr derive-type) ((cons))
1177 (let ((type (lvar-conservative-type cons))
1178 (null-type (specifier-type 'null)))
1179 (cond ((eq type null-type)
1182 (cons-type-cdr-type type)))))
1184 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
1186 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
1187 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
1188 ;;; expansion, so we factor out the condition into this function.
1189 (defun check-inlineability-of-find-position-if (sequence from-end)
1190 (let ((ctype (lvar-type sequence)))
1191 (cond ((csubtypep ctype (specifier-type 'vector))
1192 ;; It's not worth trying to inline vector code unless we
1193 ;; know a fair amount about it at compile time.
1194 (upgraded-element-type-specifier-or-give-up sequence)
1195 (unless (constant-lvar-p from-end)
1196 (give-up-ir1-transform
1197 "FROM-END argument value not known at compile time")))
1198 ((csubtypep ctype (specifier-type 'list))
1199 ;; Inlining on lists is generally worthwhile.
1202 (give-up-ir1-transform
1203 "sequence type not known at compile time")))))
1205 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
1206 (macrolet ((def (name condition)
1207 `(deftransform ,name ((predicate sequence from-end start end key)
1208 (function list t t t function)
1210 :policy (> speed space))
1214 (flet ((bounds-error ()
1215 (sequence-bounding-indices-bad-error sequence start end)))
1216 (if (and end (> start end))
1218 (do ((slow sequence (cdr slow))
1219 (fast (cdr sequence) (cddr fast))
1220 (index 0 (+ index 1)))
1222 (if (and end (> end index))
1224 (return (values find position))))
1225 ((and end (>= index end))
1226 (return (values find position)))
1228 (circular-list-error sequence)))
1230 (declare (list slow fast))
1231 (when (>= index start)
1232 (let* ((element (car slow))
1233 (key-i (funcall key element)))
1234 (,',condition (funcall predicate key-i)
1235 ;; This hack of dealing with non-NIL
1236 ;; FROM-END for list data by iterating
1237 ;; forward through the list and keeping
1238 ;; track of the last time we found a
1239 ;; match might be more screwy than what
1240 ;; the user expects, but it seems to be
1241 ;; allowed by the ANSI standard. (And
1242 ;; if the user is screwy enough to ask
1243 ;; for FROM-END behavior on list data,
1244 ;; turnabout is fair play.)
1246 ;; It's also not enormously efficient,
1247 ;; calling PREDICATE and KEY more often
1248 ;; than necessary; but all the
1249 ;; alternatives seem to have their own
1250 ;; efficiency problems.
1254 (return (values element index)))))))))))))
1255 (def %find-position-if when)
1256 (def %find-position-if-not unless))
1258 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
1259 ;;; without loss of efficiency. (I.e., the optimizer should be able
1260 ;;; to straighten everything out.)
1261 (deftransform %find-position ((item sequence from-end start end key test)
1264 :policy (> speed space))
1266 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
1267 ;; The order of arguments for asymmetric tests
1268 ;; (e.g. #'<, as opposed to order-independent
1269 ;; tests like #'=) is specified in the spec
1270 ;; section 17.2.1 -- the O/Zi stuff there.
1272 (funcall test-fun item i)))
1277 (%coerce-callable-to-fun key)))
1279 ;;; The inline expansions for the VECTOR case are saved as macros so
1280 ;;; that we can share them between the DEFTRANSFORMs and the default
1281 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
1282 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
1283 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
1289 (with-unique-names (offset block index n-sequence sequence end)
1290 `(let* ((,n-sequence ,sequence-arg))
1291 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
1294 :check-fill-pointer t)
1296 (macrolet ((maybe-return ()
1297 ;; WITH-ARRAY-DATA has already performed bounds
1298 ;; checking, so we can safely elide the checks
1299 ;; in the inner loop.
1300 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
1301 (aref ,sequence ,index))))
1305 (- ,index ,offset)))))))
1308 ;; (If we aren't fastidious about declaring that
1309 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
1310 ;; can send us off into never-never land, since
1311 ;; INDEX is initialized to -1.)
1312 of-type index-or-minus-1
1313 from (1- ,end) downto ,start do
1315 (loop for ,index of-type index from ,start below ,end do
1317 (values nil nil))))))
1319 (def!macro %find-position-vector-macro (item sequence
1320 from-end start end key test)
1321 (with-unique-names (element)
1322 (%find-position-or-find-position-if-vector-expansion
1328 ;; (See the LIST transform for a discussion of the correct
1329 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1330 ;; or after the checked sequence element.)
1331 `(funcall ,test ,item (funcall ,key ,element)))))
1333 (def!macro %find-position-if-vector-macro (predicate sequence
1334 from-end start end key)
1335 (with-unique-names (element)
1336 (%find-position-or-find-position-if-vector-expansion
1342 `(funcall ,predicate (funcall ,key ,element)))))
1344 (def!macro %find-position-if-not-vector-macro (predicate sequence
1345 from-end start end key)
1346 (with-unique-names (element)
1347 (%find-position-or-find-position-if-vector-expansion
1353 `(not (funcall ,predicate (funcall ,key ,element))))))
1355 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1357 (deftransform %find-position-if ((predicate sequence from-end start end key)
1358 (function vector t t t function)
1360 :policy (> speed space))
1362 (check-inlineability-of-find-position-if sequence from-end)
1363 '(%find-position-if-vector-macro predicate sequence
1364 from-end start end key))
1366 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1367 (function vector t t t function)
1369 :policy (> speed space))
1371 (check-inlineability-of-find-position-if sequence from-end)
1372 '(%find-position-if-not-vector-macro predicate sequence
1373 from-end start end key))
1375 (deftransform %find-position ((item sequence from-end start end key test)
1376 (t vector t t t function function)
1378 :policy (> speed space))
1380 (check-inlineability-of-find-position-if sequence from-end)
1381 '(%find-position-vector-macro item sequence
1382 from-end start end key test))
1384 (deftransform %find-position ((item sequence from-end start end key test)
1385 (character string t t t function function)
1387 :policy (> speed space))
1388 (if (eq '* (upgraded-element-type-specifier sequence))
1390 `(sb!impl::string-dispatch ((simple-array character (*))
1391 (simple-array base-char (*))
1392 (simple-array nil (*)))
1394 (%find-position item sequence from-end start end key test))))
1395 (if (csubtypep (lvar-type sequence) (specifier-type 'simple-string))
1397 ;; Otherwise we'd get three instances of WITH-ARRAY-DATA from
1399 `(with-array-data ((sequence sequence :offset-var offset)
1402 :check-fill-pointer t)
1403 (multiple-value-bind (elt index) ,form
1404 (values elt (when (fixnump index) (- index offset)))))))
1405 ;; The type is known exactly, other transforms will take care of it.
1406 (give-up-ir1-transform)))
1408 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1409 ;;; POSITION-IF, etc.
1410 (define-source-transform effective-find-position-test (test test-not)
1411 (once-only ((test test)
1412 (test-not test-not))
1414 ((and ,test ,test-not)
1415 (error "can't specify both :TEST and :TEST-NOT"))
1416 (,test (%coerce-callable-to-fun ,test))
1418 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1419 ;; inefficient, but since the TEST-NOT option is deprecated
1420 ;; anyway, we don't care.)
1421 (complement (%coerce-callable-to-fun ,test-not)))
1423 (define-source-transform effective-find-position-key (key)
1424 (once-only ((key key))
1426 (%coerce-callable-to-fun ,key)
1429 (macrolet ((define-find-position (fun-name values-index)
1430 `(deftransform ,fun-name ((item sequence &key
1431 from-end (start 0) end
1433 (t (or list vector) &rest t))
1434 '(nth-value ,values-index
1435 (%find-position item sequence
1438 (effective-find-position-key key)
1439 (effective-find-position-test
1441 (define-find-position find 0)
1442 (define-find-position position 1))
1444 (macrolet ((define-find-position-if (fun-name values-index)
1445 `(deftransform ,fun-name ((predicate sequence &key
1448 (t (or list vector) &rest t))
1451 (%find-position-if (%coerce-callable-to-fun predicate)
1454 (effective-find-position-key key))))))
1455 (define-find-position-if find-if 0)
1456 (define-find-position-if position-if 1))
1458 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1459 ;;; didn't bother to worry about optimizing them, except note that on
1460 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1463 ;;; My understanding is that while the :test-not argument is
1464 ;;; deprecated in favour of :test (complement #'foo) because of
1465 ;;; semantic difficulties (what happens if both :test and :test-not
1466 ;;; are supplied, etc) the -if-not variants, while officially
1467 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1468 ;;; a revised standard, as there are perfectly legitimate idiomatic
1469 ;;; reasons for allowing the -if-not versions equal status,
1470 ;;; particularly remove-if-not (== filter).
1472 ;;; This is only an informal understanding, I grant you, but
1473 ;;; perhaps it's worth optimizing the -if-not versions in the same
1474 ;;; way as the others?
1476 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1477 ;;; implementation of SBCL.
1478 (macrolet ((define-find-position-if-not (fun-name values-index)
1479 `(deftransform ,fun-name ((predicate sequence &key
1482 (t (or list vector) &rest t))
1485 (%find-position-if-not (%coerce-callable-to-fun predicate)
1488 (effective-find-position-key key))))))
1489 (define-find-position-if-not find-if-not 0)
1490 (define-find-position-if-not position-if-not 1))
1492 (macrolet ((define-trimmer-transform (fun-name leftp rightp)
1493 `(deftransform ,fun-name ((char-bag string)
1496 (if (constant-lvar-p char-bag)
1497 ;; If the bag is constant, use MEMBER
1498 ;; instead of FIND, since we have a
1499 ;; deftransform for MEMBER that can
1500 ;; open-code all of the comparisons when
1501 ;; the list is constant. -- JES, 2007-12-10
1502 `(not (member (schar string index)
1503 ',(coerce (lvar-value char-bag) 'list)
1505 '(not (find (schar string index) char-bag :test #'char=)))))
1506 `(flet ((char-not-in-bag (index)
1508 (let* ((end (length string))
1509 (left-end (if ,',leftp
1510 (do ((index 0 (1+ index)))
1511 ((or (= index (the fixnum end))
1512 (char-not-in-bag index))
1514 (declare (fixnum index)))
1516 (right-end (if ,',rightp
1517 (do ((index (1- end) (1- index)))
1518 ((or (< index left-end)
1519 (char-not-in-bag index))
1521 (declare (fixnum index)))
1523 (if (and (eql left-end 0)
1524 (eql right-end (length string)))
1526 (subseq string left-end right-end))))))))
1527 (define-trimmer-transform string-left-trim t nil)
1528 (define-trimmer-transform string-right-trim nil t)
1529 (define-trimmer-transform string-trim t t))