1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(%funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
33 `(let ((,fn-sym (%coerce-callable-to-fun ,fn)))
37 (map-result (gensym)))
38 `(let ((,map-result (list nil)))
39 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
40 (,endtest (cdr ,map-result))
41 (setq ,temp (last (nconc ,temp ,call)))))))
44 (map-result (gensym)))
45 `(let ((,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
50 `(let ((,n-first ,(first arglists)))
51 (do-anonymous ,(do-clauses)
52 (,endtest (truly-the list ,n-first))
55 (define-source-transform mapc (function list &rest more-lists)
56 (mapfoo-transform function (cons list more-lists) nil t))
58 (define-source-transform mapcar (function list &rest more-lists)
59 (mapfoo-transform function (cons list more-lists) :list t))
61 (define-source-transform mapcan (function list &rest more-lists)
62 (mapfoo-transform function (cons list more-lists) :nconc t))
64 (define-source-transform mapl (function list &rest more-lists)
65 (mapfoo-transform function (cons list more-lists) nil nil))
67 (define-source-transform maplist (function list &rest more-lists)
68 (mapfoo-transform function (cons list more-lists) :list nil))
70 (define-source-transform mapcon (function list &rest more-lists)
71 (mapfoo-transform function (cons list more-lists) :nconc nil))
73 ;;;; mapping onto sequences: the MAP function
75 ;;; MAP is %MAP plus a check to make sure that any length specified in
76 ;;; the result type matches the actual result. We also wrap it in a
77 ;;; TRULY-THE for the most specific type we can determine.
78 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
79 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
80 (bare `(%map result-type-arg fun ,@seq-names))
81 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
82 ;; what we know about the type of the result. (Note that the
83 ;; "result type" argument is not necessarily the type of the
84 ;; result, since NIL means the result has NULL type.)
85 (result-type (if (not constant-result-type-arg-p)
87 (let ((result-type-arg-value
88 (lvar-value result-type-arg)))
89 (if (null result-type-arg-value)
91 result-type-arg-value)))))
92 `(lambda (result-type-arg fun ,@seq-names)
93 (truly-the ,result-type
94 ,(cond ((policy node (< safety 3))
95 ;; ANSI requires the length-related type check only
96 ;; when the SAFETY quality is 3... in other cases, we
97 ;; skip it, because it could be expensive.
99 ((not constant-result-type-arg-p)
100 `(sequence-of-checked-length-given-type ,bare
103 (let ((result-ctype (ir1-transform-specifier-type
105 (if (array-type-p result-ctype)
106 (let ((dims (array-type-dimensions result-ctype)))
107 (unless (and (listp dims) (= (length dims) 1))
108 (give-up-ir1-transform "invalid sequence type"))
109 (let ((dim (first dims)))
112 `(vector-of-checked-length-given-length ,bare
114 ;; FIXME: this is wrong, as not all subtypes of
115 ;; VECTOR are ARRAY-TYPEs [consider, for
116 ;; example, (OR (VECTOR T 3) (VECTOR T
117 ;; 4))]. However, it's difficult to see what we
118 ;; should put here... maybe we should
119 ;; GIVE-UP-IR1-TRANSFORM if the type is a
120 ;; subtype of VECTOR but not an ARRAY-TYPE?
123 ;;; Return a DO loop, mapping a function FUN to elements of
124 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
125 ;;; bound to sequences, INTO - a variable, which is used in
126 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
127 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
128 ;;; INDEX, containing the current position in sequences.
129 (defun build-sequence-iterator (seqs seq-names &key result into body fast)
130 (declare (type list seqs seq-names)
138 (let ((found-vector-p nil))
139 (flet ((process-vector (length)
140 (unless found-vector-p
141 (setq found-vector-p t)
142 (bindings `(index 0 (1+ index)))
143 (declarations `(type index index)))
144 (vector-lengths length)))
145 (loop for seq of-type lvar in seqs
146 for seq-name in seq-names
147 for type = (lvar-type seq)
148 do (cond ((csubtypep type (specifier-type 'list))
149 (with-unique-names (index)
150 (bindings `(,index ,seq-name (cdr ,index)))
151 (declarations `(type list ,index))
152 (places `(car ,index))
153 (tests `(endp ,index))))
154 ((or (csubtypep type (specifier-type '(simple-array * 1)))
156 (csubtypep type (specifier-type 'vector))))
157 (process-vector `(length ,seq-name))
158 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
159 (aref ,seq-name index))))
160 ((csubtypep type (specifier-type 'vector))
161 (let ((data (gensym "DATA"))
162 (start (gensym "START"))
163 (end (gensym "END")))
164 (around `(with-array-data ((,data ,seq-name)
166 (,end (length ,seq-name)))))
167 (process-vector `(- ,end ,start))
168 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
169 (aref ,data (truly-the index (+ index ,start)))))))
171 (give-up-ir1-transform
172 "can't determine sequence argument type"))))
174 (process-vector `(array-dimension ,into 0))))
176 (bindings `(length (min ,@(vector-lengths))))
177 (tests `(>= index length)))
178 (let ((body `(do (,@(bindings))
179 ((or ,@(tests)) ,result)
180 (declare ,@(declarations))
181 (let ((funcall-result (funcall fun ,@(places))))
182 (declare (ignorable funcall-result))
185 (reduce (lambda (wrap body) (append wrap (list body)))
191 ;;; Try to compile %MAP efficiently when we can determine sequence
192 ;;; argument types at compile time.
194 ;;; Note: This transform was written to allow open coding of
195 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
196 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
197 ;;; necessarily as efficient as possible. In particular, it will be
198 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
199 ;;; numeric element types. It should be straightforward to make it
200 ;;; handle that case more efficiently, but it's left as an exercise to
201 ;;; the reader, because the code is complicated enough already and I
202 ;;; don't happen to need that functionality right now. -- WHN 20000410
203 (deftransform %map ((result-type fun seq &rest seqs) * *
204 :node node :policy (>= speed space))
206 (unless (constant-lvar-p result-type)
207 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
208 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
209 (fn-1subtypep (fn x y)
210 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
213 (give-up-ir1-transform
214 "can't analyze sequence type relationship"))))
215 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
216 (let* ((result-type-value (lvar-value result-type))
217 (result-supertype (cond ((null result-type-value) 'null)
218 ((1subtypep result-type-value 'vector)
220 ((1subtypep result-type-value 'list)
223 (give-up-ir1-transform
224 "result type unsuitable")))))
225 (cond ((and result-type-value (null seqs))
226 ;; The consing arity-1 cases can be implemented
227 ;; reasonably efficiently as function calls, and the cost
228 ;; of consing should be significantly larger than
229 ;; function call overhead, so we always compile these
230 ;; cases as full calls regardless of speed-versus-space
231 ;; optimization policy.
232 (cond ((subtypep result-type-value 'list)
233 '(%map-to-list-arity-1 fun seq))
234 ( ;; (This one can be inefficient due to COERCE, but
235 ;; the current open-coded implementation has the
237 (subtypep result-type-value 'vector)
238 `(coerce (%map-to-simple-vector-arity-1 fun seq)
239 ',result-type-value))
240 (t (bug "impossible (?) sequence type"))))
242 (let* ((seqs (cons seq seqs))
243 (seq-args (make-gensym-list (length seqs))))
244 (multiple-value-bind (push-dacc result)
245 (ecase result-supertype
246 (null (values nil nil))
247 (list (values `(push funcall-result acc)
249 (vector (values `(push funcall-result acc)
250 `(coerce (nreverse acc)
251 ',result-type-value))))
252 ;; (We use the same idiom, of returning a LAMBDA from
253 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
254 ;; FUNCALL and ALIEN-FUNCALL, and for the same
255 ;; reason: we need to get the runtime values of each
256 ;; of the &REST vars.)
257 `(lambda (result-type fun ,@seq-args)
258 (declare (ignore result-type))
259 (let ((fun (%coerce-callable-to-fun fun))
261 (declare (type list acc))
262 (declare (ignorable acc))
263 ,(build-sequence-iterator
267 :fast (policy node (> speed space))))))))))))
270 (deftransform map-into ((result fun &rest seqs)
274 (let ((seqs-names (mapcar (lambda (x)
278 `(lambda (result fun ,@seqs-names)
279 ,(if (and (policy node (> speed space))
280 (not (csubtypep (lvar-type result)
281 (specifier-type '(simple-array * 1)))))
282 (let ((data (gensym "DATA"))
283 (start (gensym "START"))
284 (end (gensym "END")))
285 `(with-array-data ((,data result)
288 (declare (ignore ,end))
289 ,(build-sequence-iterator
291 :result '(when (array-has-fill-pointer-p result)
292 (setf (fill-pointer result) index))
294 :body `(locally (declare (optimize (insert-array-bounds-checks 0)))
295 (setf (aref ,data (truly-the index (+ index ,start)))
298 (build-sequence-iterator
300 :result '(when (array-has-fill-pointer-p result)
301 (setf (fill-pointer result) index))
303 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
304 (setf (aref result index) funcall-result))))
308 ;;; FIXME: once the confusion over doing transforms with known-complex
309 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
310 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
311 (deftransform elt ((s i) ((simple-array * (*)) *) *)
314 (deftransform elt ((s i) (list *) * :policy (< safety 3))
317 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
320 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
321 '(setf (car (nthcdr i s)) v))
323 (deftransform %check-vector-sequence-bounds ((vector start end)
326 (if (policy node (= 0 insert-array-bounds-checks))
327 '(or end (length vector))
328 '(let ((length (length vector)))
329 (if (<= 0 start (or end length) length)
331 (sequence-bounding-indices-bad-error vector start end)))))
333 (def!type eq-comparable-type ()
334 '(or fixnum (not number)))
336 ;;; True if EQL comparisons involving type can be simplified to EQ.
337 (defun eq-comparable-type-p (type)
338 (csubtypep type (specifier-type 'eq-comparable-type)))
340 (defun specialized-list-seek-function-name (function-name key-functions &optional variant)
341 (or (find-symbol (with-output-to-string (s)
342 ;; Write "%NAME-FUN1-FUN2-FUN3", etc. Not only is
343 ;; this ever so slightly faster then FORMAT, this
344 ;; way we are also proof against *PRINT-CASE*
345 ;; frobbing and such.
347 (write-string (symbol-name function-name) s)
348 (dolist (f key-functions)
350 (write-string (symbol-name f) s))
353 (write-string (symbol-name variant) s)))
354 (load-time-value (find-package "SB!KERNEL")))
355 (bug "Unknown list item seek transform: name=~S, key-functions=~S variant=~S"
356 function-name key-functions variant)))
358 (defparameter *list-open-code-limit* 128)
360 (defun transform-list-item-seek (name item list key test test-not node)
361 (when (and test test-not)
362 (abort-ir1-transform "Both ~S and ~S supplied to ~S." :test :test-not name))
363 ;; If TEST is EQL, drop it.
364 (when (and test (lvar-fun-is test '(eql)))
366 ;; Ditto for KEY IDENTITY.
367 (when (and key (lvar-fun-is key '(identity)))
369 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
370 ;; not there at all. If it might be NIL, make up a form to that
371 ;; ensures it is a function.
372 (multiple-value-bind (key key-form)
374 (let ((key-type (lvar-type key))
375 (null-type (specifier-type 'null)))
376 (cond ((csubtypep key-type null-type)
378 ((csubtypep null-type key-type)
380 (%coerce-callable-to-fun key)
383 (values key (ensure-lvar-fun-form key 'key))))))
384 (let* ((c-test (cond ((and test (lvar-fun-is test '(eq)))
387 ((and (not test) (not test-not))
388 (when (eq-comparable-type-p (lvar-type item))
390 (funs (delete nil (list (when key (list key 'key))
391 (when test (list test 'test))
392 (when test-not (list test-not 'test-not)))))
393 (target-expr (if key '(%funcall key target) 'target))
394 (test-expr (cond (test `(%funcall test item ,target-expr))
395 (test-not `(not (%funcall test-not item ,target-expr)))
396 (c-test `(,c-test item ,target-expr))
397 (t `(eql item ,target-expr)))))
398 (labels ((open-code (tail)
400 `(if (let ((this ',(car tail)))
403 (let ((cxx (if (eq name 'assoc) 'car 'cdr)))
404 `(and this (let ((target (,cxx this)))
407 `(let ((target this))
410 ((assoc rassoc) (car tail))
412 ,(open-code (cdr tail)))))
414 (if (eq 'key (second args))
416 (apply #'ensure-lvar-fun-form args))))
417 (let* ((cp (constant-lvar-p list))
418 (c-list (when cp (lvar-value list))))
419 (cond ((and cp c-list (member name '(assoc rassoc member))
420 (policy node (>= speed space))
421 (not (nthcdr *list-open-code-limit* c-list)))
422 `(let ,(mapcar (lambda (fun) `(,(second fun) ,(ensure-fun fun))) funs)
423 ,(open-code c-list)))
424 ((and cp (not c-list))
426 (if (eq name 'adjoin)
430 ;; specialized out-of-line version
431 `(,(specialized-list-seek-function-name name (mapcar #'second funs) c-test)
432 item list ,@(mapcar #'ensure-fun funs)))))))))
434 (defun transform-list-pred-seek (name pred list key node)
435 ;; If KEY is IDENTITY, drop it.
436 (when (and key (lvar-fun-is key '(identity)))
438 ;; Key can legally be NIL, but if it's NIL for sure we pretend it's
439 ;; not there at all. If it might be NIL, make up a form to that
440 ;; ensures it is a function.
441 (multiple-value-bind (key key-form)
443 (let ((key-type (lvar-type key))
444 (null-type (specifier-type 'null)))
445 (cond ((csubtypep key-type null-type)
447 ((csubtypep null-type key-type)
449 (%coerce-callable-to-fun key)
452 (values key (ensure-lvar-fun-form key 'key))))))
453 (let ((test-expr `(%funcall pred ,(if key '(%funcall key target) 'target)))
454 (pred-expr (ensure-lvar-fun-form pred 'pred)))
455 (when (member name '(member-if-not assoc-if-not rassoc-if-not))
456 (setf test-expr `(not ,test-expr)))
457 (labels ((open-code (tail)
459 `(if (let ((this ',(car tail)))
461 ((assoc-if assoc-if-not rassoc-if rassoc-if-not)
462 (let ((cxx (if (member name '(assoc-if assoc-if-not)) 'car 'cdr)))
463 `(and this (let ((target (,cxx this)))
465 ((member-if member-if-not)
466 `(let ((target this))
469 ((assoc-if assoc-if-not rassoc-if rassoc-if-not)
471 ((member-if member-if-not)
473 ,(open-code (cdr tail))))))
474 (let* ((cp (constant-lvar-p list))
475 (c-list (when cp (lvar-value list))))
476 (cond ((and cp c-list (policy node (>= speed space))
477 (not (nthcdr *list-open-code-limit* c-list)))
478 `(let ((pred ,pred-expr)
479 ,@(when key `((key ,key-form))))
480 ,(open-code c-list)))
481 ((and cp (not c-list))
482 ;; constant nil list -- nothing to find!
485 ;; specialized out-of-line version
486 `(,(specialized-list-seek-function-name name (when key '(key)))
487 ,pred-expr list ,@(when key (list key-form))))))))))
489 (macrolet ((def (name &optional if/if-not)
490 (let ((basic (symbolicate "%" name))
491 (basic-eq (symbolicate "%" name "-EQ"))
492 (basic-key (symbolicate "%" name "-KEY"))
493 (basic-key-eq (symbolicate "%" name "-KEY-EQ")))
495 (deftransform ,name ((item list &key key test test-not) * * :node node)
496 (transform-list-item-seek ',name item list key test test-not node))
497 (deftransform ,basic ((item list) (eq-comparable-type t))
498 `(,',basic-eq item list))
499 (deftransform ,basic-key ((item list) (eq-comparable-type t))
500 `(,',basic-key-eq item list))
502 (let ((if-name (symbolicate name "-IF"))
503 (if-not-name (symbolicate name "-IF-NOT")))
504 `((deftransform ,if-name ((pred list &key key) * * :node node)
505 (transform-list-pred-seek ',if-name pred list key node))
506 (deftransform ,if-not-name ((pred list &key key) * * :node node)
507 (transform-list-pred-seek ',if-not-name pred list key node)))))))))
513 (deftransform memq ((item list) (t (constant-arg list)))
516 `(if (eq item ',(car tail))
520 (rec (lvar-value list))))
522 ;;; A similar transform used to apply to MEMBER and ASSOC, but since
523 ;;; TRANSFORM-LIST-ITEM-SEEK now takes care of them those transform
524 ;;; would never fire, and (%MEMBER-TEST ITEM LIST #'EQ) should be
525 ;;; almost as fast as MEMQ.
526 (deftransform delete ((item list &key test) (t list &rest t) *)
528 (let ((type (lvar-type item)))
529 (unless (or (and test (lvar-fun-is test '(eq)))
530 (and (eq-comparable-type-p type)
531 (or (not test) (lvar-fun-is test '(eql)))))
532 (give-up-ir1-transform)))
535 (deftransform delete-if ((pred list) (t list))
537 '(do ((x list (cdr x))
540 (cond ((funcall pred (car x))
543 (rplacd splice (cdr x))))
544 (t (setq splice x)))))
546 (deftransform fill ((seq item &key (start 0) (end nil))
547 (list t &key (:start t) (:end t)))
548 '(list-fill* seq item start end))
550 (deftransform fill ((seq item &key (start 0) (end nil))
551 (vector t &key (:start t) (:end t))
554 (let* ((type (lvar-type seq))
555 (element-ctype (array-type-upgraded-element-type type))
556 (element-type (type-specifier element-ctype))
557 (saetp (unless (eq *wild-type* element-ctype)
558 (find-saetp-by-ctype element-ctype))))
559 (cond ((eq *wild-type* element-ctype)
560 (delay-ir1-transform node :constraint)
561 `(vector-fill* seq item start end))
562 ((and saetp (sb!vm::valid-bit-bash-saetp-p saetp))
563 (let* ((n-bits (sb!vm:saetp-n-bits saetp))
564 (basher-name (format nil "UB~D-BASH-FILL" n-bits))
565 (basher (or (find-symbol basher-name
566 (load-time-value (find-package :sb!kernel)))
568 "Unknown fill basher, please report to sbcl-devel: ~A"
570 (kind (cond ((sb!vm:saetp-fixnum-p saetp) :tagged)
571 ((member element-type '(character base-char)) :char)
572 ((eq element-type 'single-float) :single-float)
573 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
574 ((eq element-type 'double-float) :double-float)
575 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
576 ((equal element-type '(complex single-float))
577 :complex-single-float)
579 (aver (integer-type-p element-ctype))
581 ;; BASH-VALUE is a word that we can repeatedly smash
582 ;; on the array: for less-than-word sized elements it
583 ;; contains multiple copies of the fill item.
585 (if (constant-lvar-p item)
586 (let ((tmp (lvar-value item)))
587 (unless (ctypep tmp element-ctype)
588 (abort-ir1-transform "~S is not ~S" tmp element-type))
593 (ash tmp sb!vm:n-fixnum-tag-bits))
599 (single-float-bits tmp))
600 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
602 (logior (ash (double-float-high-bits tmp) 32)
603 (double-float-low-bits tmp)))
604 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
605 (:complex-single-float
606 (logior (ash (single-float-bits (imagpart tmp)) 32)
608 (single-float-bits (realpart tmp))))))))
610 (loop for i of-type sb!vm:word from n-bits by n-bits
611 until (= i sb!vm:n-word-bits)
612 do (setf res (ldb (byte sb!vm:n-word-bits 0)
613 (logior res (ash bits i)))))
616 (delay-ir1-transform node :constraint)
617 `(let* ((bits (ldb (byte ,n-bits 0)
620 `(ash item ,sb!vm:n-fixnum-tag-bits))
626 `(single-float-bits item))
627 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
629 `(logior (ash (double-float-high-bits item) 32)
630 (double-float-low-bits item)))
631 #!+#.(cl:if (cl:= 64 sb!vm:n-word-bits) '(and) '(or))
632 (:complex-single-float
633 `(logior (ash (single-float-bits (imagpart item)) 32)
635 (single-float-bits (realpart item))))))))
637 (declare (type sb!vm:word res))
638 ,@(unless (= sb!vm:n-word-bits n-bits)
639 `((loop for i of-type sb!vm:word from ,n-bits by ,n-bits
640 until (= i sb!vm:n-word-bits)
642 (ldb (byte ,sb!vm:n-word-bits 0)
643 (logior res (ash bits (truly-the (integer 0 ,(- sb!vm:n-word-bits n-bits)) i))))))))
646 `(with-array-data ((data seq)
649 :check-fill-pointer t)
650 (declare (type (simple-array ,element-type 1) data))
651 (declare (type index start end))
652 (declare (optimize (safety 0) (speed 3))
653 (muffle-conditions compiler-note))
654 (,basher ,bash-value data start (- end start))
656 `((declare (type ,element-type item))))))
657 ((policy node (> speed space))
659 `(with-array-data ((data seq)
662 :check-fill-pointer t)
663 (declare (type (simple-array ,element-type 1) data))
664 (declare (type index start end))
665 ;; WITH-ARRAY-DATA did our range checks once and for all, so
666 ;; it'd be wasteful to check again on every AREF...
667 (declare (optimize (safety 0) (speed 3)))
668 (do ((i start (1+ i)))
670 (declare (type index i))
671 (setf (aref data i) item)))
672 ;; ... though we still need to check that the new element can fit
673 ;; into the vector in safe code. -- CSR, 2002-07-05
674 `((declare (type ,element-type item)))))
675 ((csubtypep type (specifier-type 'string))
676 '(string-fill* seq item start end))
678 '(vector-fill* seq item start end)))))
680 (deftransform fill ((seq item &key (start 0) (end nil))
681 ((and sequence (not vector) (not list)) t &key (:start t) (:end t)))
682 `(sb!sequence:fill seq item
684 :end (%check-generic-sequence-bounds seq start end)))
686 ;;;; hairy sequence transforms
688 ;;; FIXME: no hairy sequence transforms in SBCL?
690 ;;; There used to be a bunch of commented out code about here,
691 ;;; containing the (apparent) beginning of hairy sequence transform
692 ;;; infrastructure. People interested in implementing better sequence
693 ;;; transforms might want to look at it for inspiration, even though
694 ;;; the actual code is ancient CMUCL -- and hence bitrotted. The code
695 ;;; was deleted in 1.0.7.23.
697 ;;;; string operations
699 ;;; We transform the case-sensitive string predicates into a non-keyword
700 ;;; version. This is an IR1 transform so that we don't have to worry about
701 ;;; changing the order of evaluation.
702 (macrolet ((def (fun pred*)
703 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
706 `(,',pred* string1 string2 start1 end1 start2 end2))))
707 (def string< string<*)
708 (def string> string>*)
709 (def string<= string<=*)
710 (def string>= string>=*)
711 (def string= string=*)
712 (def string/= string/=*))
714 ;;; Return a form that tests the free variables STRING1 and STRING2
715 ;;; for the ordering relationship specified by LESSP and EQUALP. The
716 ;;; start and end are also gotten from the environment. Both strings
717 ;;; must be SIMPLE-BASE-STRINGs.
718 (macrolet ((def (name lessp equalp)
719 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
720 (simple-base-string simple-base-string t t t t) *)
721 `(let* ((end1 (if (not end1) (length string1) end1))
722 (end2 (if (not end2) (length string2) end2))
723 (index (sb!impl::%sp-string-compare
724 string1 start1 end1 string2 start2 end2)))
726 (cond ((= index end1)
727 ,(if ',lessp 'index nil))
728 ((= (+ index (- start2 start1)) end2)
729 ,(if ',lessp nil 'index))
730 ((,(if ',lessp 'char< 'char>)
731 (schar string1 index)
740 ,(if ',equalp 'end1 nil))))))
743 (def string>* nil nil)
744 (def string>=* nil t))
746 (macrolet ((def (name result-fun)
747 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
748 (simple-base-string simple-base-string t t t t) *)
750 (sb!impl::%sp-string-compare
751 string1 start1 (or end1 (length string1))
752 string2 start2 (or end2 (length string2)))))))
754 (def string/=* identity))
757 ;;;; transforms for sequence functions
759 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp. Only applies
760 ;;; to vectors based on simple arrays.
761 (def!constant vector-data-bit-offset
762 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
764 ;;; FIXME: In the copy loops below, we code the loops in a strange
767 ;;; (do ((i (+ src-offset length) (1- i)))
769 ;;; (... (aref foo (1- i)) ...))
771 ;;; rather than the more natural (and seemingly more efficient):
773 ;;; (do ((i (1- (+ src-offset length)) (1- i)))
775 ;;; (... (aref foo i) ...))
777 ;;; (more efficient because we don't have to do the index adjusting on
778 ;;; every iteration of the loop)
780 ;;; We do this to avoid a suboptimality in SBCL's backend. In the
781 ;;; latter case, the backend thinks I is a FIXNUM (which it is), but
782 ;;; when used as an array index, the backend thinks I is a
783 ;;; POSITIVE-FIXNUM (which it is). However, since the backend thinks of
784 ;;; these as distinct storage classes, it cannot coerce a move from a
785 ;;; FIXNUM TN to a POSITIVE-FIXNUM TN. The practical effect of this
786 ;;; deficiency is that we have two extra moves and increased register
787 ;;; pressure, which can lead to some spectacularly bad register
788 ;;; allocation. (sub-FIXME: the register allocation even with the
789 ;;; strangely written loops is not always excellent, either...). Doing
790 ;;; it the first way, above, means that I is always thought of as a
791 ;;; POSITIVE-FIXNUM and there are no issues.
793 ;;; Besides, the *-WITH-OFFSET machinery will fold those index
794 ;;; adjustments in the first version into the array addressing at no
795 ;;; performance penalty!
797 ;;; This transform is critical to the performance of string streams. If
798 ;;; you tweak it, make sure that you compare the disassembly, if not the
799 ;;; performance of, the functions implementing string streams
800 ;;; (e.g. SB!IMPL::STRING-OUCH).
801 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
802 (defun make-replace-transform (saetp sequence-type1 sequence-type2)
803 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
804 (,sequence-type1 ,sequence-type2 &rest t)
807 `(let* ((len1 (length seq1))
809 (end1 (or end1 len1))
810 (end2 (or end2 len2))
811 (replace-len (min (- end1 start1) (- end2 start2))))
812 ,(unless (policy node (= insert-array-bounds-checks 0))
814 (unless (<= 0 start1 end1 len1)
815 (sequence-bounding-indices-bad-error seq1 start1 end1))
816 (unless (<= 0 start2 end2 len2)
817 (sequence-bounding-indices-bad-error seq2 start2 end2))))
819 ((and saetp (sb!vm:valid-bit-bash-saetp-p saetp))
820 (let* ((n-element-bits (sb!vm:saetp-n-bits saetp))
821 (bash-function (intern (format nil "UB~D-BASH-COPY"
823 (find-package "SB!KERNEL"))))
824 `(funcall (function ,bash-function) seq2 start2
825 seq1 start1 replace-len)))
828 ;; If the sequence types are different, SEQ1 and
829 ;; SEQ2 must be distinct arrays.
830 ,(eql sequence-type1 sequence-type2)
831 (eq seq1 seq2) (> start1 start2))
832 (do ((i (truly-the index (+ start1 replace-len -1))
834 (j (truly-the index (+ start2 replace-len -1))
837 (declare (optimize (insert-array-bounds-checks 0)))
838 (setf (aref seq1 i) (aref seq2 j)))
839 (do ((i start1 (1+ i))
841 (end (+ start1 replace-len)))
843 (declare (optimize (insert-array-bounds-checks 0)))
844 (setf (aref seq1 i) (aref seq2 j))))))
848 ((define-replace-transforms ()
849 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
850 for sequence-type = `(simple-array ,(sb!vm:saetp-specifier saetp) (*))
851 unless (= (sb!vm:saetp-typecode saetp) sb!vm::simple-array-nil-widetag)
852 collect (make-replace-transform saetp sequence-type sequence-type)
854 finally (return `(progn ,@forms))))
855 (define-one-transform (sequence-type1 sequence-type2)
856 (make-replace-transform nil sequence-type1 sequence-type2)))
857 (define-replace-transforms)
860 (define-one-transform (simple-array base-char (*)) (simple-array character (*)))
861 (define-one-transform (simple-array character (*)) (simple-array base-char (*)))))
863 ;;; Expand simple cases of UB<SIZE>-BASH-COPY inline. "simple" is
864 ;;; defined as those cases where we are doing word-aligned copies from
865 ;;; both the source and the destination and we are copying from the same
866 ;;; offset from both the source and the destination. (The last
867 ;;; condition is there so we can determine the direction to copy at
868 ;;; compile time rather than runtime. Remember that UB<SIZE>-BASH-COPY
869 ;;; acts like memmove, not memcpy.) These conditions may seem rather
870 ;;; restrictive, but they do catch common cases, like allocating a (* 2
871 ;;; N)-size buffer and blitting in the old N-size buffer in.
873 (defun frob-bash-transform (src src-offset
875 length n-elems-per-word)
876 (declare (ignore src dst length))
877 (let ((n-bits-per-elem (truncate sb!vm:n-word-bits n-elems-per-word)))
878 (multiple-value-bind (src-word src-elt)
879 (truncate (lvar-value src-offset) n-elems-per-word)
880 (multiple-value-bind (dst-word dst-elt)
881 (truncate (lvar-value dst-offset) n-elems-per-word)
882 ;; Avoid non-word aligned copies.
883 (unless (and (zerop src-elt) (zerop dst-elt))
884 (give-up-ir1-transform))
885 ;; Avoid copies where we would have to insert code for
886 ;; determining the direction of copying.
887 (unless (= src-word dst-word)
888 (give-up-ir1-transform))
889 ;; FIXME: The cross-compiler doesn't optimize TRUNCATE properly,
890 ;; so we have to do its work here.
891 `(let ((end (+ ,src-word ,(if (= n-elems-per-word 1)
893 `(truncate (the index length) ,n-elems-per-word)))))
894 (declare (type index end))
895 ;; Handle any bits at the end.
896 (when (logtest length (1- ,n-elems-per-word))
897 (let* ((extra (mod length ,n-elems-per-word))
898 ;; FIXME: The shift amount on this ASH is
899 ;; *always* negative, but the backend doesn't
900 ;; have a NEGATIVE-FIXNUM primitive type, so we
901 ;; wind up with a pile of code that tests the
902 ;; sign of the shift count prior to shifting when
903 ;; all we need is a simple negate and shift
905 (mask (ash #.(1- (ash 1 sb!vm:n-word-bits))
906 (* (- extra ,n-elems-per-word)
908 (setf (sb!kernel:%vector-raw-bits dst end)
910 (logandc2 (sb!kernel:%vector-raw-bits dst end)
912 ,(ecase sb!c:*backend-byte-order*
914 (:big-endian `(* (- ,n-elems-per-word extra)
915 ,n-bits-per-elem)))))
916 (logand (sb!kernel:%vector-raw-bits src end)
918 ,(ecase sb!c:*backend-byte-order*
920 (:big-endian `(* (- ,n-elems-per-word extra)
921 ,n-bits-per-elem)))))))))
922 ;; Copy from the end to save a register.
925 (setf (sb!kernel:%vector-raw-bits dst (1- i))
926 (sb!kernel:%vector-raw-bits src (1- i))))
929 #.(loop for i = 1 then (* i 2)
930 collect `(deftransform ,(intern (format nil "UB~D-BASH-COPY" i)
935 ((simple-unboxed-array (*))
937 (simple-unboxed-array (*))
941 (frob-bash-transform src src-offset
942 dst dst-offset length
943 ,(truncate sb!vm:n-word-bits i))) into forms
944 until (= i sb!vm:n-word-bits)
945 finally (return `(progn ,@forms)))
947 ;;; We expand copy loops inline in SUBSEQ and COPY-SEQ if we're copying
948 ;;; arrays with elements of size >= the word size. We do this because
949 ;;; we know the arrays cannot alias (one was just consed), therefore we
950 ;;; can determine at compile time the direction to copy, and for
951 ;;; word-sized elements, UB<WORD-SIZE>-BASH-COPY will do a bit of
952 ;;; needless checking to figure out what's going on. The same
953 ;;; considerations apply if we are copying elements larger than the word
954 ;;; size, with the additional twist that doing it inline is likely to
955 ;;; cons far less than calling REPLACE and letting generic code do the
958 ;;; However, we do not do this for elements whose size is < than the
959 ;;; word size because we don't want to deal with any alignment issues
960 ;;; inline. The UB*-BASH-COPY transforms might fix things up later
963 (defun maybe-expand-copy-loop-inline (src src-offset dst dst-offset length
965 (let ((saetp (find-saetp element-type)))
967 (if (>= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)
968 (expand-aref-copy-loop src src-offset dst dst-offset length)
969 `(locally (declare (optimize (safety 0)))
970 (replace ,dst ,src :start1 ,dst-offset :start2 ,src-offset :end1 ,length)))))
972 (defun expand-aref-copy-loop (src src-offset dst dst-offset length)
973 (if (eql src-offset dst-offset)
974 `(do ((i (+ ,src-offset ,length) (1- i)))
976 (declare (optimize (insert-array-bounds-checks 0)))
977 (setf (aref ,dst (1- i)) (aref ,src (1- i))))
978 ;; KLUDGE: The compiler is not able to derive that (+ offset
979 ;; length) must be a fixnum, but arrives at (unsigned-byte 29).
980 ;; We, however, know it must be so, as by this point the bounds
981 ;; have already been checked.
982 `(do ((i (truly-the fixnum (+ ,src-offset ,length)) (1- i))
983 (j (+ ,dst-offset ,length) (1- j)))
985 (declare (optimize (insert-array-bounds-checks 0))
986 (type (integer 0 #.sb!xc:array-dimension-limit) j i))
987 (setf (aref ,dst (1- j)) (aref ,src (1- i))))))
991 (deftransform subseq ((seq start &optional end)
992 (vector t &optional t)
995 (let ((type (lvar-type seq)))
997 ((and (array-type-p type)
998 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
999 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
1000 `(let* ((length (length seq))
1001 (end (or end length)))
1002 ,(unless (policy node (zerop insert-array-bounds-checks))
1004 (unless (<= 0 start end length)
1005 (sequence-bounding-indices-bad-error seq start end))))
1006 (let* ((size (- end start))
1007 (result (make-array size :element-type ',element-type)))
1008 ,(maybe-expand-copy-loop-inline 'seq (if (constant-lvar-p start)
1011 'result 0 'size element-type)
1013 ((csubtypep type (specifier-type 'string))
1014 '(string-subseq* seq start end))
1016 '(vector-subseq* seq start end)))))
1018 (deftransform subseq ((seq start &optional end)
1019 (list t &optional t))
1020 `(list-subseq* seq start end))
1022 (deftransform subseq ((seq start &optional end)
1023 ((and sequence (not vector) (not list)) t &optional t))
1024 '(sb!sequence:subseq seq start end))
1026 (deftransform copy-seq ((seq) (vector))
1027 (let ((type (lvar-type seq)))
1028 (cond ((and (array-type-p type)
1029 (csubtypep type (specifier-type '(or (simple-unboxed-array (*)) simple-vector))))
1030 (let ((element-type (type-specifier (array-type-specialized-element-type type))))
1031 `(let* ((length (length seq))
1032 (result (make-array length :element-type ',element-type)))
1033 ,(maybe-expand-copy-loop-inline 'seq 0 'result 0 'length element-type)
1035 ((csubtypep type (specifier-type 'string))
1036 '(string-subseq* seq 0 nil))
1038 '(vector-subseq* seq 0 nil)))))
1040 (deftransform copy-seq ((seq) (list))
1041 '(list-copy-seq* seq))
1043 (deftransform copy-seq ((seq) ((and sequence (not vector) (not list))))
1044 '(sb!sequence:copy-seq seq))
1046 ;;; FIXME: it really should be possible to take advantage of the
1047 ;;; macros used in code/seq.lisp here to avoid duplication of code,
1048 ;;; and enable even funkier transformations.
1049 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2
1053 (vector vector &rest t)
1056 :policy (> speed (max space safety)))
1060 (if (constant-lvar-p x)
1061 (when (lvar-value x)
1064 (let ((from-end (when (lvar-p from-end)
1065 (unless (constant-lvar-p from-end)
1066 (give-up-ir1-transform ":FROM-END is not constant."))
1067 (lvar-value from-end)))
1069 (test? (maybe test))
1070 (check-bounds-p (policy node (plusp insert-array-bounds-checks))))
1072 (flet ((oops (vector start end)
1073 (sequence-bounding-indices-bad-error vector start end)))
1074 (let* ((len1 (length pattern))
1075 (len2 (length text))
1076 (end1 (or end1 len1))
1077 (end2 (or end2 len2))
1079 (:yes `((key (%coerce-callable-to-fun key))))
1080 (:maybe `((key (when key
1081 (%coerce-callable-to-fun key))))))
1083 `((test (%coerce-callable-to-fun test)))))
1084 (declare (type index start1 start2 end1 end2))
1085 ,@(when check-bounds-p
1086 `((unless (<= start1 end1 len1)
1087 (oops pattern start1 end1))
1088 (unless (<= start2 end2 len2)
1089 (oops pattern start2 end2))))
1091 (return-from search 0))
1093 '(index2 (- end2 (- end1 start1)) (1- index2))
1094 '(index2 start2 (1+ index2))))
1099 ;; INDEX2 is FIXNUM, not an INDEX, as right before the loop
1100 ;; terminates is hits -1 when :FROM-END is true and :START2
1102 (declare (type fixnum index2))
1103 (when (do ((index1 start1 (1+ index1))
1104 (index2 index2 (1+ index2)))
1105 ((>= index1 end1) t)
1106 (declare (type index index1 index2)
1107 (optimize (insert-array-bounds-checks 0)))
1109 '((when (= index2 end2)
1110 (return-from search nil))))
1111 (unless (,@(if test?
1115 (:yes `(funcall key (aref pattern index1)))
1116 (:maybe `(let ((elt (aref pattern index1)))
1120 (otherwise `(aref pattern index1)))
1122 (:yes `(funcall key (aref text index2)))
1123 (:maybe `(let ((elt (aref text index2)))
1127 (otherwise `(aref text index2))))
1129 (return index2)))))))))
1132 ;;; Open-code CONCATENATE for strings. It would be possible to extend
1133 ;;; this transform to non-strings, but I chose to just do the case that
1134 ;;; should cover 95% of CONCATENATE performance complaints for now.
1135 ;;; -- JES, 2007-11-17
1137 ;;; Only handle the simple result type cases. If somebody does (CONCATENATE
1138 ;;; '(STRING 6) ...) their code won't be optimized, but nobody does that in
1141 ;;; Limit full open coding based on length of constant sequences. Default
1142 ;;; value is chosen so that other parts of to compiler (constraint propagation
1143 ;;; mainly) won't go nonlinear too badly. It's not an exact number -- but
1144 ;;; in the right ballpark.
1145 (defvar *concatenate-open-code-limit* 129)
1147 (deftransform concatenate ((result-type &rest lvars)
1149 (member string simple-string base-string simple-base-string))
1152 (let ((vars (loop for x in lvars collect (gensym)))
1153 (type (lvar-value result-type)))
1154 (if (policy node (<= speed space))
1156 `(lambda (.dummy. ,@vars)
1157 (declare (ignore .dummy.))
1159 ((string simple-string)
1160 `(%concatenate-to-string ,@vars))
1161 ((base-string simple-base-string)
1162 `(%concatenate-to-base-string ,@vars))))
1164 (let* ((element-type (ecase type
1165 ((string simple-string) 'character)
1166 ((base-string simple-base-string) 'base-char)))
1167 (lvar-values (loop for lvar in lvars
1168 collect (when (constant-lvar-p lvar)
1169 (lvar-value lvar))))
1171 (loop for value in lvar-values
1175 `(sb!impl::string-dispatch ((simple-array * (*))
1178 (declare (muffle-conditions compiler-note))
1182 (declare (ignorable ,@vars))
1183 (declare (optimize (insert-array-bounds-checks 0)))
1184 (let* ((.length. (+ ,@lengths))
1186 (.string. (make-string .length. :element-type ',element-type)))
1187 (declare (type index .length. .pos.)
1188 (muffle-conditions compiler-note))
1189 ,@(loop for value in lvar-values
1191 collect (if (and (stringp value)
1192 (< (length value) *concatenate-open-code-limit*))
1193 ;; Fold the array reads for constant arguments
1195 ,@(loop for c across value
1198 ;; Without truly-the we get massive numbers
1199 ;; of pointless error traps.
1200 `(setf (aref .string.
1201 (truly-the index (+ .pos. ,i)))
1203 (incf .pos. ,(length value)))
1204 `(sb!impl::string-dispatch
1206 (simple-array character (*))
1207 (simple-array base-char (*))
1210 (replace .string. ,var :start1 .pos.)
1211 (incf .pos. (length ,var)))))
1215 ;;;; CONS accessor DERIVE-TYPE optimizers
1217 (defoptimizer (car derive-type) ((cons))
1218 ;; This and CDR needs to use LVAR-CONSERVATIVE-TYPE because type inference
1219 ;; gets confused by things like (SETF CAR).
1220 (let ((type (lvar-conservative-type cons))
1221 (null-type (specifier-type 'null)))
1222 (cond ((eq type null-type)
1225 (cons-type-car-type type)))))
1227 (defoptimizer (cdr derive-type) ((cons))
1228 (let ((type (lvar-conservative-type cons))
1229 (null-type (specifier-type 'null)))
1230 (cond ((eq type null-type)
1233 (cons-type-cdr-type type)))))
1235 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
1237 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
1238 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
1239 ;;; expansion, so we factor out the condition into this function.
1240 (defun check-inlineability-of-find-position-if (sequence from-end)
1241 (let ((ctype (lvar-type sequence)))
1242 (cond ((csubtypep ctype (specifier-type 'vector))
1243 ;; It's not worth trying to inline vector code unless we
1244 ;; know a fair amount about it at compile time.
1245 (upgraded-element-type-specifier-or-give-up sequence)
1246 (unless (constant-lvar-p from-end)
1247 (give-up-ir1-transform
1248 "FROM-END argument value not known at compile time")))
1249 ((csubtypep ctype (specifier-type 'list))
1250 ;; Inlining on lists is generally worthwhile.
1253 (give-up-ir1-transform
1254 "sequence type not known at compile time")))))
1256 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
1257 (macrolet ((def (name condition)
1258 `(deftransform ,name ((predicate sequence from-end start end key)
1259 (function list t t t function)
1261 :policy (> speed space))
1265 (flet ((bounds-error ()
1266 (sequence-bounding-indices-bad-error sequence start end)))
1267 (if (and end (> start end))
1269 (do ((slow sequence (cdr slow))
1270 (fast (cdr sequence) (cddr fast))
1271 (index 0 (+ index 1)))
1273 (if (and end (> end index))
1275 (return (values find position))))
1276 ((and end (>= index end))
1277 (return (values find position)))
1279 (circular-list-error sequence)))
1281 (declare (list slow fast))
1282 (when (>= index start)
1283 (let* ((element (car slow))
1284 (key-i (funcall key element)))
1285 (,',condition (funcall predicate key-i)
1286 ;; This hack of dealing with non-NIL
1287 ;; FROM-END for list data by iterating
1288 ;; forward through the list and keeping
1289 ;; track of the last time we found a
1290 ;; match might be more screwy than what
1291 ;; the user expects, but it seems to be
1292 ;; allowed by the ANSI standard. (And
1293 ;; if the user is screwy enough to ask
1294 ;; for FROM-END behavior on list data,
1295 ;; turnabout is fair play.)
1297 ;; It's also not enormously efficient,
1298 ;; calling PREDICATE and KEY more often
1299 ;; than necessary; but all the
1300 ;; alternatives seem to have their own
1301 ;; efficiency problems.
1305 (return (values element index)))))))))))))
1306 (def %find-position-if when)
1307 (def %find-position-if-not unless))
1309 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
1310 ;;; without loss of efficiency. (I.e., the optimizer should be able
1311 ;;; to straighten everything out.)
1312 (deftransform %find-position ((item sequence from-end start end key test)
1315 :policy (> speed space))
1317 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
1318 ;; The order of arguments for asymmetric tests
1319 ;; (e.g. #'<, as opposed to order-independent
1320 ;; tests like #'=) is specified in the spec
1321 ;; section 17.2.1 -- the O/Zi stuff there.
1323 (funcall test-fun item i)))
1328 (%coerce-callable-to-fun key)))
1330 ;;; The inline expansions for the VECTOR case are saved as macros so
1331 ;;; that we can share them between the DEFTRANSFORMs and the default
1332 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
1333 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
1334 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
1340 (with-unique-names (offset block index n-sequence sequence end)
1341 `(let* ((,n-sequence ,sequence-arg))
1342 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
1345 :check-fill-pointer t)
1347 (macrolet ((maybe-return ()
1348 ;; WITH-ARRAY-DATA has already performed bounds
1349 ;; checking, so we can safely elide the checks
1350 ;; in the inner loop.
1351 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
1352 (aref ,sequence ,index))))
1356 (- ,index ,offset)))))))
1359 ;; (If we aren't fastidious about declaring that
1360 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
1361 ;; can send us off into never-never land, since
1362 ;; INDEX is initialized to -1.)
1363 of-type index-or-minus-1
1364 from (1- ,end) downto ,start do
1366 (loop for ,index of-type index from ,start below ,end do
1368 (values nil nil))))))
1370 (def!macro %find-position-vector-macro (item sequence
1371 from-end start end key test)
1372 (with-unique-names (element)
1373 (%find-position-or-find-position-if-vector-expansion
1379 ;; (See the LIST transform for a discussion of the correct
1380 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1381 ;; or after the checked sequence element.)
1382 `(funcall ,test ,item (funcall ,key ,element)))))
1384 (def!macro %find-position-if-vector-macro (predicate sequence
1385 from-end start end key)
1386 (with-unique-names (element)
1387 (%find-position-or-find-position-if-vector-expansion
1393 `(funcall ,predicate (funcall ,key ,element)))))
1395 (def!macro %find-position-if-not-vector-macro (predicate sequence
1396 from-end start end key)
1397 (with-unique-names (element)
1398 (%find-position-or-find-position-if-vector-expansion
1404 `(not (funcall ,predicate (funcall ,key ,element))))))
1406 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1408 (deftransform %find-position-if ((predicate sequence from-end start end key)
1409 (function vector t t t function)
1411 :policy (> speed space))
1413 (check-inlineability-of-find-position-if sequence from-end)
1414 '(%find-position-if-vector-macro predicate sequence
1415 from-end start end key))
1417 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1418 (function vector t t t function)
1420 :policy (> speed space))
1422 (check-inlineability-of-find-position-if sequence from-end)
1423 '(%find-position-if-not-vector-macro predicate sequence
1424 from-end start end key))
1426 (deftransform %find-position ((item sequence from-end start end key test)
1427 (t vector t t t function function)
1429 :policy (> speed space))
1431 (check-inlineability-of-find-position-if sequence from-end)
1432 '(%find-position-vector-macro item sequence
1433 from-end start end key test))
1435 (deftransform %find-position ((item sequence from-end start end key test)
1436 (character string t t t function function)
1438 :policy (> speed space))
1439 (if (eq '* (upgraded-element-type-specifier sequence))
1441 `(sb!impl::string-dispatch ((simple-array character (*))
1442 (simple-array base-char (*))
1443 (simple-array nil (*)))
1445 (%find-position item sequence from-end start end key test))))
1446 (if (csubtypep (lvar-type sequence) (specifier-type 'simple-string))
1448 ;; Otherwise we'd get three instances of WITH-ARRAY-DATA from
1450 `(with-array-data ((sequence sequence :offset-var offset)
1453 :check-fill-pointer t)
1454 (multiple-value-bind (elt index) ,form
1455 (values elt (when (fixnump index) (- index offset)))))))
1456 ;; The type is known exactly, other transforms will take care of it.
1457 (give-up-ir1-transform)))
1459 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1460 ;;; POSITION-IF, etc.
1461 (define-source-transform effective-find-position-test (test test-not)
1462 (once-only ((test test)
1463 (test-not test-not))
1465 ((and ,test ,test-not)
1466 (error "can't specify both :TEST and :TEST-NOT"))
1467 (,test (%coerce-callable-to-fun ,test))
1469 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1470 ;; inefficient, but since the TEST-NOT option is deprecated
1471 ;; anyway, we don't care.)
1472 (complement (%coerce-callable-to-fun ,test-not)))
1474 (define-source-transform effective-find-position-key (key)
1475 (once-only ((key key))
1477 (%coerce-callable-to-fun ,key)
1480 (macrolet ((define-find-position (fun-name values-index)
1481 `(deftransform ,fun-name ((item sequence &key
1482 from-end (start 0) end
1484 (t (or list vector) &rest t))
1485 '(nth-value ,values-index
1486 (%find-position item sequence
1489 (effective-find-position-key key)
1490 (effective-find-position-test
1492 (define-find-position find 0)
1493 (define-find-position position 1))
1495 (macrolet ((define-find-position-if (fun-name values-index)
1496 `(deftransform ,fun-name ((predicate sequence &key
1499 (t (or list vector) &rest t))
1502 (%find-position-if (%coerce-callable-to-fun predicate)
1505 (effective-find-position-key key))))))
1506 (define-find-position-if find-if 0)
1507 (define-find-position-if position-if 1))
1509 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1510 ;;; didn't bother to worry about optimizing them, except note that on
1511 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1514 ;;; My understanding is that while the :test-not argument is
1515 ;;; deprecated in favour of :test (complement #'foo) because of
1516 ;;; semantic difficulties (what happens if both :test and :test-not
1517 ;;; are supplied, etc) the -if-not variants, while officially
1518 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1519 ;;; a revised standard, as there are perfectly legitimate idiomatic
1520 ;;; reasons for allowing the -if-not versions equal status,
1521 ;;; particularly remove-if-not (== filter).
1523 ;;; This is only an informal understanding, I grant you, but
1524 ;;; perhaps it's worth optimizing the -if-not versions in the same
1525 ;;; way as the others?
1527 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1528 ;;; implementation of SBCL.
1529 (macrolet ((define-find-position-if-not (fun-name values-index)
1530 `(deftransform ,fun-name ((predicate sequence &key
1533 (t (or list vector) &rest t))
1536 (%find-position-if-not (%coerce-callable-to-fun predicate)
1539 (effective-find-position-key key))))))
1540 (define-find-position-if-not find-if-not 0)
1541 (define-find-position-if-not position-if-not 1))
1543 (macrolet ((define-trimmer-transform (fun-name leftp rightp)
1544 `(deftransform ,fun-name ((char-bag string)
1547 (if (constant-lvar-p char-bag)
1548 ;; If the bag is constant, use MEMBER
1549 ;; instead of FIND, since we have a
1550 ;; deftransform for MEMBER that can
1551 ;; open-code all of the comparisons when
1552 ;; the list is constant. -- JES, 2007-12-10
1553 `(not (member (schar string index)
1554 ',(coerce (lvar-value char-bag) 'list)
1556 '(not (find (schar string index) char-bag :test #'char=)))))
1557 `(flet ((char-not-in-bag (index)
1559 (let* ((end (length string))
1560 (left-end (if ,',leftp
1561 (do ((index 0 (1+ index)))
1562 ((or (= index (the fixnum end))
1563 (char-not-in-bag index))
1565 (declare (fixnum index)))
1567 (right-end (if ,',rightp
1568 (do ((index (1- end) (1- index)))
1569 ((or (< index left-end)
1570 (char-not-in-bag index))
1572 (declare (fixnum index)))
1574 (if (and (eql left-end 0)
1575 (eql right-end (length string)))
1577 (subseq string left-end right-end))))))))
1578 (define-trimmer-transform string-left-trim t nil)
1579 (define-trimmer-transform string-right-trim nil t)
1580 (define-trimmer-transform string-trim t t))