1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
37 (declare (ignore ,rest))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
68 (let* ((name (car form))
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
75 `(,(ecase (char string i)
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; LIST with one arg is an extremely common operation (at least inside
118 ;;; SBCL itself); translate it to CONS to take advantage of common
119 ;;; allocation routines.
120 (define-source-transform list (&rest args)
122 (1 `(cons ,(first args) nil))
125 ;;; And similarly for LIST*.
126 (define-source-transform list* (arg &rest others)
127 (cond ((not others) arg)
128 ((not (cdr others)) `(cons ,arg ,(car others)))
131 (defoptimizer (list* derive-type) ((arg &rest args))
133 (specifier-type 'cons)
136 ;;; Translate RPLACx to LET and SETF.
137 (define-source-transform rplaca (x y)
142 (define-source-transform rplacd (x y)
148 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
150 (deftransform last ((list &optional n) (t &optional t))
151 (let ((c (constant-lvar-p n)))
153 (and c (eql 1 (lvar-value n))))
155 ((and c (eql 0 (lvar-value n)))
158 (let ((type (lvar-type n)))
159 (cond ((csubtypep type (specifier-type 'fixnum))
160 '(%lastn/fixnum list n))
161 ((csubtypep type (specifier-type 'bignum))
162 '(%lastn/bignum list n))
164 (give-up-ir1-transform "second argument type too vague"))))))))
166 (define-source-transform gethash (&rest args)
168 (2 `(sb!impl::gethash3 ,@args nil))
169 (3 `(sb!impl::gethash3 ,@args))
171 (define-source-transform get (&rest args)
173 (2 `(sb!impl::get2 ,@args))
174 (3 `(sb!impl::get3 ,@args))
177 (defvar *default-nthcdr-open-code-limit* 6)
178 (defvar *extreme-nthcdr-open-code-limit* 20)
180 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
181 "convert NTHCDR to CAxxR"
182 (unless (constant-lvar-p n)
183 (give-up-ir1-transform))
184 (let ((n (lvar-value n)))
186 (if (policy node (and (= speed 3) (= space 0)))
187 *extreme-nthcdr-open-code-limit*
188 *default-nthcdr-open-code-limit*))
189 (give-up-ir1-transform))
194 `(cdr ,(frob (1- n))))))
197 ;;;; arithmetic and numerology
199 (define-source-transform plusp (x) `(> ,x 0))
200 (define-source-transform minusp (x) `(< ,x 0))
201 (define-source-transform zerop (x) `(= ,x 0))
203 (define-source-transform 1+ (x) `(+ ,x 1))
204 (define-source-transform 1- (x) `(- ,x 1))
206 (define-source-transform oddp (x) `(logtest ,x 1))
207 (define-source-transform evenp (x) `(not (logtest ,x 1)))
209 ;;; Note that all the integer division functions are available for
210 ;;; inline expansion.
212 (macrolet ((deffrob (fun)
213 `(define-source-transform ,fun (x &optional (y nil y-p))
220 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
222 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
225 ;;; This used to be a source transform (hence the lack of restrictions
226 ;;; on the argument types), but we make it a regular transform so that
227 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
228 ;;; to implement it differently. --njf, 06-02-2006
229 (deftransform logtest ((x y) * *)
230 `(not (zerop (logand x y))))
232 (deftransform logbitp
233 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
234 (unsigned-byte #.sb!vm:n-word-bits))))
235 `(if (>= index #.sb!vm:n-word-bits)
237 (not (zerop (logand integer (ash 1 index))))))
239 (define-source-transform byte (size position)
240 `(cons ,size ,position))
241 (define-source-transform byte-size (spec) `(car ,spec))
242 (define-source-transform byte-position (spec) `(cdr ,spec))
243 (define-source-transform ldb-test (bytespec integer)
244 `(not (zerop (mask-field ,bytespec ,integer))))
246 ;;; With the ratio and complex accessors, we pick off the "identity"
247 ;;; case, and use a primitive to handle the cell access case.
248 (define-source-transform numerator (num)
249 (once-only ((n-num `(the rational ,num)))
253 (define-source-transform denominator (num)
254 (once-only ((n-num `(the rational ,num)))
256 (%denominator ,n-num)
259 ;;;; interval arithmetic for computing bounds
261 ;;;; This is a set of routines for operating on intervals. It
262 ;;;; implements a simple interval arithmetic package. Although SBCL
263 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
264 ;;;; for two reasons:
266 ;;;; 1. This package is simpler than NUMERIC-TYPE.
268 ;;;; 2. It makes debugging much easier because you can just strip
269 ;;;; out these routines and test them independently of SBCL. (This is a
272 ;;;; One disadvantage is a probable increase in consing because we
273 ;;;; have to create these new interval structures even though
274 ;;;; numeric-type has everything we want to know. Reason 2 wins for
277 ;;; Support operations that mimic real arithmetic comparison
278 ;;; operators, but imposing a total order on the floating points such
279 ;;; that negative zeros are strictly less than positive zeros.
280 (macrolet ((def (name op)
283 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
284 (,op (float-sign x) (float-sign y))
286 (def signed-zero->= >=)
287 (def signed-zero-> >)
288 (def signed-zero-= =)
289 (def signed-zero-< <)
290 (def signed-zero-<= <=))
292 ;;; The basic interval type. It can handle open and closed intervals.
293 ;;; A bound is open if it is a list containing a number, just like
294 ;;; Lisp says. NIL means unbounded.
295 (defstruct (interval (:constructor %make-interval)
299 (defun make-interval (&key low high)
300 (labels ((normalize-bound (val)
303 (float-infinity-p val))
304 ;; Handle infinities.
308 ;; Handle any closed bounds.
311 ;; We have an open bound. Normalize the numeric
312 ;; bound. If the normalized bound is still a number
313 ;; (not nil), keep the bound open. Otherwise, the
314 ;; bound is really unbounded, so drop the openness.
315 (let ((new-val (normalize-bound (first val))))
317 ;; The bound exists, so keep it open still.
320 (error "unknown bound type in MAKE-INTERVAL")))))
321 (%make-interval :low (normalize-bound low)
322 :high (normalize-bound high))))
324 ;;; Given a number X, create a form suitable as a bound for an
325 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
326 #!-sb-fluid (declaim (inline set-bound))
327 (defun set-bound (x open-p)
328 (if (and x open-p) (list x) x))
330 ;;; Apply the function F to a bound X. If X is an open bound, then
331 ;;; the result will be open. IF X is NIL, the result is NIL.
332 (defun bound-func (f x)
333 (declare (type function f))
335 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
336 ;; With these traps masked, we might get things like infinity
337 ;; or negative infinity returned. Check for this and return
338 ;; NIL to indicate unbounded.
339 (let ((y (funcall f (type-bound-number x))))
341 (float-infinity-p y))
343 (set-bound y (consp x)))))))
345 (defun safe-double-coercion-p (x)
346 (or (typep x 'double-float)
347 (<= most-negative-double-float x most-positive-double-float)))
349 (defun safe-single-coercion-p (x)
350 (or (typep x 'single-float)
351 ;; Fix for bug 420, and related issues: during type derivation we often
352 ;; end up deriving types for both
354 ;; (some-op <int> <single>)
356 ;; (some-op (coerce <int> 'single-float) <single>)
358 ;; or other equivalent transformed forms. The problem with this is that
359 ;; on some platforms like x86 (+ <int> <single>) is on the machine level
362 ;; (coerce (+ (coerce <int> 'double-float)
363 ;; (coerce <single> 'double-float))
366 ;; so if the result of (coerce <int> 'single-float) is not exact, the
367 ;; derived types for the transformed forms will have an empty
368 ;; intersection -- which in turn means that the compiler will conclude
369 ;; that the call never returns, and all hell breaks lose when it *does*
370 ;; return at runtime. (This affects not just +, but other operators are
372 (and (not (typep x `(or (integer * (,most-negative-exactly-single-float-fixnum))
373 (integer (,most-positive-exactly-single-float-fixnum) *))))
374 (<= most-negative-single-float x most-positive-single-float))))
376 ;;; Apply a binary operator OP to two bounds X and Y. The result is
377 ;;; NIL if either is NIL. Otherwise bound is computed and the result
378 ;;; is open if either X or Y is open.
380 ;;; FIXME: only used in this file, not needed in target runtime
382 ;;; ANSI contaigon specifies coercion to floating point if one of the
383 ;;; arguments is floating point. Here we should check to be sure that
384 ;;; the other argument is within the bounds of that floating point
387 (defmacro safely-binop (op x y)
389 ((typep ,x 'double-float)
390 (when (safe-double-coercion-p ,y)
392 ((typep ,y 'double-float)
393 (when (safe-double-coercion-p ,x)
395 ((typep ,x 'single-float)
396 (when (safe-single-coercion-p ,y)
398 ((typep ,y 'single-float)
399 (when (safe-single-coercion-p ,x)
403 (defmacro bound-binop (op x y)
405 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
406 (set-bound (safely-binop ,op (type-bound-number ,x)
407 (type-bound-number ,y))
408 (or (consp ,x) (consp ,y))))))
410 (defun coerce-for-bound (val type)
412 (list (coerce-for-bound (car val) type))
414 ((subtypep type 'double-float)
415 (if (<= most-negative-double-float val most-positive-double-float)
417 ((or (subtypep type 'single-float) (subtypep type 'float))
418 ;; coerce to float returns a single-float
419 (if (<= most-negative-single-float val most-positive-single-float)
421 (t (coerce val type)))))
423 (defun coerce-and-truncate-floats (val type)
426 (list (coerce-and-truncate-floats (car val) type))
428 ((subtypep type 'double-float)
429 (if (<= most-negative-double-float val most-positive-double-float)
431 (if (< val most-negative-double-float)
432 most-negative-double-float most-positive-double-float)))
433 ((or (subtypep type 'single-float) (subtypep type 'float))
434 ;; coerce to float returns a single-float
435 (if (<= most-negative-single-float val most-positive-single-float)
437 (if (< val most-negative-single-float)
438 most-negative-single-float most-positive-single-float)))
439 (t (coerce val type))))))
441 ;;; Convert a numeric-type object to an interval object.
442 (defun numeric-type->interval (x)
443 (declare (type numeric-type x))
444 (make-interval :low (numeric-type-low x)
445 :high (numeric-type-high x)))
447 (defun type-approximate-interval (type)
448 (declare (type ctype type))
449 (let ((types (prepare-arg-for-derive-type type))
452 (let ((type (if (member-type-p type)
453 (convert-member-type type)
455 (unless (numeric-type-p type)
456 (return-from type-approximate-interval nil))
457 (let ((interval (numeric-type->interval type)))
460 (interval-approximate-union result interval)
464 (defun copy-interval-limit (limit)
469 (defun copy-interval (x)
470 (declare (type interval x))
471 (make-interval :low (copy-interval-limit (interval-low x))
472 :high (copy-interval-limit (interval-high x))))
474 ;;; Given a point P contained in the interval X, split X into two
475 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
476 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
477 ;;; contains P. You can specify both to be T or NIL.
478 (defun interval-split (p x &optional close-lower close-upper)
479 (declare (type number p)
481 (list (make-interval :low (copy-interval-limit (interval-low x))
482 :high (if close-lower p (list p)))
483 (make-interval :low (if close-upper (list p) p)
484 :high (copy-interval-limit (interval-high x)))))
486 ;;; Return the closure of the interval. That is, convert open bounds
487 ;;; to closed bounds.
488 (defun interval-closure (x)
489 (declare (type interval x))
490 (make-interval :low (type-bound-number (interval-low x))
491 :high (type-bound-number (interval-high x))))
493 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
494 ;;; '-. Otherwise return NIL.
495 (defun interval-range-info (x &optional (point 0))
496 (declare (type interval x))
497 (let ((lo (interval-low x))
498 (hi (interval-high x)))
499 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
501 ((and hi (signed-zero->= point (type-bound-number hi)))
506 ;;; Test to see whether the interval X is bounded. HOW determines the
507 ;;; test, and should be either ABOVE, BELOW, or BOTH.
508 (defun interval-bounded-p (x how)
509 (declare (type interval x))
516 (and (interval-low x) (interval-high x)))))
518 ;;; See whether the interval X contains the number P, taking into
519 ;;; account that the interval might not be closed.
520 (defun interval-contains-p (p x)
521 (declare (type number p)
523 ;; Does the interval X contain the number P? This would be a lot
524 ;; easier if all intervals were closed!
525 (let ((lo (interval-low x))
526 (hi (interval-high x)))
528 ;; The interval is bounded
529 (if (and (signed-zero-<= (type-bound-number lo) p)
530 (signed-zero-<= p (type-bound-number hi)))
531 ;; P is definitely in the closure of the interval.
532 ;; We just need to check the end points now.
533 (cond ((signed-zero-= p (type-bound-number lo))
535 ((signed-zero-= p (type-bound-number hi))
540 ;; Interval with upper bound
541 (if (signed-zero-< p (type-bound-number hi))
543 (and (numberp hi) (signed-zero-= p hi))))
545 ;; Interval with lower bound
546 (if (signed-zero-> p (type-bound-number lo))
548 (and (numberp lo) (signed-zero-= p lo))))
550 ;; Interval with no bounds
553 ;;; Determine whether two intervals X and Y intersect. Return T if so.
554 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
555 ;;; were closed. Otherwise the intervals are treated as they are.
557 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
558 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
559 ;;; is T, then they do intersect because we use the closure of X = [0,
560 ;;; 1] and Y = [1, 2] to determine intersection.
561 (defun interval-intersect-p (x y &optional closed-intervals-p)
562 (declare (type interval x y))
563 (and (interval-intersection/difference (if closed-intervals-p
566 (if closed-intervals-p
571 ;;; Are the two intervals adjacent? That is, is there a number
572 ;;; between the two intervals that is not an element of either
573 ;;; interval? If so, they are not adjacent. For example [0, 1) and
574 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
575 ;;; between both intervals.
576 (defun interval-adjacent-p (x y)
577 (declare (type interval x y))
578 (flet ((adjacent (lo hi)
579 ;; Check to see whether lo and hi are adjacent. If either is
580 ;; nil, they can't be adjacent.
581 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
582 ;; The bounds are equal. They are adjacent if one of
583 ;; them is closed (a number). If both are open (consp),
584 ;; then there is a number that lies between them.
585 (or (numberp lo) (numberp hi)))))
586 (or (adjacent (interval-low y) (interval-high x))
587 (adjacent (interval-low x) (interval-high y)))))
589 ;;; Compute the intersection and difference between two intervals.
590 ;;; Two values are returned: the intersection and the difference.
592 ;;; Let the two intervals be X and Y, and let I and D be the two
593 ;;; values returned by this function. Then I = X intersect Y. If I
594 ;;; is NIL (the empty set), then D is X union Y, represented as the
595 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
596 ;;; - I, which is a list of two intervals.
598 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
599 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
600 (defun interval-intersection/difference (x y)
601 (declare (type interval x y))
602 (let ((x-lo (interval-low x))
603 (x-hi (interval-high x))
604 (y-lo (interval-low y))
605 (y-hi (interval-high y)))
608 ;; If p is an open bound, make it closed. If p is a closed
609 ;; bound, make it open.
613 (test-number (p int bound)
614 ;; Test whether P is in the interval.
615 (let ((pn (type-bound-number p)))
616 (when (interval-contains-p pn (interval-closure int))
617 ;; Check for endpoints.
618 (let* ((lo (interval-low int))
619 (hi (interval-high int))
620 (lon (type-bound-number lo))
621 (hin (type-bound-number hi)))
623 ;; Interval may be a point.
624 ((and lon hin (= lon hin pn))
625 (and (numberp p) (numberp lo) (numberp hi)))
626 ;; Point matches the low end.
627 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
628 ;; (P [P,?} => TRUE P) [P,?} => FALSE
629 ;; (P (P,?} => TRUE P) (P,?} => FALSE
630 ((and lon (= pn lon))
631 (or (and (numberp p) (numberp lo))
632 (and (consp p) (eq :low bound))))
633 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
634 ;; P) {?,P] => TRUE (P {?,P] => FALSE
635 ;; P) {?,P) => TRUE (P {?,P) => FALSE
636 ((and hin (= pn hin))
637 (or (and (numberp p) (numberp hi))
638 (and (consp p) (eq :high bound))))
639 ;; Not an endpoint, all is well.
642 (test-lower-bound (p int)
643 ;; P is a lower bound of an interval.
645 (test-number p int :low)
646 (not (interval-bounded-p int 'below))))
647 (test-upper-bound (p int)
648 ;; P is an upper bound of an interval.
650 (test-number p int :high)
651 (not (interval-bounded-p int 'above)))))
652 (let ((x-lo-in-y (test-lower-bound x-lo y))
653 (x-hi-in-y (test-upper-bound x-hi y))
654 (y-lo-in-x (test-lower-bound y-lo x))
655 (y-hi-in-x (test-upper-bound y-hi x)))
656 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
657 ;; Intervals intersect. Let's compute the intersection
658 ;; and the difference.
659 (multiple-value-bind (lo left-lo left-hi)
660 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
661 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
662 (multiple-value-bind (hi right-lo right-hi)
664 (values x-hi (opposite-bound x-hi) y-hi))
666 (values y-hi (opposite-bound y-hi) x-hi)))
667 (values (make-interval :low lo :high hi)
668 (list (make-interval :low left-lo
670 (make-interval :low right-lo
673 (values nil (list x y))))))))
675 ;;; If intervals X and Y intersect, return a new interval that is the
676 ;;; union of the two. If they do not intersect, return NIL.
677 (defun interval-merge-pair (x y)
678 (declare (type interval x y))
679 ;; If x and y intersect or are adjacent, create the union.
680 ;; Otherwise return nil
681 (when (or (interval-intersect-p x y)
682 (interval-adjacent-p x y))
683 (flet ((select-bound (x1 x2 min-op max-op)
684 (let ((x1-val (type-bound-number x1))
685 (x2-val (type-bound-number x2)))
687 ;; Both bounds are finite. Select the right one.
688 (cond ((funcall min-op x1-val x2-val)
689 ;; x1 is definitely better.
691 ((funcall max-op x1-val x2-val)
692 ;; x2 is definitely better.
695 ;; Bounds are equal. Select either
696 ;; value and make it open only if
698 (set-bound x1-val (and (consp x1) (consp x2))))))
700 ;; At least one bound is not finite. The
701 ;; non-finite bound always wins.
703 (let* ((x-lo (copy-interval-limit (interval-low x)))
704 (x-hi (copy-interval-limit (interval-high x)))
705 (y-lo (copy-interval-limit (interval-low y)))
706 (y-hi (copy-interval-limit (interval-high y))))
707 (make-interval :low (select-bound x-lo y-lo #'< #'>)
708 :high (select-bound x-hi y-hi #'> #'<))))))
710 ;;; return the minimal interval, containing X and Y
711 (defun interval-approximate-union (x y)
712 (cond ((interval-merge-pair x y))
714 (make-interval :low (copy-interval-limit (interval-low x))
715 :high (copy-interval-limit (interval-high y))))
717 (make-interval :low (copy-interval-limit (interval-low y))
718 :high (copy-interval-limit (interval-high x))))))
720 ;;; basic arithmetic operations on intervals. We probably should do
721 ;;; true interval arithmetic here, but it's complicated because we
722 ;;; have float and integer types and bounds can be open or closed.
724 ;;; the negative of an interval
725 (defun interval-neg (x)
726 (declare (type interval x))
727 (make-interval :low (bound-func #'- (interval-high x))
728 :high (bound-func #'- (interval-low x))))
730 ;;; Add two intervals.
731 (defun interval-add (x y)
732 (declare (type interval x y))
733 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
734 :high (bound-binop + (interval-high x) (interval-high y))))
736 ;;; Subtract two intervals.
737 (defun interval-sub (x y)
738 (declare (type interval x y))
739 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
740 :high (bound-binop - (interval-high x) (interval-low y))))
742 ;;; Multiply two intervals.
743 (defun interval-mul (x y)
744 (declare (type interval x y))
745 (flet ((bound-mul (x y)
746 (cond ((or (null x) (null y))
747 ;; Multiply by infinity is infinity
749 ((or (and (numberp x) (zerop x))
750 (and (numberp y) (zerop y)))
751 ;; Multiply by closed zero is special. The result
752 ;; is always a closed bound. But don't replace this
753 ;; with zero; we want the multiplication to produce
754 ;; the correct signed zero, if needed. Use SIGNUM
755 ;; to avoid trying to multiply huge bignums with 0.0.
756 (* (signum (type-bound-number x)) (signum (type-bound-number y))))
757 ((or (and (floatp x) (float-infinity-p x))
758 (and (floatp y) (float-infinity-p y)))
759 ;; Infinity times anything is infinity
762 ;; General multiply. The result is open if either is open.
763 (bound-binop * x y)))))
764 (let ((x-range (interval-range-info x))
765 (y-range (interval-range-info y)))
766 (cond ((null x-range)
767 ;; Split x into two and multiply each separately
768 (destructuring-bind (x- x+) (interval-split 0 x t t)
769 (interval-merge-pair (interval-mul x- y)
770 (interval-mul x+ y))))
772 ;; Split y into two and multiply each separately
773 (destructuring-bind (y- y+) (interval-split 0 y t t)
774 (interval-merge-pair (interval-mul x y-)
775 (interval-mul x y+))))
777 (interval-neg (interval-mul (interval-neg x) y)))
779 (interval-neg (interval-mul x (interval-neg y))))
780 ((and (eq x-range '+) (eq y-range '+))
781 ;; If we are here, X and Y are both positive.
783 :low (bound-mul (interval-low x) (interval-low y))
784 :high (bound-mul (interval-high x) (interval-high y))))
786 (bug "excluded case in INTERVAL-MUL"))))))
788 ;;; Divide two intervals.
789 (defun interval-div (top bot)
790 (declare (type interval top bot))
791 (flet ((bound-div (x y y-low-p)
794 ;; Divide by infinity means result is 0. However,
795 ;; we need to watch out for the sign of the result,
796 ;; to correctly handle signed zeros. We also need
797 ;; to watch out for positive or negative infinity.
798 (if (floatp (type-bound-number x))
800 (- (float-sign (type-bound-number x) 0.0))
801 (float-sign (type-bound-number x) 0.0))
803 ((zerop (type-bound-number y))
804 ;; Divide by zero means result is infinity
806 ((and (numberp x) (zerop x))
807 ;; Zero divided by anything is zero.
810 (bound-binop / x y)))))
811 (let ((top-range (interval-range-info top))
812 (bot-range (interval-range-info bot)))
813 (cond ((null bot-range)
814 ;; The denominator contains zero, so anything goes!
815 (make-interval :low nil :high nil))
817 ;; Denominator is negative so flip the sign, compute the
818 ;; result, and flip it back.
819 (interval-neg (interval-div top (interval-neg bot))))
821 ;; Split top into two positive and negative parts, and
822 ;; divide each separately
823 (destructuring-bind (top- top+) (interval-split 0 top t t)
824 (interval-merge-pair (interval-div top- bot)
825 (interval-div top+ bot))))
827 ;; Top is negative so flip the sign, divide, and flip the
828 ;; sign of the result.
829 (interval-neg (interval-div (interval-neg top) bot)))
830 ((and (eq top-range '+) (eq bot-range '+))
833 :low (bound-div (interval-low top) (interval-high bot) t)
834 :high (bound-div (interval-high top) (interval-low bot) nil)))
836 (bug "excluded case in INTERVAL-DIV"))))))
838 ;;; Apply the function F to the interval X. If X = [a, b], then the
839 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
840 ;;; result makes sense. It will if F is monotonic increasing (or
842 (defun interval-func (f x)
843 (declare (type function f)
845 (let ((lo (bound-func f (interval-low x)))
846 (hi (bound-func f (interval-high x))))
847 (make-interval :low lo :high hi)))
849 ;;; Return T if X < Y. That is every number in the interval X is
850 ;;; always less than any number in the interval Y.
851 (defun interval-< (x y)
852 (declare (type interval x y))
853 ;; X < Y only if X is bounded above, Y is bounded below, and they
855 (when (and (interval-bounded-p x 'above)
856 (interval-bounded-p y 'below))
857 ;; Intervals are bounded in the appropriate way. Make sure they
859 (let ((left (interval-high x))
860 (right (interval-low y)))
861 (cond ((> (type-bound-number left)
862 (type-bound-number right))
863 ;; The intervals definitely overlap, so result is NIL.
865 ((< (type-bound-number left)
866 (type-bound-number right))
867 ;; The intervals definitely don't touch, so result is T.
870 ;; Limits are equal. Check for open or closed bounds.
871 ;; Don't overlap if one or the other are open.
872 (or (consp left) (consp right)))))))
874 ;;; Return T if X >= Y. That is, every number in the interval X is
875 ;;; always greater than any number in the interval Y.
876 (defun interval->= (x y)
877 (declare (type interval x y))
878 ;; X >= Y if lower bound of X >= upper bound of Y
879 (when (and (interval-bounded-p x 'below)
880 (interval-bounded-p y 'above))
881 (>= (type-bound-number (interval-low x))
882 (type-bound-number (interval-high y)))))
884 ;;; Return T if X = Y.
885 (defun interval-= (x y)
886 (declare (type interval x y))
887 (and (interval-bounded-p x 'both)
888 (interval-bounded-p y 'both)
892 ;; Open intervals cannot be =
893 (return-from interval-= nil))))
894 ;; Both intervals refer to the same point
895 (= (bound (interval-high x)) (bound (interval-low x))
896 (bound (interval-high y)) (bound (interval-low y))))))
898 ;;; Return T if X /= Y
899 (defun interval-/= (x y)
900 (not (interval-intersect-p x y)))
902 ;;; Return an interval that is the absolute value of X. Thus, if
903 ;;; X = [-1 10], the result is [0, 10].
904 (defun interval-abs (x)
905 (declare (type interval x))
906 (case (interval-range-info x)
912 (destructuring-bind (x- x+) (interval-split 0 x t t)
913 (interval-merge-pair (interval-neg x-) x+)))))
915 ;;; Compute the square of an interval.
916 (defun interval-sqr (x)
917 (declare (type interval x))
918 (interval-func (lambda (x) (* x x))
921 ;;;; numeric DERIVE-TYPE methods
923 ;;; a utility for defining derive-type methods of integer operations. If
924 ;;; the types of both X and Y are integer types, then we compute a new
925 ;;; integer type with bounds determined Fun when applied to X and Y.
926 ;;; Otherwise, we use NUMERIC-CONTAGION.
927 (defun derive-integer-type-aux (x y fun)
928 (declare (type function fun))
929 (if (and (numeric-type-p x) (numeric-type-p y)
930 (eq (numeric-type-class x) 'integer)
931 (eq (numeric-type-class y) 'integer)
932 (eq (numeric-type-complexp x) :real)
933 (eq (numeric-type-complexp y) :real))
934 (multiple-value-bind (low high) (funcall fun x y)
935 (make-numeric-type :class 'integer
939 (numeric-contagion x y)))
941 (defun derive-integer-type (x y fun)
942 (declare (type lvar x y) (type function fun))
943 (let ((x (lvar-type x))
945 (derive-integer-type-aux x y fun)))
947 ;;; simple utility to flatten a list
948 (defun flatten-list (x)
949 (labels ((flatten-and-append (tree list)
950 (cond ((null tree) list)
951 ((atom tree) (cons tree list))
952 (t (flatten-and-append
953 (car tree) (flatten-and-append (cdr tree) list))))))
954 (flatten-and-append x nil)))
956 ;;; Take some type of lvar and massage it so that we get a list of the
957 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
959 (defun prepare-arg-for-derive-type (arg)
960 (flet ((listify (arg)
965 (union-type-types arg))
968 (unless (eq arg *empty-type*)
969 ;; Make sure all args are some type of numeric-type. For member
970 ;; types, convert the list of members into a union of equivalent
971 ;; single-element member-type's.
972 (let ((new-args nil))
973 (dolist (arg (listify arg))
974 (if (member-type-p arg)
975 ;; Run down the list of members and convert to a list of
977 (mapc-member-type-members
979 (push (if (numberp member)
980 (make-member-type :members (list member))
984 (push arg new-args)))
985 (unless (member *empty-type* new-args)
988 ;;; Convert from the standard type convention for which -0.0 and 0.0
989 ;;; are equal to an intermediate convention for which they are
990 ;;; considered different which is more natural for some of the
992 (defun convert-numeric-type (type)
993 (declare (type numeric-type type))
994 ;;; Only convert real float interval delimiters types.
995 (if (eq (numeric-type-complexp type) :real)
996 (let* ((lo (numeric-type-low type))
997 (lo-val (type-bound-number lo))
998 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
999 (hi (numeric-type-high type))
1000 (hi-val (type-bound-number hi))
1001 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
1002 (if (or lo-float-zero-p hi-float-zero-p)
1004 :class (numeric-type-class type)
1005 :format (numeric-type-format type)
1007 :low (if lo-float-zero-p
1009 (list (float 0.0 lo-val))
1010 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
1012 :high (if hi-float-zero-p
1014 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
1021 ;;; Convert back from the intermediate convention for which -0.0 and
1022 ;;; 0.0 are considered different to the standard type convention for
1023 ;;; which and equal.
1024 (defun convert-back-numeric-type (type)
1025 (declare (type numeric-type type))
1026 ;;; Only convert real float interval delimiters types.
1027 (if (eq (numeric-type-complexp type) :real)
1028 (let* ((lo (numeric-type-low type))
1029 (lo-val (type-bound-number lo))
1031 (and lo (floatp lo-val) (= lo-val 0.0)
1032 (float-sign lo-val)))
1033 (hi (numeric-type-high type))
1034 (hi-val (type-bound-number hi))
1036 (and hi (floatp hi-val) (= hi-val 0.0)
1037 (float-sign hi-val))))
1039 ;; (float +0.0 +0.0) => (member 0.0)
1040 ;; (float -0.0 -0.0) => (member -0.0)
1041 ((and lo-float-zero-p hi-float-zero-p)
1042 ;; shouldn't have exclusive bounds here..
1043 (aver (and (not (consp lo)) (not (consp hi))))
1044 (if (= lo-float-zero-p hi-float-zero-p)
1045 ;; (float +0.0 +0.0) => (member 0.0)
1046 ;; (float -0.0 -0.0) => (member -0.0)
1047 (specifier-type `(member ,lo-val))
1048 ;; (float -0.0 +0.0) => (float 0.0 0.0)
1049 ;; (float +0.0 -0.0) => (float 0.0 0.0)
1050 (make-numeric-type :class (numeric-type-class type)
1051 :format (numeric-type-format type)
1057 ;; (float -0.0 x) => (float 0.0 x)
1058 ((and (not (consp lo)) (minusp lo-float-zero-p))
1059 (make-numeric-type :class (numeric-type-class type)
1060 :format (numeric-type-format type)
1062 :low (float 0.0 lo-val)
1064 ;; (float (+0.0) x) => (float (0.0) x)
1065 ((and (consp lo) (plusp lo-float-zero-p))
1066 (make-numeric-type :class (numeric-type-class type)
1067 :format (numeric-type-format type)
1069 :low (list (float 0.0 lo-val))
1072 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1073 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1074 (list (make-member-type :members (list (float 0.0 lo-val)))
1075 (make-numeric-type :class (numeric-type-class type)
1076 :format (numeric-type-format type)
1078 :low (list (float 0.0 lo-val))
1082 ;; (float x +0.0) => (float x 0.0)
1083 ((and (not (consp hi)) (plusp hi-float-zero-p))
1084 (make-numeric-type :class (numeric-type-class type)
1085 :format (numeric-type-format type)
1088 :high (float 0.0 hi-val)))
1089 ;; (float x (-0.0)) => (float x (0.0))
1090 ((and (consp hi) (minusp hi-float-zero-p))
1091 (make-numeric-type :class (numeric-type-class type)
1092 :format (numeric-type-format type)
1095 :high (list (float 0.0 hi-val))))
1097 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1098 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1099 (list (make-member-type :members (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)))
1100 (make-numeric-type :class (numeric-type-class type)
1101 :format (numeric-type-format type)
1104 :high (list (float 0.0 hi-val)))))))
1110 ;;; Convert back a possible list of numeric types.
1111 (defun convert-back-numeric-type-list (type-list)
1114 (let ((results '()))
1115 (dolist (type type-list)
1116 (if (numeric-type-p type)
1117 (let ((result (convert-back-numeric-type type)))
1119 (setf results (append results result))
1120 (push result results)))
1121 (push type results)))
1124 (convert-back-numeric-type type-list))
1126 (convert-back-numeric-type-list (union-type-types type-list)))
1130 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1131 ;;; belong in the kernel's type logic, invoked always, instead of in
1132 ;;; the compiler, invoked only during some type optimizations. (In
1133 ;;; fact, as of 0.pre8.100 or so they probably are, under
1134 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1136 ;;; Take a list of types and return a canonical type specifier,
1137 ;;; combining any MEMBER types together. If both positive and negative
1138 ;;; MEMBER types are present they are converted to a float type.
1139 ;;; XXX This would be far simpler if the type-union methods could handle
1140 ;;; member/number unions.
1141 (defun make-canonical-union-type (type-list)
1142 (let ((xset (alloc-xset))
1145 (dolist (type type-list)
1146 (cond ((member-type-p type)
1147 (mapc-member-type-members
1149 (if (fp-zero-p member)
1150 (unless (member member fp-zeroes)
1151 (pushnew member fp-zeroes))
1152 (add-to-xset member xset)))
1155 (push type misc-types))))
1156 (if (and (xset-empty-p xset) (not fp-zeroes))
1157 (apply #'type-union misc-types)
1158 (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes) misc-types))))
1160 ;;; Convert a member type with a single member to a numeric type.
1161 (defun convert-member-type (arg)
1162 (let* ((members (member-type-members arg))
1163 (member (first members))
1164 (member-type (type-of member)))
1165 (aver (not (rest members)))
1166 (specifier-type (cond ((typep member 'integer)
1167 `(integer ,member ,member))
1168 ((memq member-type '(short-float single-float
1169 double-float long-float))
1170 `(,member-type ,member ,member))
1174 ;;; This is used in defoptimizers for computing the resulting type of
1177 ;;; Given the lvar ARG, derive the resulting type using the
1178 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1179 ;;; "atomic" lvar type like numeric-type or member-type (containing
1180 ;;; just one element). It should return the resulting type, which can
1181 ;;; be a list of types.
1183 ;;; For the case of member types, if a MEMBER-FUN is given it is
1184 ;;; called to compute the result otherwise the member type is first
1185 ;;; converted to a numeric type and the DERIVE-FUN is called.
1186 (defun one-arg-derive-type (arg derive-fun member-fun
1187 &optional (convert-type t))
1188 (declare (type function derive-fun)
1189 (type (or null function) member-fun))
1190 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1196 (with-float-traps-masked
1197 (:underflow :overflow :divide-by-zero)
1199 `(eql ,(funcall member-fun
1200 (first (member-type-members x))))))
1201 ;; Otherwise convert to a numeric type.
1202 (let ((result-type-list
1203 (funcall derive-fun (convert-member-type x))))
1205 (convert-back-numeric-type-list result-type-list)
1206 result-type-list))))
1209 (convert-back-numeric-type-list
1210 (funcall derive-fun (convert-numeric-type x)))
1211 (funcall derive-fun x)))
1213 *universal-type*))))
1214 ;; Run down the list of args and derive the type of each one,
1215 ;; saving all of the results in a list.
1216 (let ((results nil))
1217 (dolist (arg arg-list)
1218 (let ((result (deriver arg)))
1220 (setf results (append results result))
1221 (push result results))))
1223 (make-canonical-union-type results)
1224 (first results)))))))
1226 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1227 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1228 ;;; original args and a third which is T to indicate if the two args
1229 ;;; really represent the same lvar. This is useful for deriving the
1230 ;;; type of things like (* x x), which should always be positive. If
1231 ;;; we didn't do this, we wouldn't be able to tell.
1232 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1233 &optional (convert-type t))
1234 (declare (type function derive-fun fun))
1235 (flet ((deriver (x y same-arg)
1236 (cond ((and (member-type-p x) (member-type-p y))
1237 (let* ((x (first (member-type-members x)))
1238 (y (first (member-type-members y)))
1239 (result (ignore-errors
1240 (with-float-traps-masked
1241 (:underflow :overflow :divide-by-zero
1243 (funcall fun x y)))))
1244 (cond ((null result) *empty-type*)
1245 ((and (floatp result) (float-nan-p result))
1246 (make-numeric-type :class 'float
1247 :format (type-of result)
1250 (specifier-type `(eql ,result))))))
1251 ((and (member-type-p x) (numeric-type-p y))
1252 (let* ((x (convert-member-type x))
1253 (y (if convert-type (convert-numeric-type y) y))
1254 (result (funcall derive-fun x y same-arg)))
1256 (convert-back-numeric-type-list result)
1258 ((and (numeric-type-p x) (member-type-p y))
1259 (let* ((x (if convert-type (convert-numeric-type x) x))
1260 (y (convert-member-type y))
1261 (result (funcall derive-fun x y same-arg)))
1263 (convert-back-numeric-type-list result)
1265 ((and (numeric-type-p x) (numeric-type-p y))
1266 (let* ((x (if convert-type (convert-numeric-type x) x))
1267 (y (if convert-type (convert-numeric-type y) y))
1268 (result (funcall derive-fun x y same-arg)))
1270 (convert-back-numeric-type-list result)
1273 *universal-type*))))
1274 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1275 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1276 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1278 (let ((results nil))
1280 ;; Since the args are the same LVARs, just run down the
1283 (let ((result (deriver x x same-arg)))
1285 (setf results (append results result))
1286 (push result results))))
1287 ;; Try all pairwise combinations.
1290 (let ((result (or (deriver x y same-arg)
1291 (numeric-contagion x y))))
1293 (setf results (append results result))
1294 (push result results))))))
1296 (make-canonical-union-type results)
1297 (first results)))))))
1299 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1301 (defoptimizer (+ derive-type) ((x y))
1302 (derive-integer-type
1309 (values (frob (numeric-type-low x) (numeric-type-low y))
1310 (frob (numeric-type-high x) (numeric-type-high y)))))))
1312 (defoptimizer (- derive-type) ((x y))
1313 (derive-integer-type
1320 (values (frob (numeric-type-low x) (numeric-type-high y))
1321 (frob (numeric-type-high x) (numeric-type-low y)))))))
1323 (defoptimizer (* derive-type) ((x y))
1324 (derive-integer-type
1327 (let ((x-low (numeric-type-low x))
1328 (x-high (numeric-type-high x))
1329 (y-low (numeric-type-low y))
1330 (y-high (numeric-type-high y)))
1331 (cond ((not (and x-low y-low))
1333 ((or (minusp x-low) (minusp y-low))
1334 (if (and x-high y-high)
1335 (let ((max (* (max (abs x-low) (abs x-high))
1336 (max (abs y-low) (abs y-high)))))
1337 (values (- max) max))
1340 (values (* x-low y-low)
1341 (if (and x-high y-high)
1345 (defoptimizer (/ derive-type) ((x y))
1346 (numeric-contagion (lvar-type x) (lvar-type y)))
1350 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1352 (defun +-derive-type-aux (x y same-arg)
1353 (if (and (numeric-type-real-p x)
1354 (numeric-type-real-p y))
1357 (let ((x-int (numeric-type->interval x)))
1358 (interval-add x-int x-int))
1359 (interval-add (numeric-type->interval x)
1360 (numeric-type->interval y))))
1361 (result-type (numeric-contagion x y)))
1362 ;; If the result type is a float, we need to be sure to coerce
1363 ;; the bounds into the correct type.
1364 (when (eq (numeric-type-class result-type) 'float)
1365 (setf result (interval-func
1367 (coerce-for-bound x (or (numeric-type-format result-type)
1371 :class (if (and (eq (numeric-type-class x) 'integer)
1372 (eq (numeric-type-class y) 'integer))
1373 ;; The sum of integers is always an integer.
1375 (numeric-type-class result-type))
1376 :format (numeric-type-format result-type)
1377 :low (interval-low result)
1378 :high (interval-high result)))
1379 ;; general contagion
1380 (numeric-contagion x y)))
1382 (defoptimizer (+ derive-type) ((x y))
1383 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1385 (defun --derive-type-aux (x y same-arg)
1386 (if (and (numeric-type-real-p x)
1387 (numeric-type-real-p y))
1389 ;; (- X X) is always 0.
1391 (make-interval :low 0 :high 0)
1392 (interval-sub (numeric-type->interval x)
1393 (numeric-type->interval y))))
1394 (result-type (numeric-contagion x y)))
1395 ;; If the result type is a float, we need to be sure to coerce
1396 ;; the bounds into the correct type.
1397 (when (eq (numeric-type-class result-type) 'float)
1398 (setf result (interval-func
1400 (coerce-for-bound x (or (numeric-type-format result-type)
1404 :class (if (and (eq (numeric-type-class x) 'integer)
1405 (eq (numeric-type-class y) 'integer))
1406 ;; The difference of integers is always an integer.
1408 (numeric-type-class result-type))
1409 :format (numeric-type-format result-type)
1410 :low (interval-low result)
1411 :high (interval-high result)))
1412 ;; general contagion
1413 (numeric-contagion x y)))
1415 (defoptimizer (- derive-type) ((x y))
1416 (two-arg-derive-type x y #'--derive-type-aux #'-))
1418 (defun *-derive-type-aux (x y same-arg)
1419 (if (and (numeric-type-real-p x)
1420 (numeric-type-real-p y))
1422 ;; (* X X) is always positive, so take care to do it right.
1424 (interval-sqr (numeric-type->interval x))
1425 (interval-mul (numeric-type->interval x)
1426 (numeric-type->interval y))))
1427 (result-type (numeric-contagion x y)))
1428 ;; If the result type is a float, we need to be sure to coerce
1429 ;; the bounds into the correct type.
1430 (when (eq (numeric-type-class result-type) 'float)
1431 (setf result (interval-func
1433 (coerce-for-bound x (or (numeric-type-format result-type)
1437 :class (if (and (eq (numeric-type-class x) 'integer)
1438 (eq (numeric-type-class y) 'integer))
1439 ;; The product of integers is always an integer.
1441 (numeric-type-class result-type))
1442 :format (numeric-type-format result-type)
1443 :low (interval-low result)
1444 :high (interval-high result)))
1445 (numeric-contagion x y)))
1447 (defoptimizer (* derive-type) ((x y))
1448 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1450 (defun /-derive-type-aux (x y same-arg)
1451 (if (and (numeric-type-real-p x)
1452 (numeric-type-real-p y))
1454 ;; (/ X X) is always 1, except if X can contain 0. In
1455 ;; that case, we shouldn't optimize the division away
1456 ;; because we want 0/0 to signal an error.
1458 (not (interval-contains-p
1459 0 (interval-closure (numeric-type->interval y)))))
1460 (make-interval :low 1 :high 1)
1461 (interval-div (numeric-type->interval x)
1462 (numeric-type->interval y))))
1463 (result-type (numeric-contagion x y)))
1464 ;; If the result type is a float, we need to be sure to coerce
1465 ;; the bounds into the correct type.
1466 (when (eq (numeric-type-class result-type) 'float)
1467 (setf result (interval-func
1469 (coerce-for-bound x (or (numeric-type-format result-type)
1472 (make-numeric-type :class (numeric-type-class result-type)
1473 :format (numeric-type-format result-type)
1474 :low (interval-low result)
1475 :high (interval-high result)))
1476 (numeric-contagion x y)))
1478 (defoptimizer (/ derive-type) ((x y))
1479 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1483 (defun ash-derive-type-aux (n-type shift same-arg)
1484 (declare (ignore same-arg))
1485 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1486 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1487 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1488 ;; two bignums yielding zero) and it's hard to avoid that
1489 ;; calculation in here.
1490 #+(and cmu sb-xc-host)
1491 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1492 (typep (numeric-type-high n-type) 'bignum))
1493 (or (typep (numeric-type-low shift) 'bignum)
1494 (typep (numeric-type-high shift) 'bignum)))
1495 (return-from ash-derive-type-aux *universal-type*))
1496 (flet ((ash-outer (n s)
1497 (when (and (fixnump s)
1499 (> s sb!xc:most-negative-fixnum))
1501 ;; KLUDGE: The bare 64's here should be related to
1502 ;; symbolic machine word size values somehow.
1505 (if (and (fixnump s)
1506 (> s sb!xc:most-negative-fixnum))
1508 (if (minusp n) -1 0))))
1509 (or (and (csubtypep n-type (specifier-type 'integer))
1510 (csubtypep shift (specifier-type 'integer))
1511 (let ((n-low (numeric-type-low n-type))
1512 (n-high (numeric-type-high n-type))
1513 (s-low (numeric-type-low shift))
1514 (s-high (numeric-type-high shift)))
1515 (make-numeric-type :class 'integer :complexp :real
1518 (ash-outer n-low s-high)
1519 (ash-inner n-low s-low)))
1522 (ash-inner n-high s-low)
1523 (ash-outer n-high s-high))))))
1526 (defoptimizer (ash derive-type) ((n shift))
1527 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1529 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1530 (macrolet ((frob (fun)
1531 `#'(lambda (type type2)
1532 (declare (ignore type2))
1533 (let ((lo (numeric-type-low type))
1534 (hi (numeric-type-high type)))
1535 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1537 (defoptimizer (%negate derive-type) ((num))
1538 (derive-integer-type num num (frob -))))
1540 (defun lognot-derive-type-aux (int)
1541 (derive-integer-type-aux int int
1542 (lambda (type type2)
1543 (declare (ignore type2))
1544 (let ((lo (numeric-type-low type))
1545 (hi (numeric-type-high type)))
1546 (values (if hi (lognot hi) nil)
1547 (if lo (lognot lo) nil)
1548 (numeric-type-class type)
1549 (numeric-type-format type))))))
1551 (defoptimizer (lognot derive-type) ((int))
1552 (lognot-derive-type-aux (lvar-type int)))
1554 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1555 (defoptimizer (%negate derive-type) ((num))
1556 (flet ((negate-bound (b)
1558 (set-bound (- (type-bound-number b))
1560 (one-arg-derive-type num
1562 (modified-numeric-type
1564 :low (negate-bound (numeric-type-high type))
1565 :high (negate-bound (numeric-type-low type))))
1568 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1569 (defoptimizer (abs derive-type) ((num))
1570 (let ((type (lvar-type num)))
1571 (if (and (numeric-type-p type)
1572 (eq (numeric-type-class type) 'integer)
1573 (eq (numeric-type-complexp type) :real))
1574 (let ((lo (numeric-type-low type))
1575 (hi (numeric-type-high type)))
1576 (make-numeric-type :class 'integer :complexp :real
1577 :low (cond ((and hi (minusp hi))
1583 :high (if (and hi lo)
1584 (max (abs hi) (abs lo))
1586 (numeric-contagion type type))))
1588 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1589 (defun abs-derive-type-aux (type)
1590 (cond ((eq (numeric-type-complexp type) :complex)
1591 ;; The absolute value of a complex number is always a
1592 ;; non-negative float.
1593 (let* ((format (case (numeric-type-class type)
1594 ((integer rational) 'single-float)
1595 (t (numeric-type-format type))))
1596 (bound-format (or format 'float)))
1597 (make-numeric-type :class 'float
1600 :low (coerce 0 bound-format)
1603 ;; The absolute value of a real number is a non-negative real
1604 ;; of the same type.
1605 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1606 (class (numeric-type-class type))
1607 (format (numeric-type-format type))
1608 (bound-type (or format class 'real)))
1613 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1614 :high (coerce-and-truncate-floats
1615 (interval-high abs-bnd) bound-type))))))
1617 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1618 (defoptimizer (abs derive-type) ((num))
1619 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1621 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1622 (defoptimizer (truncate derive-type) ((number divisor))
1623 (let ((number-type (lvar-type number))
1624 (divisor-type (lvar-type divisor))
1625 (integer-type (specifier-type 'integer)))
1626 (if (and (numeric-type-p number-type)
1627 (csubtypep number-type integer-type)
1628 (numeric-type-p divisor-type)
1629 (csubtypep divisor-type integer-type))
1630 (let ((number-low (numeric-type-low number-type))
1631 (number-high (numeric-type-high number-type))
1632 (divisor-low (numeric-type-low divisor-type))
1633 (divisor-high (numeric-type-high divisor-type)))
1634 (values-specifier-type
1635 `(values ,(integer-truncate-derive-type number-low number-high
1636 divisor-low divisor-high)
1637 ,(integer-rem-derive-type number-low number-high
1638 divisor-low divisor-high))))
1641 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1644 (defun rem-result-type (number-type divisor-type)
1645 ;; Figure out what the remainder type is. The remainder is an
1646 ;; integer if both args are integers; a rational if both args are
1647 ;; rational; and a float otherwise.
1648 (cond ((and (csubtypep number-type (specifier-type 'integer))
1649 (csubtypep divisor-type (specifier-type 'integer)))
1651 ((and (csubtypep number-type (specifier-type 'rational))
1652 (csubtypep divisor-type (specifier-type 'rational)))
1654 ((and (csubtypep number-type (specifier-type 'float))
1655 (csubtypep divisor-type (specifier-type 'float)))
1656 ;; Both are floats so the result is also a float, of
1657 ;; the largest type.
1658 (or (float-format-max (numeric-type-format number-type)
1659 (numeric-type-format divisor-type))
1661 ((and (csubtypep number-type (specifier-type 'float))
1662 (csubtypep divisor-type (specifier-type 'rational)))
1663 ;; One of the arguments is a float and the other is a
1664 ;; rational. The remainder is a float of the same
1666 (or (numeric-type-format number-type) 'float))
1667 ((and (csubtypep divisor-type (specifier-type 'float))
1668 (csubtypep number-type (specifier-type 'rational)))
1669 ;; One of the arguments is a float and the other is a
1670 ;; rational. The remainder is a float of the same
1672 (or (numeric-type-format divisor-type) 'float))
1674 ;; Some unhandled combination. This usually means both args
1675 ;; are REAL so the result is a REAL.
1678 (defun truncate-derive-type-quot (number-type divisor-type)
1679 (let* ((rem-type (rem-result-type number-type divisor-type))
1680 (number-interval (numeric-type->interval number-type))
1681 (divisor-interval (numeric-type->interval divisor-type)))
1682 ;;(declare (type (member '(integer rational float)) rem-type))
1683 ;; We have real numbers now.
1684 (cond ((eq rem-type 'integer)
1685 ;; Since the remainder type is INTEGER, both args are
1687 (let* ((res (integer-truncate-derive-type
1688 (interval-low number-interval)
1689 (interval-high number-interval)
1690 (interval-low divisor-interval)
1691 (interval-high divisor-interval))))
1692 (specifier-type (if (listp res) res 'integer))))
1694 (let ((quot (truncate-quotient-bound
1695 (interval-div number-interval
1696 divisor-interval))))
1697 (specifier-type `(integer ,(or (interval-low quot) '*)
1698 ,(or (interval-high quot) '*))))))))
1700 (defun truncate-derive-type-rem (number-type divisor-type)
1701 (let* ((rem-type (rem-result-type number-type divisor-type))
1702 (number-interval (numeric-type->interval number-type))
1703 (divisor-interval (numeric-type->interval divisor-type))
1704 (rem (truncate-rem-bound number-interval divisor-interval)))
1705 ;;(declare (type (member '(integer rational float)) rem-type))
1706 ;; We have real numbers now.
1707 (cond ((eq rem-type 'integer)
1708 ;; Since the remainder type is INTEGER, both args are
1710 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1711 ,(or (interval-high rem) '*))))
1713 (multiple-value-bind (class format)
1716 (values 'integer nil))
1718 (values 'rational nil))
1719 ((or single-float double-float #!+long-float long-float)
1720 (values 'float rem-type))
1722 (values 'float nil))
1725 (when (member rem-type '(float single-float double-float
1726 #!+long-float long-float))
1727 (setf rem (interval-func #'(lambda (x)
1728 (coerce-for-bound x rem-type))
1730 (make-numeric-type :class class
1732 :low (interval-low rem)
1733 :high (interval-high rem)))))))
1735 (defun truncate-derive-type-quot-aux (num div same-arg)
1736 (declare (ignore same-arg))
1737 (if (and (numeric-type-real-p num)
1738 (numeric-type-real-p div))
1739 (truncate-derive-type-quot num div)
1742 (defun truncate-derive-type-rem-aux (num div same-arg)
1743 (declare (ignore same-arg))
1744 (if (and (numeric-type-real-p num)
1745 (numeric-type-real-p div))
1746 (truncate-derive-type-rem num div)
1749 (defoptimizer (truncate derive-type) ((number divisor))
1750 (let ((quot (two-arg-derive-type number divisor
1751 #'truncate-derive-type-quot-aux #'truncate))
1752 (rem (two-arg-derive-type number divisor
1753 #'truncate-derive-type-rem-aux #'rem)))
1754 (when (and quot rem)
1755 (make-values-type :required (list quot rem)))))
1757 (defun ftruncate-derive-type-quot (number-type divisor-type)
1758 ;; The bounds are the same as for truncate. However, the first
1759 ;; result is a float of some type. We need to determine what that
1760 ;; type is. Basically it's the more contagious of the two types.
1761 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1762 (res-type (numeric-contagion number-type divisor-type)))
1763 (make-numeric-type :class 'float
1764 :format (numeric-type-format res-type)
1765 :low (numeric-type-low q-type)
1766 :high (numeric-type-high q-type))))
1768 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1769 (declare (ignore same-arg))
1770 (if (and (numeric-type-real-p n)
1771 (numeric-type-real-p d))
1772 (ftruncate-derive-type-quot n d)
1775 (defoptimizer (ftruncate derive-type) ((number divisor))
1777 (two-arg-derive-type number divisor
1778 #'ftruncate-derive-type-quot-aux #'ftruncate))
1779 (rem (two-arg-derive-type number divisor
1780 #'truncate-derive-type-rem-aux #'rem)))
1781 (when (and quot rem)
1782 (make-values-type :required (list quot rem)))))
1784 (defun %unary-truncate-derive-type-aux (number)
1785 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1787 (defoptimizer (%unary-truncate derive-type) ((number))
1788 (one-arg-derive-type number
1789 #'%unary-truncate-derive-type-aux
1792 (defoptimizer (%unary-truncate/single-float derive-type) ((number))
1793 (one-arg-derive-type number
1794 #'%unary-truncate-derive-type-aux
1797 (defoptimizer (%unary-truncate/double-float derive-type) ((number))
1798 (one-arg-derive-type number
1799 #'%unary-truncate-derive-type-aux
1802 (defoptimizer (%unary-ftruncate derive-type) ((number))
1803 (let ((divisor (specifier-type '(integer 1 1))))
1804 (one-arg-derive-type number
1806 (ftruncate-derive-type-quot-aux n divisor nil))
1807 #'%unary-ftruncate)))
1809 (defoptimizer (%unary-round derive-type) ((number))
1810 (one-arg-derive-type number
1813 (unless (numeric-type-real-p n)
1814 (return *empty-type*))
1815 (let* ((interval (numeric-type->interval n))
1816 (low (interval-low interval))
1817 (high (interval-high interval)))
1819 (setf low (car low)))
1821 (setf high (car high)))
1831 ;;; Define optimizers for FLOOR and CEILING.
1833 ((def (name q-name r-name)
1834 (let ((q-aux (symbolicate q-name "-AUX"))
1835 (r-aux (symbolicate r-name "-AUX")))
1837 ;; Compute type of quotient (first) result.
1838 (defun ,q-aux (number-type divisor-type)
1839 (let* ((number-interval
1840 (numeric-type->interval number-type))
1842 (numeric-type->interval divisor-type))
1843 (quot (,q-name (interval-div number-interval
1844 divisor-interval))))
1845 (specifier-type `(integer ,(or (interval-low quot) '*)
1846 ,(or (interval-high quot) '*)))))
1847 ;; Compute type of remainder.
1848 (defun ,r-aux (number-type divisor-type)
1849 (let* ((divisor-interval
1850 (numeric-type->interval divisor-type))
1851 (rem (,r-name divisor-interval))
1852 (result-type (rem-result-type number-type divisor-type)))
1853 (multiple-value-bind (class format)
1856 (values 'integer nil))
1858 (values 'rational nil))
1859 ((or single-float double-float #!+long-float long-float)
1860 (values 'float result-type))
1862 (values 'float nil))
1865 (when (member result-type '(float single-float double-float
1866 #!+long-float long-float))
1867 ;; Make sure that the limits on the interval have
1869 (setf rem (interval-func (lambda (x)
1870 (coerce-for-bound x result-type))
1872 (make-numeric-type :class class
1874 :low (interval-low rem)
1875 :high (interval-high rem)))))
1876 ;; the optimizer itself
1877 (defoptimizer (,name derive-type) ((number divisor))
1878 (flet ((derive-q (n d same-arg)
1879 (declare (ignore same-arg))
1880 (if (and (numeric-type-real-p n)
1881 (numeric-type-real-p d))
1884 (derive-r (n d same-arg)
1885 (declare (ignore same-arg))
1886 (if (and (numeric-type-real-p n)
1887 (numeric-type-real-p d))
1890 (let ((quot (two-arg-derive-type
1891 number divisor #'derive-q #',name))
1892 (rem (two-arg-derive-type
1893 number divisor #'derive-r #'mod)))
1894 (when (and quot rem)
1895 (make-values-type :required (list quot rem))))))))))
1897 (def floor floor-quotient-bound floor-rem-bound)
1898 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1900 ;;; Define optimizers for FFLOOR and FCEILING
1901 (macrolet ((def (name q-name r-name)
1902 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1903 (r-aux (symbolicate r-name "-AUX")))
1905 ;; Compute type of quotient (first) result.
1906 (defun ,q-aux (number-type divisor-type)
1907 (let* ((number-interval
1908 (numeric-type->interval number-type))
1910 (numeric-type->interval divisor-type))
1911 (quot (,q-name (interval-div number-interval
1913 (res-type (numeric-contagion number-type
1916 :class (numeric-type-class res-type)
1917 :format (numeric-type-format res-type)
1918 :low (interval-low quot)
1919 :high (interval-high quot))))
1921 (defoptimizer (,name derive-type) ((number divisor))
1922 (flet ((derive-q (n d same-arg)
1923 (declare (ignore same-arg))
1924 (if (and (numeric-type-real-p n)
1925 (numeric-type-real-p d))
1928 (derive-r (n d same-arg)
1929 (declare (ignore same-arg))
1930 (if (and (numeric-type-real-p n)
1931 (numeric-type-real-p d))
1934 (let ((quot (two-arg-derive-type
1935 number divisor #'derive-q #',name))
1936 (rem (two-arg-derive-type
1937 number divisor #'derive-r #'mod)))
1938 (when (and quot rem)
1939 (make-values-type :required (list quot rem))))))))))
1941 (def ffloor floor-quotient-bound floor-rem-bound)
1942 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1944 ;;; functions to compute the bounds on the quotient and remainder for
1945 ;;; the FLOOR function
1946 (defun floor-quotient-bound (quot)
1947 ;; Take the floor of the quotient and then massage it into what we
1949 (let ((lo (interval-low quot))
1950 (hi (interval-high quot)))
1951 ;; Take the floor of the lower bound. The result is always a
1952 ;; closed lower bound.
1954 (floor (type-bound-number lo))
1956 ;; For the upper bound, we need to be careful.
1959 ;; An open bound. We need to be careful here because
1960 ;; the floor of '(10.0) is 9, but the floor of
1962 (multiple-value-bind (q r) (floor (first hi))
1967 ;; A closed bound, so the answer is obvious.
1971 (make-interval :low lo :high hi)))
1972 (defun floor-rem-bound (div)
1973 ;; The remainder depends only on the divisor. Try to get the
1974 ;; correct sign for the remainder if we can.
1975 (case (interval-range-info div)
1977 ;; The divisor is always positive.
1978 (let ((rem (interval-abs div)))
1979 (setf (interval-low rem) 0)
1980 (when (and (numberp (interval-high rem))
1981 (not (zerop (interval-high rem))))
1982 ;; The remainder never contains the upper bound. However,
1983 ;; watch out for the case where the high limit is zero!
1984 (setf (interval-high rem) (list (interval-high rem))))
1987 ;; The divisor is always negative.
1988 (let ((rem (interval-neg (interval-abs div))))
1989 (setf (interval-high rem) 0)
1990 (when (numberp (interval-low rem))
1991 ;; The remainder never contains the lower bound.
1992 (setf (interval-low rem) (list (interval-low rem))))
1995 ;; The divisor can be positive or negative. All bets off. The
1996 ;; magnitude of remainder is the maximum value of the divisor.
1997 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1998 ;; The bound never reaches the limit, so make the interval open.
1999 (make-interval :low (if limit
2002 :high (list limit))))))
2004 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
2005 => #S(INTERVAL :LOW 0 :HIGH 10)
2006 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2007 => #S(INTERVAL :LOW 0 :HIGH 10)
2008 (floor-quotient-bound (make-interval :low 0.3 :high 10))
2009 => #S(INTERVAL :LOW 0 :HIGH 10)
2010 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
2011 => #S(INTERVAL :LOW 0 :HIGH 9)
2012 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
2013 => #S(INTERVAL :LOW 0 :HIGH 10)
2014 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
2015 => #S(INTERVAL :LOW 0 :HIGH 10)
2016 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2017 => #S(INTERVAL :LOW -2 :HIGH 10)
2018 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2019 => #S(INTERVAL :LOW -1 :HIGH 10)
2020 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
2021 => #S(INTERVAL :LOW -1 :HIGH 10)
2023 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
2024 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2025 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
2026 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2027 (floor-rem-bound (make-interval :low -10 :high -2.3))
2028 #S(INTERVAL :LOW (-10) :HIGH 0)
2029 (floor-rem-bound (make-interval :low 0.3 :high 10))
2030 => #S(INTERVAL :LOW 0 :HIGH '(10))
2031 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
2032 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
2033 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
2034 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2037 ;;; same functions for CEILING
2038 (defun ceiling-quotient-bound (quot)
2039 ;; Take the ceiling of the quotient and then massage it into what we
2041 (let ((lo (interval-low quot))
2042 (hi (interval-high quot)))
2043 ;; Take the ceiling of the upper bound. The result is always a
2044 ;; closed upper bound.
2046 (ceiling (type-bound-number hi))
2048 ;; For the lower bound, we need to be careful.
2051 ;; An open bound. We need to be careful here because
2052 ;; the ceiling of '(10.0) is 11, but the ceiling of
2054 (multiple-value-bind (q r) (ceiling (first lo))
2059 ;; A closed bound, so the answer is obvious.
2063 (make-interval :low lo :high hi)))
2064 (defun ceiling-rem-bound (div)
2065 ;; The remainder depends only on the divisor. Try to get the
2066 ;; correct sign for the remainder if we can.
2067 (case (interval-range-info div)
2069 ;; Divisor is always positive. The remainder is negative.
2070 (let ((rem (interval-neg (interval-abs div))))
2071 (setf (interval-high rem) 0)
2072 (when (and (numberp (interval-low rem))
2073 (not (zerop (interval-low rem))))
2074 ;; The remainder never contains the upper bound. However,
2075 ;; watch out for the case when the upper bound is zero!
2076 (setf (interval-low rem) (list (interval-low rem))))
2079 ;; Divisor is always negative. The remainder is positive
2080 (let ((rem (interval-abs div)))
2081 (setf (interval-low rem) 0)
2082 (when (numberp (interval-high rem))
2083 ;; The remainder never contains the lower bound.
2084 (setf (interval-high rem) (list (interval-high rem))))
2087 ;; The divisor can be positive or negative. All bets off. The
2088 ;; magnitude of remainder is the maximum value of the divisor.
2089 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2090 ;; The bound never reaches the limit, so make the interval open.
2091 (make-interval :low (if limit
2094 :high (list limit))))))
2097 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2098 => #S(INTERVAL :LOW 1 :HIGH 11)
2099 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2100 => #S(INTERVAL :LOW 1 :HIGH 11)
2101 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2102 => #S(INTERVAL :LOW 1 :HIGH 10)
2103 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2104 => #S(INTERVAL :LOW 1 :HIGH 10)
2105 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2106 => #S(INTERVAL :LOW 1 :HIGH 11)
2107 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2108 => #S(INTERVAL :LOW 1 :HIGH 11)
2109 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2110 => #S(INTERVAL :LOW -1 :HIGH 11)
2111 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2112 => #S(INTERVAL :LOW 0 :HIGH 11)
2113 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2114 => #S(INTERVAL :LOW -1 :HIGH 11)
2116 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2117 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2118 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2119 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2120 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2121 => #S(INTERVAL :LOW 0 :HIGH (10))
2122 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2123 => #S(INTERVAL :LOW (-10) :HIGH 0)
2124 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2125 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2126 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2127 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2130 (defun truncate-quotient-bound (quot)
2131 ;; For positive quotients, truncate is exactly like floor. For
2132 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2133 ;; it's the union of the two pieces.
2134 (case (interval-range-info quot)
2137 (floor-quotient-bound quot))
2139 ;; just like CEILING
2140 (ceiling-quotient-bound quot))
2142 ;; Split the interval into positive and negative pieces, compute
2143 ;; the result for each piece and put them back together.
2144 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2145 (interval-merge-pair (ceiling-quotient-bound neg)
2146 (floor-quotient-bound pos))))))
2148 (defun truncate-rem-bound (num div)
2149 ;; This is significantly more complicated than FLOOR or CEILING. We
2150 ;; need both the number and the divisor to determine the range. The
2151 ;; basic idea is to split the ranges of NUM and DEN into positive
2152 ;; and negative pieces and deal with each of the four possibilities
2154 (case (interval-range-info num)
2156 (case (interval-range-info div)
2158 (floor-rem-bound div))
2160 (ceiling-rem-bound div))
2162 (destructuring-bind (neg pos) (interval-split 0 div t t)
2163 (interval-merge-pair (truncate-rem-bound num neg)
2164 (truncate-rem-bound num pos))))))
2166 (case (interval-range-info div)
2168 (ceiling-rem-bound div))
2170 (floor-rem-bound div))
2172 (destructuring-bind (neg pos) (interval-split 0 div t t)
2173 (interval-merge-pair (truncate-rem-bound num neg)
2174 (truncate-rem-bound num pos))))))
2176 (destructuring-bind (neg pos) (interval-split 0 num t t)
2177 (interval-merge-pair (truncate-rem-bound neg div)
2178 (truncate-rem-bound pos div))))))
2181 ;;; Derive useful information about the range. Returns three values:
2182 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2183 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2184 ;;; - The abs of the maximal value if there is one, or nil if it is
2186 (defun numeric-range-info (low high)
2187 (cond ((and low (not (minusp low)))
2188 (values '+ low high))
2189 ((and high (not (plusp high)))
2190 (values '- (- high) (if low (- low) nil)))
2192 (values nil 0 (and low high (max (- low) high))))))
2194 (defun integer-truncate-derive-type
2195 (number-low number-high divisor-low divisor-high)
2196 ;; The result cannot be larger in magnitude than the number, but the
2197 ;; sign might change. If we can determine the sign of either the
2198 ;; number or the divisor, we can eliminate some of the cases.
2199 (multiple-value-bind (number-sign number-min number-max)
2200 (numeric-range-info number-low number-high)
2201 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2202 (numeric-range-info divisor-low divisor-high)
2203 (when (and divisor-max (zerop divisor-max))
2204 ;; We've got a problem: guaranteed division by zero.
2205 (return-from integer-truncate-derive-type t))
2206 (when (zerop divisor-min)
2207 ;; We'll assume that they aren't going to divide by zero.
2209 (cond ((and number-sign divisor-sign)
2210 ;; We know the sign of both.
2211 (if (eq number-sign divisor-sign)
2212 ;; Same sign, so the result will be positive.
2213 `(integer ,(if divisor-max
2214 (truncate number-min divisor-max)
2217 (truncate number-max divisor-min)
2219 ;; Different signs, the result will be negative.
2220 `(integer ,(if number-max
2221 (- (truncate number-max divisor-min))
2224 (- (truncate number-min divisor-max))
2226 ((eq divisor-sign '+)
2227 ;; The divisor is positive. Therefore, the number will just
2228 ;; become closer to zero.
2229 `(integer ,(if number-low
2230 (truncate number-low divisor-min)
2233 (truncate number-high divisor-min)
2235 ((eq divisor-sign '-)
2236 ;; The divisor is negative. Therefore, the absolute value of
2237 ;; the number will become closer to zero, but the sign will also
2239 `(integer ,(if number-high
2240 (- (truncate number-high divisor-min))
2243 (- (truncate number-low divisor-min))
2245 ;; The divisor could be either positive or negative.
2247 ;; The number we are dividing has a bound. Divide that by the
2248 ;; smallest posible divisor.
2249 (let ((bound (truncate number-max divisor-min)))
2250 `(integer ,(- bound) ,bound)))
2252 ;; The number we are dividing is unbounded, so we can't tell
2253 ;; anything about the result.
2256 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2257 (defun integer-rem-derive-type
2258 (number-low number-high divisor-low divisor-high)
2259 (if (and divisor-low divisor-high)
2260 ;; We know the range of the divisor, and the remainder must be
2261 ;; smaller than the divisor. We can tell the sign of the
2262 ;; remainer if we know the sign of the number.
2263 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2264 `(integer ,(if (or (null number-low)
2265 (minusp number-low))
2268 ,(if (or (null number-high)
2269 (plusp number-high))
2272 ;; The divisor is potentially either very positive or very
2273 ;; negative. Therefore, the remainer is unbounded, but we might
2274 ;; be able to tell something about the sign from the number.
2275 `(integer ,(if (and number-low (not (minusp number-low)))
2276 ;; The number we are dividing is positive.
2277 ;; Therefore, the remainder must be positive.
2280 ,(if (and number-high (not (plusp number-high)))
2281 ;; The number we are dividing is negative.
2282 ;; Therefore, the remainder must be negative.
2286 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2287 (defoptimizer (random derive-type) ((bound &optional state))
2288 (let ((type (lvar-type bound)))
2289 (when (numeric-type-p type)
2290 (let ((class (numeric-type-class type))
2291 (high (numeric-type-high type))
2292 (format (numeric-type-format type)))
2296 :low (coerce 0 (or format class 'real))
2297 :high (cond ((not high) nil)
2298 ((eq class 'integer) (max (1- high) 0))
2299 ((or (consp high) (zerop high)) high)
2302 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2303 (defun random-derive-type-aux (type)
2304 (let ((class (numeric-type-class type))
2305 (high (numeric-type-high type))
2306 (format (numeric-type-format type)))
2310 :low (coerce 0 (or format class 'real))
2311 :high (cond ((not high) nil)
2312 ((eq class 'integer) (max (1- high) 0))
2313 ((or (consp high) (zerop high)) high)
2316 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2317 (defoptimizer (random derive-type) ((bound &optional state))
2318 (one-arg-derive-type bound #'random-derive-type-aux nil))
2320 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2322 ;;; Return the maximum number of bits an integer of the supplied type
2323 ;;; can take up, or NIL if it is unbounded. The second (third) value
2324 ;;; is T if the integer can be positive (negative) and NIL if not.
2325 ;;; Zero counts as positive.
2326 (defun integer-type-length (type)
2327 (if (numeric-type-p type)
2328 (let ((min (numeric-type-low type))
2329 (max (numeric-type-high type)))
2330 (values (and min max (max (integer-length min) (integer-length max)))
2331 (or (null max) (not (minusp max)))
2332 (or (null min) (minusp min))))
2335 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2336 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2337 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2338 ;;; versions in CMUCL, from which these functions copy liberally.
2340 (defun logand-derive-unsigned-low-bound (x y)
2341 (let ((a (numeric-type-low x))
2342 (b (numeric-type-high x))
2343 (c (numeric-type-low y))
2344 (d (numeric-type-high y)))
2345 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2347 (unless (zerop (logand m (lognot a) (lognot c)))
2348 (let ((temp (logandc2 (logior a m) (1- m))))
2352 (setf temp (logandc2 (logior c m) (1- m)))
2356 finally (return (logand a c)))))
2358 (defun logand-derive-unsigned-high-bound (x y)
2359 (let ((a (numeric-type-low x))
2360 (b (numeric-type-high x))
2361 (c (numeric-type-low y))
2362 (d (numeric-type-high y)))
2363 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2366 ((not (zerop (logand b (lognot d) m)))
2367 (let ((temp (logior (logandc2 b m) (1- m))))
2371 ((not (zerop (logand (lognot b) d m)))
2372 (let ((temp (logior (logandc2 d m) (1- m))))
2376 finally (return (logand b d)))))
2378 (defun logand-derive-type-aux (x y &optional same-leaf)
2380 (return-from logand-derive-type-aux x))
2381 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2382 (declare (ignore x-pos))
2383 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2384 (declare (ignore y-pos))
2386 ;; X must be positive.
2388 ;; They must both be positive.
2389 (cond ((and (null x-len) (null y-len))
2390 (specifier-type 'unsigned-byte))
2392 (specifier-type `(unsigned-byte* ,y-len)))
2394 (specifier-type `(unsigned-byte* ,x-len)))
2396 (let ((low (logand-derive-unsigned-low-bound x y))
2397 (high (logand-derive-unsigned-high-bound x y)))
2398 (specifier-type `(integer ,low ,high)))))
2399 ;; X is positive, but Y might be negative.
2401 (specifier-type 'unsigned-byte))
2403 (specifier-type `(unsigned-byte* ,x-len)))))
2404 ;; X might be negative.
2406 ;; Y must be positive.
2408 (specifier-type 'unsigned-byte))
2409 (t (specifier-type `(unsigned-byte* ,y-len))))
2410 ;; Either might be negative.
2411 (if (and x-len y-len)
2412 ;; The result is bounded.
2413 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2414 ;; We can't tell squat about the result.
2415 (specifier-type 'integer)))))))
2417 (defun logior-derive-unsigned-low-bound (x y)
2418 (let ((a (numeric-type-low x))
2419 (b (numeric-type-high x))
2420 (c (numeric-type-low y))
2421 (d (numeric-type-high y)))
2422 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2425 ((not (zerop (logandc2 (logand c m) a)))
2426 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2430 ((not (zerop (logandc2 (logand a m) c)))
2431 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2435 finally (return (logior a c)))))
2437 (defun logior-derive-unsigned-high-bound (x y)
2438 (let ((a (numeric-type-low x))
2439 (b (numeric-type-high x))
2440 (c (numeric-type-low y))
2441 (d (numeric-type-high y)))
2442 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2444 (unless (zerop (logand b d m))
2445 (let ((temp (logior (- b m) (1- m))))
2449 (setf temp (logior (- d m) (1- m)))
2453 finally (return (logior b d)))))
2455 (defun logior-derive-type-aux (x y &optional same-leaf)
2457 (return-from logior-derive-type-aux x))
2458 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2459 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2461 ((and (not x-neg) (not y-neg))
2462 ;; Both are positive.
2463 (if (and x-len y-len)
2464 (let ((low (logior-derive-unsigned-low-bound x y))
2465 (high (logior-derive-unsigned-high-bound x y)))
2466 (specifier-type `(integer ,low ,high)))
2467 (specifier-type `(unsigned-byte* *))))
2469 ;; X must be negative.
2471 ;; Both are negative. The result is going to be negative
2472 ;; and be the same length or shorter than the smaller.
2473 (if (and x-len y-len)
2475 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2477 (specifier-type '(integer * -1)))
2478 ;; X is negative, but we don't know about Y. The result
2479 ;; will be negative, but no more negative than X.
2481 `(integer ,(or (numeric-type-low x) '*)
2484 ;; X might be either positive or negative.
2486 ;; But Y is negative. The result will be negative.
2488 `(integer ,(or (numeric-type-low y) '*)
2490 ;; We don't know squat about either. It won't get any bigger.
2491 (if (and x-len y-len)
2493 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2495 (specifier-type 'integer))))))))
2497 (defun logxor-derive-unsigned-low-bound (x y)
2498 (let ((a (numeric-type-low x))
2499 (b (numeric-type-high x))
2500 (c (numeric-type-low y))
2501 (d (numeric-type-high y)))
2502 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2505 ((not (zerop (logandc2 (logand c m) a)))
2506 (let ((temp (logand (logior a m)
2510 ((not (zerop (logandc2 (logand a m) c)))
2511 (let ((temp (logand (logior c m)
2515 finally (return (logxor a c)))))
2517 (defun logxor-derive-unsigned-high-bound (x y)
2518 (let ((a (numeric-type-low x))
2519 (b (numeric-type-high x))
2520 (c (numeric-type-low y))
2521 (d (numeric-type-high y)))
2522 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2524 (unless (zerop (logand b d m))
2525 (let ((temp (logior (- b m) (1- m))))
2527 ((>= temp a) (setf b temp))
2528 (t (let ((temp (logior (- d m) (1- m))))
2531 finally (return (logxor b d)))))
2533 (defun logxor-derive-type-aux (x y &optional same-leaf)
2535 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2536 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2537 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2539 ((and (not x-neg) (not y-neg))
2540 ;; Both are positive
2541 (if (and x-len y-len)
2542 (let ((low (logxor-derive-unsigned-low-bound x y))
2543 (high (logxor-derive-unsigned-high-bound x y)))
2544 (specifier-type `(integer ,low ,high)))
2545 (specifier-type '(unsigned-byte* *))))
2546 ((and (not x-pos) (not y-pos))
2547 ;; Both are negative. The result will be positive, and as long
2549 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2552 ((or (and (not x-pos) (not y-neg))
2553 (and (not y-pos) (not x-neg)))
2554 ;; Either X is negative and Y is positive or vice-versa. The
2555 ;; result will be negative.
2556 (specifier-type `(integer ,(if (and x-len y-len)
2557 (ash -1 (max x-len y-len))
2560 ;; We can't tell what the sign of the result is going to be.
2561 ;; All we know is that we don't create new bits.
2563 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2565 (specifier-type 'integer))))))
2567 (macrolet ((deffrob (logfun)
2568 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2569 `(defoptimizer (,logfun derive-type) ((x y))
2570 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2575 (defoptimizer (logeqv derive-type) ((x y))
2576 (two-arg-derive-type x y (lambda (x y same-leaf)
2577 (lognot-derive-type-aux
2578 (logxor-derive-type-aux x y same-leaf)))
2580 (defoptimizer (lognand derive-type) ((x y))
2581 (two-arg-derive-type x y (lambda (x y same-leaf)
2582 (lognot-derive-type-aux
2583 (logand-derive-type-aux x y same-leaf)))
2585 (defoptimizer (lognor derive-type) ((x y))
2586 (two-arg-derive-type x y (lambda (x y same-leaf)
2587 (lognot-derive-type-aux
2588 (logior-derive-type-aux x y same-leaf)))
2590 (defoptimizer (logandc1 derive-type) ((x y))
2591 (two-arg-derive-type x y (lambda (x y same-leaf)
2593 (specifier-type '(eql 0))
2594 (logand-derive-type-aux
2595 (lognot-derive-type-aux x) y nil)))
2597 (defoptimizer (logandc2 derive-type) ((x y))
2598 (two-arg-derive-type x y (lambda (x y same-leaf)
2600 (specifier-type '(eql 0))
2601 (logand-derive-type-aux
2602 x (lognot-derive-type-aux y) nil)))
2604 (defoptimizer (logorc1 derive-type) ((x y))
2605 (two-arg-derive-type x y (lambda (x y same-leaf)
2607 (specifier-type '(eql -1))
2608 (logior-derive-type-aux
2609 (lognot-derive-type-aux x) y nil)))
2611 (defoptimizer (logorc2 derive-type) ((x y))
2612 (two-arg-derive-type x y (lambda (x y same-leaf)
2614 (specifier-type '(eql -1))
2615 (logior-derive-type-aux
2616 x (lognot-derive-type-aux y) nil)))
2619 ;;;; miscellaneous derive-type methods
2621 (defoptimizer (integer-length derive-type) ((x))
2622 (let ((x-type (lvar-type x)))
2623 (when (numeric-type-p x-type)
2624 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2625 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2626 ;; careful about LO or HI being NIL, though. Also, if 0 is
2627 ;; contained in X, the lower bound is obviously 0.
2628 (flet ((null-or-min (a b)
2629 (and a b (min (integer-length a)
2630 (integer-length b))))
2632 (and a b (max (integer-length a)
2633 (integer-length b)))))
2634 (let* ((min (numeric-type-low x-type))
2635 (max (numeric-type-high x-type))
2636 (min-len (null-or-min min max))
2637 (max-len (null-or-max min max)))
2638 (when (ctypep 0 x-type)
2640 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2642 (defoptimizer (isqrt derive-type) ((x))
2643 (let ((x-type (lvar-type x)))
2644 (when (numeric-type-p x-type)
2645 (let* ((lo (numeric-type-low x-type))
2646 (hi (numeric-type-high x-type))
2647 (lo-res (if lo (isqrt lo) '*))
2648 (hi-res (if hi (isqrt hi) '*)))
2649 (specifier-type `(integer ,lo-res ,hi-res))))))
2651 (defoptimizer (char-code derive-type) ((char))
2652 (let ((type (type-intersection (lvar-type char) (specifier-type 'character))))
2653 (cond ((member-type-p type)
2656 ,@(loop for member in (member-type-members type)
2657 when (characterp member)
2658 collect (char-code member)))))
2659 ((sb!kernel::character-set-type-p type)
2662 ,@(loop for (low . high)
2663 in (character-set-type-pairs type)
2664 collect `(integer ,low ,high)))))
2665 ((csubtypep type (specifier-type 'base-char))
2667 `(mod ,base-char-code-limit)))
2670 `(mod ,char-code-limit))))))
2672 (defoptimizer (code-char derive-type) ((code))
2673 (let ((type (lvar-type code)))
2674 ;; FIXME: unions of integral ranges? It ought to be easier to do
2675 ;; this, given that CHARACTER-SET is basically an integral range
2676 ;; type. -- CSR, 2004-10-04
2677 (when (numeric-type-p type)
2678 (let* ((lo (numeric-type-low type))
2679 (hi (numeric-type-high type))
2680 (type (specifier-type `(character-set ((,lo . ,hi))))))
2682 ;; KLUDGE: when running on the host, we lose a slight amount
2683 ;; of precision so that we don't have to "unparse" types
2684 ;; that formally we can't, such as (CHARACTER-SET ((0
2685 ;; . 0))). -- CSR, 2004-10-06
2687 ((csubtypep type (specifier-type 'standard-char)) type)
2689 ((csubtypep type (specifier-type 'base-char))
2690 (specifier-type 'base-char))
2692 ((csubtypep type (specifier-type 'extended-char))
2693 (specifier-type 'extended-char))
2694 (t #+sb-xc-host (specifier-type 'character)
2695 #-sb-xc-host type))))))
2697 (defoptimizer (values derive-type) ((&rest values))
2698 (make-values-type :required (mapcar #'lvar-type values)))
2700 (defun signum-derive-type-aux (type)
2701 (if (eq (numeric-type-complexp type) :complex)
2702 (let* ((format (case (numeric-type-class type)
2703 ((integer rational) 'single-float)
2704 (t (numeric-type-format type))))
2705 (bound-format (or format 'float)))
2706 (make-numeric-type :class 'float
2709 :low (coerce -1 bound-format)
2710 :high (coerce 1 bound-format)))
2711 (let* ((interval (numeric-type->interval type))
2712 (range-info (interval-range-info interval))
2713 (contains-0-p (interval-contains-p 0 interval))
2714 (class (numeric-type-class type))
2715 (format (numeric-type-format type))
2716 (one (coerce 1 (or format class 'real)))
2717 (zero (coerce 0 (or format class 'real)))
2718 (minus-one (coerce -1 (or format class 'real)))
2719 (plus (make-numeric-type :class class :format format
2720 :low one :high one))
2721 (minus (make-numeric-type :class class :format format
2722 :low minus-one :high minus-one))
2723 ;; KLUDGE: here we have a fairly horrible hack to deal
2724 ;; with the schizophrenia in the type derivation engine.
2725 ;; The problem is that the type derivers reinterpret
2726 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2727 ;; 0d0) within the derivation mechanism doesn't include
2728 ;; -0d0. Ugh. So force it in here, instead.
2729 (zero (make-numeric-type :class class :format format
2730 :low (- zero) :high zero)))
2732 (+ (if contains-0-p (type-union plus zero) plus))
2733 (- (if contains-0-p (type-union minus zero) minus))
2734 (t (type-union minus zero plus))))))
2736 (defoptimizer (signum derive-type) ((num))
2737 (one-arg-derive-type num #'signum-derive-type-aux nil))
2739 ;;;; byte operations
2741 ;;;; We try to turn byte operations into simple logical operations.
2742 ;;;; First, we convert byte specifiers into separate size and position
2743 ;;;; arguments passed to internal %FOO functions. We then attempt to
2744 ;;;; transform the %FOO functions into boolean operations when the
2745 ;;;; size and position are constant and the operands are fixnums.
2747 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2748 ;; expressions that evaluate to the SIZE and POSITION of
2749 ;; the byte-specifier form SPEC. We may wrap a let around
2750 ;; the result of the body to bind some variables.
2752 ;; If the spec is a BYTE form, then bind the vars to the
2753 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2754 ;; and BYTE-POSITION. The goal of this transformation is to
2755 ;; avoid consing up byte specifiers and then immediately
2756 ;; throwing them away.
2757 (with-byte-specifier ((size-var pos-var spec) &body body)
2758 (once-only ((spec `(macroexpand ,spec))
2760 `(if (and (consp ,spec)
2761 (eq (car ,spec) 'byte)
2762 (= (length ,spec) 3))
2763 (let ((,size-var (second ,spec))
2764 (,pos-var (third ,spec)))
2766 (let ((,size-var `(byte-size ,,temp))
2767 (,pos-var `(byte-position ,,temp)))
2768 `(let ((,,temp ,,spec))
2771 (define-source-transform ldb (spec int)
2772 (with-byte-specifier (size pos spec)
2773 `(%ldb ,size ,pos ,int)))
2775 (define-source-transform dpb (newbyte spec int)
2776 (with-byte-specifier (size pos spec)
2777 `(%dpb ,newbyte ,size ,pos ,int)))
2779 (define-source-transform mask-field (spec int)
2780 (with-byte-specifier (size pos spec)
2781 `(%mask-field ,size ,pos ,int)))
2783 (define-source-transform deposit-field (newbyte spec int)
2784 (with-byte-specifier (size pos spec)
2785 `(%deposit-field ,newbyte ,size ,pos ,int))))
2787 (defoptimizer (%ldb derive-type) ((size posn num))
2788 (let ((size (lvar-type size)))
2789 (if (and (numeric-type-p size)
2790 (csubtypep size (specifier-type 'integer)))
2791 (let ((size-high (numeric-type-high size)))
2792 (if (and size-high (<= size-high sb!vm:n-word-bits))
2793 (specifier-type `(unsigned-byte* ,size-high))
2794 (specifier-type 'unsigned-byte)))
2797 (defoptimizer (%mask-field derive-type) ((size posn num))
2798 (let ((size (lvar-type size))
2799 (posn (lvar-type posn)))
2800 (if (and (numeric-type-p size)
2801 (csubtypep size (specifier-type 'integer))
2802 (numeric-type-p posn)
2803 (csubtypep posn (specifier-type 'integer)))
2804 (let ((size-high (numeric-type-high size))
2805 (posn-high (numeric-type-high posn)))
2806 (if (and size-high posn-high
2807 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2808 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2809 (specifier-type 'unsigned-byte)))
2812 (defun %deposit-field-derive-type-aux (size posn int)
2813 (let ((size (lvar-type size))
2814 (posn (lvar-type posn))
2815 (int (lvar-type int)))
2816 (when (and (numeric-type-p size)
2817 (numeric-type-p posn)
2818 (numeric-type-p int))
2819 (let ((size-high (numeric-type-high size))
2820 (posn-high (numeric-type-high posn))
2821 (high (numeric-type-high int))
2822 (low (numeric-type-low int)))
2823 (when (and size-high posn-high high low
2824 ;; KLUDGE: we need this cutoff here, otherwise we
2825 ;; will merrily derive the type of %DPB as
2826 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2827 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2828 ;; 1073741822))), with hilarious consequences. We
2829 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2830 ;; over a reasonable amount of shifting, even on
2831 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2832 ;; machine integers are 64-bits. -- CSR,
2834 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2835 (let ((raw-bit-count (max (integer-length high)
2836 (integer-length low)
2837 (+ size-high posn-high))))
2840 `(signed-byte ,(1+ raw-bit-count))
2841 `(unsigned-byte* ,raw-bit-count)))))))))
2843 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2844 (%deposit-field-derive-type-aux size posn int))
2846 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2847 (%deposit-field-derive-type-aux size posn int))
2849 (deftransform %ldb ((size posn int)
2850 (fixnum fixnum integer)
2851 (unsigned-byte #.sb!vm:n-word-bits))
2852 "convert to inline logical operations"
2853 `(logand (ash int (- posn))
2854 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2855 (- size ,sb!vm:n-word-bits))))
2857 (deftransform %mask-field ((size posn int)
2858 (fixnum fixnum integer)
2859 (unsigned-byte #.sb!vm:n-word-bits))
2860 "convert to inline logical operations"
2862 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2863 (- size ,sb!vm:n-word-bits))
2866 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2867 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2868 ;;; as the result type, as that would allow result types that cover
2869 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2870 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2872 (deftransform %dpb ((new size posn int)
2874 (unsigned-byte #.sb!vm:n-word-bits))
2875 "convert to inline logical operations"
2876 `(let ((mask (ldb (byte size 0) -1)))
2877 (logior (ash (logand new mask) posn)
2878 (logand int (lognot (ash mask posn))))))
2880 (deftransform %dpb ((new size posn int)
2882 (signed-byte #.sb!vm:n-word-bits))
2883 "convert to inline logical operations"
2884 `(let ((mask (ldb (byte size 0) -1)))
2885 (logior (ash (logand new mask) posn)
2886 (logand int (lognot (ash mask posn))))))
2888 (deftransform %deposit-field ((new size posn int)
2890 (unsigned-byte #.sb!vm:n-word-bits))
2891 "convert to inline logical operations"
2892 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2893 (logior (logand new mask)
2894 (logand int (lognot mask)))))
2896 (deftransform %deposit-field ((new size posn int)
2898 (signed-byte #.sb!vm:n-word-bits))
2899 "convert to inline logical operations"
2900 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2901 (logior (logand new mask)
2902 (logand int (lognot mask)))))
2904 (defoptimizer (mask-signed-field derive-type) ((size x))
2905 (let ((size (lvar-type size)))
2906 (if (numeric-type-p size)
2907 (let ((size-high (numeric-type-high size)))
2908 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2909 (specifier-type `(signed-byte ,size-high))
2914 ;;; Modular functions
2916 ;;; (ldb (byte s 0) (foo x y ...)) =
2917 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2919 ;;; and similar for other arguments.
2921 (defun make-modular-fun-type-deriver (prototype kind width signedp)
2922 (declare (ignore kind))
2924 (binding* ((info (info :function :info prototype) :exit-if-null)
2925 (fun (fun-info-derive-type info) :exit-if-null)
2926 (mask-type (specifier-type
2928 ((nil) (let ((mask (1- (ash 1 width))))
2929 `(integer ,mask ,mask)))
2930 ((t) `(signed-byte ,width))))))
2932 (let ((res (funcall fun call)))
2934 (if (eq signedp nil)
2935 (logand-derive-type-aux res mask-type))))))
2938 (binding* ((info (info :function :info prototype) :exit-if-null)
2939 (fun (fun-info-derive-type info) :exit-if-null)
2940 (res (funcall fun call) :exit-if-null)
2941 (mask-type (specifier-type
2943 ((nil) (let ((mask (1- (ash 1 width))))
2944 `(integer ,mask ,mask)))
2945 ((t) `(signed-byte ,width))))))
2946 (if (eq signedp nil)
2947 (logand-derive-type-aux res mask-type)))))
2949 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2951 ;;; For good functions, we just recursively cut arguments; their
2952 ;;; "goodness" means that the result will not increase (in the
2953 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2954 ;;; replaced with the version, cutting its result to WIDTH or more
2955 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2956 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2957 ;;; arguments (maybe to a different width) and returning the name of a
2958 ;;; modular version, if it exists, or NIL. If we have changed
2959 ;;; anything, we need to flush old derived types, because they have
2960 ;;; nothing in common with the new code.
2961 (defun cut-to-width (lvar kind width signedp)
2962 (declare (type lvar lvar) (type (integer 0) width))
2963 (let ((type (specifier-type (if (zerop width)
2966 ((nil) 'unsigned-byte)
2969 (labels ((reoptimize-node (node name)
2970 (setf (node-derived-type node)
2972 (info :function :type name)))
2973 (setf (lvar-%derived-type (node-lvar node)) nil)
2974 (setf (node-reoptimize node) t)
2975 (setf (block-reoptimize (node-block node)) t)
2976 (reoptimize-component (node-component node) :maybe))
2977 (cut-node (node &aux did-something)
2978 (when (and (not (block-delete-p (node-block node)))
2979 (combination-p node)
2980 (eq (basic-combination-kind node) :known))
2981 (let* ((fun-ref (lvar-use (combination-fun node)))
2982 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2983 (modular-fun (find-modular-version fun-name kind signedp width)))
2984 (when (and modular-fun
2985 (not (and (eq fun-name 'logand)
2987 (single-value-type (node-derived-type node))
2989 (binding* ((name (etypecase modular-fun
2990 ((eql :good) fun-name)
2992 (modular-fun-info-name modular-fun))
2994 (funcall modular-fun node width)))
2996 (unless (eql modular-fun :good)
2997 (setq did-something t)
3000 (find-free-fun name "in a strange place"))
3001 (setf (combination-kind node) :full))
3002 (unless (functionp modular-fun)
3003 (dolist (arg (basic-combination-args node))
3004 (when (cut-lvar arg)
3005 (setq did-something t))))
3007 (reoptimize-node node name))
3009 (cut-lvar (lvar &aux did-something)
3010 (do-uses (node lvar)
3011 (when (cut-node node)
3012 (setq did-something t)))
3016 (defun best-modular-version (width signedp)
3017 ;; 1. exact width-matched :untagged
3018 ;; 2. >/>= width-matched :tagged
3019 ;; 3. >/>= width-matched :untagged
3020 (let* ((uuwidths (modular-class-widths *untagged-unsigned-modular-class*))
3021 (uswidths (modular-class-widths *untagged-signed-modular-class*))
3022 (uwidths (merge 'list uuwidths uswidths #'< :key #'car))
3023 (twidths (modular-class-widths *tagged-modular-class*)))
3024 (let ((exact (find (cons width signedp) uwidths :test #'equal)))
3026 (return-from best-modular-version (values width :untagged signedp))))
3027 (flet ((inexact-match (w)
3029 ((eq signedp (cdr w)) (<= width (car w)))
3030 ((eq signedp nil) (< width (car w))))))
3031 (let ((tgt (find-if #'inexact-match twidths)))
3033 (return-from best-modular-version
3034 (values (car tgt) :tagged (cdr tgt)))))
3035 (let ((ugt (find-if #'inexact-match uwidths)))
3037 (return-from best-modular-version
3038 (values (car ugt) :untagged (cdr ugt))))))))
3040 (defoptimizer (logand optimizer) ((x y) node)
3041 (let ((result-type (single-value-type (node-derived-type node))))
3042 (when (numeric-type-p result-type)
3043 (let ((low (numeric-type-low result-type))
3044 (high (numeric-type-high result-type)))
3045 (when (and (numberp low)
3048 (let ((width (integer-length high)))
3049 (multiple-value-bind (w kind signedp)
3050 (best-modular-version width nil)
3052 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH SIGNEDP).
3053 (cut-to-width x kind width signedp)
3054 (cut-to-width y kind width signedp)
3055 nil ; After fixing above, replace with T.
3058 (defoptimizer (mask-signed-field optimizer) ((width x) node)
3059 (let ((result-type (single-value-type (node-derived-type node))))
3060 (when (numeric-type-p result-type)
3061 (let ((low (numeric-type-low result-type))
3062 (high (numeric-type-high result-type)))
3063 (when (and (numberp low) (numberp high))
3064 (let ((width (max (integer-length high) (integer-length low))))
3065 (multiple-value-bind (w kind)
3066 (best-modular-version width t)
3068 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH T).
3069 (cut-to-width x kind width t)
3070 nil ; After fixing above, replace with T.
3073 ;;; miscellanous numeric transforms
3075 ;;; If a constant appears as the first arg, swap the args.
3076 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
3077 (if (and (constant-lvar-p x)
3078 (not (constant-lvar-p y)))
3079 `(,(lvar-fun-name (basic-combination-fun node))
3082 (give-up-ir1-transform)))
3084 (dolist (x '(= char= + * logior logand logxor))
3085 (%deftransform x '(function * *) #'commutative-arg-swap
3086 "place constant arg last"))
3088 ;;; Handle the case of a constant BOOLE-CODE.
3089 (deftransform boole ((op x y) * *)
3090 "convert to inline logical operations"
3091 (unless (constant-lvar-p op)
3092 (give-up-ir1-transform "BOOLE code is not a constant."))
3093 (let ((control (lvar-value op)))
3095 (#.sb!xc:boole-clr 0)
3096 (#.sb!xc:boole-set -1)
3097 (#.sb!xc:boole-1 'x)
3098 (#.sb!xc:boole-2 'y)
3099 (#.sb!xc:boole-c1 '(lognot x))
3100 (#.sb!xc:boole-c2 '(lognot y))
3101 (#.sb!xc:boole-and '(logand x y))
3102 (#.sb!xc:boole-ior '(logior x y))
3103 (#.sb!xc:boole-xor '(logxor x y))
3104 (#.sb!xc:boole-eqv '(logeqv x y))
3105 (#.sb!xc:boole-nand '(lognand x y))
3106 (#.sb!xc:boole-nor '(lognor x y))
3107 (#.sb!xc:boole-andc1 '(logandc1 x y))
3108 (#.sb!xc:boole-andc2 '(logandc2 x y))
3109 (#.sb!xc:boole-orc1 '(logorc1 x y))
3110 (#.sb!xc:boole-orc2 '(logorc2 x y))
3112 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
3115 ;;;; converting special case multiply/divide to shifts
3117 ;;; If arg is a constant power of two, turn * into a shift.
3118 (deftransform * ((x y) (integer integer) *)
3119 "convert x*2^k to shift"
3120 (unless (constant-lvar-p y)
3121 (give-up-ir1-transform))
3122 (let* ((y (lvar-value y))
3124 (len (1- (integer-length y-abs))))
3125 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3126 (give-up-ir1-transform))
3131 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3132 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3134 (flet ((frob (y ceil-p)
3135 (unless (constant-lvar-p y)
3136 (give-up-ir1-transform))
3137 (let* ((y (lvar-value y))
3139 (len (1- (integer-length y-abs))))
3140 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3141 (give-up-ir1-transform))
3142 (let ((shift (- len))
3144 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3145 `(let ((x (+ x ,delta)))
3147 `(values (ash (- x) ,shift)
3148 (- (- (logand (- x) ,mask)) ,delta))
3149 `(values (ash x ,shift)
3150 (- (logand x ,mask) ,delta))))))))
3151 (deftransform floor ((x y) (integer integer) *)
3152 "convert division by 2^k to shift"
3154 (deftransform ceiling ((x y) (integer integer) *)
3155 "convert division by 2^k to shift"
3158 ;;; Do the same for MOD.
3159 (deftransform mod ((x y) (integer integer) *)
3160 "convert remainder mod 2^k to LOGAND"
3161 (unless (constant-lvar-p y)
3162 (give-up-ir1-transform))
3163 (let* ((y (lvar-value y))
3165 (len (1- (integer-length y-abs))))
3166 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3167 (give-up-ir1-transform))
3168 (let ((mask (1- y-abs)))
3170 `(- (logand (- x) ,mask))
3171 `(logand x ,mask)))))
3173 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3174 (deftransform truncate ((x y) (integer integer))
3175 "convert division by 2^k to shift"
3176 (unless (constant-lvar-p y)
3177 (give-up-ir1-transform))
3178 (let* ((y (lvar-value y))
3180 (len (1- (integer-length y-abs))))
3181 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3182 (give-up-ir1-transform))
3183 (let* ((shift (- len))
3186 (values ,(if (minusp y)
3188 `(- (ash (- x) ,shift)))
3189 (- (logand (- x) ,mask)))
3190 (values ,(if (minusp y)
3191 `(ash (- ,mask x) ,shift)
3193 (logand x ,mask))))))
3195 ;;; And the same for REM.
3196 (deftransform rem ((x y) (integer integer) *)
3197 "convert remainder mod 2^k to LOGAND"
3198 (unless (constant-lvar-p y)
3199 (give-up-ir1-transform))
3200 (let* ((y (lvar-value y))
3202 (len (1- (integer-length y-abs))))
3203 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3204 (give-up-ir1-transform))
3205 (let ((mask (1- y-abs)))
3207 (- (logand (- x) ,mask))
3208 (logand x ,mask)))))
3210 ;;;; arithmetic and logical identity operation elimination
3212 ;;; Flush calls to various arith functions that convert to the
3213 ;;; identity function or a constant.
3214 (macrolet ((def (name identity result)
3215 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3216 "fold identity operations"
3223 (def logxor -1 (lognot x))
3226 (deftransform logand ((x y) (* (constant-arg t)) *)
3227 "fold identity operation"
3228 (let ((y (lvar-value y)))
3229 (unless (and (plusp y)
3230 (= y (1- (ash 1 (integer-length y)))))
3231 (give-up-ir1-transform))
3232 (unless (csubtypep (lvar-type x)
3233 (specifier-type `(integer 0 ,y)))
3234 (give-up-ir1-transform))
3237 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3238 "fold identity operation"
3239 (let ((size (lvar-value size)))
3240 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3241 (give-up-ir1-transform))
3244 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3245 ;;; (* 0 -4.0) is -0.0.
3246 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3247 "convert (- 0 x) to negate"
3249 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3250 "convert (* x 0) to 0"
3253 ;;; Return T if in an arithmetic op including lvars X and Y, the
3254 ;;; result type is not affected by the type of X. That is, Y is at
3255 ;;; least as contagious as X.
3257 (defun not-more-contagious (x y)
3258 (declare (type continuation x y))
3259 (let ((x (lvar-type x))
3261 (values (type= (numeric-contagion x y)
3262 (numeric-contagion y y)))))
3263 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3264 ;;; XXX needs more work as valid transforms are missed; some cases are
3265 ;;; specific to particular transform functions so the use of this
3266 ;;; function may need a re-think.
3267 (defun not-more-contagious (x y)
3268 (declare (type lvar x y))
3269 (flet ((simple-numeric-type (num)
3270 (and (numeric-type-p num)
3271 ;; Return non-NIL if NUM is integer, rational, or a float
3272 ;; of some type (but not FLOAT)
3273 (case (numeric-type-class num)
3277 (numeric-type-format num))
3280 (let ((x (lvar-type x))
3282 (if (and (simple-numeric-type x)
3283 (simple-numeric-type y))
3284 (values (type= (numeric-contagion x y)
3285 (numeric-contagion y y)))))))
3287 (def!type exact-number ()
3288 '(or rational (complex rational)))
3292 ;;; Only safely applicable for exact numbers. For floating-point
3293 ;;; x, one would have to first show that neither x or y are signed
3294 ;;; 0s, and that x isn't an SNaN.
3295 (deftransform + ((x y) (exact-number (constant-arg (eql 0))) *)
3300 (deftransform - ((x y) (exact-number (constant-arg (eql 0))) *)
3304 ;;; Fold (OP x +/-1)
3306 ;;; %NEGATE might not always signal correctly.
3308 ((def (name result minus-result)
3309 `(deftransform ,name ((x y)
3310 (exact-number (constant-arg (member 1 -1))))
3311 "fold identity operations"
3312 (if (minusp (lvar-value y)) ',minus-result ',result))))
3313 (def * x (%negate x))
3314 (def / x (%negate x))
3315 (def expt x (/ 1 x)))
3317 ;;; Fold (expt x n) into multiplications for small integral values of
3318 ;;; N; convert (expt x 1/2) to sqrt.
3319 (deftransform expt ((x y) (t (constant-arg real)) *)
3320 "recode as multiplication or sqrt"
3321 (let ((val (lvar-value y)))
3322 ;; If Y would cause the result to be promoted to the same type as
3323 ;; Y, we give up. If not, then the result will be the same type
3324 ;; as X, so we can replace the exponentiation with simple
3325 ;; multiplication and division for small integral powers.
3326 (unless (not-more-contagious y x)
3327 (give-up-ir1-transform))
3329 (let ((x-type (lvar-type x)))
3330 (cond ((csubtypep x-type (specifier-type '(or rational
3331 (complex rational))))
3333 ((csubtypep x-type (specifier-type 'real))
3337 ((csubtypep x-type (specifier-type 'complex))
3338 ;; both parts are float
3340 (t (give-up-ir1-transform)))))
3341 ((= val 2) '(* x x))
3342 ((= val -2) '(/ (* x x)))
3343 ((= val 3) '(* x x x))
3344 ((= val -3) '(/ (* x x x)))
3345 ((= val 1/2) '(sqrt x))
3346 ((= val -1/2) '(/ (sqrt x)))
3347 (t (give-up-ir1-transform)))))
3349 (deftransform expt ((x y) ((constant-arg (member -1 -1.0 -1.0d0)) integer) *)
3350 "recode as an ODDP check"
3351 (let ((val (lvar-value x)))
3353 '(- 1 (* 2 (logand 1 y)))
3358 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3359 ;;; transformations?
3360 ;;; Perhaps we should have to prove that the denominator is nonzero before
3361 ;;; doing them? -- WHN 19990917
3362 (macrolet ((def (name)
3363 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3370 (macrolet ((def (name)
3371 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3380 ;;;; character operations
3382 (deftransform char-equal ((a b) (base-char base-char))
3384 '(let* ((ac (char-code a))
3386 (sum (logxor ac bc)))
3388 (when (eql sum #x20)
3389 (let ((sum (+ ac bc)))
3390 (or (and (> sum 161) (< sum 213))
3391 (and (> sum 415) (< sum 461))
3392 (and (> sum 463) (< sum 477))))))))
3394 (deftransform char-upcase ((x) (base-char))
3396 '(let ((n-code (char-code x)))
3397 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3398 (< n-code #o173)) ; Octal 172 is #\z.
3399 (and (> n-code #o337)
3401 (and (> n-code #o367)
3403 (code-char (logxor #x20 n-code))
3406 (deftransform char-downcase ((x) (base-char))
3408 '(let ((n-code (char-code x)))
3409 (if (or (and (> n-code 64) ; 65 is #\A.
3410 (< n-code 91)) ; 90 is #\Z.
3415 (code-char (logxor #x20 n-code))
3418 ;;;; equality predicate transforms
3420 ;;; Return true if X and Y are lvars whose only use is a
3421 ;;; reference to the same leaf, and the value of the leaf cannot
3423 (defun same-leaf-ref-p (x y)
3424 (declare (type lvar x y))
3425 (let ((x-use (principal-lvar-use x))
3426 (y-use (principal-lvar-use y)))
3429 (eq (ref-leaf x-use) (ref-leaf y-use))
3430 (constant-reference-p x-use))))
3432 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3433 ;;; if there is no intersection between the types of the arguments,
3434 ;;; then the result is definitely false.
3435 (deftransform simple-equality-transform ((x y) * *
3438 ((same-leaf-ref-p x y) t)
3439 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3441 (t (give-up-ir1-transform))))
3444 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3448 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3449 ;;; try to convert to a type-specific predicate or EQ:
3450 ;;; -- If both args are characters, convert to CHAR=. This is better than
3451 ;;; just converting to EQ, since CHAR= may have special compilation
3452 ;;; strategies for non-standard representations, etc.
3453 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3454 ;;; constant and if so, put X second. Doing this results in better
3455 ;;; code from the backend, since the backend assumes that any constant
3456 ;;; argument comes second.
3457 ;;; -- If either arg is definitely not a number or a fixnum, then we
3458 ;;; can compare with EQ.
3459 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3460 ;;; is constant then we put it second. If X is a subtype of Y, we put
3461 ;;; it second. These rules make it easier for the back end to match
3462 ;;; these interesting cases.
3463 (deftransform eql ((x y) * * :node node)
3464 "convert to simpler equality predicate"
3465 (let ((x-type (lvar-type x))
3466 (y-type (lvar-type y))
3467 (char-type (specifier-type 'character)))
3468 (flet ((fixnum-type-p (type)
3469 (csubtypep type (specifier-type 'fixnum))))
3471 ((same-leaf-ref-p x y) t)
3472 ((not (types-equal-or-intersect x-type y-type))
3474 ((and (csubtypep x-type char-type)
3475 (csubtypep y-type char-type))
3477 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3478 (commutative-arg-swap node))
3479 ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type))
3481 ((and (not (constant-lvar-p y))
3482 (or (constant-lvar-p x)
3483 (and (csubtypep x-type y-type)
3484 (not (csubtypep y-type x-type)))))
3487 (give-up-ir1-transform))))))
3489 ;;; similarly to the EQL transform above, we attempt to constant-fold
3490 ;;; or convert to a simpler predicate: mostly we have to be careful
3491 ;;; with strings and bit-vectors.
3492 (deftransform equal ((x y) * *)
3493 "convert to simpler equality predicate"
3494 (let ((x-type (lvar-type x))
3495 (y-type (lvar-type y))
3496 (string-type (specifier-type 'string))
3497 (bit-vector-type (specifier-type 'bit-vector)))
3499 ((same-leaf-ref-p x y) t)
3500 ((and (csubtypep x-type string-type)
3501 (csubtypep y-type string-type))
3503 ((and (csubtypep x-type bit-vector-type)
3504 (csubtypep y-type bit-vector-type))
3505 '(bit-vector-= x y))
3506 ;; if at least one is not a string, and at least one is not a
3507 ;; bit-vector, then we can reason from types.
3508 ((and (not (and (types-equal-or-intersect x-type string-type)
3509 (types-equal-or-intersect y-type string-type)))
3510 (not (and (types-equal-or-intersect x-type bit-vector-type)
3511 (types-equal-or-intersect y-type bit-vector-type)))
3512 (not (types-equal-or-intersect x-type y-type)))
3514 (t (give-up-ir1-transform)))))
3516 ;;; Convert to EQL if both args are rational and complexp is specified
3517 ;;; and the same for both.
3518 (deftransform = ((x y) (number number) *)
3520 (let ((x-type (lvar-type x))
3521 (y-type (lvar-type y)))
3522 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3523 (csubtypep y-type (specifier-type 'float)))
3524 (and (csubtypep x-type (specifier-type '(complex float)))
3525 (csubtypep y-type (specifier-type '(complex float))))
3526 #!+complex-float-vops
3527 (and (csubtypep x-type (specifier-type '(or single-float (complex single-float))))
3528 (csubtypep y-type (specifier-type '(or single-float (complex single-float)))))
3529 #!+complex-float-vops
3530 (and (csubtypep x-type (specifier-type '(or double-float (complex double-float))))
3531 (csubtypep y-type (specifier-type '(or double-float (complex double-float))))))
3532 ;; They are both floats. Leave as = so that -0.0 is
3533 ;; handled correctly.
3534 (give-up-ir1-transform))
3535 ((or (and (csubtypep x-type (specifier-type 'rational))
3536 (csubtypep y-type (specifier-type 'rational)))
3537 (and (csubtypep x-type
3538 (specifier-type '(complex rational)))
3540 (specifier-type '(complex rational)))))
3541 ;; They are both rationals and complexp is the same.
3545 (give-up-ir1-transform
3546 "The operands might not be the same type.")))))
3548 (defun maybe-float-lvar-p (lvar)
3549 (neq *empty-type* (type-intersection (specifier-type 'float)
3552 (flet ((maybe-invert (node op inverted x y)
3553 ;; Don't invert if either argument can be a float (NaNs)
3555 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3556 (delay-ir1-transform node :constraint)
3557 `(or (,op x y) (= x y)))
3559 `(if (,inverted x y) nil t)))))
3560 (deftransform >= ((x y) (number number) * :node node)
3561 "invert or open code"
3562 (maybe-invert node '> '< x y))
3563 (deftransform <= ((x y) (number number) * :node node)
3564 "invert or open code"
3565 (maybe-invert node '< '> x y)))
3567 ;;; See whether we can statically determine (< X Y) using type
3568 ;;; information. If X's high bound is < Y's low, then X < Y.
3569 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3570 ;;; NIL). If not, at least make sure any constant arg is second.
3571 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3572 `(deftransform ,name ((x y))
3573 "optimize using intervals"
3574 (if (and (same-leaf-ref-p x y)
3575 ;; For non-reflexive functions we don't need
3576 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3577 ;; but with reflexive ones we don't know...
3579 '((and (not (maybe-float-lvar-p x))
3580 (not (maybe-float-lvar-p y))))))
3582 (let ((ix (or (type-approximate-interval (lvar-type x))
3583 (give-up-ir1-transform)))
3584 (iy (or (type-approximate-interval (lvar-type y))
3585 (give-up-ir1-transform))))
3590 ((and (constant-lvar-p x)
3591 (not (constant-lvar-p y)))
3594 (give-up-ir1-transform))))))))
3595 (def = = t (interval-= ix iy) (interval-/= ix iy))
3596 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3597 (def < > nil (interval-< ix iy) (interval->= ix iy))
3598 (def > < nil (interval-< iy ix) (interval->= iy ix))
3599 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3600 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3602 (defun ir1-transform-char< (x y first second inverse)
3604 ((same-leaf-ref-p x y) nil)
3605 ;; If we had interval representation of character types, as we
3606 ;; might eventually have to to support 2^21 characters, then here
3607 ;; we could do some compile-time computation as in transforms for
3608 ;; < above. -- CSR, 2003-07-01
3609 ((and (constant-lvar-p first)
3610 (not (constant-lvar-p second)))
3612 (t (give-up-ir1-transform))))
3614 (deftransform char< ((x y) (character character) *)
3615 (ir1-transform-char< x y x y 'char>))
3617 (deftransform char> ((x y) (character character) *)
3618 (ir1-transform-char< y x x y 'char<))
3620 ;;;; converting N-arg comparisons
3622 ;;;; We convert calls to N-arg comparison functions such as < into
3623 ;;;; two-arg calls. This transformation is enabled for all such
3624 ;;;; comparisons in this file. If any of these predicates are not
3625 ;;;; open-coded, then the transformation should be removed at some
3626 ;;;; point to avoid pessimization.
3628 ;;; This function is used for source transformation of N-arg
3629 ;;; comparison functions other than inequality. We deal both with
3630 ;;; converting to two-arg calls and inverting the sense of the test,
3631 ;;; if necessary. If the call has two args, then we pass or return a
3632 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3633 ;;; then we transform to code that returns true. Otherwise, we bind
3634 ;;; all the arguments and expand into a bunch of IFs.
3635 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3636 (let ((nargs (length args)))
3637 (cond ((< nargs 1) (values nil t))
3638 ((= nargs 1) `(progn (the ,type ,@args) t))
3641 `(if (,predicate ,(first args) ,(second args)) nil t)
3643 `(,predicate ,(first args) ,(second args))
3646 (do* ((i (1- nargs) (1- i))
3648 (current (gensym) (gensym))
3649 (vars (list current) (cons current vars))
3651 `(if (,predicate ,current ,last)
3653 `(if (,predicate ,current ,last)
3656 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3659 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3660 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3661 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3662 ;;; We cannot do the inversion for >= and <= here, since both
3663 ;;; (< NaN X) and (> NaN X)
3664 ;;; are false, and we don't have type-inforation available yet. The
3665 ;;; deftransforms for two-argument versions of >= and <= takes care of
3666 ;;; the inversion to > and < when possible.
3667 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3668 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3670 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3672 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3674 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3676 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3678 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3681 (define-source-transform char-equal (&rest args)
3682 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3683 (define-source-transform char-lessp (&rest args)
3684 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3685 (define-source-transform char-greaterp (&rest args)
3686 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3687 (define-source-transform char-not-greaterp (&rest args)
3688 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3689 (define-source-transform char-not-lessp (&rest args)
3690 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3692 ;;; This function does source transformation of N-arg inequality
3693 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3694 ;;; arg cases. If there are more than two args, then we expand into
3695 ;;; the appropriate n^2 comparisons only when speed is important.
3696 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3697 (defun multi-not-equal (predicate args type)
3698 (let ((nargs (length args)))
3699 (cond ((< nargs 1) (values nil t))
3700 ((= nargs 1) `(progn (the ,type ,@args) t))
3702 `(if (,predicate ,(first args) ,(second args)) nil t))
3703 ((not (policy *lexenv*
3704 (and (>= speed space)
3705 (>= speed compilation-speed))))
3708 (let ((vars (make-gensym-list nargs)))
3709 (do ((var vars next)
3710 (next (cdr vars) (cdr next))
3713 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3715 (let ((v1 (first var)))
3717 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3719 (define-source-transform /= (&rest args)
3720 (multi-not-equal '= args 'number))
3721 (define-source-transform char/= (&rest args)
3722 (multi-not-equal 'char= args 'character))
3723 (define-source-transform char-not-equal (&rest args)
3724 (multi-not-equal 'char-equal args 'character))
3726 ;;; Expand MAX and MIN into the obvious comparisons.
3727 (define-source-transform max (arg0 &rest rest)
3728 (once-only ((arg0 arg0))
3730 `(values (the real ,arg0))
3731 `(let ((maxrest (max ,@rest)))
3732 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3733 (define-source-transform min (arg0 &rest rest)
3734 (once-only ((arg0 arg0))
3736 `(values (the real ,arg0))
3737 `(let ((minrest (min ,@rest)))
3738 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3740 ;;;; converting N-arg arithmetic functions
3742 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3743 ;;;; versions, and degenerate cases are flushed.
3745 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3746 (declaim (ftype (function (symbol t list) list) associate-args))
3747 (defun associate-args (function first-arg more-args)
3748 (let ((next (rest more-args))
3749 (arg (first more-args)))
3751 `(,function ,first-arg ,arg)
3752 (associate-args function `(,function ,first-arg ,arg) next))))
3754 ;;; Do source transformations for transitive functions such as +.
3755 ;;; One-arg cases are replaced with the arg and zero arg cases with
3756 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3757 ;;; ensure (with THE) that the argument in one-argument calls is.
3758 (defun source-transform-transitive (fun args identity
3759 &optional one-arg-result-type)
3760 (declare (symbol fun) (list args))
3763 (1 (if one-arg-result-type
3764 `(values (the ,one-arg-result-type ,(first args)))
3765 `(values ,(first args))))
3768 (associate-args fun (first args) (rest args)))))
3770 (define-source-transform + (&rest args)
3771 (source-transform-transitive '+ args 0 'number))
3772 (define-source-transform * (&rest args)
3773 (source-transform-transitive '* args 1 'number))
3774 (define-source-transform logior (&rest args)
3775 (source-transform-transitive 'logior args 0 'integer))
3776 (define-source-transform logxor (&rest args)
3777 (source-transform-transitive 'logxor args 0 'integer))
3778 (define-source-transform logand (&rest args)
3779 (source-transform-transitive 'logand args -1 'integer))
3780 (define-source-transform logeqv (&rest args)
3781 (source-transform-transitive 'logeqv args -1 'integer))
3783 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3784 ;;; because when they are given one argument, they return its absolute
3787 (define-source-transform gcd (&rest args)
3790 (1 `(abs (the integer ,(first args))))
3792 (t (associate-args 'gcd (first args) (rest args)))))
3794 (define-source-transform lcm (&rest args)
3797 (1 `(abs (the integer ,(first args))))
3799 (t (associate-args 'lcm (first args) (rest args)))))
3801 ;;; Do source transformations for intransitive n-arg functions such as
3802 ;;; /. With one arg, we form the inverse. With two args we pass.
3803 ;;; Otherwise we associate into two-arg calls.
3804 (declaim (ftype (function (symbol list t)
3805 (values list &optional (member nil t)))
3806 source-transform-intransitive))
3807 (defun source-transform-intransitive (function args inverse)
3809 ((0 2) (values nil t))
3810 (1 `(,@inverse ,(first args)))
3811 (t (associate-args function (first args) (rest args)))))
3813 (define-source-transform - (&rest args)
3814 (source-transform-intransitive '- args '(%negate)))
3815 (define-source-transform / (&rest args)
3816 (source-transform-intransitive '/ args '(/ 1)))
3818 ;;;; transforming APPLY
3820 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3821 ;;; only needs to understand one kind of variable-argument call. It is
3822 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3823 (define-source-transform apply (fun arg &rest more-args)
3824 (let ((args (cons arg more-args)))
3825 `(multiple-value-call ,fun
3826 ,@(mapcar (lambda (x)
3829 (values-list ,(car (last args))))))
3831 ;;;; transforming FORMAT
3833 ;;;; If the control string is a compile-time constant, then replace it
3834 ;;;; with a use of the FORMATTER macro so that the control string is
3835 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3836 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3837 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3839 ;;; for compile-time argument count checking.
3841 ;;; FIXME II: In some cases, type information could be correlated; for
3842 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3843 ;;; of a corresponding argument is known and does not intersect the
3844 ;;; list type, a warning could be signalled.
3845 (defun check-format-args (string args fun)
3846 (declare (type string string))
3847 (unless (typep string 'simple-string)
3848 (setq string (coerce string 'simple-string)))
3849 (multiple-value-bind (min max)
3850 (handler-case (sb!format:%compiler-walk-format-string string args)
3851 (sb!format:format-error (c)
3852 (compiler-warn "~A" c)))
3854 (let ((nargs (length args)))
3857 (warn 'format-too-few-args-warning
3859 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3860 :format-arguments (list nargs fun string min)))
3862 (warn 'format-too-many-args-warning
3864 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3865 :format-arguments (list nargs fun string max))))))))
3867 (defoptimizer (format optimizer) ((dest control &rest args))
3868 (when (constant-lvar-p control)
3869 (let ((x (lvar-value control)))
3871 (check-format-args x args 'format)))))
3873 ;;; We disable this transform in the cross-compiler to save memory in
3874 ;;; the target image; most of the uses of FORMAT in the compiler are for
3875 ;;; error messages, and those don't need to be particularly fast.
3877 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3878 :policy (>= speed space))
3879 (unless (constant-lvar-p control)
3880 (give-up-ir1-transform "The control string is not a constant."))
3881 (let ((arg-names (make-gensym-list (length args))))
3882 `(lambda (dest control ,@arg-names)
3883 (declare (ignore control))
3884 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3886 (deftransform format ((stream control &rest args) (stream function &rest t))
3887 (let ((arg-names (make-gensym-list (length args))))
3888 `(lambda (stream control ,@arg-names)
3889 (funcall control stream ,@arg-names)
3892 (deftransform format ((tee control &rest args) ((member t) function &rest t))
3893 (let ((arg-names (make-gensym-list (length args))))
3894 `(lambda (tee control ,@arg-names)
3895 (declare (ignore tee))
3896 (funcall control *standard-output* ,@arg-names)
3899 (deftransform pathname ((pathspec) (pathname) *)
3902 (deftransform pathname ((pathspec) (string) *)
3903 '(values (parse-namestring pathspec)))
3907 `(defoptimizer (,name optimizer) ((control &rest args))
3908 (when (constant-lvar-p control)
3909 (let ((x (lvar-value control)))
3911 (check-format-args x args ',name)))))))
3914 #+sb-xc-host ; Only we should be using these
3917 (def compiler-error)
3919 (def compiler-style-warn)
3920 (def compiler-notify)
3921 (def maybe-compiler-notify)
3924 (defoptimizer (cerror optimizer) ((report control &rest args))
3925 (when (and (constant-lvar-p control)
3926 (constant-lvar-p report))
3927 (let ((x (lvar-value control))
3928 (y (lvar-value report)))
3929 (when (and (stringp x) (stringp y))
3930 (multiple-value-bind (min1 max1)
3932 (sb!format:%compiler-walk-format-string x args)
3933 (sb!format:format-error (c)
3934 (compiler-warn "~A" c)))
3936 (multiple-value-bind (min2 max2)
3938 (sb!format:%compiler-walk-format-string y args)
3939 (sb!format:format-error (c)
3940 (compiler-warn "~A" c)))
3942 (let ((nargs (length args)))
3944 ((< nargs (min min1 min2))
3945 (warn 'format-too-few-args-warning
3947 "Too few arguments (~D) to ~S ~S ~S: ~
3948 requires at least ~D."
3950 (list nargs 'cerror y x (min min1 min2))))
3951 ((> nargs (max max1 max2))
3952 (warn 'format-too-many-args-warning
3954 "Too many arguments (~D) to ~S ~S ~S: ~
3957 (list nargs 'cerror y x (max max1 max2))))))))))))))
3959 (defoptimizer (coerce derive-type) ((value type))
3961 ((constant-lvar-p type)
3962 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3963 ;; but dealing with the niggle that complex canonicalization gets
3964 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3966 (let* ((specifier (lvar-value type))
3967 (result-typeoid (careful-specifier-type specifier)))
3969 ((null result-typeoid) nil)
3970 ((csubtypep result-typeoid (specifier-type 'number))
3971 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3972 ;; Rule of Canonical Representation for Complex Rationals,
3973 ;; which is a truly nasty delivery to field.
3975 ((csubtypep result-typeoid (specifier-type 'real))
3976 ;; cleverness required here: it would be nice to deduce
3977 ;; that something of type (INTEGER 2 3) coerced to type
3978 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3979 ;; FLOAT gets its own clause because it's implemented as
3980 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3983 ((and (numeric-type-p result-typeoid)
3984 (eq (numeric-type-complexp result-typeoid) :real))
3985 ;; FIXME: is this clause (a) necessary or (b) useful?
3987 ((or (csubtypep result-typeoid
3988 (specifier-type '(complex single-float)))
3989 (csubtypep result-typeoid
3990 (specifier-type '(complex double-float)))
3992 (csubtypep result-typeoid
3993 (specifier-type '(complex long-float))))
3994 ;; float complex types are never canonicalized.
3997 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3998 ;; probably just a COMPLEX or equivalent. So, in that
3999 ;; case, we will return a complex or an object of the
4000 ;; provided type if it's rational:
4001 (type-union result-typeoid
4002 (type-intersection (lvar-type value)
4003 (specifier-type 'rational))))))
4004 (t result-typeoid))))
4006 ;; OK, the result-type argument isn't constant. However, there
4007 ;; are common uses where we can still do better than just
4008 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
4009 ;; where Y is of a known type. See messages on cmucl-imp
4010 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
4011 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
4012 ;; the basis that it's unlikely that other uses are both
4013 ;; time-critical and get to this branch of the COND (non-constant
4014 ;; second argument to COERCE). -- CSR, 2002-12-16
4015 (let ((value-type (lvar-type value))
4016 (type-type (lvar-type type)))
4018 ((good-cons-type-p (cons-type)
4019 ;; Make sure the cons-type we're looking at is something
4020 ;; we're prepared to handle which is basically something
4021 ;; that array-element-type can return.
4022 (or (and (member-type-p cons-type)
4023 (eql 1 (member-type-size cons-type))
4024 (null (first (member-type-members cons-type))))
4025 (let ((car-type (cons-type-car-type cons-type)))
4026 (and (member-type-p car-type)
4027 (eql 1 (member-type-members car-type))
4028 (let ((elt (first (member-type-members car-type))))
4032 (numberp (first elt)))))
4033 (good-cons-type-p (cons-type-cdr-type cons-type))))))
4034 (unconsify-type (good-cons-type)
4035 ;; Convert the "printed" respresentation of a cons
4036 ;; specifier into a type specifier. That is, the
4037 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
4038 ;; NULL)) is converted to (SIGNED-BYTE 16).
4039 (cond ((or (null good-cons-type)
4040 (eq good-cons-type 'null))
4042 ((and (eq (first good-cons-type) 'cons)
4043 (eq (first (second good-cons-type)) 'member))
4044 `(,(second (second good-cons-type))
4045 ,@(unconsify-type (caddr good-cons-type))))))
4046 (coerceable-p (part)
4047 ;; Can the value be coerced to the given type? Coerce is
4048 ;; complicated, so we don't handle every possible case
4049 ;; here---just the most common and easiest cases:
4051 ;; * Any REAL can be coerced to a FLOAT type.
4052 ;; * Any NUMBER can be coerced to a (COMPLEX
4053 ;; SINGLE/DOUBLE-FLOAT).
4055 ;; FIXME I: we should also be able to deal with characters
4058 ;; FIXME II: I'm not sure that anything is necessary
4059 ;; here, at least while COMPLEX is not a specialized
4060 ;; array element type in the system. Reasoning: if
4061 ;; something cannot be coerced to the requested type, an
4062 ;; error will be raised (and so any downstream compiled
4063 ;; code on the assumption of the returned type is
4064 ;; unreachable). If something can, then it will be of
4065 ;; the requested type, because (by assumption) COMPLEX
4066 ;; (and other difficult types like (COMPLEX INTEGER)
4067 ;; aren't specialized types.
4068 (let ((coerced-type (careful-specifier-type part)))
4070 (or (and (csubtypep coerced-type (specifier-type 'float))
4071 (csubtypep value-type (specifier-type 'real)))
4072 (and (csubtypep coerced-type
4073 (specifier-type `(or (complex single-float)
4074 (complex double-float))))
4075 (csubtypep value-type (specifier-type 'number)))))))
4076 (process-types (type)
4077 ;; FIXME: This needs some work because we should be able
4078 ;; to derive the resulting type better than just the
4079 ;; type arg of coerce. That is, if X is (INTEGER 10
4080 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
4081 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
4083 (cond ((member-type-p type)
4086 (mapc-member-type-members
4088 (if (coerceable-p member)
4089 (push member members)
4090 (return-from punt *universal-type*)))
4092 (specifier-type `(or ,@members)))))
4093 ((and (cons-type-p type)
4094 (good-cons-type-p type))
4095 (let ((c-type (unconsify-type (type-specifier type))))
4096 (if (coerceable-p c-type)
4097 (specifier-type c-type)
4100 *universal-type*))))
4101 (cond ((union-type-p type-type)
4102 (apply #'type-union (mapcar #'process-types
4103 (union-type-types type-type))))
4104 ((or (member-type-p type-type)
4105 (cons-type-p type-type))
4106 (process-types type-type))
4108 *universal-type*)))))))
4110 (defoptimizer (compile derive-type) ((nameoid function))
4111 (when (csubtypep (lvar-type nameoid)
4112 (specifier-type 'null))
4113 (values-specifier-type '(values function boolean boolean))))
4115 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
4116 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
4117 ;;; optimizer, above).
4118 (defoptimizer (array-element-type derive-type) ((array))
4119 (let ((array-type (lvar-type array)))
4120 (labels ((consify (list)
4123 `(cons (eql ,(car list)) ,(consify (rest list)))))
4124 (get-element-type (a)
4126 (type-specifier (array-type-specialized-element-type a))))
4127 (cond ((eq element-type '*)
4128 (specifier-type 'type-specifier))
4129 ((symbolp element-type)
4130 (make-member-type :members (list element-type)))
4131 ((consp element-type)
4132 (specifier-type (consify element-type)))
4134 (error "can't understand type ~S~%" element-type))))))
4135 (labels ((recurse (type)
4136 (cond ((array-type-p type)
4137 (get-element-type type))
4138 ((union-type-p type)
4140 (mapcar #'recurse (union-type-types type))))
4142 *universal-type*))))
4143 (recurse array-type)))))
4145 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4146 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4147 ;; isn't really related to the CMU CL code, since instead of trying
4148 ;; to generalize the CMU CL code to allow START and END values, this
4149 ;; code has been written from scratch following Chapter 7 of
4150 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4151 `(macrolet ((%index (x) `(truly-the index ,x))
4152 (%parent (i) `(ash ,i -1))
4153 (%left (i) `(%index (ash ,i 1)))
4154 (%right (i) `(%index (1+ (ash ,i 1))))
4157 (left (%left i) (%left i)))
4158 ((> left current-heap-size))
4159 (declare (type index i left))
4160 (let* ((i-elt (%elt i))
4161 (i-key (funcall keyfun i-elt))
4162 (left-elt (%elt left))
4163 (left-key (funcall keyfun left-elt)))
4164 (multiple-value-bind (large large-elt large-key)
4165 (if (funcall ,',predicate i-key left-key)
4166 (values left left-elt left-key)
4167 (values i i-elt i-key))
4168 (let ((right (%right i)))
4169 (multiple-value-bind (largest largest-elt)
4170 (if (> right current-heap-size)
4171 (values large large-elt)
4172 (let* ((right-elt (%elt right))
4173 (right-key (funcall keyfun right-elt)))
4174 (if (funcall ,',predicate large-key right-key)
4175 (values right right-elt)
4176 (values large large-elt))))
4177 (cond ((= largest i)
4180 (setf (%elt i) largest-elt
4181 (%elt largest) i-elt
4183 (%sort-vector (keyfun &optional (vtype 'vector))
4184 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4185 ;; trouble getting type inference to
4186 ;; propagate all the way through this
4187 ;; tangled mess of inlining. The TRULY-THE
4188 ;; here works around that. -- WHN
4190 `(aref (truly-the ,',vtype ,',',vector)
4191 (%index (+ (%index ,i) start-1)))))
4192 (let (;; Heaps prefer 1-based addressing.
4193 (start-1 (1- ,',start))
4194 (current-heap-size (- ,',end ,',start))
4196 (declare (type (integer -1 #.(1- sb!xc:most-positive-fixnum))
4198 (declare (type index current-heap-size))
4199 (declare (type function keyfun))
4200 (loop for i of-type index
4201 from (ash current-heap-size -1) downto 1 do
4204 (when (< current-heap-size 2)
4206 (rotatef (%elt 1) (%elt current-heap-size))
4207 (decf current-heap-size)
4209 (if (typep ,vector 'simple-vector)
4210 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4211 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4213 ;; Special-casing the KEY=NIL case lets us avoid some
4215 (%sort-vector #'identity simple-vector)
4216 (%sort-vector ,key simple-vector))
4217 ;; It's hard to anticipate many speed-critical applications for
4218 ;; sorting vector types other than (VECTOR T), so we just lump
4219 ;; them all together in one slow dynamically typed mess.
4221 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4222 (%sort-vector (or ,key #'identity))))))
4224 ;;;; debuggers' little helpers
4226 ;;; for debugging when transforms are behaving mysteriously,
4227 ;;; e.g. when debugging a problem with an ASH transform
4228 ;;; (defun foo (&optional s)
4229 ;;; (sb-c::/report-lvar s "S outside WHEN")
4230 ;;; (when (and (integerp s) (> s 3))
4231 ;;; (sb-c::/report-lvar s "S inside WHEN")
4232 ;;; (let ((bound (ash 1 (1- s))))
4233 ;;; (sb-c::/report-lvar bound "BOUND")
4234 ;;; (let ((x (- bound))
4236 ;;; (sb-c::/report-lvar x "X")
4237 ;;; (sb-c::/report-lvar x "Y"))
4238 ;;; `(integer ,(- bound) ,(1- bound)))))
4239 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4240 ;;; and the function doesn't do anything at all.)
4243 (defknown /report-lvar (t t) null)
4244 (deftransform /report-lvar ((x message) (t t))
4245 (format t "~%/in /REPORT-LVAR~%")
4246 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4247 (when (constant-lvar-p x)
4248 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4249 (format t "/MESSAGE=~S~%" (lvar-value message))
4250 (give-up-ir1-transform "not a real transform"))
4251 (defun /report-lvar (x message)
4252 (declare (ignore x message))))
4255 ;;;; Transforms for internal compiler utilities
4257 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4258 ;;; checking that it's still valid at run-time.
4259 (deftransform policy-quality ((policy quality-name)
4261 (unless (and (constant-lvar-p quality-name)
4262 (policy-quality-name-p (lvar-value quality-name)))
4263 (give-up-ir1-transform))
4264 '(%policy-quality policy quality-name))