1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
37 (declare (ignore ,rest))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
68 (let* ((name (car form))
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
75 `(,(ecase (char string i)
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; LIST with one arg is an extremely common operation (at least inside
118 ;;; SBCL itself); translate it to CONS to take advantage of common
119 ;;; allocation routines.
120 (define-source-transform list (&rest args)
122 (1 `(cons ,(first args) nil))
125 ;;; And similarly for LIST*.
126 (define-source-transform list* (arg &rest others)
127 (cond ((not others) arg)
128 ((not (cdr others)) `(cons ,arg ,(car others)))
131 (defoptimizer (list* derive-type) ((arg &rest args))
133 (specifier-type 'cons)
136 ;;; Translate RPLACx to LET and SETF.
137 (define-source-transform rplaca (x y)
142 (define-source-transform rplacd (x y)
148 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
150 (deftransform last ((list &optional n) (t &optional t))
151 (let ((c (constant-lvar-p n)))
153 (and c (eql 1 (lvar-value n))))
155 ((and c (eql 0 (lvar-value n)))
158 (let ((type (lvar-type n)))
159 (cond ((csubtypep type (specifier-type 'fixnum))
160 '(%lastn/fixnum list n))
161 ((csubtypep type (specifier-type 'bignum))
162 '(%lastn/bignum list n))
164 (give-up-ir1-transform "second argument type too vague"))))))))
166 (define-source-transform gethash (&rest args)
168 (2 `(sb!impl::gethash3 ,@args nil))
169 (3 `(sb!impl::gethash3 ,@args))
171 (define-source-transform get (&rest args)
173 (2 `(sb!impl::get2 ,@args))
174 (3 `(sb!impl::get3 ,@args))
177 (defvar *default-nthcdr-open-code-limit* 6)
178 (defvar *extreme-nthcdr-open-code-limit* 20)
180 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
181 "convert NTHCDR to CAxxR"
182 (unless (constant-lvar-p n)
183 (give-up-ir1-transform))
184 (let ((n (lvar-value n)))
186 (if (policy node (and (= speed 3) (= space 0)))
187 *extreme-nthcdr-open-code-limit*
188 *default-nthcdr-open-code-limit*))
189 (give-up-ir1-transform))
194 `(cdr ,(frob (1- n))))))
197 ;;;; arithmetic and numerology
199 (define-source-transform plusp (x) `(> ,x 0))
200 (define-source-transform minusp (x) `(< ,x 0))
201 (define-source-transform zerop (x) `(= ,x 0))
203 (define-source-transform 1+ (x) `(+ ,x 1))
204 (define-source-transform 1- (x) `(- ,x 1))
206 (define-source-transform oddp (x) `(logtest ,x 1))
207 (define-source-transform evenp (x) `(not (logtest ,x 1)))
209 ;;; Note that all the integer division functions are available for
210 ;;; inline expansion.
212 (macrolet ((deffrob (fun)
213 `(define-source-transform ,fun (x &optional (y nil y-p))
220 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
222 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
225 ;;; This used to be a source transform (hence the lack of restrictions
226 ;;; on the argument types), but we make it a regular transform so that
227 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
228 ;;; to implement it differently. --njf, 06-02-2006
229 (deftransform logtest ((x y) * *)
230 `(not (zerop (logand x y))))
232 (deftransform logbitp
233 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
234 (unsigned-byte #.sb!vm:n-word-bits))))
235 `(if (>= index #.sb!vm:n-word-bits)
237 (not (zerop (logand integer (ash 1 index))))))
239 (define-source-transform byte (size position)
240 `(cons ,size ,position))
241 (define-source-transform byte-size (spec) `(car ,spec))
242 (define-source-transform byte-position (spec) `(cdr ,spec))
243 (define-source-transform ldb-test (bytespec integer)
244 `(not (zerop (mask-field ,bytespec ,integer))))
246 ;;; With the ratio and complex accessors, we pick off the "identity"
247 ;;; case, and use a primitive to handle the cell access case.
248 (define-source-transform numerator (num)
249 (once-only ((n-num `(the rational ,num)))
253 (define-source-transform denominator (num)
254 (once-only ((n-num `(the rational ,num)))
256 (%denominator ,n-num)
259 ;;;; interval arithmetic for computing bounds
261 ;;;; This is a set of routines for operating on intervals. It
262 ;;;; implements a simple interval arithmetic package. Although SBCL
263 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
264 ;;;; for two reasons:
266 ;;;; 1. This package is simpler than NUMERIC-TYPE.
268 ;;;; 2. It makes debugging much easier because you can just strip
269 ;;;; out these routines and test them independently of SBCL. (This is a
272 ;;;; One disadvantage is a probable increase in consing because we
273 ;;;; have to create these new interval structures even though
274 ;;;; numeric-type has everything we want to know. Reason 2 wins for
277 ;;; Support operations that mimic real arithmetic comparison
278 ;;; operators, but imposing a total order on the floating points such
279 ;;; that negative zeros are strictly less than positive zeros.
280 (macrolet ((def (name op)
283 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
284 (,op (float-sign x) (float-sign y))
286 (def signed-zero->= >=)
287 (def signed-zero-> >)
288 (def signed-zero-= =)
289 (def signed-zero-< <)
290 (def signed-zero-<= <=))
292 ;;; The basic interval type. It can handle open and closed intervals.
293 ;;; A bound is open if it is a list containing a number, just like
294 ;;; Lisp says. NIL means unbounded.
295 (defstruct (interval (:constructor %make-interval)
299 (defun make-interval (&key low high)
300 (labels ((normalize-bound (val)
303 (float-infinity-p val))
304 ;; Handle infinities.
308 ;; Handle any closed bounds.
311 ;; We have an open bound. Normalize the numeric
312 ;; bound. If the normalized bound is still a number
313 ;; (not nil), keep the bound open. Otherwise, the
314 ;; bound is really unbounded, so drop the openness.
315 (let ((new-val (normalize-bound (first val))))
317 ;; The bound exists, so keep it open still.
320 (error "unknown bound type in MAKE-INTERVAL")))))
321 (%make-interval :low (normalize-bound low)
322 :high (normalize-bound high))))
324 ;;; Given a number X, create a form suitable as a bound for an
325 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
326 #!-sb-fluid (declaim (inline set-bound))
327 (defun set-bound (x open-p)
328 (if (and x open-p) (list x) x))
330 ;;; Apply the function F to a bound X. If X is an open bound, then
331 ;;; the result will be open. IF X is NIL, the result is NIL.
332 (defun bound-func (f x)
333 (declare (type function f))
335 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
336 ;; With these traps masked, we might get things like infinity
337 ;; or negative infinity returned. Check for this and return
338 ;; NIL to indicate unbounded.
339 (let ((y (funcall f (type-bound-number x))))
341 (float-infinity-p y))
343 (set-bound y (consp x)))))))
345 ;;; Apply a binary operator OP to two bounds X and Y. The result is
346 ;;; NIL if either is NIL. Otherwise bound is computed and the result
347 ;;; is open if either X or Y is open.
349 ;;; FIXME: only used in this file, not needed in target runtime
351 ;;; ANSI contaigon specifies coercion to floating point if one of the
352 ;;; arguments is floating point. Here we should check to be sure that
353 ;;; the other argument is within the bounds of that floating point
356 (defmacro safely-binop (op x y)
358 ((typep ,x 'single-float)
359 (if (or (typep ,y 'single-float)
360 (<= most-negative-single-float ,y most-positive-single-float))
362 ((typep ,x 'double-float)
363 (if (or (typep ,y 'double-float)
364 (<= most-negative-double-float ,y most-positive-double-float))
366 ((typep ,y 'single-float)
367 (if (<= most-negative-single-float ,x most-positive-single-float)
369 ((typep ,y 'double-float)
370 (if (<= most-negative-double-float ,x most-positive-double-float)
374 (defmacro bound-binop (op x y)
376 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
377 (set-bound (safely-binop ,op (type-bound-number ,x)
378 (type-bound-number ,y))
379 (or (consp ,x) (consp ,y))))))
381 (defun coerce-for-bound (val type)
383 (list (coerce-for-bound (car val) type))
385 ((subtypep type 'double-float)
386 (if (<= most-negative-double-float val most-positive-double-float)
388 ((or (subtypep type 'single-float) (subtypep type 'float))
389 ;; coerce to float returns a single-float
390 (if (<= most-negative-single-float val most-positive-single-float)
392 (t (coerce val type)))))
394 (defun coerce-and-truncate-floats (val type)
397 (list (coerce-and-truncate-floats (car val) type))
399 ((subtypep type 'double-float)
400 (if (<= most-negative-double-float val most-positive-double-float)
402 (if (< val most-negative-double-float)
403 most-negative-double-float most-positive-double-float)))
404 ((or (subtypep type 'single-float) (subtypep type 'float))
405 ;; coerce to float returns a single-float
406 (if (<= most-negative-single-float val most-positive-single-float)
408 (if (< val most-negative-single-float)
409 most-negative-single-float most-positive-single-float)))
410 (t (coerce val type))))))
412 ;;; Convert a numeric-type object to an interval object.
413 (defun numeric-type->interval (x)
414 (declare (type numeric-type x))
415 (make-interval :low (numeric-type-low x)
416 :high (numeric-type-high x)))
418 (defun type-approximate-interval (type)
419 (declare (type ctype type))
420 (let ((types (prepare-arg-for-derive-type type))
423 (let ((type (if (member-type-p type)
424 (convert-member-type type)
426 (unless (numeric-type-p type)
427 (return-from type-approximate-interval nil))
428 (let ((interval (numeric-type->interval type)))
431 (interval-approximate-union result interval)
435 (defun copy-interval-limit (limit)
440 (defun copy-interval (x)
441 (declare (type interval x))
442 (make-interval :low (copy-interval-limit (interval-low x))
443 :high (copy-interval-limit (interval-high x))))
445 ;;; Given a point P contained in the interval X, split X into two
446 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
447 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
448 ;;; contains P. You can specify both to be T or NIL.
449 (defun interval-split (p x &optional close-lower close-upper)
450 (declare (type number p)
452 (list (make-interval :low (copy-interval-limit (interval-low x))
453 :high (if close-lower p (list p)))
454 (make-interval :low (if close-upper (list p) p)
455 :high (copy-interval-limit (interval-high x)))))
457 ;;; Return the closure of the interval. That is, convert open bounds
458 ;;; to closed bounds.
459 (defun interval-closure (x)
460 (declare (type interval x))
461 (make-interval :low (type-bound-number (interval-low x))
462 :high (type-bound-number (interval-high x))))
464 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
465 ;;; '-. Otherwise return NIL.
466 (defun interval-range-info (x &optional (point 0))
467 (declare (type interval x))
468 (let ((lo (interval-low x))
469 (hi (interval-high x)))
470 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
472 ((and hi (signed-zero->= point (type-bound-number hi)))
477 ;;; Test to see whether the interval X is bounded. HOW determines the
478 ;;; test, and should be either ABOVE, BELOW, or BOTH.
479 (defun interval-bounded-p (x how)
480 (declare (type interval x))
487 (and (interval-low x) (interval-high x)))))
489 ;;; See whether the interval X contains the number P, taking into
490 ;;; account that the interval might not be closed.
491 (defun interval-contains-p (p x)
492 (declare (type number p)
494 ;; Does the interval X contain the number P? This would be a lot
495 ;; easier if all intervals were closed!
496 (let ((lo (interval-low x))
497 (hi (interval-high x)))
499 ;; The interval is bounded
500 (if (and (signed-zero-<= (type-bound-number lo) p)
501 (signed-zero-<= p (type-bound-number hi)))
502 ;; P is definitely in the closure of the interval.
503 ;; We just need to check the end points now.
504 (cond ((signed-zero-= p (type-bound-number lo))
506 ((signed-zero-= p (type-bound-number hi))
511 ;; Interval with upper bound
512 (if (signed-zero-< p (type-bound-number hi))
514 (and (numberp hi) (signed-zero-= p hi))))
516 ;; Interval with lower bound
517 (if (signed-zero-> p (type-bound-number lo))
519 (and (numberp lo) (signed-zero-= p lo))))
521 ;; Interval with no bounds
524 ;;; Determine whether two intervals X and Y intersect. Return T if so.
525 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
526 ;;; were closed. Otherwise the intervals are treated as they are.
528 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
529 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
530 ;;; is T, then they do intersect because we use the closure of X = [0,
531 ;;; 1] and Y = [1, 2] to determine intersection.
532 (defun interval-intersect-p (x y &optional closed-intervals-p)
533 (declare (type interval x y))
534 (and (interval-intersection/difference (if closed-intervals-p
537 (if closed-intervals-p
542 ;;; Are the two intervals adjacent? That is, is there a number
543 ;;; between the two intervals that is not an element of either
544 ;;; interval? If so, they are not adjacent. For example [0, 1) and
545 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
546 ;;; between both intervals.
547 (defun interval-adjacent-p (x y)
548 (declare (type interval x y))
549 (flet ((adjacent (lo hi)
550 ;; Check to see whether lo and hi are adjacent. If either is
551 ;; nil, they can't be adjacent.
552 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
553 ;; The bounds are equal. They are adjacent if one of
554 ;; them is closed (a number). If both are open (consp),
555 ;; then there is a number that lies between them.
556 (or (numberp lo) (numberp hi)))))
557 (or (adjacent (interval-low y) (interval-high x))
558 (adjacent (interval-low x) (interval-high y)))))
560 ;;; Compute the intersection and difference between two intervals.
561 ;;; Two values are returned: the intersection and the difference.
563 ;;; Let the two intervals be X and Y, and let I and D be the two
564 ;;; values returned by this function. Then I = X intersect Y. If I
565 ;;; is NIL (the empty set), then D is X union Y, represented as the
566 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
567 ;;; - I, which is a list of two intervals.
569 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
570 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
571 (defun interval-intersection/difference (x y)
572 (declare (type interval x y))
573 (let ((x-lo (interval-low x))
574 (x-hi (interval-high x))
575 (y-lo (interval-low y))
576 (y-hi (interval-high y)))
579 ;; If p is an open bound, make it closed. If p is a closed
580 ;; bound, make it open.
584 (test-number (p int bound)
585 ;; Test whether P is in the interval.
586 (let ((pn (type-bound-number p)))
587 (when (interval-contains-p pn (interval-closure int))
588 ;; Check for endpoints.
589 (let* ((lo (interval-low int))
590 (hi (interval-high int))
591 (lon (type-bound-number lo))
592 (hin (type-bound-number hi)))
594 ;; Interval may be a point.
595 ((and lon hin (= lon hin pn))
596 (and (numberp p) (numberp lo) (numberp hi)))
597 ;; Point matches the low end.
598 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
599 ;; (P [P,?} => TRUE P) [P,?} => FALSE
600 ;; (P (P,?} => TRUE P) (P,?} => FALSE
601 ((and lon (= pn lon))
602 (or (and (numberp p) (numberp lo))
603 (and (consp p) (eq :low bound))))
604 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
605 ;; P) {?,P] => TRUE (P {?,P] => FALSE
606 ;; P) {?,P) => TRUE (P {?,P) => FALSE
607 ((and hin (= pn hin))
608 (or (and (numberp p) (numberp hi))
609 (and (consp p) (eq :high bound))))
610 ;; Not an endpoint, all is well.
613 (test-lower-bound (p int)
614 ;; P is a lower bound of an interval.
616 (test-number p int :low)
617 (not (interval-bounded-p int 'below))))
618 (test-upper-bound (p int)
619 ;; P is an upper bound of an interval.
621 (test-number p int :high)
622 (not (interval-bounded-p int 'above)))))
623 (let ((x-lo-in-y (test-lower-bound x-lo y))
624 (x-hi-in-y (test-upper-bound x-hi y))
625 (y-lo-in-x (test-lower-bound y-lo x))
626 (y-hi-in-x (test-upper-bound y-hi x)))
627 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
628 ;; Intervals intersect. Let's compute the intersection
629 ;; and the difference.
630 (multiple-value-bind (lo left-lo left-hi)
631 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
632 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
633 (multiple-value-bind (hi right-lo right-hi)
635 (values x-hi (opposite-bound x-hi) y-hi))
637 (values y-hi (opposite-bound y-hi) x-hi)))
638 (values (make-interval :low lo :high hi)
639 (list (make-interval :low left-lo
641 (make-interval :low right-lo
644 (values nil (list x y))))))))
646 ;;; If intervals X and Y intersect, return a new interval that is the
647 ;;; union of the two. If they do not intersect, return NIL.
648 (defun interval-merge-pair (x y)
649 (declare (type interval x y))
650 ;; If x and y intersect or are adjacent, create the union.
651 ;; Otherwise return nil
652 (when (or (interval-intersect-p x y)
653 (interval-adjacent-p x y))
654 (flet ((select-bound (x1 x2 min-op max-op)
655 (let ((x1-val (type-bound-number x1))
656 (x2-val (type-bound-number x2)))
658 ;; Both bounds are finite. Select the right one.
659 (cond ((funcall min-op x1-val x2-val)
660 ;; x1 is definitely better.
662 ((funcall max-op x1-val x2-val)
663 ;; x2 is definitely better.
666 ;; Bounds are equal. Select either
667 ;; value and make it open only if
669 (set-bound x1-val (and (consp x1) (consp x2))))))
671 ;; At least one bound is not finite. The
672 ;; non-finite bound always wins.
674 (let* ((x-lo (copy-interval-limit (interval-low x)))
675 (x-hi (copy-interval-limit (interval-high x)))
676 (y-lo (copy-interval-limit (interval-low y)))
677 (y-hi (copy-interval-limit (interval-high y))))
678 (make-interval :low (select-bound x-lo y-lo #'< #'>)
679 :high (select-bound x-hi y-hi #'> #'<))))))
681 ;;; return the minimal interval, containing X and Y
682 (defun interval-approximate-union (x y)
683 (cond ((interval-merge-pair x y))
685 (make-interval :low (copy-interval-limit (interval-low x))
686 :high (copy-interval-limit (interval-high y))))
688 (make-interval :low (copy-interval-limit (interval-low y))
689 :high (copy-interval-limit (interval-high x))))))
691 ;;; basic arithmetic operations on intervals. We probably should do
692 ;;; true interval arithmetic here, but it's complicated because we
693 ;;; have float and integer types and bounds can be open or closed.
695 ;;; the negative of an interval
696 (defun interval-neg (x)
697 (declare (type interval x))
698 (make-interval :low (bound-func #'- (interval-high x))
699 :high (bound-func #'- (interval-low x))))
701 ;;; Add two intervals.
702 (defun interval-add (x y)
703 (declare (type interval x y))
704 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
705 :high (bound-binop + (interval-high x) (interval-high y))))
707 ;;; Subtract two intervals.
708 (defun interval-sub (x y)
709 (declare (type interval x y))
710 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
711 :high (bound-binop - (interval-high x) (interval-low y))))
713 ;;; Multiply two intervals.
714 (defun interval-mul (x y)
715 (declare (type interval x y))
716 (flet ((bound-mul (x y)
717 (cond ((or (null x) (null y))
718 ;; Multiply by infinity is infinity
720 ((or (and (numberp x) (zerop x))
721 (and (numberp y) (zerop y)))
722 ;; Multiply by closed zero is special. The result
723 ;; is always a closed bound. But don't replace this
724 ;; with zero; we want the multiplication to produce
725 ;; the correct signed zero, if needed. Use SIGNUM
726 ;; to avoid trying to multiply huge bignums with 0.0.
727 (* (signum (type-bound-number x)) (signum (type-bound-number y))))
728 ((or (and (floatp x) (float-infinity-p x))
729 (and (floatp y) (float-infinity-p y)))
730 ;; Infinity times anything is infinity
733 ;; General multiply. The result is open if either is open.
734 (bound-binop * x y)))))
735 (let ((x-range (interval-range-info x))
736 (y-range (interval-range-info y)))
737 (cond ((null x-range)
738 ;; Split x into two and multiply each separately
739 (destructuring-bind (x- x+) (interval-split 0 x t t)
740 (interval-merge-pair (interval-mul x- y)
741 (interval-mul x+ y))))
743 ;; Split y into two and multiply each separately
744 (destructuring-bind (y- y+) (interval-split 0 y t t)
745 (interval-merge-pair (interval-mul x y-)
746 (interval-mul x y+))))
748 (interval-neg (interval-mul (interval-neg x) y)))
750 (interval-neg (interval-mul x (interval-neg y))))
751 ((and (eq x-range '+) (eq y-range '+))
752 ;; If we are here, X and Y are both positive.
754 :low (bound-mul (interval-low x) (interval-low y))
755 :high (bound-mul (interval-high x) (interval-high y))))
757 (bug "excluded case in INTERVAL-MUL"))))))
759 ;;; Divide two intervals.
760 (defun interval-div (top bot)
761 (declare (type interval top bot))
762 (flet ((bound-div (x y y-low-p)
765 ;; Divide by infinity means result is 0. However,
766 ;; we need to watch out for the sign of the result,
767 ;; to correctly handle signed zeros. We also need
768 ;; to watch out for positive or negative infinity.
769 (if (floatp (type-bound-number x))
771 (- (float-sign (type-bound-number x) 0.0))
772 (float-sign (type-bound-number x) 0.0))
774 ((zerop (type-bound-number y))
775 ;; Divide by zero means result is infinity
777 ((and (numberp x) (zerop x))
778 ;; Zero divided by anything is zero.
781 (bound-binop / x y)))))
782 (let ((top-range (interval-range-info top))
783 (bot-range (interval-range-info bot)))
784 (cond ((null bot-range)
785 ;; The denominator contains zero, so anything goes!
786 (make-interval :low nil :high nil))
788 ;; Denominator is negative so flip the sign, compute the
789 ;; result, and flip it back.
790 (interval-neg (interval-div top (interval-neg bot))))
792 ;; Split top into two positive and negative parts, and
793 ;; divide each separately
794 (destructuring-bind (top- top+) (interval-split 0 top t t)
795 (interval-merge-pair (interval-div top- bot)
796 (interval-div top+ bot))))
798 ;; Top is negative so flip the sign, divide, and flip the
799 ;; sign of the result.
800 (interval-neg (interval-div (interval-neg top) bot)))
801 ((and (eq top-range '+) (eq bot-range '+))
804 :low (bound-div (interval-low top) (interval-high bot) t)
805 :high (bound-div (interval-high top) (interval-low bot) nil)))
807 (bug "excluded case in INTERVAL-DIV"))))))
809 ;;; Apply the function F to the interval X. If X = [a, b], then the
810 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
811 ;;; result makes sense. It will if F is monotonic increasing (or
813 (defun interval-func (f x)
814 (declare (type function f)
816 (let ((lo (bound-func f (interval-low x)))
817 (hi (bound-func f (interval-high x))))
818 (make-interval :low lo :high hi)))
820 ;;; Return T if X < Y. That is every number in the interval X is
821 ;;; always less than any number in the interval Y.
822 (defun interval-< (x y)
823 (declare (type interval x y))
824 ;; X < Y only if X is bounded above, Y is bounded below, and they
826 (when (and (interval-bounded-p x 'above)
827 (interval-bounded-p y 'below))
828 ;; Intervals are bounded in the appropriate way. Make sure they
830 (let ((left (interval-high x))
831 (right (interval-low y)))
832 (cond ((> (type-bound-number left)
833 (type-bound-number right))
834 ;; The intervals definitely overlap, so result is NIL.
836 ((< (type-bound-number left)
837 (type-bound-number right))
838 ;; The intervals definitely don't touch, so result is T.
841 ;; Limits are equal. Check for open or closed bounds.
842 ;; Don't overlap if one or the other are open.
843 (or (consp left) (consp right)))))))
845 ;;; Return T if X >= Y. That is, every number in the interval X is
846 ;;; always greater than any number in the interval Y.
847 (defun interval->= (x y)
848 (declare (type interval x y))
849 ;; X >= Y if lower bound of X >= upper bound of Y
850 (when (and (interval-bounded-p x 'below)
851 (interval-bounded-p y 'above))
852 (>= (type-bound-number (interval-low x))
853 (type-bound-number (interval-high y)))))
855 ;;; Return T if X = Y.
856 (defun interval-= (x y)
857 (declare (type interval x y))
858 (and (interval-bounded-p x 'both)
859 (interval-bounded-p y 'both)
863 ;; Open intervals cannot be =
864 (return-from interval-= nil))))
865 ;; Both intervals refer to the same point
866 (= (bound (interval-high x)) (bound (interval-low x))
867 (bound (interval-high y)) (bound (interval-low y))))))
869 ;;; Return T if X /= Y
870 (defun interval-/= (x y)
871 (not (interval-intersect-p x y)))
873 ;;; Return an interval that is the absolute value of X. Thus, if
874 ;;; X = [-1 10], the result is [0, 10].
875 (defun interval-abs (x)
876 (declare (type interval x))
877 (case (interval-range-info x)
883 (destructuring-bind (x- x+) (interval-split 0 x t t)
884 (interval-merge-pair (interval-neg x-) x+)))))
886 ;;; Compute the square of an interval.
887 (defun interval-sqr (x)
888 (declare (type interval x))
889 (interval-func (lambda (x) (* x x))
892 ;;;; numeric DERIVE-TYPE methods
894 ;;; a utility for defining derive-type methods of integer operations. If
895 ;;; the types of both X and Y are integer types, then we compute a new
896 ;;; integer type with bounds determined Fun when applied to X and Y.
897 ;;; Otherwise, we use NUMERIC-CONTAGION.
898 (defun derive-integer-type-aux (x y fun)
899 (declare (type function fun))
900 (if (and (numeric-type-p x) (numeric-type-p y)
901 (eq (numeric-type-class x) 'integer)
902 (eq (numeric-type-class y) 'integer)
903 (eq (numeric-type-complexp x) :real)
904 (eq (numeric-type-complexp y) :real))
905 (multiple-value-bind (low high) (funcall fun x y)
906 (make-numeric-type :class 'integer
910 (numeric-contagion x y)))
912 (defun derive-integer-type (x y fun)
913 (declare (type lvar x y) (type function fun))
914 (let ((x (lvar-type x))
916 (derive-integer-type-aux x y fun)))
918 ;;; simple utility to flatten a list
919 (defun flatten-list (x)
920 (labels ((flatten-and-append (tree list)
921 (cond ((null tree) list)
922 ((atom tree) (cons tree list))
923 (t (flatten-and-append
924 (car tree) (flatten-and-append (cdr tree) list))))))
925 (flatten-and-append x nil)))
927 ;;; Take some type of lvar and massage it so that we get a list of the
928 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
930 (defun prepare-arg-for-derive-type (arg)
931 (flet ((listify (arg)
936 (union-type-types arg))
939 (unless (eq arg *empty-type*)
940 ;; Make sure all args are some type of numeric-type. For member
941 ;; types, convert the list of members into a union of equivalent
942 ;; single-element member-type's.
943 (let ((new-args nil))
944 (dolist (arg (listify arg))
945 (if (member-type-p arg)
946 ;; Run down the list of members and convert to a list of
948 (mapc-member-type-members
950 (push (if (numberp member)
951 (make-member-type :members (list member))
955 (push arg new-args)))
956 (unless (member *empty-type* new-args)
959 ;;; Convert from the standard type convention for which -0.0 and 0.0
960 ;;; are equal to an intermediate convention for which they are
961 ;;; considered different which is more natural for some of the
963 (defun convert-numeric-type (type)
964 (declare (type numeric-type type))
965 ;;; Only convert real float interval delimiters types.
966 (if (eq (numeric-type-complexp type) :real)
967 (let* ((lo (numeric-type-low type))
968 (lo-val (type-bound-number lo))
969 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
970 (hi (numeric-type-high type))
971 (hi-val (type-bound-number hi))
972 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
973 (if (or lo-float-zero-p hi-float-zero-p)
975 :class (numeric-type-class type)
976 :format (numeric-type-format type)
978 :low (if lo-float-zero-p
980 (list (float 0.0 lo-val))
981 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
983 :high (if hi-float-zero-p
985 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
992 ;;; Convert back from the intermediate convention for which -0.0 and
993 ;;; 0.0 are considered different to the standard type convention for
995 (defun convert-back-numeric-type (type)
996 (declare (type numeric-type type))
997 ;;; Only convert real float interval delimiters types.
998 (if (eq (numeric-type-complexp type) :real)
999 (let* ((lo (numeric-type-low type))
1000 (lo-val (type-bound-number lo))
1002 (and lo (floatp lo-val) (= lo-val 0.0)
1003 (float-sign lo-val)))
1004 (hi (numeric-type-high type))
1005 (hi-val (type-bound-number hi))
1007 (and hi (floatp hi-val) (= hi-val 0.0)
1008 (float-sign hi-val))))
1010 ;; (float +0.0 +0.0) => (member 0.0)
1011 ;; (float -0.0 -0.0) => (member -0.0)
1012 ((and lo-float-zero-p hi-float-zero-p)
1013 ;; shouldn't have exclusive bounds here..
1014 (aver (and (not (consp lo)) (not (consp hi))))
1015 (if (= lo-float-zero-p hi-float-zero-p)
1016 ;; (float +0.0 +0.0) => (member 0.0)
1017 ;; (float -0.0 -0.0) => (member -0.0)
1018 (specifier-type `(member ,lo-val))
1019 ;; (float -0.0 +0.0) => (float 0.0 0.0)
1020 ;; (float +0.0 -0.0) => (float 0.0 0.0)
1021 (make-numeric-type :class (numeric-type-class type)
1022 :format (numeric-type-format type)
1028 ;; (float -0.0 x) => (float 0.0 x)
1029 ((and (not (consp lo)) (minusp lo-float-zero-p))
1030 (make-numeric-type :class (numeric-type-class type)
1031 :format (numeric-type-format type)
1033 :low (float 0.0 lo-val)
1035 ;; (float (+0.0) x) => (float (0.0) x)
1036 ((and (consp lo) (plusp lo-float-zero-p))
1037 (make-numeric-type :class (numeric-type-class type)
1038 :format (numeric-type-format type)
1040 :low (list (float 0.0 lo-val))
1043 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1044 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1045 (list (make-member-type :members (list (float 0.0 lo-val)))
1046 (make-numeric-type :class (numeric-type-class type)
1047 :format (numeric-type-format type)
1049 :low (list (float 0.0 lo-val))
1053 ;; (float x +0.0) => (float x 0.0)
1054 ((and (not (consp hi)) (plusp hi-float-zero-p))
1055 (make-numeric-type :class (numeric-type-class type)
1056 :format (numeric-type-format type)
1059 :high (float 0.0 hi-val)))
1060 ;; (float x (-0.0)) => (float x (0.0))
1061 ((and (consp hi) (minusp hi-float-zero-p))
1062 (make-numeric-type :class (numeric-type-class type)
1063 :format (numeric-type-format type)
1066 :high (list (float 0.0 hi-val))))
1068 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1069 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1070 (list (make-member-type :members (list (float -0.0 hi-val)))
1071 (make-numeric-type :class (numeric-type-class type)
1072 :format (numeric-type-format type)
1075 :high (list (float 0.0 hi-val)))))))
1081 ;;; Convert back a possible list of numeric types.
1082 (defun convert-back-numeric-type-list (type-list)
1085 (let ((results '()))
1086 (dolist (type type-list)
1087 (if (numeric-type-p type)
1088 (let ((result (convert-back-numeric-type type)))
1090 (setf results (append results result))
1091 (push result results)))
1092 (push type results)))
1095 (convert-back-numeric-type type-list))
1097 (convert-back-numeric-type-list (union-type-types type-list)))
1101 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1102 ;;; belong in the kernel's type logic, invoked always, instead of in
1103 ;;; the compiler, invoked only during some type optimizations. (In
1104 ;;; fact, as of 0.pre8.100 or so they probably are, under
1105 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1107 ;;; Take a list of types and return a canonical type specifier,
1108 ;;; combining any MEMBER types together. If both positive and negative
1109 ;;; MEMBER types are present they are converted to a float type.
1110 ;;; XXX This would be far simpler if the type-union methods could handle
1111 ;;; member/number unions.
1112 (defun make-canonical-union-type (type-list)
1113 (let ((xset (alloc-xset))
1116 (dolist (type type-list)
1117 (cond ((member-type-p type)
1118 (mapc-member-type-members
1120 (if (fp-zero-p member)
1121 (unless (member member fp-zeroes)
1122 (pushnew member fp-zeroes))
1123 (add-to-xset member xset)))
1126 (push type misc-types))))
1127 (if (and (xset-empty-p xset) (not fp-zeroes))
1128 (apply #'type-union misc-types)
1129 (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes) misc-types))))
1131 ;;; Convert a member type with a single member to a numeric type.
1132 (defun convert-member-type (arg)
1133 (let* ((members (member-type-members arg))
1134 (member (first members))
1135 (member-type (type-of member)))
1136 (aver (not (rest members)))
1137 (specifier-type (cond ((typep member 'integer)
1138 `(integer ,member ,member))
1139 ((memq member-type '(short-float single-float
1140 double-float long-float))
1141 `(,member-type ,member ,member))
1145 ;;; This is used in defoptimizers for computing the resulting type of
1148 ;;; Given the lvar ARG, derive the resulting type using the
1149 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1150 ;;; "atomic" lvar type like numeric-type or member-type (containing
1151 ;;; just one element). It should return the resulting type, which can
1152 ;;; be a list of types.
1154 ;;; For the case of member types, if a MEMBER-FUN is given it is
1155 ;;; called to compute the result otherwise the member type is first
1156 ;;; converted to a numeric type and the DERIVE-FUN is called.
1157 (defun one-arg-derive-type (arg derive-fun member-fun
1158 &optional (convert-type t))
1159 (declare (type function derive-fun)
1160 (type (or null function) member-fun))
1161 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1167 (with-float-traps-masked
1168 (:underflow :overflow :divide-by-zero)
1170 `(eql ,(funcall member-fun
1171 (first (member-type-members x))))))
1172 ;; Otherwise convert to a numeric type.
1173 (let ((result-type-list
1174 (funcall derive-fun (convert-member-type x))))
1176 (convert-back-numeric-type-list result-type-list)
1177 result-type-list))))
1180 (convert-back-numeric-type-list
1181 (funcall derive-fun (convert-numeric-type x)))
1182 (funcall derive-fun x)))
1184 *universal-type*))))
1185 ;; Run down the list of args and derive the type of each one,
1186 ;; saving all of the results in a list.
1187 (let ((results nil))
1188 (dolist (arg arg-list)
1189 (let ((result (deriver arg)))
1191 (setf results (append results result))
1192 (push result results))))
1194 (make-canonical-union-type results)
1195 (first results)))))))
1197 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1198 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1199 ;;; original args and a third which is T to indicate if the two args
1200 ;;; really represent the same lvar. This is useful for deriving the
1201 ;;; type of things like (* x x), which should always be positive. If
1202 ;;; we didn't do this, we wouldn't be able to tell.
1203 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1204 &optional (convert-type t))
1205 (declare (type function derive-fun fun))
1206 (flet ((deriver (x y same-arg)
1207 (cond ((and (member-type-p x) (member-type-p y))
1208 (let* ((x (first (member-type-members x)))
1209 (y (first (member-type-members y)))
1210 (result (ignore-errors
1211 (with-float-traps-masked
1212 (:underflow :overflow :divide-by-zero
1214 (funcall fun x y)))))
1215 (cond ((null result) *empty-type*)
1216 ((and (floatp result) (float-nan-p result))
1217 (make-numeric-type :class 'float
1218 :format (type-of result)
1221 (specifier-type `(eql ,result))))))
1222 ((and (member-type-p x) (numeric-type-p y))
1223 (let* ((x (convert-member-type x))
1224 (y (if convert-type (convert-numeric-type y) y))
1225 (result (funcall derive-fun x y same-arg)))
1227 (convert-back-numeric-type-list result)
1229 ((and (numeric-type-p x) (member-type-p y))
1230 (let* ((x (if convert-type (convert-numeric-type x) x))
1231 (y (convert-member-type y))
1232 (result (funcall derive-fun x y same-arg)))
1234 (convert-back-numeric-type-list result)
1236 ((and (numeric-type-p x) (numeric-type-p y))
1237 (let* ((x (if convert-type (convert-numeric-type x) x))
1238 (y (if convert-type (convert-numeric-type y) y))
1239 (result (funcall derive-fun x y same-arg)))
1241 (convert-back-numeric-type-list result)
1244 *universal-type*))))
1245 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1246 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1247 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1249 (let ((results nil))
1251 ;; Since the args are the same LVARs, just run down the
1254 (let ((result (deriver x x same-arg)))
1256 (setf results (append results result))
1257 (push result results))))
1258 ;; Try all pairwise combinations.
1261 (let ((result (or (deriver x y same-arg)
1262 (numeric-contagion x y))))
1264 (setf results (append results result))
1265 (push result results))))))
1267 (make-canonical-union-type results)
1268 (first results)))))))
1270 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1272 (defoptimizer (+ derive-type) ((x y))
1273 (derive-integer-type
1280 (values (frob (numeric-type-low x) (numeric-type-low y))
1281 (frob (numeric-type-high x) (numeric-type-high y)))))))
1283 (defoptimizer (- derive-type) ((x y))
1284 (derive-integer-type
1291 (values (frob (numeric-type-low x) (numeric-type-high y))
1292 (frob (numeric-type-high x) (numeric-type-low y)))))))
1294 (defoptimizer (* derive-type) ((x y))
1295 (derive-integer-type
1298 (let ((x-low (numeric-type-low x))
1299 (x-high (numeric-type-high x))
1300 (y-low (numeric-type-low y))
1301 (y-high (numeric-type-high y)))
1302 (cond ((not (and x-low y-low))
1304 ((or (minusp x-low) (minusp y-low))
1305 (if (and x-high y-high)
1306 (let ((max (* (max (abs x-low) (abs x-high))
1307 (max (abs y-low) (abs y-high)))))
1308 (values (- max) max))
1311 (values (* x-low y-low)
1312 (if (and x-high y-high)
1316 (defoptimizer (/ derive-type) ((x y))
1317 (numeric-contagion (lvar-type x) (lvar-type y)))
1321 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1323 (defun +-derive-type-aux (x y same-arg)
1324 (if (and (numeric-type-real-p x)
1325 (numeric-type-real-p y))
1328 (let ((x-int (numeric-type->interval x)))
1329 (interval-add x-int x-int))
1330 (interval-add (numeric-type->interval x)
1331 (numeric-type->interval y))))
1332 (result-type (numeric-contagion x y)))
1333 ;; If the result type is a float, we need to be sure to coerce
1334 ;; the bounds into the correct type.
1335 (when (eq (numeric-type-class result-type) 'float)
1336 (setf result (interval-func
1338 (coerce-for-bound x (or (numeric-type-format result-type)
1342 :class (if (and (eq (numeric-type-class x) 'integer)
1343 (eq (numeric-type-class y) 'integer))
1344 ;; The sum of integers is always an integer.
1346 (numeric-type-class result-type))
1347 :format (numeric-type-format result-type)
1348 :low (interval-low result)
1349 :high (interval-high result)))
1350 ;; general contagion
1351 (numeric-contagion x y)))
1353 (defoptimizer (+ derive-type) ((x y))
1354 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1356 (defun --derive-type-aux (x y same-arg)
1357 (if (and (numeric-type-real-p x)
1358 (numeric-type-real-p y))
1360 ;; (- X X) is always 0.
1362 (make-interval :low 0 :high 0)
1363 (interval-sub (numeric-type->interval x)
1364 (numeric-type->interval y))))
1365 (result-type (numeric-contagion x y)))
1366 ;; If the result type is a float, we need to be sure to coerce
1367 ;; the bounds into the correct type.
1368 (when (eq (numeric-type-class result-type) 'float)
1369 (setf result (interval-func
1371 (coerce-for-bound x (or (numeric-type-format result-type)
1375 :class (if (and (eq (numeric-type-class x) 'integer)
1376 (eq (numeric-type-class y) 'integer))
1377 ;; The difference of integers is always an integer.
1379 (numeric-type-class result-type))
1380 :format (numeric-type-format result-type)
1381 :low (interval-low result)
1382 :high (interval-high result)))
1383 ;; general contagion
1384 (numeric-contagion x y)))
1386 (defoptimizer (- derive-type) ((x y))
1387 (two-arg-derive-type x y #'--derive-type-aux #'-))
1389 (defun *-derive-type-aux (x y same-arg)
1390 (if (and (numeric-type-real-p x)
1391 (numeric-type-real-p y))
1393 ;; (* X X) is always positive, so take care to do it right.
1395 (interval-sqr (numeric-type->interval x))
1396 (interval-mul (numeric-type->interval x)
1397 (numeric-type->interval y))))
1398 (result-type (numeric-contagion x y)))
1399 ;; If the result type is a float, we need to be sure to coerce
1400 ;; the bounds into the correct type.
1401 (when (eq (numeric-type-class result-type) 'float)
1402 (setf result (interval-func
1404 (coerce-for-bound x (or (numeric-type-format result-type)
1408 :class (if (and (eq (numeric-type-class x) 'integer)
1409 (eq (numeric-type-class y) 'integer))
1410 ;; The product of integers is always an integer.
1412 (numeric-type-class result-type))
1413 :format (numeric-type-format result-type)
1414 :low (interval-low result)
1415 :high (interval-high result)))
1416 (numeric-contagion x y)))
1418 (defoptimizer (* derive-type) ((x y))
1419 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1421 (defun /-derive-type-aux (x y same-arg)
1422 (if (and (numeric-type-real-p x)
1423 (numeric-type-real-p y))
1425 ;; (/ X X) is always 1, except if X can contain 0. In
1426 ;; that case, we shouldn't optimize the division away
1427 ;; because we want 0/0 to signal an error.
1429 (not (interval-contains-p
1430 0 (interval-closure (numeric-type->interval y)))))
1431 (make-interval :low 1 :high 1)
1432 (interval-div (numeric-type->interval x)
1433 (numeric-type->interval y))))
1434 (result-type (numeric-contagion x y)))
1435 ;; If the result type is a float, we need to be sure to coerce
1436 ;; the bounds into the correct type.
1437 (when (eq (numeric-type-class result-type) 'float)
1438 (setf result (interval-func
1440 (coerce-for-bound x (or (numeric-type-format result-type)
1443 (make-numeric-type :class (numeric-type-class result-type)
1444 :format (numeric-type-format result-type)
1445 :low (interval-low result)
1446 :high (interval-high result)))
1447 (numeric-contagion x y)))
1449 (defoptimizer (/ derive-type) ((x y))
1450 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1454 (defun ash-derive-type-aux (n-type shift same-arg)
1455 (declare (ignore same-arg))
1456 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1457 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1458 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1459 ;; two bignums yielding zero) and it's hard to avoid that
1460 ;; calculation in here.
1461 #+(and cmu sb-xc-host)
1462 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1463 (typep (numeric-type-high n-type) 'bignum))
1464 (or (typep (numeric-type-low shift) 'bignum)
1465 (typep (numeric-type-high shift) 'bignum)))
1466 (return-from ash-derive-type-aux *universal-type*))
1467 (flet ((ash-outer (n s)
1468 (when (and (fixnump s)
1470 (> s sb!xc:most-negative-fixnum))
1472 ;; KLUDGE: The bare 64's here should be related to
1473 ;; symbolic machine word size values somehow.
1476 (if (and (fixnump s)
1477 (> s sb!xc:most-negative-fixnum))
1479 (if (minusp n) -1 0))))
1480 (or (and (csubtypep n-type (specifier-type 'integer))
1481 (csubtypep shift (specifier-type 'integer))
1482 (let ((n-low (numeric-type-low n-type))
1483 (n-high (numeric-type-high n-type))
1484 (s-low (numeric-type-low shift))
1485 (s-high (numeric-type-high shift)))
1486 (make-numeric-type :class 'integer :complexp :real
1489 (ash-outer n-low s-high)
1490 (ash-inner n-low s-low)))
1493 (ash-inner n-high s-low)
1494 (ash-outer n-high s-high))))))
1497 (defoptimizer (ash derive-type) ((n shift))
1498 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1500 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1501 (macrolet ((frob (fun)
1502 `#'(lambda (type type2)
1503 (declare (ignore type2))
1504 (let ((lo (numeric-type-low type))
1505 (hi (numeric-type-high type)))
1506 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1508 (defoptimizer (%negate derive-type) ((num))
1509 (derive-integer-type num num (frob -))))
1511 (defun lognot-derive-type-aux (int)
1512 (derive-integer-type-aux int int
1513 (lambda (type type2)
1514 (declare (ignore type2))
1515 (let ((lo (numeric-type-low type))
1516 (hi (numeric-type-high type)))
1517 (values (if hi (lognot hi) nil)
1518 (if lo (lognot lo) nil)
1519 (numeric-type-class type)
1520 (numeric-type-format type))))))
1522 (defoptimizer (lognot derive-type) ((int))
1523 (lognot-derive-type-aux (lvar-type int)))
1525 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1526 (defoptimizer (%negate derive-type) ((num))
1527 (flet ((negate-bound (b)
1529 (set-bound (- (type-bound-number b))
1531 (one-arg-derive-type num
1533 (modified-numeric-type
1535 :low (negate-bound (numeric-type-high type))
1536 :high (negate-bound (numeric-type-low type))))
1539 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1540 (defoptimizer (abs derive-type) ((num))
1541 (let ((type (lvar-type num)))
1542 (if (and (numeric-type-p type)
1543 (eq (numeric-type-class type) 'integer)
1544 (eq (numeric-type-complexp type) :real))
1545 (let ((lo (numeric-type-low type))
1546 (hi (numeric-type-high type)))
1547 (make-numeric-type :class 'integer :complexp :real
1548 :low (cond ((and hi (minusp hi))
1554 :high (if (and hi lo)
1555 (max (abs hi) (abs lo))
1557 (numeric-contagion type type))))
1559 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1560 (defun abs-derive-type-aux (type)
1561 (cond ((eq (numeric-type-complexp type) :complex)
1562 ;; The absolute value of a complex number is always a
1563 ;; non-negative float.
1564 (let* ((format (case (numeric-type-class type)
1565 ((integer rational) 'single-float)
1566 (t (numeric-type-format type))))
1567 (bound-format (or format 'float)))
1568 (make-numeric-type :class 'float
1571 :low (coerce 0 bound-format)
1574 ;; The absolute value of a real number is a non-negative real
1575 ;; of the same type.
1576 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1577 (class (numeric-type-class type))
1578 (format (numeric-type-format type))
1579 (bound-type (or format class 'real)))
1584 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1585 :high (coerce-and-truncate-floats
1586 (interval-high abs-bnd) bound-type))))))
1588 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1589 (defoptimizer (abs derive-type) ((num))
1590 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1592 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1593 (defoptimizer (truncate derive-type) ((number divisor))
1594 (let ((number-type (lvar-type number))
1595 (divisor-type (lvar-type divisor))
1596 (integer-type (specifier-type 'integer)))
1597 (if (and (numeric-type-p number-type)
1598 (csubtypep number-type integer-type)
1599 (numeric-type-p divisor-type)
1600 (csubtypep divisor-type integer-type))
1601 (let ((number-low (numeric-type-low number-type))
1602 (number-high (numeric-type-high number-type))
1603 (divisor-low (numeric-type-low divisor-type))
1604 (divisor-high (numeric-type-high divisor-type)))
1605 (values-specifier-type
1606 `(values ,(integer-truncate-derive-type number-low number-high
1607 divisor-low divisor-high)
1608 ,(integer-rem-derive-type number-low number-high
1609 divisor-low divisor-high))))
1612 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1615 (defun rem-result-type (number-type divisor-type)
1616 ;; Figure out what the remainder type is. The remainder is an
1617 ;; integer if both args are integers; a rational if both args are
1618 ;; rational; and a float otherwise.
1619 (cond ((and (csubtypep number-type (specifier-type 'integer))
1620 (csubtypep divisor-type (specifier-type 'integer)))
1622 ((and (csubtypep number-type (specifier-type 'rational))
1623 (csubtypep divisor-type (specifier-type 'rational)))
1625 ((and (csubtypep number-type (specifier-type 'float))
1626 (csubtypep divisor-type (specifier-type 'float)))
1627 ;; Both are floats so the result is also a float, of
1628 ;; the largest type.
1629 (or (float-format-max (numeric-type-format number-type)
1630 (numeric-type-format divisor-type))
1632 ((and (csubtypep number-type (specifier-type 'float))
1633 (csubtypep divisor-type (specifier-type 'rational)))
1634 ;; One of the arguments is a float and the other is a
1635 ;; rational. The remainder is a float of the same
1637 (or (numeric-type-format number-type) 'float))
1638 ((and (csubtypep divisor-type (specifier-type 'float))
1639 (csubtypep number-type (specifier-type 'rational)))
1640 ;; One of the arguments is a float and the other is a
1641 ;; rational. The remainder is a float of the same
1643 (or (numeric-type-format divisor-type) 'float))
1645 ;; Some unhandled combination. This usually means both args
1646 ;; are REAL so the result is a REAL.
1649 (defun truncate-derive-type-quot (number-type divisor-type)
1650 (let* ((rem-type (rem-result-type number-type divisor-type))
1651 (number-interval (numeric-type->interval number-type))
1652 (divisor-interval (numeric-type->interval divisor-type)))
1653 ;;(declare (type (member '(integer rational float)) rem-type))
1654 ;; We have real numbers now.
1655 (cond ((eq rem-type 'integer)
1656 ;; Since the remainder type is INTEGER, both args are
1658 (let* ((res (integer-truncate-derive-type
1659 (interval-low number-interval)
1660 (interval-high number-interval)
1661 (interval-low divisor-interval)
1662 (interval-high divisor-interval))))
1663 (specifier-type (if (listp res) res 'integer))))
1665 (let ((quot (truncate-quotient-bound
1666 (interval-div number-interval
1667 divisor-interval))))
1668 (specifier-type `(integer ,(or (interval-low quot) '*)
1669 ,(or (interval-high quot) '*))))))))
1671 (defun truncate-derive-type-rem (number-type divisor-type)
1672 (let* ((rem-type (rem-result-type number-type divisor-type))
1673 (number-interval (numeric-type->interval number-type))
1674 (divisor-interval (numeric-type->interval divisor-type))
1675 (rem (truncate-rem-bound number-interval divisor-interval)))
1676 ;;(declare (type (member '(integer rational float)) rem-type))
1677 ;; We have real numbers now.
1678 (cond ((eq rem-type 'integer)
1679 ;; Since the remainder type is INTEGER, both args are
1681 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1682 ,(or (interval-high rem) '*))))
1684 (multiple-value-bind (class format)
1687 (values 'integer nil))
1689 (values 'rational nil))
1690 ((or single-float double-float #!+long-float long-float)
1691 (values 'float rem-type))
1693 (values 'float nil))
1696 (when (member rem-type '(float single-float double-float
1697 #!+long-float long-float))
1698 (setf rem (interval-func #'(lambda (x)
1699 (coerce-for-bound x rem-type))
1701 (make-numeric-type :class class
1703 :low (interval-low rem)
1704 :high (interval-high rem)))))))
1706 (defun truncate-derive-type-quot-aux (num div same-arg)
1707 (declare (ignore same-arg))
1708 (if (and (numeric-type-real-p num)
1709 (numeric-type-real-p div))
1710 (truncate-derive-type-quot num div)
1713 (defun truncate-derive-type-rem-aux (num div same-arg)
1714 (declare (ignore same-arg))
1715 (if (and (numeric-type-real-p num)
1716 (numeric-type-real-p div))
1717 (truncate-derive-type-rem num div)
1720 (defoptimizer (truncate derive-type) ((number divisor))
1721 (let ((quot (two-arg-derive-type number divisor
1722 #'truncate-derive-type-quot-aux #'truncate))
1723 (rem (two-arg-derive-type number divisor
1724 #'truncate-derive-type-rem-aux #'rem)))
1725 (when (and quot rem)
1726 (make-values-type :required (list quot rem)))))
1728 (defun ftruncate-derive-type-quot (number-type divisor-type)
1729 ;; The bounds are the same as for truncate. However, the first
1730 ;; result is a float of some type. We need to determine what that
1731 ;; type is. Basically it's the more contagious of the two types.
1732 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1733 (res-type (numeric-contagion number-type divisor-type)))
1734 (make-numeric-type :class 'float
1735 :format (numeric-type-format res-type)
1736 :low (numeric-type-low q-type)
1737 :high (numeric-type-high q-type))))
1739 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1740 (declare (ignore same-arg))
1741 (if (and (numeric-type-real-p n)
1742 (numeric-type-real-p d))
1743 (ftruncate-derive-type-quot n d)
1746 (defoptimizer (ftruncate derive-type) ((number divisor))
1748 (two-arg-derive-type number divisor
1749 #'ftruncate-derive-type-quot-aux #'ftruncate))
1750 (rem (two-arg-derive-type number divisor
1751 #'truncate-derive-type-rem-aux #'rem)))
1752 (when (and quot rem)
1753 (make-values-type :required (list quot rem)))))
1755 (defun %unary-truncate-derive-type-aux (number)
1756 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1758 (defoptimizer (%unary-truncate derive-type) ((number))
1759 (one-arg-derive-type number
1760 #'%unary-truncate-derive-type-aux
1763 (defoptimizer (%unary-ftruncate derive-type) ((number))
1764 (let ((divisor (specifier-type '(integer 1 1))))
1765 (one-arg-derive-type number
1767 (ftruncate-derive-type-quot-aux n divisor nil))
1768 #'%unary-ftruncate)))
1770 ;;; Define optimizers for FLOOR and CEILING.
1772 ((def (name q-name r-name)
1773 (let ((q-aux (symbolicate q-name "-AUX"))
1774 (r-aux (symbolicate r-name "-AUX")))
1776 ;; Compute type of quotient (first) result.
1777 (defun ,q-aux (number-type divisor-type)
1778 (let* ((number-interval
1779 (numeric-type->interval number-type))
1781 (numeric-type->interval divisor-type))
1782 (quot (,q-name (interval-div number-interval
1783 divisor-interval))))
1784 (specifier-type `(integer ,(or (interval-low quot) '*)
1785 ,(or (interval-high quot) '*)))))
1786 ;; Compute type of remainder.
1787 (defun ,r-aux (number-type divisor-type)
1788 (let* ((divisor-interval
1789 (numeric-type->interval divisor-type))
1790 (rem (,r-name divisor-interval))
1791 (result-type (rem-result-type number-type divisor-type)))
1792 (multiple-value-bind (class format)
1795 (values 'integer nil))
1797 (values 'rational nil))
1798 ((or single-float double-float #!+long-float long-float)
1799 (values 'float result-type))
1801 (values 'float nil))
1804 (when (member result-type '(float single-float double-float
1805 #!+long-float long-float))
1806 ;; Make sure that the limits on the interval have
1808 (setf rem (interval-func (lambda (x)
1809 (coerce-for-bound x result-type))
1811 (make-numeric-type :class class
1813 :low (interval-low rem)
1814 :high (interval-high rem)))))
1815 ;; the optimizer itself
1816 (defoptimizer (,name derive-type) ((number divisor))
1817 (flet ((derive-q (n d same-arg)
1818 (declare (ignore same-arg))
1819 (if (and (numeric-type-real-p n)
1820 (numeric-type-real-p d))
1823 (derive-r (n d same-arg)
1824 (declare (ignore same-arg))
1825 (if (and (numeric-type-real-p n)
1826 (numeric-type-real-p d))
1829 (let ((quot (two-arg-derive-type
1830 number divisor #'derive-q #',name))
1831 (rem (two-arg-derive-type
1832 number divisor #'derive-r #'mod)))
1833 (when (and quot rem)
1834 (make-values-type :required (list quot rem))))))))))
1836 (def floor floor-quotient-bound floor-rem-bound)
1837 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1839 ;;; Define optimizers for FFLOOR and FCEILING
1840 (macrolet ((def (name q-name r-name)
1841 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1842 (r-aux (symbolicate r-name "-AUX")))
1844 ;; Compute type of quotient (first) result.
1845 (defun ,q-aux (number-type divisor-type)
1846 (let* ((number-interval
1847 (numeric-type->interval number-type))
1849 (numeric-type->interval divisor-type))
1850 (quot (,q-name (interval-div number-interval
1852 (res-type (numeric-contagion number-type
1855 :class (numeric-type-class res-type)
1856 :format (numeric-type-format res-type)
1857 :low (interval-low quot)
1858 :high (interval-high quot))))
1860 (defoptimizer (,name derive-type) ((number divisor))
1861 (flet ((derive-q (n d same-arg)
1862 (declare (ignore same-arg))
1863 (if (and (numeric-type-real-p n)
1864 (numeric-type-real-p d))
1867 (derive-r (n d same-arg)
1868 (declare (ignore same-arg))
1869 (if (and (numeric-type-real-p n)
1870 (numeric-type-real-p d))
1873 (let ((quot (two-arg-derive-type
1874 number divisor #'derive-q #',name))
1875 (rem (two-arg-derive-type
1876 number divisor #'derive-r #'mod)))
1877 (when (and quot rem)
1878 (make-values-type :required (list quot rem))))))))))
1880 (def ffloor floor-quotient-bound floor-rem-bound)
1881 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1883 ;;; functions to compute the bounds on the quotient and remainder for
1884 ;;; the FLOOR function
1885 (defun floor-quotient-bound (quot)
1886 ;; Take the floor of the quotient and then massage it into what we
1888 (let ((lo (interval-low quot))
1889 (hi (interval-high quot)))
1890 ;; Take the floor of the lower bound. The result is always a
1891 ;; closed lower bound.
1893 (floor (type-bound-number lo))
1895 ;; For the upper bound, we need to be careful.
1898 ;; An open bound. We need to be careful here because
1899 ;; the floor of '(10.0) is 9, but the floor of
1901 (multiple-value-bind (q r) (floor (first hi))
1906 ;; A closed bound, so the answer is obvious.
1910 (make-interval :low lo :high hi)))
1911 (defun floor-rem-bound (div)
1912 ;; The remainder depends only on the divisor. Try to get the
1913 ;; correct sign for the remainder if we can.
1914 (case (interval-range-info div)
1916 ;; The divisor is always positive.
1917 (let ((rem (interval-abs div)))
1918 (setf (interval-low rem) 0)
1919 (when (and (numberp (interval-high rem))
1920 (not (zerop (interval-high rem))))
1921 ;; The remainder never contains the upper bound. However,
1922 ;; watch out for the case where the high limit is zero!
1923 (setf (interval-high rem) (list (interval-high rem))))
1926 ;; The divisor is always negative.
1927 (let ((rem (interval-neg (interval-abs div))))
1928 (setf (interval-high rem) 0)
1929 (when (numberp (interval-low rem))
1930 ;; The remainder never contains the lower bound.
1931 (setf (interval-low rem) (list (interval-low rem))))
1934 ;; The divisor can be positive or negative. All bets off. The
1935 ;; magnitude of remainder is the maximum value of the divisor.
1936 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1937 ;; The bound never reaches the limit, so make the interval open.
1938 (make-interval :low (if limit
1941 :high (list limit))))))
1943 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1944 => #S(INTERVAL :LOW 0 :HIGH 10)
1945 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1946 => #S(INTERVAL :LOW 0 :HIGH 10)
1947 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1948 => #S(INTERVAL :LOW 0 :HIGH 10)
1949 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1950 => #S(INTERVAL :LOW 0 :HIGH 9)
1951 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1952 => #S(INTERVAL :LOW 0 :HIGH 10)
1953 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1954 => #S(INTERVAL :LOW 0 :HIGH 10)
1955 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1956 => #S(INTERVAL :LOW -2 :HIGH 10)
1957 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1958 => #S(INTERVAL :LOW -1 :HIGH 10)
1959 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1960 => #S(INTERVAL :LOW -1 :HIGH 10)
1962 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1963 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1964 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1965 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1966 (floor-rem-bound (make-interval :low -10 :high -2.3))
1967 #S(INTERVAL :LOW (-10) :HIGH 0)
1968 (floor-rem-bound (make-interval :low 0.3 :high 10))
1969 => #S(INTERVAL :LOW 0 :HIGH '(10))
1970 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1971 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1972 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1973 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1976 ;;; same functions for CEILING
1977 (defun ceiling-quotient-bound (quot)
1978 ;; Take the ceiling of the quotient and then massage it into what we
1980 (let ((lo (interval-low quot))
1981 (hi (interval-high quot)))
1982 ;; Take the ceiling of the upper bound. The result is always a
1983 ;; closed upper bound.
1985 (ceiling (type-bound-number hi))
1987 ;; For the lower bound, we need to be careful.
1990 ;; An open bound. We need to be careful here because
1991 ;; the ceiling of '(10.0) is 11, but the ceiling of
1993 (multiple-value-bind (q r) (ceiling (first lo))
1998 ;; A closed bound, so the answer is obvious.
2002 (make-interval :low lo :high hi)))
2003 (defun ceiling-rem-bound (div)
2004 ;; The remainder depends only on the divisor. Try to get the
2005 ;; correct sign for the remainder if we can.
2006 (case (interval-range-info div)
2008 ;; Divisor is always positive. The remainder is negative.
2009 (let ((rem (interval-neg (interval-abs div))))
2010 (setf (interval-high rem) 0)
2011 (when (and (numberp (interval-low rem))
2012 (not (zerop (interval-low rem))))
2013 ;; The remainder never contains the upper bound. However,
2014 ;; watch out for the case when the upper bound is zero!
2015 (setf (interval-low rem) (list (interval-low rem))))
2018 ;; Divisor is always negative. The remainder is positive
2019 (let ((rem (interval-abs div)))
2020 (setf (interval-low rem) 0)
2021 (when (numberp (interval-high rem))
2022 ;; The remainder never contains the lower bound.
2023 (setf (interval-high rem) (list (interval-high rem))))
2026 ;; The divisor can be positive or negative. All bets off. The
2027 ;; magnitude of remainder is the maximum value of the divisor.
2028 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2029 ;; The bound never reaches the limit, so make the interval open.
2030 (make-interval :low (if limit
2033 :high (list limit))))))
2036 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2037 => #S(INTERVAL :LOW 1 :HIGH 11)
2038 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2039 => #S(INTERVAL :LOW 1 :HIGH 11)
2040 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2041 => #S(INTERVAL :LOW 1 :HIGH 10)
2042 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2043 => #S(INTERVAL :LOW 1 :HIGH 10)
2044 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2045 => #S(INTERVAL :LOW 1 :HIGH 11)
2046 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2047 => #S(INTERVAL :LOW 1 :HIGH 11)
2048 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2049 => #S(INTERVAL :LOW -1 :HIGH 11)
2050 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2051 => #S(INTERVAL :LOW 0 :HIGH 11)
2052 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2053 => #S(INTERVAL :LOW -1 :HIGH 11)
2055 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2056 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2057 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2058 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2059 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2060 => #S(INTERVAL :LOW 0 :HIGH (10))
2061 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2062 => #S(INTERVAL :LOW (-10) :HIGH 0)
2063 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2064 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2065 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2066 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2069 (defun truncate-quotient-bound (quot)
2070 ;; For positive quotients, truncate is exactly like floor. For
2071 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2072 ;; it's the union of the two pieces.
2073 (case (interval-range-info quot)
2076 (floor-quotient-bound quot))
2078 ;; just like CEILING
2079 (ceiling-quotient-bound quot))
2081 ;; Split the interval into positive and negative pieces, compute
2082 ;; the result for each piece and put them back together.
2083 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2084 (interval-merge-pair (ceiling-quotient-bound neg)
2085 (floor-quotient-bound pos))))))
2087 (defun truncate-rem-bound (num div)
2088 ;; This is significantly more complicated than FLOOR or CEILING. We
2089 ;; need both the number and the divisor to determine the range. The
2090 ;; basic idea is to split the ranges of NUM and DEN into positive
2091 ;; and negative pieces and deal with each of the four possibilities
2093 (case (interval-range-info num)
2095 (case (interval-range-info div)
2097 (floor-rem-bound div))
2099 (ceiling-rem-bound div))
2101 (destructuring-bind (neg pos) (interval-split 0 div t t)
2102 (interval-merge-pair (truncate-rem-bound num neg)
2103 (truncate-rem-bound num pos))))))
2105 (case (interval-range-info div)
2107 (ceiling-rem-bound div))
2109 (floor-rem-bound div))
2111 (destructuring-bind (neg pos) (interval-split 0 div t t)
2112 (interval-merge-pair (truncate-rem-bound num neg)
2113 (truncate-rem-bound num pos))))))
2115 (destructuring-bind (neg pos) (interval-split 0 num t t)
2116 (interval-merge-pair (truncate-rem-bound neg div)
2117 (truncate-rem-bound pos div))))))
2120 ;;; Derive useful information about the range. Returns three values:
2121 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2122 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2123 ;;; - The abs of the maximal value if there is one, or nil if it is
2125 (defun numeric-range-info (low high)
2126 (cond ((and low (not (minusp low)))
2127 (values '+ low high))
2128 ((and high (not (plusp high)))
2129 (values '- (- high) (if low (- low) nil)))
2131 (values nil 0 (and low high (max (- low) high))))))
2133 (defun integer-truncate-derive-type
2134 (number-low number-high divisor-low divisor-high)
2135 ;; The result cannot be larger in magnitude than the number, but the
2136 ;; sign might change. If we can determine the sign of either the
2137 ;; number or the divisor, we can eliminate some of the cases.
2138 (multiple-value-bind (number-sign number-min number-max)
2139 (numeric-range-info number-low number-high)
2140 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2141 (numeric-range-info divisor-low divisor-high)
2142 (when (and divisor-max (zerop divisor-max))
2143 ;; We've got a problem: guaranteed division by zero.
2144 (return-from integer-truncate-derive-type t))
2145 (when (zerop divisor-min)
2146 ;; We'll assume that they aren't going to divide by zero.
2148 (cond ((and number-sign divisor-sign)
2149 ;; We know the sign of both.
2150 (if (eq number-sign divisor-sign)
2151 ;; Same sign, so the result will be positive.
2152 `(integer ,(if divisor-max
2153 (truncate number-min divisor-max)
2156 (truncate number-max divisor-min)
2158 ;; Different signs, the result will be negative.
2159 `(integer ,(if number-max
2160 (- (truncate number-max divisor-min))
2163 (- (truncate number-min divisor-max))
2165 ((eq divisor-sign '+)
2166 ;; The divisor is positive. Therefore, the number will just
2167 ;; become closer to zero.
2168 `(integer ,(if number-low
2169 (truncate number-low divisor-min)
2172 (truncate number-high divisor-min)
2174 ((eq divisor-sign '-)
2175 ;; The divisor is negative. Therefore, the absolute value of
2176 ;; the number will become closer to zero, but the sign will also
2178 `(integer ,(if number-high
2179 (- (truncate number-high divisor-min))
2182 (- (truncate number-low divisor-min))
2184 ;; The divisor could be either positive or negative.
2186 ;; The number we are dividing has a bound. Divide that by the
2187 ;; smallest posible divisor.
2188 (let ((bound (truncate number-max divisor-min)))
2189 `(integer ,(- bound) ,bound)))
2191 ;; The number we are dividing is unbounded, so we can't tell
2192 ;; anything about the result.
2195 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2196 (defun integer-rem-derive-type
2197 (number-low number-high divisor-low divisor-high)
2198 (if (and divisor-low divisor-high)
2199 ;; We know the range of the divisor, and the remainder must be
2200 ;; smaller than the divisor. We can tell the sign of the
2201 ;; remainer if we know the sign of the number.
2202 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2203 `(integer ,(if (or (null number-low)
2204 (minusp number-low))
2207 ,(if (or (null number-high)
2208 (plusp number-high))
2211 ;; The divisor is potentially either very positive or very
2212 ;; negative. Therefore, the remainer is unbounded, but we might
2213 ;; be able to tell something about the sign from the number.
2214 `(integer ,(if (and number-low (not (minusp number-low)))
2215 ;; The number we are dividing is positive.
2216 ;; Therefore, the remainder must be positive.
2219 ,(if (and number-high (not (plusp number-high)))
2220 ;; The number we are dividing is negative.
2221 ;; Therefore, the remainder must be negative.
2225 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2226 (defoptimizer (random derive-type) ((bound &optional state))
2227 (let ((type (lvar-type bound)))
2228 (when (numeric-type-p type)
2229 (let ((class (numeric-type-class type))
2230 (high (numeric-type-high type))
2231 (format (numeric-type-format type)))
2235 :low (coerce 0 (or format class 'real))
2236 :high (cond ((not high) nil)
2237 ((eq class 'integer) (max (1- high) 0))
2238 ((or (consp high) (zerop high)) high)
2241 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2242 (defun random-derive-type-aux (type)
2243 (let ((class (numeric-type-class type))
2244 (high (numeric-type-high type))
2245 (format (numeric-type-format type)))
2249 :low (coerce 0 (or format class 'real))
2250 :high (cond ((not high) nil)
2251 ((eq class 'integer) (max (1- high) 0))
2252 ((or (consp high) (zerop high)) high)
2255 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2256 (defoptimizer (random derive-type) ((bound &optional state))
2257 (one-arg-derive-type bound #'random-derive-type-aux nil))
2259 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2261 ;;; Return the maximum number of bits an integer of the supplied type
2262 ;;; can take up, or NIL if it is unbounded. The second (third) value
2263 ;;; is T if the integer can be positive (negative) and NIL if not.
2264 ;;; Zero counts as positive.
2265 (defun integer-type-length (type)
2266 (if (numeric-type-p type)
2267 (let ((min (numeric-type-low type))
2268 (max (numeric-type-high type)))
2269 (values (and min max (max (integer-length min) (integer-length max)))
2270 (or (null max) (not (minusp max)))
2271 (or (null min) (minusp min))))
2274 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2275 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2276 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2277 ;;; versions in CMUCL, from which these functions copy liberally.
2279 (defun logand-derive-unsigned-low-bound (x y)
2280 (let ((a (numeric-type-low x))
2281 (b (numeric-type-high x))
2282 (c (numeric-type-low y))
2283 (d (numeric-type-high y)))
2284 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2286 (unless (zerop (logand m (lognot a) (lognot c)))
2287 (let ((temp (logandc2 (logior a m) (1- m))))
2291 (setf temp (logandc2 (logior c m) (1- m)))
2295 finally (return (logand a c)))))
2297 (defun logand-derive-unsigned-high-bound (x y)
2298 (let ((a (numeric-type-low x))
2299 (b (numeric-type-high x))
2300 (c (numeric-type-low y))
2301 (d (numeric-type-high y)))
2302 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2305 ((not (zerop (logand b (lognot d) m)))
2306 (let ((temp (logior (logandc2 b m) (1- m))))
2310 ((not (zerop (logand (lognot b) d m)))
2311 (let ((temp (logior (logandc2 d m) (1- m))))
2315 finally (return (logand b d)))))
2317 (defun logand-derive-type-aux (x y &optional same-leaf)
2319 (return-from logand-derive-type-aux x))
2320 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2321 (declare (ignore x-pos))
2322 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2323 (declare (ignore y-pos))
2325 ;; X must be positive.
2327 ;; They must both be positive.
2328 (cond ((and (null x-len) (null y-len))
2329 (specifier-type 'unsigned-byte))
2331 (specifier-type `(unsigned-byte* ,y-len)))
2333 (specifier-type `(unsigned-byte* ,x-len)))
2335 (let ((low (logand-derive-unsigned-low-bound x y))
2336 (high (logand-derive-unsigned-high-bound x y)))
2337 (specifier-type `(integer ,low ,high)))))
2338 ;; X is positive, but Y might be negative.
2340 (specifier-type 'unsigned-byte))
2342 (specifier-type `(unsigned-byte* ,x-len)))))
2343 ;; X might be negative.
2345 ;; Y must be positive.
2347 (specifier-type 'unsigned-byte))
2348 (t (specifier-type `(unsigned-byte* ,y-len))))
2349 ;; Either might be negative.
2350 (if (and x-len y-len)
2351 ;; The result is bounded.
2352 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2353 ;; We can't tell squat about the result.
2354 (specifier-type 'integer)))))))
2356 (defun logior-derive-unsigned-low-bound (x y)
2357 (let ((a (numeric-type-low x))
2358 (b (numeric-type-high x))
2359 (c (numeric-type-low y))
2360 (d (numeric-type-high y)))
2361 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2364 ((not (zerop (logandc2 (logand c m) a)))
2365 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2369 ((not (zerop (logandc2 (logand a m) c)))
2370 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2374 finally (return (logior a c)))))
2376 (defun logior-derive-unsigned-high-bound (x y)
2377 (let ((a (numeric-type-low x))
2378 (b (numeric-type-high x))
2379 (c (numeric-type-low y))
2380 (d (numeric-type-high y)))
2381 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2383 (unless (zerop (logand b d m))
2384 (let ((temp (logior (- b m) (1- m))))
2388 (setf temp (logior (- d m) (1- m)))
2392 finally (return (logior b d)))))
2394 (defun logior-derive-type-aux (x y &optional same-leaf)
2396 (return-from logior-derive-type-aux x))
2397 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2398 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2400 ((and (not x-neg) (not y-neg))
2401 ;; Both are positive.
2402 (if (and x-len y-len)
2403 (let ((low (logior-derive-unsigned-low-bound x y))
2404 (high (logior-derive-unsigned-high-bound x y)))
2405 (specifier-type `(integer ,low ,high)))
2406 (specifier-type `(unsigned-byte* *))))
2408 ;; X must be negative.
2410 ;; Both are negative. The result is going to be negative
2411 ;; and be the same length or shorter than the smaller.
2412 (if (and x-len y-len)
2414 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2416 (specifier-type '(integer * -1)))
2417 ;; X is negative, but we don't know about Y. The result
2418 ;; will be negative, but no more negative than X.
2420 `(integer ,(or (numeric-type-low x) '*)
2423 ;; X might be either positive or negative.
2425 ;; But Y is negative. The result will be negative.
2427 `(integer ,(or (numeric-type-low y) '*)
2429 ;; We don't know squat about either. It won't get any bigger.
2430 (if (and x-len y-len)
2432 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2434 (specifier-type 'integer))))))))
2436 (defun logxor-derive-unsigned-low-bound (x y)
2437 (let ((a (numeric-type-low x))
2438 (b (numeric-type-high x))
2439 (c (numeric-type-low y))
2440 (d (numeric-type-high y)))
2441 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2444 ((not (zerop (logandc2 (logand c m) a)))
2445 (let ((temp (logand (logior a m)
2449 ((not (zerop (logandc2 (logand a m) c)))
2450 (let ((temp (logand (logior c m)
2454 finally (return (logxor a c)))))
2456 (defun logxor-derive-unsigned-high-bound (x y)
2457 (let ((a (numeric-type-low x))
2458 (b (numeric-type-high x))
2459 (c (numeric-type-low y))
2460 (d (numeric-type-high y)))
2461 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2463 (unless (zerop (logand b d m))
2464 (let ((temp (logior (- b m) (1- m))))
2466 ((>= temp a) (setf b temp))
2467 (t (let ((temp (logior (- d m) (1- m))))
2470 finally (return (logxor b d)))))
2472 (defun logxor-derive-type-aux (x y &optional same-leaf)
2474 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2475 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2476 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2478 ((and (not x-neg) (not y-neg))
2479 ;; Both are positive
2480 (if (and x-len y-len)
2481 (let ((low (logxor-derive-unsigned-low-bound x y))
2482 (high (logxor-derive-unsigned-high-bound x y)))
2483 (specifier-type `(integer ,low ,high)))
2484 (specifier-type '(unsigned-byte* *))))
2485 ((and (not x-pos) (not y-pos))
2486 ;; Both are negative. The result will be positive, and as long
2488 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2491 ((or (and (not x-pos) (not y-neg))
2492 (and (not y-pos) (not x-neg)))
2493 ;; Either X is negative and Y is positive or vice-versa. The
2494 ;; result will be negative.
2495 (specifier-type `(integer ,(if (and x-len y-len)
2496 (ash -1 (max x-len y-len))
2499 ;; We can't tell what the sign of the result is going to be.
2500 ;; All we know is that we don't create new bits.
2502 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2504 (specifier-type 'integer))))))
2506 (macrolet ((deffrob (logfun)
2507 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2508 `(defoptimizer (,logfun derive-type) ((x y))
2509 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2514 (defoptimizer (logeqv derive-type) ((x y))
2515 (two-arg-derive-type x y (lambda (x y same-leaf)
2516 (lognot-derive-type-aux
2517 (logxor-derive-type-aux x y same-leaf)))
2519 (defoptimizer (lognand derive-type) ((x y))
2520 (two-arg-derive-type x y (lambda (x y same-leaf)
2521 (lognot-derive-type-aux
2522 (logand-derive-type-aux x y same-leaf)))
2524 (defoptimizer (lognor derive-type) ((x y))
2525 (two-arg-derive-type x y (lambda (x y same-leaf)
2526 (lognot-derive-type-aux
2527 (logior-derive-type-aux x y same-leaf)))
2529 (defoptimizer (logandc1 derive-type) ((x y))
2530 (two-arg-derive-type x y (lambda (x y same-leaf)
2532 (specifier-type '(eql 0))
2533 (logand-derive-type-aux
2534 (lognot-derive-type-aux x) y nil)))
2536 (defoptimizer (logandc2 derive-type) ((x y))
2537 (two-arg-derive-type x y (lambda (x y same-leaf)
2539 (specifier-type '(eql 0))
2540 (logand-derive-type-aux
2541 x (lognot-derive-type-aux y) nil)))
2543 (defoptimizer (logorc1 derive-type) ((x y))
2544 (two-arg-derive-type x y (lambda (x y same-leaf)
2546 (specifier-type '(eql -1))
2547 (logior-derive-type-aux
2548 (lognot-derive-type-aux x) y nil)))
2550 (defoptimizer (logorc2 derive-type) ((x y))
2551 (two-arg-derive-type x y (lambda (x y same-leaf)
2553 (specifier-type '(eql -1))
2554 (logior-derive-type-aux
2555 x (lognot-derive-type-aux y) nil)))
2558 ;;;; miscellaneous derive-type methods
2560 (defoptimizer (integer-length derive-type) ((x))
2561 (let ((x-type (lvar-type x)))
2562 (when (numeric-type-p x-type)
2563 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2564 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2565 ;; careful about LO or HI being NIL, though. Also, if 0 is
2566 ;; contained in X, the lower bound is obviously 0.
2567 (flet ((null-or-min (a b)
2568 (and a b (min (integer-length a)
2569 (integer-length b))))
2571 (and a b (max (integer-length a)
2572 (integer-length b)))))
2573 (let* ((min (numeric-type-low x-type))
2574 (max (numeric-type-high x-type))
2575 (min-len (null-or-min min max))
2576 (max-len (null-or-max min max)))
2577 (when (ctypep 0 x-type)
2579 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2581 (defoptimizer (isqrt derive-type) ((x))
2582 (let ((x-type (lvar-type x)))
2583 (when (numeric-type-p x-type)
2584 (let* ((lo (numeric-type-low x-type))
2585 (hi (numeric-type-high x-type))
2586 (lo-res (if lo (isqrt lo) '*))
2587 (hi-res (if hi (isqrt hi) '*)))
2588 (specifier-type `(integer ,lo-res ,hi-res))))))
2590 (defoptimizer (code-char derive-type) ((code))
2591 (let ((type (lvar-type code)))
2592 ;; FIXME: unions of integral ranges? It ought to be easier to do
2593 ;; this, given that CHARACTER-SET is basically an integral range
2594 ;; type. -- CSR, 2004-10-04
2595 (when (numeric-type-p type)
2596 (let* ((lo (numeric-type-low type))
2597 (hi (numeric-type-high type))
2598 (type (specifier-type `(character-set ((,lo . ,hi))))))
2600 ;; KLUDGE: when running on the host, we lose a slight amount
2601 ;; of precision so that we don't have to "unparse" types
2602 ;; that formally we can't, such as (CHARACTER-SET ((0
2603 ;; . 0))). -- CSR, 2004-10-06
2605 ((csubtypep type (specifier-type 'standard-char)) type)
2607 ((csubtypep type (specifier-type 'base-char))
2608 (specifier-type 'base-char))
2610 ((csubtypep type (specifier-type 'extended-char))
2611 (specifier-type 'extended-char))
2612 (t #+sb-xc-host (specifier-type 'character)
2613 #-sb-xc-host type))))))
2615 (defoptimizer (values derive-type) ((&rest values))
2616 (make-values-type :required (mapcar #'lvar-type values)))
2618 (defun signum-derive-type-aux (type)
2619 (if (eq (numeric-type-complexp type) :complex)
2620 (let* ((format (case (numeric-type-class type)
2621 ((integer rational) 'single-float)
2622 (t (numeric-type-format type))))
2623 (bound-format (or format 'float)))
2624 (make-numeric-type :class 'float
2627 :low (coerce -1 bound-format)
2628 :high (coerce 1 bound-format)))
2629 (let* ((interval (numeric-type->interval type))
2630 (range-info (interval-range-info interval))
2631 (contains-0-p (interval-contains-p 0 interval))
2632 (class (numeric-type-class type))
2633 (format (numeric-type-format type))
2634 (one (coerce 1 (or format class 'real)))
2635 (zero (coerce 0 (or format class 'real)))
2636 (minus-one (coerce -1 (or format class 'real)))
2637 (plus (make-numeric-type :class class :format format
2638 :low one :high one))
2639 (minus (make-numeric-type :class class :format format
2640 :low minus-one :high minus-one))
2641 ;; KLUDGE: here we have a fairly horrible hack to deal
2642 ;; with the schizophrenia in the type derivation engine.
2643 ;; The problem is that the type derivers reinterpret
2644 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2645 ;; 0d0) within the derivation mechanism doesn't include
2646 ;; -0d0. Ugh. So force it in here, instead.
2647 (zero (make-numeric-type :class class :format format
2648 :low (- zero) :high zero)))
2650 (+ (if contains-0-p (type-union plus zero) plus))
2651 (- (if contains-0-p (type-union minus zero) minus))
2652 (t (type-union minus zero plus))))))
2654 (defoptimizer (signum derive-type) ((num))
2655 (one-arg-derive-type num #'signum-derive-type-aux nil))
2657 ;;;; byte operations
2659 ;;;; We try to turn byte operations into simple logical operations.
2660 ;;;; First, we convert byte specifiers into separate size and position
2661 ;;;; arguments passed to internal %FOO functions. We then attempt to
2662 ;;;; transform the %FOO functions into boolean operations when the
2663 ;;;; size and position are constant and the operands are fixnums.
2665 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2666 ;; expressions that evaluate to the SIZE and POSITION of
2667 ;; the byte-specifier form SPEC. We may wrap a let around
2668 ;; the result of the body to bind some variables.
2670 ;; If the spec is a BYTE form, then bind the vars to the
2671 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2672 ;; and BYTE-POSITION. The goal of this transformation is to
2673 ;; avoid consing up byte specifiers and then immediately
2674 ;; throwing them away.
2675 (with-byte-specifier ((size-var pos-var spec) &body body)
2676 (once-only ((spec `(macroexpand ,spec))
2678 `(if (and (consp ,spec)
2679 (eq (car ,spec) 'byte)
2680 (= (length ,spec) 3))
2681 (let ((,size-var (second ,spec))
2682 (,pos-var (third ,spec)))
2684 (let ((,size-var `(byte-size ,,temp))
2685 (,pos-var `(byte-position ,,temp)))
2686 `(let ((,,temp ,,spec))
2689 (define-source-transform ldb (spec int)
2690 (with-byte-specifier (size pos spec)
2691 `(%ldb ,size ,pos ,int)))
2693 (define-source-transform dpb (newbyte spec int)
2694 (with-byte-specifier (size pos spec)
2695 `(%dpb ,newbyte ,size ,pos ,int)))
2697 (define-source-transform mask-field (spec int)
2698 (with-byte-specifier (size pos spec)
2699 `(%mask-field ,size ,pos ,int)))
2701 (define-source-transform deposit-field (newbyte spec int)
2702 (with-byte-specifier (size pos spec)
2703 `(%deposit-field ,newbyte ,size ,pos ,int))))
2705 (defoptimizer (%ldb derive-type) ((size posn num))
2706 (let ((size (lvar-type size)))
2707 (if (and (numeric-type-p size)
2708 (csubtypep size (specifier-type 'integer)))
2709 (let ((size-high (numeric-type-high size)))
2710 (if (and size-high (<= size-high sb!vm:n-word-bits))
2711 (specifier-type `(unsigned-byte* ,size-high))
2712 (specifier-type 'unsigned-byte)))
2715 (defoptimizer (%mask-field derive-type) ((size posn num))
2716 (let ((size (lvar-type size))
2717 (posn (lvar-type posn)))
2718 (if (and (numeric-type-p size)
2719 (csubtypep size (specifier-type 'integer))
2720 (numeric-type-p posn)
2721 (csubtypep posn (specifier-type 'integer)))
2722 (let ((size-high (numeric-type-high size))
2723 (posn-high (numeric-type-high posn)))
2724 (if (and size-high posn-high
2725 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2726 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2727 (specifier-type 'unsigned-byte)))
2730 (defun %deposit-field-derive-type-aux (size posn int)
2731 (let ((size (lvar-type size))
2732 (posn (lvar-type posn))
2733 (int (lvar-type int)))
2734 (when (and (numeric-type-p size)
2735 (numeric-type-p posn)
2736 (numeric-type-p int))
2737 (let ((size-high (numeric-type-high size))
2738 (posn-high (numeric-type-high posn))
2739 (high (numeric-type-high int))
2740 (low (numeric-type-low int)))
2741 (when (and size-high posn-high high low
2742 ;; KLUDGE: we need this cutoff here, otherwise we
2743 ;; will merrily derive the type of %DPB as
2744 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2745 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2746 ;; 1073741822))), with hilarious consequences. We
2747 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2748 ;; over a reasonable amount of shifting, even on
2749 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2750 ;; machine integers are 64-bits. -- CSR,
2752 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2753 (let ((raw-bit-count (max (integer-length high)
2754 (integer-length low)
2755 (+ size-high posn-high))))
2758 `(signed-byte ,(1+ raw-bit-count))
2759 `(unsigned-byte* ,raw-bit-count)))))))))
2761 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2762 (%deposit-field-derive-type-aux size posn int))
2764 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2765 (%deposit-field-derive-type-aux size posn int))
2767 (deftransform %ldb ((size posn int)
2768 (fixnum fixnum integer)
2769 (unsigned-byte #.sb!vm:n-word-bits))
2770 "convert to inline logical operations"
2771 `(logand (ash int (- posn))
2772 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2773 (- size ,sb!vm:n-word-bits))))
2775 (deftransform %mask-field ((size posn int)
2776 (fixnum fixnum integer)
2777 (unsigned-byte #.sb!vm:n-word-bits))
2778 "convert to inline logical operations"
2780 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2781 (- size ,sb!vm:n-word-bits))
2784 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2785 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2786 ;;; as the result type, as that would allow result types that cover
2787 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2788 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2790 (deftransform %dpb ((new size posn int)
2792 (unsigned-byte #.sb!vm:n-word-bits))
2793 "convert to inline logical operations"
2794 `(let ((mask (ldb (byte size 0) -1)))
2795 (logior (ash (logand new mask) posn)
2796 (logand int (lognot (ash mask posn))))))
2798 (deftransform %dpb ((new size posn int)
2800 (signed-byte #.sb!vm:n-word-bits))
2801 "convert to inline logical operations"
2802 `(let ((mask (ldb (byte size 0) -1)))
2803 (logior (ash (logand new mask) posn)
2804 (logand int (lognot (ash mask posn))))))
2806 (deftransform %deposit-field ((new size posn int)
2808 (unsigned-byte #.sb!vm:n-word-bits))
2809 "convert to inline logical operations"
2810 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2811 (logior (logand new mask)
2812 (logand int (lognot mask)))))
2814 (deftransform %deposit-field ((new size posn int)
2816 (signed-byte #.sb!vm:n-word-bits))
2817 "convert to inline logical operations"
2818 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2819 (logior (logand new mask)
2820 (logand int (lognot mask)))))
2822 (defoptimizer (mask-signed-field derive-type) ((size x))
2823 (let ((size (lvar-type size)))
2824 (if (numeric-type-p size)
2825 (let ((size-high (numeric-type-high size)))
2826 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2827 (specifier-type `(signed-byte ,size-high))
2832 ;;; Modular functions
2834 ;;; (ldb (byte s 0) (foo x y ...)) =
2835 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2837 ;;; and similar for other arguments.
2839 (defun make-modular-fun-type-deriver (prototype kind width signedp)
2840 (declare (ignore kind))
2842 (binding* ((info (info :function :info prototype) :exit-if-null)
2843 (fun (fun-info-derive-type info) :exit-if-null)
2844 (mask-type (specifier-type
2846 ((nil) (let ((mask (1- (ash 1 width))))
2847 `(integer ,mask ,mask)))
2848 ((t) `(signed-byte ,width))))))
2850 (let ((res (funcall fun call)))
2852 (if (eq signedp nil)
2853 (logand-derive-type-aux res mask-type))))))
2856 (binding* ((info (info :function :info prototype) :exit-if-null)
2857 (fun (fun-info-derive-type info) :exit-if-null)
2858 (res (funcall fun call) :exit-if-null)
2859 (mask-type (specifier-type
2861 ((nil) (let ((mask (1- (ash 1 width))))
2862 `(integer ,mask ,mask)))
2863 ((t) `(signed-byte ,width))))))
2864 (if (eq signedp nil)
2865 (logand-derive-type-aux res mask-type)))))
2867 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2869 ;;; For good functions, we just recursively cut arguments; their
2870 ;;; "goodness" means that the result will not increase (in the
2871 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2872 ;;; replaced with the version, cutting its result to WIDTH or more
2873 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2874 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2875 ;;; arguments (maybe to a different width) and returning the name of a
2876 ;;; modular version, if it exists, or NIL. If we have changed
2877 ;;; anything, we need to flush old derived types, because they have
2878 ;;; nothing in common with the new code.
2879 (defun cut-to-width (lvar kind width signedp)
2880 (declare (type lvar lvar) (type (integer 0) width))
2881 (let ((type (specifier-type (if (zerop width)
2884 ((nil) 'unsigned-byte)
2887 (labels ((reoptimize-node (node name)
2888 (setf (node-derived-type node)
2890 (info :function :type name)))
2891 (setf (lvar-%derived-type (node-lvar node)) nil)
2892 (setf (node-reoptimize node) t)
2893 (setf (block-reoptimize (node-block node)) t)
2894 (reoptimize-component (node-component node) :maybe))
2895 (cut-node (node &aux did-something)
2896 (when (and (not (block-delete-p (node-block node)))
2897 (combination-p node)
2898 (eq (basic-combination-kind node) :known))
2899 (let* ((fun-ref (lvar-use (combination-fun node)))
2900 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2901 (modular-fun (find-modular-version fun-name kind signedp width)))
2902 (when (and modular-fun
2903 (not (and (eq fun-name 'logand)
2905 (single-value-type (node-derived-type node))
2907 (binding* ((name (etypecase modular-fun
2908 ((eql :good) fun-name)
2910 (modular-fun-info-name modular-fun))
2912 (funcall modular-fun node width)))
2914 (unless (eql modular-fun :good)
2915 (setq did-something t)
2918 (find-free-fun name "in a strange place"))
2919 (setf (combination-kind node) :full))
2920 (unless (functionp modular-fun)
2921 (dolist (arg (basic-combination-args node))
2922 (when (cut-lvar arg)
2923 (setq did-something t))))
2925 (reoptimize-node node name))
2927 (cut-lvar (lvar &aux did-something)
2928 (do-uses (node lvar)
2929 (when (cut-node node)
2930 (setq did-something t)))
2934 (defun best-modular-version (width signedp)
2935 ;; 1. exact width-matched :untagged
2936 ;; 2. >/>= width-matched :tagged
2937 ;; 3. >/>= width-matched :untagged
2938 (let* ((uuwidths (modular-class-widths *untagged-unsigned-modular-class*))
2939 (uswidths (modular-class-widths *untagged-signed-modular-class*))
2940 (uwidths (merge 'list uuwidths uswidths #'< :key #'car))
2941 (twidths (modular-class-widths *tagged-modular-class*)))
2942 (let ((exact (find (cons width signedp) uwidths :test #'equal)))
2944 (return-from best-modular-version (values width :untagged signedp))))
2945 (flet ((inexact-match (w)
2947 ((eq signedp (cdr w)) (<= width (car w)))
2948 ((eq signedp nil) (< width (car w))))))
2949 (let ((tgt (find-if #'inexact-match twidths)))
2951 (return-from best-modular-version
2952 (values (car tgt) :tagged (cdr tgt)))))
2953 (let ((ugt (find-if #'inexact-match uwidths)))
2955 (return-from best-modular-version
2956 (values (car ugt) :untagged (cdr ugt))))))))
2958 (defoptimizer (logand optimizer) ((x y) node)
2959 (let ((result-type (single-value-type (node-derived-type node))))
2960 (when (numeric-type-p result-type)
2961 (let ((low (numeric-type-low result-type))
2962 (high (numeric-type-high result-type)))
2963 (when (and (numberp low)
2966 (let ((width (integer-length high)))
2967 (multiple-value-bind (w kind signedp)
2968 (best-modular-version width nil)
2970 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH SIGNEDP).
2971 (cut-to-width x kind width signedp)
2972 (cut-to-width y kind width signedp)
2973 nil ; After fixing above, replace with T.
2976 (defoptimizer (mask-signed-field optimizer) ((width x) node)
2977 (let ((result-type (single-value-type (node-derived-type node))))
2978 (when (numeric-type-p result-type)
2979 (let ((low (numeric-type-low result-type))
2980 (high (numeric-type-high result-type)))
2981 (when (and (numberp low) (numberp high))
2982 (let ((width (max (integer-length high) (integer-length low))))
2983 (multiple-value-bind (w kind)
2984 (best-modular-version width t)
2986 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH T).
2987 (cut-to-width x kind width t)
2988 nil ; After fixing above, replace with T.
2991 ;;; miscellanous numeric transforms
2993 ;;; If a constant appears as the first arg, swap the args.
2994 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2995 (if (and (constant-lvar-p x)
2996 (not (constant-lvar-p y)))
2997 `(,(lvar-fun-name (basic-combination-fun node))
3000 (give-up-ir1-transform)))
3002 (dolist (x '(= char= + * logior logand logxor))
3003 (%deftransform x '(function * *) #'commutative-arg-swap
3004 "place constant arg last"))
3006 ;;; Handle the case of a constant BOOLE-CODE.
3007 (deftransform boole ((op x y) * *)
3008 "convert to inline logical operations"
3009 (unless (constant-lvar-p op)
3010 (give-up-ir1-transform "BOOLE code is not a constant."))
3011 (let ((control (lvar-value op)))
3013 (#.sb!xc:boole-clr 0)
3014 (#.sb!xc:boole-set -1)
3015 (#.sb!xc:boole-1 'x)
3016 (#.sb!xc:boole-2 'y)
3017 (#.sb!xc:boole-c1 '(lognot x))
3018 (#.sb!xc:boole-c2 '(lognot y))
3019 (#.sb!xc:boole-and '(logand x y))
3020 (#.sb!xc:boole-ior '(logior x y))
3021 (#.sb!xc:boole-xor '(logxor x y))
3022 (#.sb!xc:boole-eqv '(logeqv x y))
3023 (#.sb!xc:boole-nand '(lognand x y))
3024 (#.sb!xc:boole-nor '(lognor x y))
3025 (#.sb!xc:boole-andc1 '(logandc1 x y))
3026 (#.sb!xc:boole-andc2 '(logandc2 x y))
3027 (#.sb!xc:boole-orc1 '(logorc1 x y))
3028 (#.sb!xc:boole-orc2 '(logorc2 x y))
3030 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
3033 ;;;; converting special case multiply/divide to shifts
3035 ;;; If arg is a constant power of two, turn * into a shift.
3036 (deftransform * ((x y) (integer integer) *)
3037 "convert x*2^k to shift"
3038 (unless (constant-lvar-p y)
3039 (give-up-ir1-transform))
3040 (let* ((y (lvar-value y))
3042 (len (1- (integer-length y-abs))))
3043 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3044 (give-up-ir1-transform))
3049 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3050 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3052 (flet ((frob (y ceil-p)
3053 (unless (constant-lvar-p y)
3054 (give-up-ir1-transform))
3055 (let* ((y (lvar-value y))
3057 (len (1- (integer-length y-abs))))
3058 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3059 (give-up-ir1-transform))
3060 (let ((shift (- len))
3062 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3063 `(let ((x (+ x ,delta)))
3065 `(values (ash (- x) ,shift)
3066 (- (- (logand (- x) ,mask)) ,delta))
3067 `(values (ash x ,shift)
3068 (- (logand x ,mask) ,delta))))))))
3069 (deftransform floor ((x y) (integer integer) *)
3070 "convert division by 2^k to shift"
3072 (deftransform ceiling ((x y) (integer integer) *)
3073 "convert division by 2^k to shift"
3076 ;;; Do the same for MOD.
3077 (deftransform mod ((x y) (integer integer) *)
3078 "convert remainder mod 2^k to LOGAND"
3079 (unless (constant-lvar-p y)
3080 (give-up-ir1-transform))
3081 (let* ((y (lvar-value y))
3083 (len (1- (integer-length y-abs))))
3084 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3085 (give-up-ir1-transform))
3086 (let ((mask (1- y-abs)))
3088 `(- (logand (- x) ,mask))
3089 `(logand x ,mask)))))
3091 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3092 (deftransform truncate ((x y) (integer integer))
3093 "convert division by 2^k to shift"
3094 (unless (constant-lvar-p y)
3095 (give-up-ir1-transform))
3096 (let* ((y (lvar-value y))
3098 (len (1- (integer-length y-abs))))
3099 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3100 (give-up-ir1-transform))
3101 (let* ((shift (- len))
3104 (values ,(if (minusp y)
3106 `(- (ash (- x) ,shift)))
3107 (- (logand (- x) ,mask)))
3108 (values ,(if (minusp y)
3109 `(ash (- ,mask x) ,shift)
3111 (logand x ,mask))))))
3113 ;;; And the same for REM.
3114 (deftransform rem ((x y) (integer integer) *)
3115 "convert remainder mod 2^k to LOGAND"
3116 (unless (constant-lvar-p y)
3117 (give-up-ir1-transform))
3118 (let* ((y (lvar-value y))
3120 (len (1- (integer-length y-abs))))
3121 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3122 (give-up-ir1-transform))
3123 (let ((mask (1- y-abs)))
3125 (- (logand (- x) ,mask))
3126 (logand x ,mask)))))
3128 ;;;; arithmetic and logical identity operation elimination
3130 ;;; Flush calls to various arith functions that convert to the
3131 ;;; identity function or a constant.
3132 (macrolet ((def (name identity result)
3133 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3134 "fold identity operations"
3141 (def logxor -1 (lognot x))
3144 (deftransform logand ((x y) (* (constant-arg t)) *)
3145 "fold identity operation"
3146 (let ((y (lvar-value y)))
3147 (unless (and (plusp y)
3148 (= y (1- (ash 1 (integer-length y)))))
3149 (give-up-ir1-transform))
3150 (unless (csubtypep (lvar-type x)
3151 (specifier-type `(integer 0 ,y)))
3152 (give-up-ir1-transform))
3155 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3156 "fold identity operation"
3157 (let ((size (lvar-value size)))
3158 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3159 (give-up-ir1-transform))
3162 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3163 ;;; (* 0 -4.0) is -0.0.
3164 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3165 "convert (- 0 x) to negate"
3167 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3168 "convert (* x 0) to 0"
3171 ;;; Return T if in an arithmetic op including lvars X and Y, the
3172 ;;; result type is not affected by the type of X. That is, Y is at
3173 ;;; least as contagious as X.
3175 (defun not-more-contagious (x y)
3176 (declare (type continuation x y))
3177 (let ((x (lvar-type x))
3179 (values (type= (numeric-contagion x y)
3180 (numeric-contagion y y)))))
3181 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3182 ;;; XXX needs more work as valid transforms are missed; some cases are
3183 ;;; specific to particular transform functions so the use of this
3184 ;;; function may need a re-think.
3185 (defun not-more-contagious (x y)
3186 (declare (type lvar x y))
3187 (flet ((simple-numeric-type (num)
3188 (and (numeric-type-p num)
3189 ;; Return non-NIL if NUM is integer, rational, or a float
3190 ;; of some type (but not FLOAT)
3191 (case (numeric-type-class num)
3195 (numeric-type-format num))
3198 (let ((x (lvar-type x))
3200 (if (and (simple-numeric-type x)
3201 (simple-numeric-type y))
3202 (values (type= (numeric-contagion x y)
3203 (numeric-contagion y y)))))))
3207 ;;; If y is not constant, not zerop, or is contagious, or a positive
3208 ;;; float +0.0 then give up.
3209 (deftransform + ((x y) (t (constant-arg t)) *)
3211 (let ((val (lvar-value y)))
3212 (unless (and (zerop val)
3213 (not (and (floatp val) (plusp (float-sign val))))
3214 (not-more-contagious y x))
3215 (give-up-ir1-transform)))
3220 ;;; If y is not constant, not zerop, or is contagious, or a negative
3221 ;;; float -0.0 then give up.
3222 (deftransform - ((x y) (t (constant-arg t)) *)
3224 (let ((val (lvar-value y)))
3225 (unless (and (zerop val)
3226 (not (and (floatp val) (minusp (float-sign val))))
3227 (not-more-contagious y x))
3228 (give-up-ir1-transform)))
3231 ;;; Fold (OP x +/-1)
3232 (macrolet ((def (name result minus-result)
3233 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3234 "fold identity operations"
3235 (let ((val (lvar-value y)))
3236 (unless (and (= (abs val) 1)
3237 (not-more-contagious y x))
3238 (give-up-ir1-transform))
3239 (if (minusp val) ',minus-result ',result)))))
3240 (def * x (%negate x))
3241 (def / x (%negate x))
3242 (def expt x (/ 1 x)))
3244 ;;; Fold (expt x n) into multiplications for small integral values of
3245 ;;; N; convert (expt x 1/2) to sqrt.
3246 (deftransform expt ((x y) (t (constant-arg real)) *)
3247 "recode as multiplication or sqrt"
3248 (let ((val (lvar-value y)))
3249 ;; If Y would cause the result to be promoted to the same type as
3250 ;; Y, we give up. If not, then the result will be the same type
3251 ;; as X, so we can replace the exponentiation with simple
3252 ;; multiplication and division for small integral powers.
3253 (unless (not-more-contagious y x)
3254 (give-up-ir1-transform))
3256 (let ((x-type (lvar-type x)))
3257 (cond ((csubtypep x-type (specifier-type '(or rational
3258 (complex rational))))
3260 ((csubtypep x-type (specifier-type 'real))
3264 ((csubtypep x-type (specifier-type 'complex))
3265 ;; both parts are float
3267 (t (give-up-ir1-transform)))))
3268 ((= val 2) '(* x x))
3269 ((= val -2) '(/ (* x x)))
3270 ((= val 3) '(* x x x))
3271 ((= val -3) '(/ (* x x x)))
3272 ((= val 1/2) '(sqrt x))
3273 ((= val -1/2) '(/ (sqrt x)))
3274 (t (give-up-ir1-transform)))))
3276 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3277 ;;; transformations?
3278 ;;; Perhaps we should have to prove that the denominator is nonzero before
3279 ;;; doing them? -- WHN 19990917
3280 (macrolet ((def (name)
3281 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3288 (macrolet ((def (name)
3289 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3298 ;;;; character operations
3300 (deftransform char-equal ((a b) (base-char base-char))
3302 '(let* ((ac (char-code a))
3304 (sum (logxor ac bc)))
3306 (when (eql sum #x20)
3307 (let ((sum (+ ac bc)))
3308 (or (and (> sum 161) (< sum 213))
3309 (and (> sum 415) (< sum 461))
3310 (and (> sum 463) (< sum 477))))))))
3312 (deftransform char-upcase ((x) (base-char))
3314 '(let ((n-code (char-code x)))
3315 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3316 (< n-code #o173)) ; Octal 172 is #\z.
3317 (and (> n-code #o337)
3319 (and (> n-code #o367)
3321 (code-char (logxor #x20 n-code))
3324 (deftransform char-downcase ((x) (base-char))
3326 '(let ((n-code (char-code x)))
3327 (if (or (and (> n-code 64) ; 65 is #\A.
3328 (< n-code 91)) ; 90 is #\Z.
3333 (code-char (logxor #x20 n-code))
3336 ;;;; equality predicate transforms
3338 ;;; Return true if X and Y are lvars whose only use is a
3339 ;;; reference to the same leaf, and the value of the leaf cannot
3341 (defun same-leaf-ref-p (x y)
3342 (declare (type lvar x y))
3343 (let ((x-use (principal-lvar-use x))
3344 (y-use (principal-lvar-use y)))
3347 (eq (ref-leaf x-use) (ref-leaf y-use))
3348 (constant-reference-p x-use))))
3350 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3351 ;;; if there is no intersection between the types of the arguments,
3352 ;;; then the result is definitely false.
3353 (deftransform simple-equality-transform ((x y) * *
3356 ((same-leaf-ref-p x y) t)
3357 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3359 (t (give-up-ir1-transform))))
3362 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3366 ;;; True if EQL comparisons involving type can be simplified to EQ.
3367 (defun eq-comparable-type-p (type)
3368 (csubtypep type (specifier-type '(or fixnum (not number)))))
3370 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3371 ;;; try to convert to a type-specific predicate or EQ:
3372 ;;; -- If both args are characters, convert to CHAR=. This is better than
3373 ;;; just converting to EQ, since CHAR= may have special compilation
3374 ;;; strategies for non-standard representations, etc.
3375 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3376 ;;; constant and if so, put X second. Doing this results in better
3377 ;;; code from the backend, since the backend assumes that any constant
3378 ;;; argument comes second.
3379 ;;; -- If either arg is definitely not a number or a fixnum, then we
3380 ;;; can compare with EQ.
3381 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3382 ;;; is constant then we put it second. If X is a subtype of Y, we put
3383 ;;; it second. These rules make it easier for the back end to match
3384 ;;; these interesting cases.
3385 (deftransform eql ((x y) * * :node node)
3386 "convert to simpler equality predicate"
3387 (let ((x-type (lvar-type x))
3388 (y-type (lvar-type y))
3389 (char-type (specifier-type 'character)))
3390 (flet ((fixnum-type-p (type)
3391 (csubtypep type (specifier-type 'fixnum))))
3393 ((same-leaf-ref-p x y) t)
3394 ((not (types-equal-or-intersect x-type y-type))
3396 ((and (csubtypep x-type char-type)
3397 (csubtypep y-type char-type))
3399 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3400 (commutative-arg-swap node))
3401 ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type))
3403 ((and (not (constant-lvar-p y))
3404 (or (constant-lvar-p x)
3405 (and (csubtypep x-type y-type)
3406 (not (csubtypep y-type x-type)))))
3409 (give-up-ir1-transform))))))
3411 ;;; similarly to the EQL transform above, we attempt to constant-fold
3412 ;;; or convert to a simpler predicate: mostly we have to be careful
3413 ;;; with strings and bit-vectors.
3414 (deftransform equal ((x y) * *)
3415 "convert to simpler equality predicate"
3416 (let ((x-type (lvar-type x))
3417 (y-type (lvar-type y))
3418 (string-type (specifier-type 'string))
3419 (bit-vector-type (specifier-type 'bit-vector)))
3421 ((same-leaf-ref-p x y) t)
3422 ((and (csubtypep x-type string-type)
3423 (csubtypep y-type string-type))
3425 ((and (csubtypep x-type bit-vector-type)
3426 (csubtypep y-type bit-vector-type))
3427 '(bit-vector-= x y))
3428 ;; if at least one is not a string, and at least one is not a
3429 ;; bit-vector, then we can reason from types.
3430 ((and (not (and (types-equal-or-intersect x-type string-type)
3431 (types-equal-or-intersect y-type string-type)))
3432 (not (and (types-equal-or-intersect x-type bit-vector-type)
3433 (types-equal-or-intersect y-type bit-vector-type)))
3434 (not (types-equal-or-intersect x-type y-type)))
3436 (t (give-up-ir1-transform)))))
3438 ;;; Convert to EQL if both args are rational and complexp is specified
3439 ;;; and the same for both.
3440 (deftransform = ((x y) (number number) *)
3442 (let ((x-type (lvar-type x))
3443 (y-type (lvar-type y)))
3444 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3445 (csubtypep y-type (specifier-type 'float)))
3446 (and (csubtypep x-type (specifier-type '(complex float)))
3447 (csubtypep y-type (specifier-type '(complex float)))))
3448 ;; They are both floats. Leave as = so that -0.0 is
3449 ;; handled correctly.
3450 (give-up-ir1-transform))
3451 ((or (and (csubtypep x-type (specifier-type 'rational))
3452 (csubtypep y-type (specifier-type 'rational)))
3453 (and (csubtypep x-type
3454 (specifier-type '(complex rational)))
3456 (specifier-type '(complex rational)))))
3457 ;; They are both rationals and complexp is the same.
3461 (give-up-ir1-transform
3462 "The operands might not be the same type.")))))
3464 (defun maybe-float-lvar-p (lvar)
3465 (neq *empty-type* (type-intersection (specifier-type 'float)
3468 (flet ((maybe-invert (node op inverted x y)
3469 ;; Don't invert if either argument can be a float (NaNs)
3471 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3472 (delay-ir1-transform node :constraint)
3473 `(or (,op x y) (= x y)))
3475 `(if (,inverted x y) nil t)))))
3476 (deftransform >= ((x y) (number number) * :node node)
3477 "invert or open code"
3478 (maybe-invert node '> '< x y))
3479 (deftransform <= ((x y) (number number) * :node node)
3480 "invert or open code"
3481 (maybe-invert node '< '> x y)))
3483 ;;; See whether we can statically determine (< X Y) using type
3484 ;;; information. If X's high bound is < Y's low, then X < Y.
3485 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3486 ;;; NIL). If not, at least make sure any constant arg is second.
3487 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3488 `(deftransform ,name ((x y))
3489 "optimize using intervals"
3490 (if (and (same-leaf-ref-p x y)
3491 ;; For non-reflexive functions we don't need
3492 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3493 ;; but with reflexive ones we don't know...
3495 '((and (not (maybe-float-lvar-p x))
3496 (not (maybe-float-lvar-p y))))))
3498 (let ((ix (or (type-approximate-interval (lvar-type x))
3499 (give-up-ir1-transform)))
3500 (iy (or (type-approximate-interval (lvar-type y))
3501 (give-up-ir1-transform))))
3506 ((and (constant-lvar-p x)
3507 (not (constant-lvar-p y)))
3510 (give-up-ir1-transform))))))))
3511 (def = = t (interval-= ix iy) (interval-/= ix iy))
3512 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3513 (def < > nil (interval-< ix iy) (interval->= ix iy))
3514 (def > < nil (interval-< iy ix) (interval->= iy ix))
3515 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3516 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3518 (defun ir1-transform-char< (x y first second inverse)
3520 ((same-leaf-ref-p x y) nil)
3521 ;; If we had interval representation of character types, as we
3522 ;; might eventually have to to support 2^21 characters, then here
3523 ;; we could do some compile-time computation as in transforms for
3524 ;; < above. -- CSR, 2003-07-01
3525 ((and (constant-lvar-p first)
3526 (not (constant-lvar-p second)))
3528 (t (give-up-ir1-transform))))
3530 (deftransform char< ((x y) (character character) *)
3531 (ir1-transform-char< x y x y 'char>))
3533 (deftransform char> ((x y) (character character) *)
3534 (ir1-transform-char< y x x y 'char<))
3536 ;;;; converting N-arg comparisons
3538 ;;;; We convert calls to N-arg comparison functions such as < into
3539 ;;;; two-arg calls. This transformation is enabled for all such
3540 ;;;; comparisons in this file. If any of these predicates are not
3541 ;;;; open-coded, then the transformation should be removed at some
3542 ;;;; point to avoid pessimization.
3544 ;;; This function is used for source transformation of N-arg
3545 ;;; comparison functions other than inequality. We deal both with
3546 ;;; converting to two-arg calls and inverting the sense of the test,
3547 ;;; if necessary. If the call has two args, then we pass or return a
3548 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3549 ;;; then we transform to code that returns true. Otherwise, we bind
3550 ;;; all the arguments and expand into a bunch of IFs.
3551 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3552 (let ((nargs (length args)))
3553 (cond ((< nargs 1) (values nil t))
3554 ((= nargs 1) `(progn (the ,type ,@args) t))
3557 `(if (,predicate ,(first args) ,(second args)) nil t)
3559 `(,predicate ,(first args) ,(second args))
3562 (do* ((i (1- nargs) (1- i))
3564 (current (gensym) (gensym))
3565 (vars (list current) (cons current vars))
3567 `(if (,predicate ,current ,last)
3569 `(if (,predicate ,current ,last)
3572 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3575 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3576 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3577 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3578 ;;; We cannot do the inversion for >= and <= here, since both
3579 ;;; (< NaN X) and (> NaN X)
3580 ;;; are false, and we don't have type-inforation available yet. The
3581 ;;; deftransforms for two-argument versions of >= and <= takes care of
3582 ;;; the inversion to > and < when possible.
3583 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3584 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3586 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3588 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3590 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3592 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3594 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3597 (define-source-transform char-equal (&rest args)
3598 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3599 (define-source-transform char-lessp (&rest args)
3600 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3601 (define-source-transform char-greaterp (&rest args)
3602 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3603 (define-source-transform char-not-greaterp (&rest args)
3604 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3605 (define-source-transform char-not-lessp (&rest args)
3606 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3608 ;;; This function does source transformation of N-arg inequality
3609 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3610 ;;; arg cases. If there are more than two args, then we expand into
3611 ;;; the appropriate n^2 comparisons only when speed is important.
3612 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3613 (defun multi-not-equal (predicate args type)
3614 (let ((nargs (length args)))
3615 (cond ((< nargs 1) (values nil t))
3616 ((= nargs 1) `(progn (the ,type ,@args) t))
3618 `(if (,predicate ,(first args) ,(second args)) nil t))
3619 ((not (policy *lexenv*
3620 (and (>= speed space)
3621 (>= speed compilation-speed))))
3624 (let ((vars (make-gensym-list nargs)))
3625 (do ((var vars next)
3626 (next (cdr vars) (cdr next))
3629 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3631 (let ((v1 (first var)))
3633 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3635 (define-source-transform /= (&rest args)
3636 (multi-not-equal '= args 'number))
3637 (define-source-transform char/= (&rest args)
3638 (multi-not-equal 'char= args 'character))
3639 (define-source-transform char-not-equal (&rest args)
3640 (multi-not-equal 'char-equal args 'character))
3642 ;;; Expand MAX and MIN into the obvious comparisons.
3643 (define-source-transform max (arg0 &rest rest)
3644 (once-only ((arg0 arg0))
3646 `(values (the real ,arg0))
3647 `(let ((maxrest (max ,@rest)))
3648 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3649 (define-source-transform min (arg0 &rest rest)
3650 (once-only ((arg0 arg0))
3652 `(values (the real ,arg0))
3653 `(let ((minrest (min ,@rest)))
3654 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3656 ;;;; converting N-arg arithmetic functions
3658 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3659 ;;;; versions, and degenerate cases are flushed.
3661 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3662 (declaim (ftype (function (symbol t list) list) associate-args))
3663 (defun associate-args (function first-arg more-args)
3664 (let ((next (rest more-args))
3665 (arg (first more-args)))
3667 `(,function ,first-arg ,arg)
3668 (associate-args function `(,function ,first-arg ,arg) next))))
3670 ;;; Do source transformations for transitive functions such as +.
3671 ;;; One-arg cases are replaced with the arg and zero arg cases with
3672 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3673 ;;; ensure (with THE) that the argument in one-argument calls is.
3674 (defun source-transform-transitive (fun args identity
3675 &optional one-arg-result-type)
3676 (declare (symbol fun) (list args))
3679 (1 (if one-arg-result-type
3680 `(values (the ,one-arg-result-type ,(first args)))
3681 `(values ,(first args))))
3684 (associate-args fun (first args) (rest args)))))
3686 (define-source-transform + (&rest args)
3687 (source-transform-transitive '+ args 0 'number))
3688 (define-source-transform * (&rest args)
3689 (source-transform-transitive '* args 1 'number))
3690 (define-source-transform logior (&rest args)
3691 (source-transform-transitive 'logior args 0 'integer))
3692 (define-source-transform logxor (&rest args)
3693 (source-transform-transitive 'logxor args 0 'integer))
3694 (define-source-transform logand (&rest args)
3695 (source-transform-transitive 'logand args -1 'integer))
3696 (define-source-transform logeqv (&rest args)
3697 (source-transform-transitive 'logeqv args -1 'integer))
3699 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3700 ;;; because when they are given one argument, they return its absolute
3703 (define-source-transform gcd (&rest args)
3706 (1 `(abs (the integer ,(first args))))
3708 (t (associate-args 'gcd (first args) (rest args)))))
3710 (define-source-transform lcm (&rest args)
3713 (1 `(abs (the integer ,(first args))))
3715 (t (associate-args 'lcm (first args) (rest args)))))
3717 ;;; Do source transformations for intransitive n-arg functions such as
3718 ;;; /. With one arg, we form the inverse. With two args we pass.
3719 ;;; Otherwise we associate into two-arg calls.
3720 (declaim (ftype (function (symbol list t)
3721 (values list &optional (member nil t)))
3722 source-transform-intransitive))
3723 (defun source-transform-intransitive (function args inverse)
3725 ((0 2) (values nil t))
3726 (1 `(,@inverse ,(first args)))
3727 (t (associate-args function (first args) (rest args)))))
3729 (define-source-transform - (&rest args)
3730 (source-transform-intransitive '- args '(%negate)))
3731 (define-source-transform / (&rest args)
3732 (source-transform-intransitive '/ args '(/ 1)))
3734 ;;;; transforming APPLY
3736 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3737 ;;; only needs to understand one kind of variable-argument call. It is
3738 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3739 (define-source-transform apply (fun arg &rest more-args)
3740 (let ((args (cons arg more-args)))
3741 `(multiple-value-call ,fun
3742 ,@(mapcar (lambda (x)
3745 (values-list ,(car (last args))))))
3747 ;;;; transforming FORMAT
3749 ;;;; If the control string is a compile-time constant, then replace it
3750 ;;;; with a use of the FORMATTER macro so that the control string is
3751 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3752 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3753 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3755 ;;; for compile-time argument count checking.
3757 ;;; FIXME II: In some cases, type information could be correlated; for
3758 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3759 ;;; of a corresponding argument is known and does not intersect the
3760 ;;; list type, a warning could be signalled.
3761 (defun check-format-args (string args fun)
3762 (declare (type string string))
3763 (unless (typep string 'simple-string)
3764 (setq string (coerce string 'simple-string)))
3765 (multiple-value-bind (min max)
3766 (handler-case (sb!format:%compiler-walk-format-string string args)
3767 (sb!format:format-error (c)
3768 (compiler-warn "~A" c)))
3770 (let ((nargs (length args)))
3773 (warn 'format-too-few-args-warning
3775 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3776 :format-arguments (list nargs fun string min)))
3778 (warn 'format-too-many-args-warning
3780 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3781 :format-arguments (list nargs fun string max))))))))
3783 (defoptimizer (format optimizer) ((dest control &rest args))
3784 (when (constant-lvar-p control)
3785 (let ((x (lvar-value control)))
3787 (check-format-args x args 'format)))))
3789 ;;; We disable this transform in the cross-compiler to save memory in
3790 ;;; the target image; most of the uses of FORMAT in the compiler are for
3791 ;;; error messages, and those don't need to be particularly fast.
3793 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3794 :policy (> speed space))
3795 (unless (constant-lvar-p control)
3796 (give-up-ir1-transform "The control string is not a constant."))
3797 (let ((arg-names (make-gensym-list (length args))))
3798 `(lambda (dest control ,@arg-names)
3799 (declare (ignore control))
3800 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3802 (deftransform format ((stream control &rest args) (stream function &rest t) *
3803 :policy (> speed space))
3804 (let ((arg-names (make-gensym-list (length args))))
3805 `(lambda (stream control ,@arg-names)
3806 (funcall control stream ,@arg-names)
3809 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3810 :policy (> speed space))
3811 (let ((arg-names (make-gensym-list (length args))))
3812 `(lambda (tee control ,@arg-names)
3813 (declare (ignore tee))
3814 (funcall control *standard-output* ,@arg-names)
3817 (deftransform pathname ((pathspec) (pathname) *)
3820 (deftransform pathname ((pathspec) (string) *)
3821 '(values (parse-namestring pathspec)))
3825 `(defoptimizer (,name optimizer) ((control &rest args))
3826 (when (constant-lvar-p control)
3827 (let ((x (lvar-value control)))
3829 (check-format-args x args ',name)))))))
3832 #+sb-xc-host ; Only we should be using these
3835 (def compiler-error)
3837 (def compiler-style-warn)
3838 (def compiler-notify)
3839 (def maybe-compiler-notify)
3842 (defoptimizer (cerror optimizer) ((report control &rest args))
3843 (when (and (constant-lvar-p control)
3844 (constant-lvar-p report))
3845 (let ((x (lvar-value control))
3846 (y (lvar-value report)))
3847 (when (and (stringp x) (stringp y))
3848 (multiple-value-bind (min1 max1)
3850 (sb!format:%compiler-walk-format-string x args)
3851 (sb!format:format-error (c)
3852 (compiler-warn "~A" c)))
3854 (multiple-value-bind (min2 max2)
3856 (sb!format:%compiler-walk-format-string y args)
3857 (sb!format:format-error (c)
3858 (compiler-warn "~A" c)))
3860 (let ((nargs (length args)))
3862 ((< nargs (min min1 min2))
3863 (warn 'format-too-few-args-warning
3865 "Too few arguments (~D) to ~S ~S ~S: ~
3866 requires at least ~D."
3868 (list nargs 'cerror y x (min min1 min2))))
3869 ((> nargs (max max1 max2))
3870 (warn 'format-too-many-args-warning
3872 "Too many arguments (~D) to ~S ~S ~S: ~
3875 (list nargs 'cerror y x (max max1 max2))))))))))))))
3877 (defoptimizer (coerce derive-type) ((value type))
3879 ((constant-lvar-p type)
3880 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3881 ;; but dealing with the niggle that complex canonicalization gets
3882 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3884 (let* ((specifier (lvar-value type))
3885 (result-typeoid (careful-specifier-type specifier)))
3887 ((null result-typeoid) nil)
3888 ((csubtypep result-typeoid (specifier-type 'number))
3889 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3890 ;; Rule of Canonical Representation for Complex Rationals,
3891 ;; which is a truly nasty delivery to field.
3893 ((csubtypep result-typeoid (specifier-type 'real))
3894 ;; cleverness required here: it would be nice to deduce
3895 ;; that something of type (INTEGER 2 3) coerced to type
3896 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3897 ;; FLOAT gets its own clause because it's implemented as
3898 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3901 ((and (numeric-type-p result-typeoid)
3902 (eq (numeric-type-complexp result-typeoid) :real))
3903 ;; FIXME: is this clause (a) necessary or (b) useful?
3905 ((or (csubtypep result-typeoid
3906 (specifier-type '(complex single-float)))
3907 (csubtypep result-typeoid
3908 (specifier-type '(complex double-float)))
3910 (csubtypep result-typeoid
3911 (specifier-type '(complex long-float))))
3912 ;; float complex types are never canonicalized.
3915 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3916 ;; probably just a COMPLEX or equivalent. So, in that
3917 ;; case, we will return a complex or an object of the
3918 ;; provided type if it's rational:
3919 (type-union result-typeoid
3920 (type-intersection (lvar-type value)
3921 (specifier-type 'rational))))))
3922 (t result-typeoid))))
3924 ;; OK, the result-type argument isn't constant. However, there
3925 ;; are common uses where we can still do better than just
3926 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3927 ;; where Y is of a known type. See messages on cmucl-imp
3928 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3929 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3930 ;; the basis that it's unlikely that other uses are both
3931 ;; time-critical and get to this branch of the COND (non-constant
3932 ;; second argument to COERCE). -- CSR, 2002-12-16
3933 (let ((value-type (lvar-type value))
3934 (type-type (lvar-type type)))
3936 ((good-cons-type-p (cons-type)
3937 ;; Make sure the cons-type we're looking at is something
3938 ;; we're prepared to handle which is basically something
3939 ;; that array-element-type can return.
3940 (or (and (member-type-p cons-type)
3941 (eql 1 (member-type-size cons-type))
3942 (null (first (member-type-members cons-type))))
3943 (let ((car-type (cons-type-car-type cons-type)))
3944 (and (member-type-p car-type)
3945 (eql 1 (member-type-members car-type))
3946 (let ((elt (first (member-type-members car-type))))
3950 (numberp (first elt)))))
3951 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3952 (unconsify-type (good-cons-type)
3953 ;; Convert the "printed" respresentation of a cons
3954 ;; specifier into a type specifier. That is, the
3955 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3956 ;; NULL)) is converted to (SIGNED-BYTE 16).
3957 (cond ((or (null good-cons-type)
3958 (eq good-cons-type 'null))
3960 ((and (eq (first good-cons-type) 'cons)
3961 (eq (first (second good-cons-type)) 'member))
3962 `(,(second (second good-cons-type))
3963 ,@(unconsify-type (caddr good-cons-type))))))
3964 (coerceable-p (c-type)
3965 ;; Can the value be coerced to the given type? Coerce is
3966 ;; complicated, so we don't handle every possible case
3967 ;; here---just the most common and easiest cases:
3969 ;; * Any REAL can be coerced to a FLOAT type.
3970 ;; * Any NUMBER can be coerced to a (COMPLEX
3971 ;; SINGLE/DOUBLE-FLOAT).
3973 ;; FIXME I: we should also be able to deal with characters
3976 ;; FIXME II: I'm not sure that anything is necessary
3977 ;; here, at least while COMPLEX is not a specialized
3978 ;; array element type in the system. Reasoning: if
3979 ;; something cannot be coerced to the requested type, an
3980 ;; error will be raised (and so any downstream compiled
3981 ;; code on the assumption of the returned type is
3982 ;; unreachable). If something can, then it will be of
3983 ;; the requested type, because (by assumption) COMPLEX
3984 ;; (and other difficult types like (COMPLEX INTEGER)
3985 ;; aren't specialized types.
3986 (let ((coerced-type c-type))
3987 (or (and (subtypep coerced-type 'float)
3988 (csubtypep value-type (specifier-type 'real)))
3989 (and (subtypep coerced-type
3990 '(or (complex single-float)
3991 (complex double-float)))
3992 (csubtypep value-type (specifier-type 'number))))))
3993 (process-types (type)
3994 ;; FIXME: This needs some work because we should be able
3995 ;; to derive the resulting type better than just the
3996 ;; type arg of coerce. That is, if X is (INTEGER 10
3997 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3998 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
4000 (cond ((member-type-p type)
4003 (mapc-member-type-members
4005 (if (coerceable-p member)
4006 (push member members)
4007 (return-from punt *universal-type*)))
4009 (specifier-type `(or ,@members)))))
4010 ((and (cons-type-p type)
4011 (good-cons-type-p type))
4012 (let ((c-type (unconsify-type (type-specifier type))))
4013 (if (coerceable-p c-type)
4014 (specifier-type c-type)
4017 *universal-type*))))
4018 (cond ((union-type-p type-type)
4019 (apply #'type-union (mapcar #'process-types
4020 (union-type-types type-type))))
4021 ((or (member-type-p type-type)
4022 (cons-type-p type-type))
4023 (process-types type-type))
4025 *universal-type*)))))))
4027 (defoptimizer (compile derive-type) ((nameoid function))
4028 (when (csubtypep (lvar-type nameoid)
4029 (specifier-type 'null))
4030 (values-specifier-type '(values function boolean boolean))))
4032 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
4033 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
4034 ;;; optimizer, above).
4035 (defoptimizer (array-element-type derive-type) ((array))
4036 (let ((array-type (lvar-type array)))
4037 (labels ((consify (list)
4040 `(cons (eql ,(car list)) ,(consify (rest list)))))
4041 (get-element-type (a)
4043 (type-specifier (array-type-specialized-element-type a))))
4044 (cond ((eq element-type '*)
4045 (specifier-type 'type-specifier))
4046 ((symbolp element-type)
4047 (make-member-type :members (list element-type)))
4048 ((consp element-type)
4049 (specifier-type (consify element-type)))
4051 (error "can't understand type ~S~%" element-type))))))
4052 (cond ((array-type-p array-type)
4053 (get-element-type array-type))
4054 ((union-type-p array-type)
4056 (mapcar #'get-element-type (union-type-types array-type))))
4058 *universal-type*)))))
4060 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4061 ;;; isn't really related to the CMU CL code, since instead of trying
4062 ;;; to generalize the CMU CL code to allow START and END values, this
4063 ;;; code has been written from scratch following Chapter 7 of
4064 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4065 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4066 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4067 ;; isn't really related to the CMU CL code, since instead of trying
4068 ;; to generalize the CMU CL code to allow START and END values, this
4069 ;; code has been written from scratch following Chapter 7 of
4070 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4071 `(macrolet ((%index (x) `(truly-the index ,x))
4072 (%parent (i) `(ash ,i -1))
4073 (%left (i) `(%index (ash ,i 1)))
4074 (%right (i) `(%index (1+ (ash ,i 1))))
4077 (left (%left i) (%left i)))
4078 ((> left current-heap-size))
4079 (declare (type index i left))
4080 (let* ((i-elt (%elt i))
4081 (i-key (funcall keyfun i-elt))
4082 (left-elt (%elt left))
4083 (left-key (funcall keyfun left-elt)))
4084 (multiple-value-bind (large large-elt large-key)
4085 (if (funcall ,',predicate i-key left-key)
4086 (values left left-elt left-key)
4087 (values i i-elt i-key))
4088 (let ((right (%right i)))
4089 (multiple-value-bind (largest largest-elt)
4090 (if (> right current-heap-size)
4091 (values large large-elt)
4092 (let* ((right-elt (%elt right))
4093 (right-key (funcall keyfun right-elt)))
4094 (if (funcall ,',predicate large-key right-key)
4095 (values right right-elt)
4096 (values large large-elt))))
4097 (cond ((= largest i)
4100 (setf (%elt i) largest-elt
4101 (%elt largest) i-elt
4103 (%sort-vector (keyfun &optional (vtype 'vector))
4104 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4105 ;; trouble getting type inference to
4106 ;; propagate all the way through this
4107 ;; tangled mess of inlining. The TRULY-THE
4108 ;; here works around that. -- WHN
4110 `(aref (truly-the ,',vtype ,',',vector)
4111 (%index (+ (%index ,i) start-1)))))
4112 (let (;; Heaps prefer 1-based addressing.
4113 (start-1 (1- ,',start))
4114 (current-heap-size (- ,',end ,',start))
4116 (declare (type (integer -1 #.(1- most-positive-fixnum))
4118 (declare (type index current-heap-size))
4119 (declare (type function keyfun))
4120 (loop for i of-type index
4121 from (ash current-heap-size -1) downto 1 do
4124 (when (< current-heap-size 2)
4126 (rotatef (%elt 1) (%elt current-heap-size))
4127 (decf current-heap-size)
4129 (if (typep ,vector 'simple-vector)
4130 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4131 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4133 ;; Special-casing the KEY=NIL case lets us avoid some
4135 (%sort-vector #'identity simple-vector)
4136 (%sort-vector ,key simple-vector))
4137 ;; It's hard to anticipate many speed-critical applications for
4138 ;; sorting vector types other than (VECTOR T), so we just lump
4139 ;; them all together in one slow dynamically typed mess.
4141 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4142 (%sort-vector (or ,key #'identity))))))
4144 ;;;; debuggers' little helpers
4146 ;;; for debugging when transforms are behaving mysteriously,
4147 ;;; e.g. when debugging a problem with an ASH transform
4148 ;;; (defun foo (&optional s)
4149 ;;; (sb-c::/report-lvar s "S outside WHEN")
4150 ;;; (when (and (integerp s) (> s 3))
4151 ;;; (sb-c::/report-lvar s "S inside WHEN")
4152 ;;; (let ((bound (ash 1 (1- s))))
4153 ;;; (sb-c::/report-lvar bound "BOUND")
4154 ;;; (let ((x (- bound))
4156 ;;; (sb-c::/report-lvar x "X")
4157 ;;; (sb-c::/report-lvar x "Y"))
4158 ;;; `(integer ,(- bound) ,(1- bound)))))
4159 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4160 ;;; and the function doesn't do anything at all.)
4163 (defknown /report-lvar (t t) null)
4164 (deftransform /report-lvar ((x message) (t t))
4165 (format t "~%/in /REPORT-LVAR~%")
4166 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4167 (when (constant-lvar-p x)
4168 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4169 (format t "/MESSAGE=~S~%" (lvar-value message))
4170 (give-up-ir1-transform "not a real transform"))
4171 (defun /report-lvar (x message)
4172 (declare (ignore x message))))
4175 ;;;; Transforms for internal compiler utilities
4177 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4178 ;;; checking that it's still valid at run-time.
4179 (deftransform policy-quality ((policy quality-name)
4181 (unless (and (constant-lvar-p quality-name)
4182 (policy-quality-name-p (lvar-value quality-name)))
4183 (give-up-ir1-transform))
4184 '(%policy-quality policy quality-name))