1 ;;;; optimizers for list and sequence functions
3 ;;;; This software is part of the SBCL system. See the README file for
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
14 ;;;; mapping onto lists: the MAPFOO functions
16 (defun mapfoo-transform (fn arglists accumulate take-car)
17 (collect ((do-clauses)
20 (let ((n-first (gensym)))
21 (dolist (a (if accumulate
23 `(,n-first ,@(rest arglists))))
25 (do-clauses `(,v ,a (cdr ,v)))
27 (args-to-fn (if take-car `(car ,v) v))))
29 (let* ((fn-sym (gensym)) ; for ONCE-ONLY-ish purposes
30 (call `(funcall ,fn-sym . ,(args-to-fn)))
31 (endtest `(or ,@(tests))))
35 (map-result (gensym)))
37 (,map-result (list nil)))
38 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
39 (,endtest (cdr ,map-result))
40 (setq ,temp (last (nconc ,temp ,call)))))))
43 (map-result (gensym)))
45 (,map-result (list nil)))
46 (do-anonymous ((,temp ,map-result) . ,(do-clauses))
47 (,endtest (truly-the list (cdr ,map-result)))
48 (rplacd ,temp (setq ,temp (list ,call)))))))
51 (,n-first ,(first arglists)))
52 (do-anonymous ,(do-clauses)
53 (,endtest (truly-the list ,n-first))
56 (define-source-transform mapc (function list &rest more-lists)
57 (mapfoo-transform function (cons list more-lists) nil t))
59 (define-source-transform mapcar (function list &rest more-lists)
60 (mapfoo-transform function (cons list more-lists) :list t))
62 (define-source-transform mapcan (function list &rest more-lists)
63 (mapfoo-transform function (cons list more-lists) :nconc t))
65 (define-source-transform mapl (function list &rest more-lists)
66 (mapfoo-transform function (cons list more-lists) nil nil))
68 (define-source-transform maplist (function list &rest more-lists)
69 (mapfoo-transform function (cons list more-lists) :list nil))
71 (define-source-transform mapcon (function list &rest more-lists)
72 (mapfoo-transform function (cons list more-lists) :nconc nil))
74 ;;;; mapping onto sequences: the MAP function
76 ;;; MAP is %MAP plus a check to make sure that any length specified in
77 ;;; the result type matches the actual result. We also wrap it in a
78 ;;; TRULY-THE for the most specific type we can determine.
79 (deftransform map ((result-type-arg fun seq &rest seqs) * * :node node)
80 (let* ((seq-names (make-gensym-list (1+ (length seqs))))
81 (bare `(%map result-type-arg fun ,@seq-names))
82 (constant-result-type-arg-p (constant-lvar-p result-type-arg))
83 ;; what we know about the type of the result. (Note that the
84 ;; "result type" argument is not necessarily the type of the
85 ;; result, since NIL means the result has NULL type.)
86 (result-type (if (not constant-result-type-arg-p)
88 (let ((result-type-arg-value
89 (lvar-value result-type-arg)))
90 (if (null result-type-arg-value)
92 result-type-arg-value)))))
93 `(lambda (result-type-arg fun ,@seq-names)
94 (truly-the ,result-type
95 ,(cond ((policy node (< safety 3))
96 ;; ANSI requires the length-related type check only
97 ;; when the SAFETY quality is 3... in other cases, we
98 ;; skip it, because it could be expensive.
100 ((not constant-result-type-arg-p)
101 `(sequence-of-checked-length-given-type ,bare
104 (let ((result-ctype (ir1-transform-specifier-type
106 (if (array-type-p result-ctype)
107 (let ((dims (array-type-dimensions result-ctype)))
108 (unless (and (listp dims) (= (length dims) 1))
109 (give-up-ir1-transform "invalid sequence type"))
110 (let ((dim (first dims)))
113 `(vector-of-checked-length-given-length ,bare
115 ;; FIXME: this is wrong, as not all subtypes of
116 ;; VECTOR are ARRAY-TYPEs [consider, for
117 ;; example, (OR (VECTOR T 3) (VECTOR T
118 ;; 4))]. However, it's difficult to see what we
119 ;; should put here... maybe we should
120 ;; GIVE-UP-IR1-TRANSFORM if the type is a
121 ;; subtype of VECTOR but not an ARRAY-TYPE?
124 ;;; Return a DO loop, mapping a function FUN to elements of
125 ;;; sequences. SEQS is a list of lvars, SEQ-NAMES - list of variables,
126 ;;; bound to sequences, INTO - a variable, which is used in
127 ;;; MAP-INTO. RESULT and BODY are forms, which can use variables
128 ;;; FUNCALL-RESULT, containing the result of application of FUN, and
129 ;;; INDEX, containing the current position in sequences.
130 (defun build-sequence-iterator (seqs seq-names &key result into body)
131 (declare (type list seqs seq-names)
138 (let ((found-vector-p nil))
139 (flet ((process-vector (length)
140 (unless found-vector-p
141 (setq found-vector-p t)
142 (bindings `(index 0 (1+ index)))
143 (declarations `(type index index)))
144 (vector-lengths length)))
145 (loop for seq of-type lvar in seqs
146 for seq-name in seq-names
147 for type = (lvar-type seq)
148 do (cond ((csubtypep type (specifier-type 'list))
149 (with-unique-names (index)
150 (bindings `(,index ,seq-name (cdr ,index)))
151 (declarations `(type list ,index))
152 (places `(car ,index))
153 (tests `(endp ,index))))
154 ((csubtypep type (specifier-type 'vector))
155 (process-vector `(length ,seq-name))
156 (places `(locally (declare (optimize (insert-array-bounds-checks 0)))
157 (aref ,seq-name index))))
159 (give-up-ir1-transform
160 "can't determine sequence argument type"))))
162 (process-vector `(array-dimension ,into 0))))
164 (bindings `(length (min ,@(vector-lengths))))
165 (tests `(>= index length)))
167 ((or ,@(tests)) ,result)
168 (declare ,@(declarations))
169 (let ((funcall-result (funcall fun ,@(places))))
170 (declare (ignorable funcall-result))
173 ;;; Try to compile %MAP efficiently when we can determine sequence
174 ;;; argument types at compile time.
176 ;;; Note: This transform was written to allow open coding of
177 ;;; quantifiers by expressing them in terms of (MAP NIL ..). For
178 ;;; non-NIL values of RESULT-TYPE, it's still useful, but not
179 ;;; necessarily as efficient as possible. In particular, it will be
180 ;;; inefficient when RESULT-TYPE is a SIMPLE-ARRAY with specialized
181 ;;; numeric element types. It should be straightforward to make it
182 ;;; handle that case more efficiently, but it's left as an exercise to
183 ;;; the reader, because the code is complicated enough already and I
184 ;;; don't happen to need that functionality right now. -- WHN 20000410
185 (deftransform %map ((result-type fun seq &rest seqs) * *
186 :policy (>= speed space))
188 (unless (constant-lvar-p result-type)
189 (give-up-ir1-transform "RESULT-TYPE argument not constant"))
190 (labels ( ;; 1-valued SUBTYPEP, fails unless second value of SUBTYPEP is true
191 (fn-1subtypep (fn x y)
192 (multiple-value-bind (subtype-p valid-p) (funcall fn x y)
195 (give-up-ir1-transform
196 "can't analyze sequence type relationship"))))
197 (1subtypep (x y) (fn-1subtypep #'sb!xc:subtypep x y)))
198 (let* ((result-type-value (lvar-value result-type))
199 (result-supertype (cond ((null result-type-value) 'null)
200 ((1subtypep result-type-value 'vector)
202 ((1subtypep result-type-value 'list)
205 (give-up-ir1-transform
206 "result type unsuitable")))))
207 (cond ((and result-type-value (null seqs))
208 ;; The consing arity-1 cases can be implemented
209 ;; reasonably efficiently as function calls, and the cost
210 ;; of consing should be significantly larger than
211 ;; function call overhead, so we always compile these
212 ;; cases as full calls regardless of speed-versus-space
213 ;; optimization policy.
214 (cond ((subtypep result-type-value 'list)
215 '(%map-to-list-arity-1 fun seq))
216 ( ;; (This one can be inefficient due to COERCE, but
217 ;; the current open-coded implementation has the
219 (subtypep result-type-value 'vector)
220 `(coerce (%map-to-simple-vector-arity-1 fun seq)
221 ',result-type-value))
222 (t (bug "impossible (?) sequence type"))))
224 (let* ((seqs (cons seq seqs))
225 (seq-args (make-gensym-list (length seqs))))
226 (multiple-value-bind (push-dacc result)
227 (ecase result-supertype
228 (null (values nil nil))
229 (list (values `(push funcall-result acc)
231 (vector (values `(push funcall-result acc)
232 `(coerce (nreverse acc)
233 ',result-type-value))))
234 ;; (We use the same idiom, of returning a LAMBDA from
235 ;; DEFTRANSFORM, as is used in the DEFTRANSFORMs for
236 ;; FUNCALL and ALIEN-FUNCALL, and for the same
237 ;; reason: we need to get the runtime values of each
238 ;; of the &REST vars.)
239 `(lambda (result-type fun ,@seq-args)
240 (declare (ignore result-type))
241 (let ((fun (%coerce-callable-to-fun fun))
243 (declare (type list acc))
244 (declare (ignorable acc))
245 ,(build-sequence-iterator
248 :body push-dacc))))))))))
251 (deftransform map-into ((result fun &rest seqs)
255 (let ((seqs-names (mapcar (lambda (x)
259 `(lambda (result fun ,@seqs-names)
260 ,(build-sequence-iterator
262 :result '(when (array-has-fill-pointer-p result)
263 (setf (fill-pointer result) index))
265 :body '(locally (declare (optimize (insert-array-bounds-checks 0)))
266 (setf (aref result index) funcall-result)))
270 ;;; FIXME: once the confusion over doing transforms with known-complex
271 ;;; arrays is over, we should also transform the calls to (AND (ARRAY
272 ;;; * (*)) (NOT (SIMPLE-ARRAY * (*)))) objects.
273 (deftransform elt ((s i) ((simple-array * (*)) *) *)
276 (deftransform elt ((s i) (list *) * :policy (< safety 3))
279 (deftransform %setelt ((s i v) ((simple-array * (*)) * *) *)
282 (deftransform %setelt ((s i v) (list * *) * :policy (< safety 3))
283 '(setf (car (nthcdr i s)) v))
285 (deftransform %check-vector-sequence-bounds ((vector start end)
288 (if (policy node (< safety speed))
289 '(or end (length vector))
290 '(let ((length (length vector)))
291 (if (<= 0 start (or end length) length)
293 (sb!impl::signal-bounding-indices-bad-error vector start end)))))
295 (macrolet ((def (name)
296 `(deftransform ,name ((e l &key (test #'eql)) * *
298 (unless (constant-lvar-p l)
299 (give-up-ir1-transform))
301 (let ((val (lvar-value l)))
304 (and (>= speed space)
305 (<= (length val) 5))))
306 (give-up-ir1-transform))
310 `(if (funcall test e ',(car els))
318 ;;; FIXME: We have rewritten the original code that used DOLIST to this
319 ;;; more natural MACROLET. However, the original code suggested that when
320 ;;; this was done, a few bytes could be saved by a call to a shared
321 ;;; function. This remains to be done.
322 (macrolet ((def (fun eq-fun)
323 `(deftransform ,fun ((item list &key test) (t list &rest t) *)
325 ;; FIXME: The scope of this transformation could be
326 ;; widened somewhat, letting it work whenever the test is
327 ;; 'EQL and we know from the type of ITEM that it #'EQ
328 ;; works like #'EQL on it. (E.g. types FIXNUM, CHARACTER,
330 ;; If TEST is EQ, apply transform, else
331 ;; if test is not EQL, then give up on transform, else
332 ;; if ITEM is not a NUMBER or is a FIXNUM, apply
333 ;; transform, else give up on transform.
335 (unless (lvar-fun-is test '(eq))
336 (give-up-ir1-transform)))
337 ((types-equal-or-intersect (lvar-type item)
338 (specifier-type 'number))
339 (give-up-ir1-transform "Item might be a number.")))
340 `(,',eq-fun item list))))
345 (deftransform delete-if ((pred list) (t list))
347 '(do ((x list (cdr x))
350 (cond ((funcall pred (car x))
353 (rplacd splice (cdr x))))
354 (t (setq splice x)))))
356 (deftransform fill ((seq item &key (start 0) (end (length seq)))
357 (vector t &key (:start t) (:end index))
359 :policy (> speed space))
361 (let ((element-type (upgraded-element-type-specifier-or-give-up seq)))
363 `(with-array-data ((data seq)
366 (declare (type (simple-array ,element-type 1) data))
367 (declare (type fixnum start end))
368 (do ((i start (1+ i)))
370 (declare (type index i))
371 ;; WITH-ARRAY-DATA did our range checks once and for all, so
372 ;; it'd be wasteful to check again on every AREF...
373 (declare (optimize (safety 0)))
374 (setf (aref data i) item)))
375 ;; ... though we still need to check that the new element can fit
376 ;; into the vector in safe code. -- CSR, 2002-07-05
377 `((declare (type ,element-type item))))))
381 ;;; Return true if LVAR's only use is a non-NOTINLINE reference to a
382 ;;; global function with one of the specified NAMES.
383 (defun lvar-fun-is (lvar names)
384 (declare (type lvar lvar) (list names))
385 (let ((use (lvar-uses lvar)))
387 (let ((leaf (ref-leaf use)))
388 (and (global-var-p leaf)
389 (eq (global-var-kind leaf) :global-function)
390 (not (null (member (leaf-source-name leaf) names
391 :test #'equal))))))))
393 ;;; If LVAR is a constant lvar, the return the constant value. If it
394 ;;; is null, then return default, otherwise quietly give up the IR1
397 ;;; ### Probably should take an ARG and flame using the NAME.
398 (defun constant-value-or-lose (lvar &optional default)
399 (declare (type (or lvar null) lvar))
400 (cond ((not lvar) default)
401 ((constant-lvar-p lvar)
404 (give-up-ir1-transform))))
406 ;;; FIXME: Why is this code commented out? (Why *was* it commented
407 ;;; out? We inherited this situation from cmucl-2.4.8, with no
408 ;;; explanation.) Should we just delete this code?
410 ;;; This is a frob whose job it is to make it easier to pass around
411 ;;; the arguments to IR1 transforms. It bundles together the name of
412 ;;; the argument (which should be referenced in any expansion), and
413 ;;; the continuation for that argument (or NIL if unsupplied.)
414 (defstruct (arg (:constructor %make-arg (name cont))
416 (name nil :type symbol)
417 (cont nil :type (or continuation null)))
418 (defmacro make-arg (name)
419 `(%make-arg ',name ,name))
421 ;;; If Arg is null or its CONT is null, then return Default, otherwise
422 ;;; return Arg's NAME.
423 (defun default-arg (arg default)
424 (declare (type (or arg null) arg))
425 (if (and arg (arg-cont arg))
429 ;;; If Arg is null or has no CONT, return the default. Otherwise, Arg's
430 ;;; CONT must be a constant continuation whose value we return. If not, we
432 (defun arg-constant-value (arg default)
433 (declare (type (or arg null) arg))
434 (if (and arg (arg-cont arg))
435 (let ((cont (arg-cont arg)))
436 (unless (constant-continuation-p cont)
437 (give-up-ir1-transform "Argument is not constant: ~S."
439 (continuation-value from-end))
442 ;;; If Arg is a constant and is EQL to X, then return T, otherwise NIL. If
443 ;;; Arg is NIL or its CONT is NIL, then compare to the default.
444 (defun arg-eql (arg default x)
445 (declare (type (or arg null) x))
446 (if (and arg (arg-cont arg))
447 (let ((cont (arg-cont arg)))
448 (and (constant-continuation-p cont)
449 (eql (continuation-value cont) x)))
452 (defstruct (iterator (:copier nil))
453 ;; The kind of iterator.
454 (kind nil (member :normal :result))
455 ;; A list of LET* bindings to create the initial state.
456 (binds nil :type list)
457 ;; A list of declarations for Binds.
458 (decls nil :type list)
459 ;; A form that returns the current value. This may be set with SETF to set
460 ;; the current value.
461 (current (error "Must specify CURRENT."))
462 ;; In a :NORMAL iterator, a form that tests whether there is a current value.
464 ;; In a :RESULT iterator, a form that truncates the result at the current
465 ;; position and returns it.
467 ;; A form that returns the initial total number of values. The result is
468 ;; undefined after NEXT has been evaluated.
469 (length (error "Must specify LENGTH."))
470 ;; A form that advances the state to the next value. It is an error to call
471 ;; this when the iterator is Done.
472 (next (error "Must specify NEXT.")))
474 ;;; Type of an index var that can go negative (in the from-end case.)
475 (deftype neg-index ()
476 `(integer -1 ,most-positive-fixnum))
478 ;;; Return an ITERATOR structure describing how to iterate over an arbitrary
479 ;;; sequence. Sequence is a variable bound to the sequence, and Type is the
480 ;;; type of the sequence. If true, INDEX is a variable that should be bound to
481 ;;; the index of the current element in the sequence.
483 ;;; If we can't tell whether the sequence is a list or a vector, or whether
484 ;;; the iteration is forward or backward, then GIVE-UP.
485 (defun make-sequence-iterator (sequence type &key start end from-end index)
486 (declare (symbol sequence) (type ctype type)
487 (type (or arg null) start end from-end)
488 (type (or symbol null) index))
489 (let ((from-end (arg-constant-value from-end nil)))
490 (cond ((csubtypep type (specifier-type 'vector))
491 (let* ((n-stop (gensym))
492 (n-idx (or index (gensym)))
493 (start (default-arg 0 start))
494 (end (default-arg `(length ,sequence) end)))
497 :binds `((,n-idx ,(if from-end `(1- ,end) ,start))
498 (,n-stop ,(if from-end `(1- ,start) ,end)))
499 :decls `((type neg-index ,n-idx ,n-stop))
500 :current `(aref ,sequence ,n-idx)
501 :done `(,(if from-end '<= '>=) ,n-idx ,n-stop)
503 ,(if from-end `(1- ,n-idx) `(1+ ,n-idx)))
506 `(- ,n-stop ,n-idx)))))
507 ((csubtypep type (specifier-type 'list))
508 (let* ((n-stop (if (and end (not from-end)) (gensym) nil))
510 (start-p (not (arg-eql start 0 0)))
511 (end-p (not (arg-eql end nil nil)))
512 (start (default-arg start 0))
513 (end (default-arg end nil)))
517 (if (or start-p end-p)
518 `(nreverse (subseq ,sequence ,start
519 ,@(when end `(,end))))
520 `(reverse ,sequence))
522 `(nthcdr ,start ,sequence)
525 `((,n-stop (nthcdr (the index
529 `((,index ,(if from-end `(1- ,end) start)))))
531 :decls `((list ,n-current ,n-end)
532 ,@(when index `((type neg-index ,index))))
533 :current `(car ,n-current)
534 :done `(eq ,n-current ,n-stop)
535 :length `(- ,(or end `(length ,sequence)) ,start)
537 (setq ,n-current (cdr ,n-current))
544 (give-up-ir1-transform
545 "can't tell whether sequence is a list or a vector")))))
547 ;;; Make an iterator used for constructing result sequences. Name is a
548 ;;; variable to be bound to the result sequence. Type is the type of result
549 ;;; sequence to make. Length is an expression to be evaluated to get the
550 ;;; maximum length of the result (not evaluated in list case.)
551 (defun make-result-sequence-iterator (name type length)
552 (declare (symbol name) (type ctype type))
554 ;;; Define each NAME as a local macro that will call the value of the
555 ;;; function arg with the given arguments. If the argument isn't known to be a
556 ;;; function, give them an efficiency note and reference a coerced version.
557 (defmacro coerce-funs (specs &body body)
559 "COERCE-FUNCTIONS ({(Name Fun-Arg Default)}*) Form*"
563 `(let ((body (progn ,@body))
564 (n-fun (arg-name ,(second spec)))
565 (fun-cont (arg-cont ,(second spec))))
566 (cond ((not fun-cont)
567 `(macrolet ((,',(first spec) (&rest args)
568 `(,',',(third spec) ,@args)))
570 ((not (csubtypep (continuation-type fun-cont)
571 (specifier-type 'function)))
572 (when (policy *compiler-error-context*
573 (> speed inhibit-warnings))
575 "~S may not be a function, so must coerce at run-time."
577 (once-only ((n-fun `(if (functionp ,n-fun)
579 (symbol-function ,n-fun))))
580 `(macrolet ((,',(first spec) (&rest args)
581 `(funcall ,',n-fun ,@args)))
584 `(macrolet ((,',(first spec) (&rest args)
585 `(funcall ,',n-fun ,@args)))
588 ;;; Wrap code around the result of the body to define Name as a local macro
589 ;;; that returns true when its arguments satisfy the test according to the Args
590 ;;; Test and Test-Not. If both Test and Test-Not are supplied, abort the
592 (defmacro with-sequence-test ((name test test-not) &body body)
593 `(let ((not-p (arg-cont ,test-not)))
594 (when (and (arg-cont ,test) not-p)
595 (abort-ir1-transform "Both ~S and ~S were supplied."
597 (arg-name ,test-not)))
598 (coerce-funs ((,name (if not-p ,test-not ,test) eql))
602 ;;;; hairy sequence transforms
604 ;;; FIXME: no hairy sequence transforms in SBCL?
606 ;;;; string operations
608 ;;; We transform the case-sensitive string predicates into a non-keyword
609 ;;; version. This is an IR1 transform so that we don't have to worry about
610 ;;; changing the order of evaluation.
611 (macrolet ((def (fun pred*)
612 `(deftransform ,fun ((string1 string2 &key (start1 0) end1
615 `(,',pred* string1 string2 start1 end1 start2 end2))))
616 (def string< string<*)
617 (def string> string>*)
618 (def string<= string<=*)
619 (def string>= string>=*)
620 (def string= string=*)
621 (def string/= string/=*))
623 ;;; Return a form that tests the free variables STRING1 and STRING2
624 ;;; for the ordering relationship specified by LESSP and EQUALP. The
625 ;;; start and end are also gotten from the environment. Both strings
626 ;;; must be SIMPLE-BASE-STRINGs.
627 (macrolet ((def (name lessp equalp)
628 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
629 (simple-base-string simple-base-string t t t t) *)
630 `(let* ((end1 (if (not end1) (length string1) end1))
631 (end2 (if (not end2) (length string2) end2))
632 (index (sb!impl::%sp-string-compare
633 string1 start1 end1 string2 start2 end2)))
635 (cond ((= index end1)
636 ,(if ',lessp 'index nil))
637 ((= (+ index (- start2 start1)) end2)
638 ,(if ',lessp nil 'index))
639 ((,(if ',lessp 'char< 'char>)
640 (schar string1 index)
649 ,(if ',equalp 'end1 nil))))))
652 (def string>* nil nil)
653 (def string>=* nil t))
655 (macrolet ((def (name result-fun)
656 `(deftransform ,name ((string1 string2 start1 end1 start2 end2)
657 (simple-base-string simple-base-string t t t t) *)
659 (sb!impl::%sp-string-compare
660 string1 start1 (or end1 (length string1))
661 string2 start2 (or end2 (length string2)))))))
663 (def string/=* identity))
666 ;;;; string-only transforms for sequence functions
668 ;;;; Note: CMU CL had more of these, including transforms for
669 ;;;; functions which cons. In SBCL, we've gotten rid of most of the
670 ;;;; transforms for functions which cons, since our GC overhead is
671 ;;;; sufficiently large that it doesn't seem worth it to try to
672 ;;;; economize on function call overhead or on the overhead of runtime
673 ;;;; type dispatch in AREF. The exception is CONCATENATE, since
674 ;;;; a full call to CONCATENATE would have to look up the sequence
675 ;;;; type, which can be really slow.
677 ;;; Moved here from generic/vm-tran.lisp to satisfy clisp
679 ;;; FIXME: Add a comment telling whether this holds for all vectors
680 ;;; or only for vectors based on simple arrays (non-adjustable, etc.).
681 (def!constant vector-data-bit-offset
682 (* sb!vm:vector-data-offset sb!vm:n-word-bits))
684 (eval-when (:compile-toplevel)
685 (defun valid-bit-bash-saetp-p (saetp)
686 ;; BIT-BASHing isn't allowed on simple vectors that contain pointers
687 (and (not (eq t (sb!vm:saetp-specifier saetp)))
688 ;; Disallowing (VECTOR NIL) also means that we won't transform
689 ;; sequence functions into bit-bashing code and we let the
690 ;; generic sequence functions signal errors if necessary.
691 (not (zerop (sb!vm:saetp-n-bits saetp)))
692 ;; Due to limitations with the current BIT-BASHing code, we can't
693 ;; BIT-BASH reliably on arrays whose element types are larger
694 ;; than the word size.
695 (<= (sb!vm:saetp-n-bits saetp) sb!vm:n-word-bits)))
698 ;; FIXME: It turns out that this transform (for SIMPLE-BASE-STRINGS)
699 ;; is critical for the performance of string streams. Make this
702 ((define-replace-transforms ()
703 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
704 when (valid-bit-bash-saetp-p saetp)
706 (let* ((sequence-type `(simple-array ,(sb!vm:saetp-specifier saetp) (*)))
707 (n-element-bits (sb!vm:saetp-n-bits saetp))
708 (bash-function (intern (format nil "UB~D-BASH-COPY" n-element-bits)
709 (find-package "SB!KERNEL"))))
710 `(deftransform replace ((seq1 seq2 &key (start1 0) (start2 0) end1 end2)
711 (,sequence-type ,sequence-type &rest t)
714 `(let* ((len1 (length seq1))
716 (end1 (or end1 len1))
717 (end2 (or end2 len2))
718 (replace-len1 (- end1 start1))
719 (replace-len2 (- end2 start2)))
720 ,(unless (policy node (= safety 0))
722 (unless (<= 0 start1 end1 len1)
723 (sb!impl::signal-bounding-indices-bad-error seq1 start1 end1))
724 (unless (<= 0 start2 end2 len2)
725 (sb!impl::signal-bounding-indices-bad-error seq2 start2 end2))))
726 (funcall (function ,',bash-function)
729 (min replace-len1 replace-len2))
732 finally (return `(progn ,@forms)))))
733 (define-replace-transforms))
736 ((define-subseq-transforms ()
737 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
738 when (valid-bit-bash-saetp-p saetp)
740 (let* ((sequence-type `(simple-array ,(sb!vm:saetp-specifier saetp) (*)))
741 (n-element-bits (sb!vm:saetp-n-bits saetp))
742 (bash-function (intern (format nil "UB~D-BASH-COPY" n-element-bits)
743 (find-package "SB!KERNEL"))))
744 `(deftransform subseq ((seq start &optional end)
745 (,sequence-type t &optional t)
746 ,sequence-type :node node)
747 `(let* ((length (length seq))
748 (end (if end (min end length) length)))
749 ,(unless (policy node (= safety 0))
751 (unless (<= 0 start end length)
752 (sb!impl::signal-bounding-indices-bad-error seq start end))))
753 (let* ((size (- end start))
754 (result (make-array size :element-type ',',(sb!vm:saetp-specifier saetp))))
755 (funcall (function ,',bash-function)
756 seq start result 0 size)
759 finally (return `(progn ,@forms)))))
760 (define-subseq-transforms))
763 ((define-copy-seq-transforms ()
764 (loop for saetp across sb!vm:*specialized-array-element-type-properties*
765 when (valid-bit-bash-saetp-p saetp)
767 (let* ((sequence-type `(simple-array ,(sb!vm:saetp-specifier saetp) (*)))
768 (n-element-bits (sb!vm:saetp-n-bits saetp))
769 (bash-function (intern (format nil "UB~D-BASH-COPY" n-element-bits)
770 (find-package "SB!KERNEL"))))
771 `(deftransform copy-seq ((seq) (,sequence-type)
773 `(let* ((length (length seq))
774 (result (make-array length :element-type ',',(sb!vm:saetp-specifier saetp))))
775 (funcall (function ,',bash-function)
776 seq 0 result 0 length)
779 finally (return `(progn ,@forms)))))
780 (define-copy-seq-transforms))
782 ;;; FIXME: this would be a valid transform for certain excluded cases:
783 ;;; * :TEST 'CHAR= or :TEST #'CHAR=
784 ;;; * :TEST 'EQL or :TEST #'EQL
785 ;;; * :FROM-END NIL (or :FROM-END non-NIL, with a little ingenuity)
786 (deftransform search ((pattern text &key (start1 0) (start2 0) end1 end2)
787 (simple-string simple-string &rest t)
789 :policy (> speed (max space safety)))
791 (let ((end1 (or end1 (length pattern)))
792 (end2 (or end2 (length text))))
793 (do ((index2 start2 (1+ index2)))
794 ((>= index2 end2) nil)
795 (when (do ((index1 start1 (1+ index1))
796 (index2 index2 (1+ index2)))
798 (when (= index2 end2)
799 (return-from search nil))
800 (when (char/= (char pattern index1) (char text index2))
804 ;;; FIXME: It seems as though it should be possible to make a DEFUN
805 ;;; %CONCATENATE (with a DEFTRANSFORM to translate constant RTYPE to
806 ;;; CTYPE before calling %CONCATENATE) which is comparably efficient,
807 ;;; at least once DYNAMIC-EXTENT works.
809 ;;; FIXME: currently KLUDGEed because of bug 188
811 ;;; FIXME: disabled for sb-unicode: probably want it back
813 (deftransform concatenate ((rtype &rest sequences)
814 (t &rest (or simple-base-string
815 (simple-array nil (*))))
817 :policy (< safety 3))
818 (loop for rest-seqs on sequences
819 for n-seq = (gensym "N-SEQ")
820 for n-length = (gensym "N-LENGTH")
821 for start = 0 then next-start
822 for next-start = (gensym "NEXT-START")
823 collect n-seq into args
824 collect `(,n-length (length ,n-seq)) into lets
825 collect n-length into all-lengths
826 collect next-start into starts
827 collect `(if (and (typep ,n-seq '(simple-array nil (*)))
829 (error 'nil-array-accessed-error)
830 (#.(let* ((i (position 'character sb!kernel::*specialized-array-element-types*))
831 (saetp (aref sb!vm:*specialized-array-element-type-properties* i))
832 (n-bits (sb!vm:saetp-n-bits saetp)))
833 (intern (format nil "UB~D-BASH-COPY" n-bits)
835 ,n-seq 0 res ,start ,n-length))
837 collect `(setq ,next-start (+ ,start ,n-length)) into forms
840 `(lambda (rtype ,@args)
841 (declare (ignore rtype))
843 (res (make-string (the index (+ ,@all-lengths))
844 :element-type 'base-char)))
845 (declare (type index ,@all-lengths))
846 (let (,@(mapcar (lambda (name) `(,name 0)) starts))
847 (declare (type index ,@starts))
851 ;;;; CONS accessor DERIVE-TYPE optimizers
853 (defoptimizer (car derive-type) ((cons))
854 (let ((type (lvar-type cons))
855 (null-type (specifier-type 'null)))
856 (cond ((eq type null-type)
859 (cons-type-car-type type)))))
861 (defoptimizer (cdr derive-type) ((cons))
862 (let ((type (lvar-type cons))
863 (null-type (specifier-type 'null)))
864 (cond ((eq type null-type)
867 (cons-type-cdr-type type)))))
869 ;;;; FIND, POSITION, and their -IF and -IF-NOT variants
871 ;;; We want to make sure that %FIND-POSITION is inline-expanded into
872 ;;; %FIND-POSITION-IF only when %FIND-POSITION-IF has an inline
873 ;;; expansion, so we factor out the condition into this function.
874 (defun check-inlineability-of-find-position-if (sequence from-end)
875 (let ((ctype (lvar-type sequence)))
876 (cond ((csubtypep ctype (specifier-type 'vector))
877 ;; It's not worth trying to inline vector code unless we
878 ;; know a fair amount about it at compile time.
879 (upgraded-element-type-specifier-or-give-up sequence)
880 (unless (constant-lvar-p from-end)
881 (give-up-ir1-transform
882 "FROM-END argument value not known at compile time")))
883 ((csubtypep ctype (specifier-type 'list))
884 ;; Inlining on lists is generally worthwhile.
887 (give-up-ir1-transform
888 "sequence type not known at compile time")))))
890 ;;; %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for LIST data
891 (macrolet ((def (name condition)
892 `(deftransform ,name ((predicate sequence from-end start end key)
893 (function list t t t function)
895 :policy (> speed space))
900 (declare (type index index))
902 (if (and end (> end index))
903 (sb!impl::signal-bounding-indices-bad-error
905 (values find position)))
906 (let ((key-i (funcall key i)))
907 (when (and end (>= index end))
908 (return (values find position)))
909 (when (>= index start)
910 (,',condition (funcall predicate key-i)
911 ;; This hack of dealing with non-NIL
912 ;; FROM-END for list data by iterating
913 ;; forward through the list and keeping
914 ;; track of the last time we found a match
915 ;; might be more screwy than what the user
916 ;; expects, but it seems to be allowed by
917 ;; the ANSI standard. (And if the user is
918 ;; screwy enough to ask for FROM-END
919 ;; behavior on list data, turnabout is
922 ;; It's also not enormously efficient,
923 ;; calling PREDICATE and KEY more often
924 ;; than necessary; but all the
925 ;; alternatives seem to have their own
926 ;; efficiency problems.
930 (return (values i index))))))
932 (def %find-position-if when)
933 (def %find-position-if-not unless))
935 ;;; %FIND-POSITION for LIST data can be expanded into %FIND-POSITION-IF
936 ;;; without loss of efficiency. (I.e., the optimizer should be able
937 ;;; to straighten everything out.)
938 (deftransform %find-position ((item sequence from-end start end key test)
941 :policy (> speed space))
943 '(%find-position-if (let ((test-fun (%coerce-callable-to-fun test)))
944 ;; The order of arguments for asymmetric tests
945 ;; (e.g. #'<, as opposed to order-independent
946 ;; tests like #'=) is specified in the spec
947 ;; section 17.2.1 -- the O/Zi stuff there.
949 (funcall test-fun item i)))
954 (%coerce-callable-to-fun key)))
956 ;;; The inline expansions for the VECTOR case are saved as macros so
957 ;;; that we can share them between the DEFTRANSFORMs and the default
958 ;;; cases in the DEFUNs. (This isn't needed for the LIST case, because
959 ;;; the DEFTRANSFORMs for LIST are less choosy about when to expand.)
960 (defun %find-position-or-find-position-if-vector-expansion (sequence-arg
966 (with-unique-names (offset block index n-sequence sequence n-end end)
967 `(let ((,n-sequence ,sequence-arg)
969 (with-array-data ((,sequence ,n-sequence :offset-var ,offset)
971 (,end (%check-vector-sequence-bounds
972 ,n-sequence ,start ,n-end)))
974 (macrolet ((maybe-return ()
975 ;; WITH-ARRAY-DATA has already performed bounds
976 ;; checking, so we can safely elide the checks
977 ;; in the inner loop.
978 '(let ((,element (locally (declare (optimize (insert-array-bounds-checks 0)))
979 (aref ,sequence ,index))))
983 (- ,index ,offset)))))))
986 ;; (If we aren't fastidious about declaring that
987 ;; INDEX might be -1, then (FIND 1 #() :FROM-END T)
988 ;; can send us off into never-never land, since
989 ;; INDEX is initialized to -1.)
990 of-type index-or-minus-1
991 from (1- ,end) downto ,start do
993 (loop for ,index of-type index from ,start below ,end do
995 (values nil nil))))))
997 (def!macro %find-position-vector-macro (item sequence
998 from-end start end key test)
999 (with-unique-names (element)
1000 (%find-position-or-find-position-if-vector-expansion
1006 ;; (See the LIST transform for a discussion of the correct
1007 ;; argument order, i.e. whether the searched-for ,ITEM goes before
1008 ;; or after the checked sequence element.)
1009 `(funcall ,test ,item (funcall ,key ,element)))))
1011 (def!macro %find-position-if-vector-macro (predicate sequence
1012 from-end start end key)
1013 (with-unique-names (element)
1014 (%find-position-or-find-position-if-vector-expansion
1020 `(funcall ,predicate (funcall ,key ,element)))))
1022 (def!macro %find-position-if-not-vector-macro (predicate sequence
1023 from-end start end key)
1024 (with-unique-names (element)
1025 (%find-position-or-find-position-if-vector-expansion
1031 `(not (funcall ,predicate (funcall ,key ,element))))))
1033 ;;; %FIND-POSITION, %FIND-POSITION-IF and %FIND-POSITION-IF-NOT for
1035 (deftransform %find-position-if ((predicate sequence from-end start end key)
1036 (function vector t t t function)
1038 :policy (> speed space))
1040 (check-inlineability-of-find-position-if sequence from-end)
1041 '(%find-position-if-vector-macro predicate sequence
1042 from-end start end key))
1044 (deftransform %find-position-if-not ((predicate sequence from-end start end key)
1045 (function vector t t t function)
1047 :policy (> speed space))
1049 (check-inlineability-of-find-position-if sequence from-end)
1050 '(%find-position-if-not-vector-macro predicate sequence
1051 from-end start end key))
1053 (deftransform %find-position ((item sequence from-end start end key test)
1054 (t vector t t t function function)
1056 :policy (> speed space))
1058 (check-inlineability-of-find-position-if sequence from-end)
1059 '(%find-position-vector-macro item sequence
1060 from-end start end key test))
1062 ;;; logic to unravel :TEST, :TEST-NOT, and :KEY options in FIND,
1063 ;;; POSITION-IF, etc.
1064 (define-source-transform effective-find-position-test (test test-not)
1065 (once-only ((test test)
1066 (test-not test-not))
1068 ((and ,test ,test-not)
1069 (error "can't specify both :TEST and :TEST-NOT"))
1070 (,test (%coerce-callable-to-fun ,test))
1072 ;; (Without DYNAMIC-EXTENT, this is potentially horribly
1073 ;; inefficient, but since the TEST-NOT option is deprecated
1074 ;; anyway, we don't care.)
1075 (complement (%coerce-callable-to-fun ,test-not)))
1077 (define-source-transform effective-find-position-key (key)
1078 (once-only ((key key))
1080 (%coerce-callable-to-fun ,key)
1083 (macrolet ((define-find-position (fun-name values-index)
1084 `(deftransform ,fun-name ((item sequence &key
1085 from-end (start 0) end
1087 (t (or list vector) &rest t))
1088 '(nth-value ,values-index
1089 (%find-position item sequence
1092 (effective-find-position-key key)
1093 (effective-find-position-test
1095 (define-find-position find 0)
1096 (define-find-position position 1))
1098 (macrolet ((define-find-position-if (fun-name values-index)
1099 `(deftransform ,fun-name ((predicate sequence &key
1102 (t (or list vector) &rest t))
1105 (%find-position-if (%coerce-callable-to-fun predicate)
1108 (effective-find-position-key key))))))
1109 (define-find-position-if find-if 0)
1110 (define-find-position-if position-if 1))
1112 ;;; the deprecated functions FIND-IF-NOT and POSITION-IF-NOT. We
1113 ;;; didn't bother to worry about optimizing them, except note that on
1114 ;;; Sat, Oct 06, 2001 at 04:22:38PM +0100, Christophe Rhodes wrote on
1117 ;;; My understanding is that while the :test-not argument is
1118 ;;; deprecated in favour of :test (complement #'foo) because of
1119 ;;; semantic difficulties (what happens if both :test and :test-not
1120 ;;; are supplied, etc) the -if-not variants, while officially
1121 ;;; deprecated, would be undeprecated were X3J13 actually to produce
1122 ;;; a revised standard, as there are perfectly legitimate idiomatic
1123 ;;; reasons for allowing the -if-not versions equal status,
1124 ;;; particularly remove-if-not (== filter).
1126 ;;; This is only an informal understanding, I grant you, but
1127 ;;; perhaps it's worth optimizing the -if-not versions in the same
1128 ;;; way as the others?
1130 ;;; FIXME: Maybe remove uses of these deprecated functions within the
1131 ;;; implementation of SBCL.
1132 (macrolet ((define-find-position-if-not (fun-name values-index)
1133 `(deftransform ,fun-name ((predicate sequence &key
1136 (t (or list vector) &rest t))
1139 (%find-position-if-not (%coerce-callable-to-fun predicate)
1142 (effective-find-position-key key))))))
1143 (define-find-position-if-not find-if-not 0)
1144 (define-find-position-if-not position-if-not 1))