1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
37 (declare (ignore ,rest))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
68 (let* ((name (car form))
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
75 `(,(ecase (char string i)
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; Translate RPLACx to LET and SETF.
118 (define-source-transform rplaca (x y)
123 (define-source-transform rplacd (x y)
129 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
131 (defvar *default-nthcdr-open-code-limit* 6)
132 (defvar *extreme-nthcdr-open-code-limit* 20)
134 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
135 "convert NTHCDR to CAxxR"
136 (unless (constant-lvar-p n)
137 (give-up-ir1-transform))
138 (let ((n (lvar-value n)))
140 (if (policy node (and (= speed 3) (= space 0)))
141 *extreme-nthcdr-open-code-limit*
142 *default-nthcdr-open-code-limit*))
143 (give-up-ir1-transform))
148 `(cdr ,(frob (1- n))))))
151 ;;;; arithmetic and numerology
153 (define-source-transform plusp (x) `(> ,x 0))
154 (define-source-transform minusp (x) `(< ,x 0))
155 (define-source-transform zerop (x) `(= ,x 0))
157 (define-source-transform 1+ (x) `(+ ,x 1))
158 (define-source-transform 1- (x) `(- ,x 1))
160 (define-source-transform oddp (x) `(not (zerop (logand ,x 1))))
161 (define-source-transform evenp (x) `(zerop (logand ,x 1)))
163 ;;; Note that all the integer division functions are available for
164 ;;; inline expansion.
166 (macrolet ((deffrob (fun)
167 `(define-source-transform ,fun (x &optional (y nil y-p))
174 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
176 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
179 (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y))))
181 (deftransform logbitp
182 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
183 (unsigned-byte #.sb!vm:n-word-bits))))
184 `(if (>= index #.sb!vm:n-word-bits)
186 (not (zerop (logand integer (ash 1 index))))))
188 (define-source-transform byte (size position)
189 `(cons ,size ,position))
190 (define-source-transform byte-size (spec) `(car ,spec))
191 (define-source-transform byte-position (spec) `(cdr ,spec))
192 (define-source-transform ldb-test (bytespec integer)
193 `(not (zerop (mask-field ,bytespec ,integer))))
195 ;;; With the ratio and complex accessors, we pick off the "identity"
196 ;;; case, and use a primitive to handle the cell access case.
197 (define-source-transform numerator (num)
198 (once-only ((n-num `(the rational ,num)))
202 (define-source-transform denominator (num)
203 (once-only ((n-num `(the rational ,num)))
205 (%denominator ,n-num)
208 ;;;; interval arithmetic for computing bounds
210 ;;;; This is a set of routines for operating on intervals. It
211 ;;;; implements a simple interval arithmetic package. Although SBCL
212 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
213 ;;;; for two reasons:
215 ;;;; 1. This package is simpler than NUMERIC-TYPE.
217 ;;;; 2. It makes debugging much easier because you can just strip
218 ;;;; out these routines and test them independently of SBCL. (This is a
221 ;;;; One disadvantage is a probable increase in consing because we
222 ;;;; have to create these new interval structures even though
223 ;;;; numeric-type has everything we want to know. Reason 2 wins for
226 ;;; Support operations that mimic real arithmetic comparison
227 ;;; operators, but imposing a total order on the floating points such
228 ;;; that negative zeros are strictly less than positive zeros.
229 (macrolet ((def (name op)
232 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
233 (,op (float-sign x) (float-sign y))
235 (def signed-zero->= >=)
236 (def signed-zero-> >)
237 (def signed-zero-= =)
238 (def signed-zero-< <)
239 (def signed-zero-<= <=))
241 ;;; The basic interval type. It can handle open and closed intervals.
242 ;;; A bound is open if it is a list containing a number, just like
243 ;;; Lisp says. NIL means unbounded.
244 (defstruct (interval (:constructor %make-interval)
248 (defun make-interval (&key low high)
249 (labels ((normalize-bound (val)
252 (float-infinity-p val))
253 ;; Handle infinities.
257 ;; Handle any closed bounds.
260 ;; We have an open bound. Normalize the numeric
261 ;; bound. If the normalized bound is still a number
262 ;; (not nil), keep the bound open. Otherwise, the
263 ;; bound is really unbounded, so drop the openness.
264 (let ((new-val (normalize-bound (first val))))
266 ;; The bound exists, so keep it open still.
269 (error "unknown bound type in MAKE-INTERVAL")))))
270 (%make-interval :low (normalize-bound low)
271 :high (normalize-bound high))))
273 ;;; Given a number X, create a form suitable as a bound for an
274 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
275 #!-sb-fluid (declaim (inline set-bound))
276 (defun set-bound (x open-p)
277 (if (and x open-p) (list x) x))
279 ;;; Apply the function F to a bound X. If X is an open bound, then
280 ;;; the result will be open. IF X is NIL, the result is NIL.
281 (defun bound-func (f x)
282 (declare (type function f))
284 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
285 ;; With these traps masked, we might get things like infinity
286 ;; or negative infinity returned. Check for this and return
287 ;; NIL to indicate unbounded.
288 (let ((y (funcall f (type-bound-number x))))
290 (float-infinity-p y))
292 (set-bound (funcall f (type-bound-number x)) (consp x)))))))
294 ;;; Apply a binary operator OP to two bounds X and Y. The result is
295 ;;; NIL if either is NIL. Otherwise bound is computed and the result
296 ;;; is open if either X or Y is open.
298 ;;; FIXME: only used in this file, not needed in target runtime
299 (defmacro bound-binop (op x y)
301 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
302 (set-bound (,op (type-bound-number ,x)
303 (type-bound-number ,y))
304 (or (consp ,x) (consp ,y))))))
306 ;;; Convert a numeric-type object to an interval object.
307 (defun numeric-type->interval (x)
308 (declare (type numeric-type x))
309 (make-interval :low (numeric-type-low x)
310 :high (numeric-type-high x)))
312 (defun type-approximate-interval (type)
313 (declare (type ctype type))
314 (let ((types (prepare-arg-for-derive-type type))
317 (let ((type (if (member-type-p type)
318 (convert-member-type type)
320 (unless (numeric-type-p type)
321 (return-from type-approximate-interval nil))
322 (let ((interval (numeric-type->interval type)))
325 (interval-approximate-union result interval)
329 (defun copy-interval-limit (limit)
334 (defun copy-interval (x)
335 (declare (type interval x))
336 (make-interval :low (copy-interval-limit (interval-low x))
337 :high (copy-interval-limit (interval-high x))))
339 ;;; Given a point P contained in the interval X, split X into two
340 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
341 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
342 ;;; contains P. You can specify both to be T or NIL.
343 (defun interval-split (p x &optional close-lower close-upper)
344 (declare (type number p)
346 (list (make-interval :low (copy-interval-limit (interval-low x))
347 :high (if close-lower p (list p)))
348 (make-interval :low (if close-upper (list p) p)
349 :high (copy-interval-limit (interval-high x)))))
351 ;;; Return the closure of the interval. That is, convert open bounds
352 ;;; to closed bounds.
353 (defun interval-closure (x)
354 (declare (type interval x))
355 (make-interval :low (type-bound-number (interval-low x))
356 :high (type-bound-number (interval-high x))))
358 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
359 ;;; '-. Otherwise return NIL.
360 (defun interval-range-info (x &optional (point 0))
361 (declare (type interval x))
362 (let ((lo (interval-low x))
363 (hi (interval-high x)))
364 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
366 ((and hi (signed-zero->= point (type-bound-number hi)))
371 ;;; Test to see whether the interval X is bounded. HOW determines the
372 ;;; test, and should be either ABOVE, BELOW, or BOTH.
373 (defun interval-bounded-p (x how)
374 (declare (type interval x))
381 (and (interval-low x) (interval-high x)))))
383 ;;; See whether the interval X contains the number P, taking into
384 ;;; account that the interval might not be closed.
385 (defun interval-contains-p (p x)
386 (declare (type number p)
388 ;; Does the interval X contain the number P? This would be a lot
389 ;; easier if all intervals were closed!
390 (let ((lo (interval-low x))
391 (hi (interval-high x)))
393 ;; The interval is bounded
394 (if (and (signed-zero-<= (type-bound-number lo) p)
395 (signed-zero-<= p (type-bound-number hi)))
396 ;; P is definitely in the closure of the interval.
397 ;; We just need to check the end points now.
398 (cond ((signed-zero-= p (type-bound-number lo))
400 ((signed-zero-= p (type-bound-number hi))
405 ;; Interval with upper bound
406 (if (signed-zero-< p (type-bound-number hi))
408 (and (numberp hi) (signed-zero-= p hi))))
410 ;; Interval with lower bound
411 (if (signed-zero-> p (type-bound-number lo))
413 (and (numberp lo) (signed-zero-= p lo))))
415 ;; Interval with no bounds
418 ;;; Determine whether two intervals X and Y intersect. Return T if so.
419 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
420 ;;; were closed. Otherwise the intervals are treated as they are.
422 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
423 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
424 ;;; is T, then they do intersect because we use the closure of X = [0,
425 ;;; 1] and Y = [1, 2] to determine intersection.
426 (defun interval-intersect-p (x y &optional closed-intervals-p)
427 (declare (type interval x y))
428 (multiple-value-bind (intersect diff)
429 (interval-intersection/difference (if closed-intervals-p
432 (if closed-intervals-p
435 (declare (ignore diff))
438 ;;; Are the two intervals adjacent? That is, is there a number
439 ;;; between the two intervals that is not an element of either
440 ;;; interval? If so, they are not adjacent. For example [0, 1) and
441 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
442 ;;; between both intervals.
443 (defun interval-adjacent-p (x y)
444 (declare (type interval x y))
445 (flet ((adjacent (lo hi)
446 ;; Check to see whether lo and hi are adjacent. If either is
447 ;; nil, they can't be adjacent.
448 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
449 ;; The bounds are equal. They are adjacent if one of
450 ;; them is closed (a number). If both are open (consp),
451 ;; then there is a number that lies between them.
452 (or (numberp lo) (numberp hi)))))
453 (or (adjacent (interval-low y) (interval-high x))
454 (adjacent (interval-low x) (interval-high y)))))
456 ;;; Compute the intersection and difference between two intervals.
457 ;;; Two values are returned: the intersection and the difference.
459 ;;; Let the two intervals be X and Y, and let I and D be the two
460 ;;; values returned by this function. Then I = X intersect Y. If I
461 ;;; is NIL (the empty set), then D is X union Y, represented as the
462 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
463 ;;; - I, which is a list of two intervals.
465 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
466 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
467 (defun interval-intersection/difference (x y)
468 (declare (type interval x y))
469 (let ((x-lo (interval-low x))
470 (x-hi (interval-high x))
471 (y-lo (interval-low y))
472 (y-hi (interval-high y)))
475 ;; If p is an open bound, make it closed. If p is a closed
476 ;; bound, make it open.
481 ;; Test whether P is in the interval.
482 (when (interval-contains-p (type-bound-number p)
483 (interval-closure int))
484 (let ((lo (interval-low int))
485 (hi (interval-high int)))
486 ;; Check for endpoints.
487 (cond ((and lo (= (type-bound-number p) (type-bound-number lo)))
488 (not (and (consp p) (numberp lo))))
489 ((and hi (= (type-bound-number p) (type-bound-number hi)))
490 (not (and (numberp p) (consp hi))))
492 (test-lower-bound (p int)
493 ;; P is a lower bound of an interval.
496 (not (interval-bounded-p int 'below))))
497 (test-upper-bound (p int)
498 ;; P is an upper bound of an interval.
501 (not (interval-bounded-p int 'above)))))
502 (let ((x-lo-in-y (test-lower-bound x-lo y))
503 (x-hi-in-y (test-upper-bound x-hi y))
504 (y-lo-in-x (test-lower-bound y-lo x))
505 (y-hi-in-x (test-upper-bound y-hi x)))
506 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
507 ;; Intervals intersect. Let's compute the intersection
508 ;; and the difference.
509 (multiple-value-bind (lo left-lo left-hi)
510 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
511 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
512 (multiple-value-bind (hi right-lo right-hi)
514 (values x-hi (opposite-bound x-hi) y-hi))
516 (values y-hi (opposite-bound y-hi) x-hi)))
517 (values (make-interval :low lo :high hi)
518 (list (make-interval :low left-lo
520 (make-interval :low right-lo
523 (values nil (list x y))))))))
525 ;;; If intervals X and Y intersect, return a new interval that is the
526 ;;; union of the two. If they do not intersect, return NIL.
527 (defun interval-merge-pair (x y)
528 (declare (type interval x y))
529 ;; If x and y intersect or are adjacent, create the union.
530 ;; Otherwise return nil
531 (when (or (interval-intersect-p x y)
532 (interval-adjacent-p x y))
533 (flet ((select-bound (x1 x2 min-op max-op)
534 (let ((x1-val (type-bound-number x1))
535 (x2-val (type-bound-number x2)))
537 ;; Both bounds are finite. Select the right one.
538 (cond ((funcall min-op x1-val x2-val)
539 ;; x1 is definitely better.
541 ((funcall max-op x1-val x2-val)
542 ;; x2 is definitely better.
545 ;; Bounds are equal. Select either
546 ;; value and make it open only if
548 (set-bound x1-val (and (consp x1) (consp x2))))))
550 ;; At least one bound is not finite. The
551 ;; non-finite bound always wins.
553 (let* ((x-lo (copy-interval-limit (interval-low x)))
554 (x-hi (copy-interval-limit (interval-high x)))
555 (y-lo (copy-interval-limit (interval-low y)))
556 (y-hi (copy-interval-limit (interval-high y))))
557 (make-interval :low (select-bound x-lo y-lo #'< #'>)
558 :high (select-bound x-hi y-hi #'> #'<))))))
560 ;;; return the minimal interval, containing X and Y
561 (defun interval-approximate-union (x y)
562 (cond ((interval-merge-pair x y))
564 (make-interval :low (copy-interval-limit (interval-low x))
565 :high (copy-interval-limit (interval-high y))))
567 (make-interval :low (copy-interval-limit (interval-low y))
568 :high (copy-interval-limit (interval-high x))))))
570 ;;; basic arithmetic operations on intervals. We probably should do
571 ;;; true interval arithmetic here, but it's complicated because we
572 ;;; have float and integer types and bounds can be open or closed.
574 ;;; the negative of an interval
575 (defun interval-neg (x)
576 (declare (type interval x))
577 (make-interval :low (bound-func #'- (interval-high x))
578 :high (bound-func #'- (interval-low x))))
580 ;;; Add two intervals.
581 (defun interval-add (x y)
582 (declare (type interval x y))
583 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
584 :high (bound-binop + (interval-high x) (interval-high y))))
586 ;;; Subtract two intervals.
587 (defun interval-sub (x y)
588 (declare (type interval x y))
589 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
590 :high (bound-binop - (interval-high x) (interval-low y))))
592 ;;; Multiply two intervals.
593 (defun interval-mul (x y)
594 (declare (type interval x y))
595 (flet ((bound-mul (x y)
596 (cond ((or (null x) (null y))
597 ;; Multiply by infinity is infinity
599 ((or (and (numberp x) (zerop x))
600 (and (numberp y) (zerop y)))
601 ;; Multiply by closed zero is special. The result
602 ;; is always a closed bound. But don't replace this
603 ;; with zero; we want the multiplication to produce
604 ;; the correct signed zero, if needed.
605 (* (type-bound-number x) (type-bound-number y)))
606 ((or (and (floatp x) (float-infinity-p x))
607 (and (floatp y) (float-infinity-p y)))
608 ;; Infinity times anything is infinity
611 ;; General multiply. The result is open if either is open.
612 (bound-binop * x y)))))
613 (let ((x-range (interval-range-info x))
614 (y-range (interval-range-info y)))
615 (cond ((null x-range)
616 ;; Split x into two and multiply each separately
617 (destructuring-bind (x- x+) (interval-split 0 x t t)
618 (interval-merge-pair (interval-mul x- y)
619 (interval-mul x+ y))))
621 ;; Split y into two and multiply each separately
622 (destructuring-bind (y- y+) (interval-split 0 y t t)
623 (interval-merge-pair (interval-mul x y-)
624 (interval-mul x y+))))
626 (interval-neg (interval-mul (interval-neg x) y)))
628 (interval-neg (interval-mul x (interval-neg y))))
629 ((and (eq x-range '+) (eq y-range '+))
630 ;; If we are here, X and Y are both positive.
632 :low (bound-mul (interval-low x) (interval-low y))
633 :high (bound-mul (interval-high x) (interval-high y))))
635 (bug "excluded case in INTERVAL-MUL"))))))
637 ;;; Divide two intervals.
638 (defun interval-div (top bot)
639 (declare (type interval top bot))
640 (flet ((bound-div (x y y-low-p)
643 ;; Divide by infinity means result is 0. However,
644 ;; we need to watch out for the sign of the result,
645 ;; to correctly handle signed zeros. We also need
646 ;; to watch out for positive or negative infinity.
647 (if (floatp (type-bound-number x))
649 (- (float-sign (type-bound-number x) 0.0))
650 (float-sign (type-bound-number x) 0.0))
652 ((zerop (type-bound-number y))
653 ;; Divide by zero means result is infinity
655 ((and (numberp x) (zerop x))
656 ;; Zero divided by anything is zero.
659 (bound-binop / x y)))))
660 (let ((top-range (interval-range-info top))
661 (bot-range (interval-range-info bot)))
662 (cond ((null bot-range)
663 ;; The denominator contains zero, so anything goes!
664 (make-interval :low nil :high nil))
666 ;; Denominator is negative so flip the sign, compute the
667 ;; result, and flip it back.
668 (interval-neg (interval-div top (interval-neg bot))))
670 ;; Split top into two positive and negative parts, and
671 ;; divide each separately
672 (destructuring-bind (top- top+) (interval-split 0 top t t)
673 (interval-merge-pair (interval-div top- bot)
674 (interval-div top+ bot))))
676 ;; Top is negative so flip the sign, divide, and flip the
677 ;; sign of the result.
678 (interval-neg (interval-div (interval-neg top) bot)))
679 ((and (eq top-range '+) (eq bot-range '+))
682 :low (bound-div (interval-low top) (interval-high bot) t)
683 :high (bound-div (interval-high top) (interval-low bot) nil)))
685 (bug "excluded case in INTERVAL-DIV"))))))
687 ;;; Apply the function F to the interval X. If X = [a, b], then the
688 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
689 ;;; result makes sense. It will if F is monotonic increasing (or
691 (defun interval-func (f x)
692 (declare (type function f)
694 (let ((lo (bound-func f (interval-low x)))
695 (hi (bound-func f (interval-high x))))
696 (make-interval :low lo :high hi)))
698 ;;; Return T if X < Y. That is every number in the interval X is
699 ;;; always less than any number in the interval Y.
700 (defun interval-< (x y)
701 (declare (type interval x y))
702 ;; X < Y only if X is bounded above, Y is bounded below, and they
704 (when (and (interval-bounded-p x 'above)
705 (interval-bounded-p y 'below))
706 ;; Intervals are bounded in the appropriate way. Make sure they
708 (let ((left (interval-high x))
709 (right (interval-low y)))
710 (cond ((> (type-bound-number left)
711 (type-bound-number right))
712 ;; The intervals definitely overlap, so result is NIL.
714 ((< (type-bound-number left)
715 (type-bound-number right))
716 ;; The intervals definitely don't touch, so result is T.
719 ;; Limits are equal. Check for open or closed bounds.
720 ;; Don't overlap if one or the other are open.
721 (or (consp left) (consp right)))))))
723 ;;; Return T if X >= Y. That is, every number in the interval X is
724 ;;; always greater than any number in the interval Y.
725 (defun interval->= (x y)
726 (declare (type interval x y))
727 ;; X >= Y if lower bound of X >= upper bound of Y
728 (when (and (interval-bounded-p x 'below)
729 (interval-bounded-p y 'above))
730 (>= (type-bound-number (interval-low x))
731 (type-bound-number (interval-high y)))))
733 ;;; Return an interval that is the absolute value of X. Thus, if
734 ;;; X = [-1 10], the result is [0, 10].
735 (defun interval-abs (x)
736 (declare (type interval x))
737 (case (interval-range-info x)
743 (destructuring-bind (x- x+) (interval-split 0 x t t)
744 (interval-merge-pair (interval-neg x-) x+)))))
746 ;;; Compute the square of an interval.
747 (defun interval-sqr (x)
748 (declare (type interval x))
749 (interval-func (lambda (x) (* x x))
752 ;;;; numeric DERIVE-TYPE methods
754 ;;; a utility for defining derive-type methods of integer operations. If
755 ;;; the types of both X and Y are integer types, then we compute a new
756 ;;; integer type with bounds determined Fun when applied to X and Y.
757 ;;; Otherwise, we use NUMERIC-CONTAGION.
758 (defun derive-integer-type-aux (x y fun)
759 (declare (type function fun))
760 (if (and (numeric-type-p x) (numeric-type-p y)
761 (eq (numeric-type-class x) 'integer)
762 (eq (numeric-type-class y) 'integer)
763 (eq (numeric-type-complexp x) :real)
764 (eq (numeric-type-complexp y) :real))
765 (multiple-value-bind (low high) (funcall fun x y)
766 (make-numeric-type :class 'integer
770 (numeric-contagion x y)))
772 (defun derive-integer-type (x y fun)
773 (declare (type lvar x y) (type function fun))
774 (let ((x (lvar-type x))
776 (derive-integer-type-aux x y fun)))
778 ;;; simple utility to flatten a list
779 (defun flatten-list (x)
780 (labels ((flatten-and-append (tree list)
781 (cond ((null tree) list)
782 ((atom tree) (cons tree list))
783 (t (flatten-and-append
784 (car tree) (flatten-and-append (cdr tree) list))))))
785 (flatten-and-append x nil)))
787 ;;; Take some type of lvar and massage it so that we get a list of the
788 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
790 (defun prepare-arg-for-derive-type (arg)
791 (flet ((listify (arg)
796 (union-type-types arg))
799 (unless (eq arg *empty-type*)
800 ;; Make sure all args are some type of numeric-type. For member
801 ;; types, convert the list of members into a union of equivalent
802 ;; single-element member-type's.
803 (let ((new-args nil))
804 (dolist (arg (listify arg))
805 (if (member-type-p arg)
806 ;; Run down the list of members and convert to a list of
808 (dolist (member (member-type-members arg))
809 (push (if (numberp member)
810 (make-member-type :members (list member))
813 (push arg new-args)))
814 (unless (member *empty-type* new-args)
817 ;;; Convert from the standard type convention for which -0.0 and 0.0
818 ;;; are equal to an intermediate convention for which they are
819 ;;; considered different which is more natural for some of the
821 (defun convert-numeric-type (type)
822 (declare (type numeric-type type))
823 ;;; Only convert real float interval delimiters types.
824 (if (eq (numeric-type-complexp type) :real)
825 (let* ((lo (numeric-type-low type))
826 (lo-val (type-bound-number lo))
827 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
828 (hi (numeric-type-high type))
829 (hi-val (type-bound-number hi))
830 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
831 (if (or lo-float-zero-p hi-float-zero-p)
833 :class (numeric-type-class type)
834 :format (numeric-type-format type)
836 :low (if lo-float-zero-p
838 (list (float 0.0 lo-val))
839 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
841 :high (if hi-float-zero-p
843 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
850 ;;; Convert back from the intermediate convention for which -0.0 and
851 ;;; 0.0 are considered different to the standard type convention for
853 (defun convert-back-numeric-type (type)
854 (declare (type numeric-type type))
855 ;;; Only convert real float interval delimiters types.
856 (if (eq (numeric-type-complexp type) :real)
857 (let* ((lo (numeric-type-low type))
858 (lo-val (type-bound-number lo))
860 (and lo (floatp lo-val) (= lo-val 0.0)
861 (float-sign lo-val)))
862 (hi (numeric-type-high type))
863 (hi-val (type-bound-number hi))
865 (and hi (floatp hi-val) (= hi-val 0.0)
866 (float-sign hi-val))))
868 ;; (float +0.0 +0.0) => (member 0.0)
869 ;; (float -0.0 -0.0) => (member -0.0)
870 ((and lo-float-zero-p hi-float-zero-p)
871 ;; shouldn't have exclusive bounds here..
872 (aver (and (not (consp lo)) (not (consp hi))))
873 (if (= lo-float-zero-p hi-float-zero-p)
874 ;; (float +0.0 +0.0) => (member 0.0)
875 ;; (float -0.0 -0.0) => (member -0.0)
876 (specifier-type `(member ,lo-val))
877 ;; (float -0.0 +0.0) => (float 0.0 0.0)
878 ;; (float +0.0 -0.0) => (float 0.0 0.0)
879 (make-numeric-type :class (numeric-type-class type)
880 :format (numeric-type-format type)
886 ;; (float -0.0 x) => (float 0.0 x)
887 ((and (not (consp lo)) (minusp lo-float-zero-p))
888 (make-numeric-type :class (numeric-type-class type)
889 :format (numeric-type-format type)
891 :low (float 0.0 lo-val)
893 ;; (float (+0.0) x) => (float (0.0) x)
894 ((and (consp lo) (plusp lo-float-zero-p))
895 (make-numeric-type :class (numeric-type-class type)
896 :format (numeric-type-format type)
898 :low (list (float 0.0 lo-val))
901 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
902 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
903 (list (make-member-type :members (list (float 0.0 lo-val)))
904 (make-numeric-type :class (numeric-type-class type)
905 :format (numeric-type-format type)
907 :low (list (float 0.0 lo-val))
911 ;; (float x +0.0) => (float x 0.0)
912 ((and (not (consp hi)) (plusp hi-float-zero-p))
913 (make-numeric-type :class (numeric-type-class type)
914 :format (numeric-type-format type)
917 :high (float 0.0 hi-val)))
918 ;; (float x (-0.0)) => (float x (0.0))
919 ((and (consp hi) (minusp hi-float-zero-p))
920 (make-numeric-type :class (numeric-type-class type)
921 :format (numeric-type-format type)
924 :high (list (float 0.0 hi-val))))
926 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
927 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
928 (list (make-member-type :members (list (float -0.0 hi-val)))
929 (make-numeric-type :class (numeric-type-class type)
930 :format (numeric-type-format type)
933 :high (list (float 0.0 hi-val)))))))
939 ;;; Convert back a possible list of numeric types.
940 (defun convert-back-numeric-type-list (type-list)
944 (dolist (type type-list)
945 (if (numeric-type-p type)
946 (let ((result (convert-back-numeric-type type)))
948 (setf results (append results result))
949 (push result results)))
950 (push type results)))
953 (convert-back-numeric-type type-list))
955 (convert-back-numeric-type-list (union-type-types type-list)))
959 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
960 ;;; belong in the kernel's type logic, invoked always, instead of in
961 ;;; the compiler, invoked only during some type optimizations. (In
962 ;;; fact, as of 0.pre8.100 or so they probably are, under
963 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
965 ;;; Take a list of types and return a canonical type specifier,
966 ;;; combining any MEMBER types together. If both positive and negative
967 ;;; MEMBER types are present they are converted to a float type.
968 ;;; XXX This would be far simpler if the type-union methods could handle
969 ;;; member/number unions.
970 (defun make-canonical-union-type (type-list)
973 (dolist (type type-list)
974 (if (member-type-p type)
975 (setf members (union members (member-type-members type)))
976 (push type misc-types)))
978 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members))
979 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types)
980 (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0))))
981 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members))
982 (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types)
983 (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0))))
984 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members))
985 (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types)
986 (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0))))
988 (apply #'type-union (make-member-type :members members) misc-types)
989 (apply #'type-union misc-types))))
991 ;;; Convert a member type with a single member to a numeric type.
992 (defun convert-member-type (arg)
993 (let* ((members (member-type-members arg))
994 (member (first members))
995 (member-type (type-of member)))
996 (aver (not (rest members)))
997 (specifier-type (cond ((typep member 'integer)
998 `(integer ,member ,member))
999 ((memq member-type '(short-float single-float
1000 double-float long-float))
1001 `(,member-type ,member ,member))
1005 ;;; This is used in defoptimizers for computing the resulting type of
1008 ;;; Given the lvar ARG, derive the resulting type using the
1009 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1010 ;;; "atomic" lvar type like numeric-type or member-type (containing
1011 ;;; just one element). It should return the resulting type, which can
1012 ;;; be a list of types.
1014 ;;; For the case of member types, if a MEMBER-FUN is given it is
1015 ;;; called to compute the result otherwise the member type is first
1016 ;;; converted to a numeric type and the DERIVE-FUN is called.
1017 (defun one-arg-derive-type (arg derive-fun member-fun
1018 &optional (convert-type t))
1019 (declare (type function derive-fun)
1020 (type (or null function) member-fun))
1021 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1027 (with-float-traps-masked
1028 (:underflow :overflow :divide-by-zero)
1030 `(eql ,(funcall member-fun
1031 (first (member-type-members x))))))
1032 ;; Otherwise convert to a numeric type.
1033 (let ((result-type-list
1034 (funcall derive-fun (convert-member-type x))))
1036 (convert-back-numeric-type-list result-type-list)
1037 result-type-list))))
1040 (convert-back-numeric-type-list
1041 (funcall derive-fun (convert-numeric-type x)))
1042 (funcall derive-fun x)))
1044 *universal-type*))))
1045 ;; Run down the list of args and derive the type of each one,
1046 ;; saving all of the results in a list.
1047 (let ((results nil))
1048 (dolist (arg arg-list)
1049 (let ((result (deriver arg)))
1051 (setf results (append results result))
1052 (push result results))))
1054 (make-canonical-union-type results)
1055 (first results)))))))
1057 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1058 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1059 ;;; original args and a third which is T to indicate if the two args
1060 ;;; really represent the same lvar. This is useful for deriving the
1061 ;;; type of things like (* x x), which should always be positive. If
1062 ;;; we didn't do this, we wouldn't be able to tell.
1063 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1064 &optional (convert-type t))
1065 (declare (type function derive-fun fun))
1066 (flet ((deriver (x y same-arg)
1067 (cond ((and (member-type-p x) (member-type-p y))
1068 (let* ((x (first (member-type-members x)))
1069 (y (first (member-type-members y)))
1070 (result (ignore-errors
1071 (with-float-traps-masked
1072 (:underflow :overflow :divide-by-zero
1074 (funcall fun x y)))))
1075 (cond ((null result) *empty-type*)
1076 ((and (floatp result) (float-nan-p result))
1077 (make-numeric-type :class 'float
1078 :format (type-of result)
1081 (specifier-type `(eql ,result))))))
1082 ((and (member-type-p x) (numeric-type-p y))
1083 (let* ((x (convert-member-type x))
1084 (y (if convert-type (convert-numeric-type y) y))
1085 (result (funcall derive-fun x y same-arg)))
1087 (convert-back-numeric-type-list result)
1089 ((and (numeric-type-p x) (member-type-p y))
1090 (let* ((x (if convert-type (convert-numeric-type x) x))
1091 (y (convert-member-type y))
1092 (result (funcall derive-fun x y same-arg)))
1094 (convert-back-numeric-type-list result)
1096 ((and (numeric-type-p x) (numeric-type-p y))
1097 (let* ((x (if convert-type (convert-numeric-type x) x))
1098 (y (if convert-type (convert-numeric-type y) y))
1099 (result (funcall derive-fun x y same-arg)))
1101 (convert-back-numeric-type-list result)
1104 *universal-type*))))
1105 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1106 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1107 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1109 (let ((results nil))
1111 ;; Since the args are the same LVARs, just run down the
1114 (let ((result (deriver x x same-arg)))
1116 (setf results (append results result))
1117 (push result results))))
1118 ;; Try all pairwise combinations.
1121 (let ((result (or (deriver x y same-arg)
1122 (numeric-contagion x y))))
1124 (setf results (append results result))
1125 (push result results))))))
1127 (make-canonical-union-type results)
1128 (first results)))))))
1130 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1132 (defoptimizer (+ derive-type) ((x y))
1133 (derive-integer-type
1140 (values (frob (numeric-type-low x) (numeric-type-low y))
1141 (frob (numeric-type-high x) (numeric-type-high y)))))))
1143 (defoptimizer (- derive-type) ((x y))
1144 (derive-integer-type
1151 (values (frob (numeric-type-low x) (numeric-type-high y))
1152 (frob (numeric-type-high x) (numeric-type-low y)))))))
1154 (defoptimizer (* derive-type) ((x y))
1155 (derive-integer-type
1158 (let ((x-low (numeric-type-low x))
1159 (x-high (numeric-type-high x))
1160 (y-low (numeric-type-low y))
1161 (y-high (numeric-type-high y)))
1162 (cond ((not (and x-low y-low))
1164 ((or (minusp x-low) (minusp y-low))
1165 (if (and x-high y-high)
1166 (let ((max (* (max (abs x-low) (abs x-high))
1167 (max (abs y-low) (abs y-high)))))
1168 (values (- max) max))
1171 (values (* x-low y-low)
1172 (if (and x-high y-high)
1176 (defoptimizer (/ derive-type) ((x y))
1177 (numeric-contagion (lvar-type x) (lvar-type y)))
1181 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1183 (defun +-derive-type-aux (x y same-arg)
1184 (if (and (numeric-type-real-p x)
1185 (numeric-type-real-p y))
1188 (let ((x-int (numeric-type->interval x)))
1189 (interval-add x-int x-int))
1190 (interval-add (numeric-type->interval x)
1191 (numeric-type->interval y))))
1192 (result-type (numeric-contagion x y)))
1193 ;; If the result type is a float, we need to be sure to coerce
1194 ;; the bounds into the correct type.
1195 (when (eq (numeric-type-class result-type) 'float)
1196 (setf result (interval-func
1198 (coerce x (or (numeric-type-format result-type)
1202 :class (if (and (eq (numeric-type-class x) 'integer)
1203 (eq (numeric-type-class y) 'integer))
1204 ;; The sum of integers is always an integer.
1206 (numeric-type-class result-type))
1207 :format (numeric-type-format result-type)
1208 :low (interval-low result)
1209 :high (interval-high result)))
1210 ;; general contagion
1211 (numeric-contagion x y)))
1213 (defoptimizer (+ derive-type) ((x y))
1214 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1216 (defun --derive-type-aux (x y same-arg)
1217 (if (and (numeric-type-real-p x)
1218 (numeric-type-real-p y))
1220 ;; (- X X) is always 0.
1222 (make-interval :low 0 :high 0)
1223 (interval-sub (numeric-type->interval x)
1224 (numeric-type->interval y))))
1225 (result-type (numeric-contagion x y)))
1226 ;; If the result type is a float, we need to be sure to coerce
1227 ;; the bounds into the correct type.
1228 (when (eq (numeric-type-class result-type) 'float)
1229 (setf result (interval-func
1231 (coerce x (or (numeric-type-format result-type)
1235 :class (if (and (eq (numeric-type-class x) 'integer)
1236 (eq (numeric-type-class y) 'integer))
1237 ;; The difference of integers is always an integer.
1239 (numeric-type-class result-type))
1240 :format (numeric-type-format result-type)
1241 :low (interval-low result)
1242 :high (interval-high result)))
1243 ;; general contagion
1244 (numeric-contagion x y)))
1246 (defoptimizer (- derive-type) ((x y))
1247 (two-arg-derive-type x y #'--derive-type-aux #'-))
1249 (defun *-derive-type-aux (x y same-arg)
1250 (if (and (numeric-type-real-p x)
1251 (numeric-type-real-p y))
1253 ;; (* X X) is always positive, so take care to do it right.
1255 (interval-sqr (numeric-type->interval x))
1256 (interval-mul (numeric-type->interval x)
1257 (numeric-type->interval y))))
1258 (result-type (numeric-contagion x y)))
1259 ;; If the result type is a float, we need to be sure to coerce
1260 ;; the bounds into the correct type.
1261 (when (eq (numeric-type-class result-type) 'float)
1262 (setf result (interval-func
1264 (coerce x (or (numeric-type-format result-type)
1268 :class (if (and (eq (numeric-type-class x) 'integer)
1269 (eq (numeric-type-class y) 'integer))
1270 ;; The product of integers is always an integer.
1272 (numeric-type-class result-type))
1273 :format (numeric-type-format result-type)
1274 :low (interval-low result)
1275 :high (interval-high result)))
1276 (numeric-contagion x y)))
1278 (defoptimizer (* derive-type) ((x y))
1279 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1281 (defun /-derive-type-aux (x y same-arg)
1282 (if (and (numeric-type-real-p x)
1283 (numeric-type-real-p y))
1285 ;; (/ X X) is always 1, except if X can contain 0. In
1286 ;; that case, we shouldn't optimize the division away
1287 ;; because we want 0/0 to signal an error.
1289 (not (interval-contains-p
1290 0 (interval-closure (numeric-type->interval y)))))
1291 (make-interval :low 1 :high 1)
1292 (interval-div (numeric-type->interval x)
1293 (numeric-type->interval y))))
1294 (result-type (numeric-contagion x y)))
1295 ;; If the result type is a float, we need to be sure to coerce
1296 ;; the bounds into the correct type.
1297 (when (eq (numeric-type-class result-type) 'float)
1298 (setf result (interval-func
1300 (coerce x (or (numeric-type-format result-type)
1303 (make-numeric-type :class (numeric-type-class result-type)
1304 :format (numeric-type-format result-type)
1305 :low (interval-low result)
1306 :high (interval-high result)))
1307 (numeric-contagion x y)))
1309 (defoptimizer (/ derive-type) ((x y))
1310 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1314 (defun ash-derive-type-aux (n-type shift same-arg)
1315 (declare (ignore same-arg))
1316 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1317 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1318 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1319 ;; two bignums yielding zero) and it's hard to avoid that
1320 ;; calculation in here.
1321 #+(and cmu sb-xc-host)
1322 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1323 (typep (numeric-type-high n-type) 'bignum))
1324 (or (typep (numeric-type-low shift) 'bignum)
1325 (typep (numeric-type-high shift) 'bignum)))
1326 (return-from ash-derive-type-aux *universal-type*))
1327 (flet ((ash-outer (n s)
1328 (when (and (fixnump s)
1330 (> s sb!xc:most-negative-fixnum))
1332 ;; KLUDGE: The bare 64's here should be related to
1333 ;; symbolic machine word size values somehow.
1336 (if (and (fixnump s)
1337 (> s sb!xc:most-negative-fixnum))
1339 (if (minusp n) -1 0))))
1340 (or (and (csubtypep n-type (specifier-type 'integer))
1341 (csubtypep shift (specifier-type 'integer))
1342 (let ((n-low (numeric-type-low n-type))
1343 (n-high (numeric-type-high n-type))
1344 (s-low (numeric-type-low shift))
1345 (s-high (numeric-type-high shift)))
1346 (make-numeric-type :class 'integer :complexp :real
1349 (ash-outer n-low s-high)
1350 (ash-inner n-low s-low)))
1353 (ash-inner n-high s-low)
1354 (ash-outer n-high s-high))))))
1357 (defoptimizer (ash derive-type) ((n shift))
1358 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1360 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1361 (macrolet ((frob (fun)
1362 `#'(lambda (type type2)
1363 (declare (ignore type2))
1364 (let ((lo (numeric-type-low type))
1365 (hi (numeric-type-high type)))
1366 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1368 (defoptimizer (%negate derive-type) ((num))
1369 (derive-integer-type num num (frob -))))
1371 (defun lognot-derive-type-aux (int)
1372 (derive-integer-type-aux int int
1373 (lambda (type type2)
1374 (declare (ignore type2))
1375 (let ((lo (numeric-type-low type))
1376 (hi (numeric-type-high type)))
1377 (values (if hi (lognot hi) nil)
1378 (if lo (lognot lo) nil)
1379 (numeric-type-class type)
1380 (numeric-type-format type))))))
1382 (defoptimizer (lognot derive-type) ((int))
1383 (lognot-derive-type-aux (lvar-type int)))
1385 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1386 (defoptimizer (%negate derive-type) ((num))
1387 (flet ((negate-bound (b)
1389 (set-bound (- (type-bound-number b))
1391 (one-arg-derive-type num
1393 (modified-numeric-type
1395 :low (negate-bound (numeric-type-high type))
1396 :high (negate-bound (numeric-type-low type))))
1399 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1400 (defoptimizer (abs derive-type) ((num))
1401 (let ((type (lvar-type num)))
1402 (if (and (numeric-type-p type)
1403 (eq (numeric-type-class type) 'integer)
1404 (eq (numeric-type-complexp type) :real))
1405 (let ((lo (numeric-type-low type))
1406 (hi (numeric-type-high type)))
1407 (make-numeric-type :class 'integer :complexp :real
1408 :low (cond ((and hi (minusp hi))
1414 :high (if (and hi lo)
1415 (max (abs hi) (abs lo))
1417 (numeric-contagion type type))))
1419 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1420 (defun abs-derive-type-aux (type)
1421 (cond ((eq (numeric-type-complexp type) :complex)
1422 ;; The absolute value of a complex number is always a
1423 ;; non-negative float.
1424 (let* ((format (case (numeric-type-class type)
1425 ((integer rational) 'single-float)
1426 (t (numeric-type-format type))))
1427 (bound-format (or format 'float)))
1428 (make-numeric-type :class 'float
1431 :low (coerce 0 bound-format)
1434 ;; The absolute value of a real number is a non-negative real
1435 ;; of the same type.
1436 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1437 (class (numeric-type-class type))
1438 (format (numeric-type-format type))
1439 (bound-type (or format class 'real)))
1444 :low (coerce-numeric-bound (interval-low abs-bnd) bound-type)
1445 :high (coerce-numeric-bound
1446 (interval-high abs-bnd) bound-type))))))
1448 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1449 (defoptimizer (abs derive-type) ((num))
1450 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1452 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1453 (defoptimizer (truncate derive-type) ((number divisor))
1454 (let ((number-type (lvar-type number))
1455 (divisor-type (lvar-type divisor))
1456 (integer-type (specifier-type 'integer)))
1457 (if (and (numeric-type-p number-type)
1458 (csubtypep number-type integer-type)
1459 (numeric-type-p divisor-type)
1460 (csubtypep divisor-type integer-type))
1461 (let ((number-low (numeric-type-low number-type))
1462 (number-high (numeric-type-high number-type))
1463 (divisor-low (numeric-type-low divisor-type))
1464 (divisor-high (numeric-type-high divisor-type)))
1465 (values-specifier-type
1466 `(values ,(integer-truncate-derive-type number-low number-high
1467 divisor-low divisor-high)
1468 ,(integer-rem-derive-type number-low number-high
1469 divisor-low divisor-high))))
1472 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1475 (defun rem-result-type (number-type divisor-type)
1476 ;; Figure out what the remainder type is. The remainder is an
1477 ;; integer if both args are integers; a rational if both args are
1478 ;; rational; and a float otherwise.
1479 (cond ((and (csubtypep number-type (specifier-type 'integer))
1480 (csubtypep divisor-type (specifier-type 'integer)))
1482 ((and (csubtypep number-type (specifier-type 'rational))
1483 (csubtypep divisor-type (specifier-type 'rational)))
1485 ((and (csubtypep number-type (specifier-type 'float))
1486 (csubtypep divisor-type (specifier-type 'float)))
1487 ;; Both are floats so the result is also a float, of
1488 ;; the largest type.
1489 (or (float-format-max (numeric-type-format number-type)
1490 (numeric-type-format divisor-type))
1492 ((and (csubtypep number-type (specifier-type 'float))
1493 (csubtypep divisor-type (specifier-type 'rational)))
1494 ;; One of the arguments is a float and the other is a
1495 ;; rational. The remainder is a float of the same
1497 (or (numeric-type-format number-type) 'float))
1498 ((and (csubtypep divisor-type (specifier-type 'float))
1499 (csubtypep number-type (specifier-type 'rational)))
1500 ;; One of the arguments is a float and the other is a
1501 ;; rational. The remainder is a float of the same
1503 (or (numeric-type-format divisor-type) 'float))
1505 ;; Some unhandled combination. This usually means both args
1506 ;; are REAL so the result is a REAL.
1509 (defun truncate-derive-type-quot (number-type divisor-type)
1510 (let* ((rem-type (rem-result-type number-type divisor-type))
1511 (number-interval (numeric-type->interval number-type))
1512 (divisor-interval (numeric-type->interval divisor-type)))
1513 ;;(declare (type (member '(integer rational float)) rem-type))
1514 ;; We have real numbers now.
1515 (cond ((eq rem-type 'integer)
1516 ;; Since the remainder type is INTEGER, both args are
1518 (let* ((res (integer-truncate-derive-type
1519 (interval-low number-interval)
1520 (interval-high number-interval)
1521 (interval-low divisor-interval)
1522 (interval-high divisor-interval))))
1523 (specifier-type (if (listp res) res 'integer))))
1525 (let ((quot (truncate-quotient-bound
1526 (interval-div number-interval
1527 divisor-interval))))
1528 (specifier-type `(integer ,(or (interval-low quot) '*)
1529 ,(or (interval-high quot) '*))))))))
1531 (defun truncate-derive-type-rem (number-type divisor-type)
1532 (let* ((rem-type (rem-result-type number-type divisor-type))
1533 (number-interval (numeric-type->interval number-type))
1534 (divisor-interval (numeric-type->interval divisor-type))
1535 (rem (truncate-rem-bound number-interval divisor-interval)))
1536 ;;(declare (type (member '(integer rational float)) rem-type))
1537 ;; We have real numbers now.
1538 (cond ((eq rem-type 'integer)
1539 ;; Since the remainder type is INTEGER, both args are
1541 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1542 ,(or (interval-high rem) '*))))
1544 (multiple-value-bind (class format)
1547 (values 'integer nil))
1549 (values 'rational nil))
1550 ((or single-float double-float #!+long-float long-float)
1551 (values 'float rem-type))
1553 (values 'float nil))
1556 (when (member rem-type '(float single-float double-float
1557 #!+long-float long-float))
1558 (setf rem (interval-func #'(lambda (x)
1559 (coerce x rem-type))
1561 (make-numeric-type :class class
1563 :low (interval-low rem)
1564 :high (interval-high rem)))))))
1566 (defun truncate-derive-type-quot-aux (num div same-arg)
1567 (declare (ignore same-arg))
1568 (if (and (numeric-type-real-p num)
1569 (numeric-type-real-p div))
1570 (truncate-derive-type-quot num div)
1573 (defun truncate-derive-type-rem-aux (num div same-arg)
1574 (declare (ignore same-arg))
1575 (if (and (numeric-type-real-p num)
1576 (numeric-type-real-p div))
1577 (truncate-derive-type-rem num div)
1580 (defoptimizer (truncate derive-type) ((number divisor))
1581 (let ((quot (two-arg-derive-type number divisor
1582 #'truncate-derive-type-quot-aux #'truncate))
1583 (rem (two-arg-derive-type number divisor
1584 #'truncate-derive-type-rem-aux #'rem)))
1585 (when (and quot rem)
1586 (make-values-type :required (list quot rem)))))
1588 (defun ftruncate-derive-type-quot (number-type divisor-type)
1589 ;; The bounds are the same as for truncate. However, the first
1590 ;; result is a float of some type. We need to determine what that
1591 ;; type is. Basically it's the more contagious of the two types.
1592 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1593 (res-type (numeric-contagion number-type divisor-type)))
1594 (make-numeric-type :class 'float
1595 :format (numeric-type-format res-type)
1596 :low (numeric-type-low q-type)
1597 :high (numeric-type-high q-type))))
1599 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1600 (declare (ignore same-arg))
1601 (if (and (numeric-type-real-p n)
1602 (numeric-type-real-p d))
1603 (ftruncate-derive-type-quot n d)
1606 (defoptimizer (ftruncate derive-type) ((number divisor))
1608 (two-arg-derive-type number divisor
1609 #'ftruncate-derive-type-quot-aux #'ftruncate))
1610 (rem (two-arg-derive-type number divisor
1611 #'truncate-derive-type-rem-aux #'rem)))
1612 (when (and quot rem)
1613 (make-values-type :required (list quot rem)))))
1615 (defun %unary-truncate-derive-type-aux (number)
1616 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1618 (defoptimizer (%unary-truncate derive-type) ((number))
1619 (one-arg-derive-type number
1620 #'%unary-truncate-derive-type-aux
1623 (defoptimizer (%unary-ftruncate derive-type) ((number))
1624 (let ((divisor (specifier-type '(integer 1 1))))
1625 (one-arg-derive-type number
1627 (ftruncate-derive-type-quot-aux n divisor nil))
1628 #'%unary-ftruncate)))
1630 ;;; Define optimizers for FLOOR and CEILING.
1632 ((def (name q-name r-name)
1633 (let ((q-aux (symbolicate q-name "-AUX"))
1634 (r-aux (symbolicate r-name "-AUX")))
1636 ;; Compute type of quotient (first) result.
1637 (defun ,q-aux (number-type divisor-type)
1638 (let* ((number-interval
1639 (numeric-type->interval number-type))
1641 (numeric-type->interval divisor-type))
1642 (quot (,q-name (interval-div number-interval
1643 divisor-interval))))
1644 (specifier-type `(integer ,(or (interval-low quot) '*)
1645 ,(or (interval-high quot) '*)))))
1646 ;; Compute type of remainder.
1647 (defun ,r-aux (number-type divisor-type)
1648 (let* ((divisor-interval
1649 (numeric-type->interval divisor-type))
1650 (rem (,r-name divisor-interval))
1651 (result-type (rem-result-type number-type divisor-type)))
1652 (multiple-value-bind (class format)
1655 (values 'integer nil))
1657 (values 'rational nil))
1658 ((or single-float double-float #!+long-float long-float)
1659 (values 'float result-type))
1661 (values 'float nil))
1664 (when (member result-type '(float single-float double-float
1665 #!+long-float long-float))
1666 ;; Make sure that the limits on the interval have
1668 (setf rem (interval-func (lambda (x)
1669 (coerce x result-type))
1671 (make-numeric-type :class class
1673 :low (interval-low rem)
1674 :high (interval-high rem)))))
1675 ;; the optimizer itself
1676 (defoptimizer (,name derive-type) ((number divisor))
1677 (flet ((derive-q (n d same-arg)
1678 (declare (ignore same-arg))
1679 (if (and (numeric-type-real-p n)
1680 (numeric-type-real-p d))
1683 (derive-r (n d same-arg)
1684 (declare (ignore same-arg))
1685 (if (and (numeric-type-real-p n)
1686 (numeric-type-real-p d))
1689 (let ((quot (two-arg-derive-type
1690 number divisor #'derive-q #',name))
1691 (rem (two-arg-derive-type
1692 number divisor #'derive-r #'mod)))
1693 (when (and quot rem)
1694 (make-values-type :required (list quot rem))))))))))
1696 (def floor floor-quotient-bound floor-rem-bound)
1697 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1699 ;;; Define optimizers for FFLOOR and FCEILING
1700 (macrolet ((def (name q-name r-name)
1701 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1702 (r-aux (symbolicate r-name "-AUX")))
1704 ;; Compute type of quotient (first) result.
1705 (defun ,q-aux (number-type divisor-type)
1706 (let* ((number-interval
1707 (numeric-type->interval number-type))
1709 (numeric-type->interval divisor-type))
1710 (quot (,q-name (interval-div number-interval
1712 (res-type (numeric-contagion number-type
1715 :class (numeric-type-class res-type)
1716 :format (numeric-type-format res-type)
1717 :low (interval-low quot)
1718 :high (interval-high quot))))
1720 (defoptimizer (,name derive-type) ((number divisor))
1721 (flet ((derive-q (n d same-arg)
1722 (declare (ignore same-arg))
1723 (if (and (numeric-type-real-p n)
1724 (numeric-type-real-p d))
1727 (derive-r (n d same-arg)
1728 (declare (ignore same-arg))
1729 (if (and (numeric-type-real-p n)
1730 (numeric-type-real-p d))
1733 (let ((quot (two-arg-derive-type
1734 number divisor #'derive-q #',name))
1735 (rem (two-arg-derive-type
1736 number divisor #'derive-r #'mod)))
1737 (when (and quot rem)
1738 (make-values-type :required (list quot rem))))))))))
1740 (def ffloor floor-quotient-bound floor-rem-bound)
1741 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1743 ;;; functions to compute the bounds on the quotient and remainder for
1744 ;;; the FLOOR function
1745 (defun floor-quotient-bound (quot)
1746 ;; Take the floor of the quotient and then massage it into what we
1748 (let ((lo (interval-low quot))
1749 (hi (interval-high quot)))
1750 ;; Take the floor of the lower bound. The result is always a
1751 ;; closed lower bound.
1753 (floor (type-bound-number lo))
1755 ;; For the upper bound, we need to be careful.
1758 ;; An open bound. We need to be careful here because
1759 ;; the floor of '(10.0) is 9, but the floor of
1761 (multiple-value-bind (q r) (floor (first hi))
1766 ;; A closed bound, so the answer is obvious.
1770 (make-interval :low lo :high hi)))
1771 (defun floor-rem-bound (div)
1772 ;; The remainder depends only on the divisor. Try to get the
1773 ;; correct sign for the remainder if we can.
1774 (case (interval-range-info div)
1776 ;; The divisor is always positive.
1777 (let ((rem (interval-abs div)))
1778 (setf (interval-low rem) 0)
1779 (when (and (numberp (interval-high rem))
1780 (not (zerop (interval-high rem))))
1781 ;; The remainder never contains the upper bound. However,
1782 ;; watch out for the case where the high limit is zero!
1783 (setf (interval-high rem) (list (interval-high rem))))
1786 ;; The divisor is always negative.
1787 (let ((rem (interval-neg (interval-abs div))))
1788 (setf (interval-high rem) 0)
1789 (when (numberp (interval-low rem))
1790 ;; The remainder never contains the lower bound.
1791 (setf (interval-low rem) (list (interval-low rem))))
1794 ;; The divisor can be positive or negative. All bets off. The
1795 ;; magnitude of remainder is the maximum value of the divisor.
1796 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1797 ;; The bound never reaches the limit, so make the interval open.
1798 (make-interval :low (if limit
1801 :high (list limit))))))
1803 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1804 => #S(INTERVAL :LOW 0 :HIGH 10)
1805 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1806 => #S(INTERVAL :LOW 0 :HIGH 10)
1807 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1808 => #S(INTERVAL :LOW 0 :HIGH 10)
1809 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1810 => #S(INTERVAL :LOW 0 :HIGH 9)
1811 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1812 => #S(INTERVAL :LOW 0 :HIGH 10)
1813 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1814 => #S(INTERVAL :LOW 0 :HIGH 10)
1815 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1816 => #S(INTERVAL :LOW -2 :HIGH 10)
1817 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1818 => #S(INTERVAL :LOW -1 :HIGH 10)
1819 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1820 => #S(INTERVAL :LOW -1 :HIGH 10)
1822 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1823 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1824 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1825 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1826 (floor-rem-bound (make-interval :low -10 :high -2.3))
1827 #S(INTERVAL :LOW (-10) :HIGH 0)
1828 (floor-rem-bound (make-interval :low 0.3 :high 10))
1829 => #S(INTERVAL :LOW 0 :HIGH '(10))
1830 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1831 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1832 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1833 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1836 ;;; same functions for CEILING
1837 (defun ceiling-quotient-bound (quot)
1838 ;; Take the ceiling of the quotient and then massage it into what we
1840 (let ((lo (interval-low quot))
1841 (hi (interval-high quot)))
1842 ;; Take the ceiling of the upper bound. The result is always a
1843 ;; closed upper bound.
1845 (ceiling (type-bound-number hi))
1847 ;; For the lower bound, we need to be careful.
1850 ;; An open bound. We need to be careful here because
1851 ;; the ceiling of '(10.0) is 11, but the ceiling of
1853 (multiple-value-bind (q r) (ceiling (first lo))
1858 ;; A closed bound, so the answer is obvious.
1862 (make-interval :low lo :high hi)))
1863 (defun ceiling-rem-bound (div)
1864 ;; The remainder depends only on the divisor. Try to get the
1865 ;; correct sign for the remainder if we can.
1866 (case (interval-range-info div)
1868 ;; Divisor is always positive. The remainder is negative.
1869 (let ((rem (interval-neg (interval-abs div))))
1870 (setf (interval-high rem) 0)
1871 (when (and (numberp (interval-low rem))
1872 (not (zerop (interval-low rem))))
1873 ;; The remainder never contains the upper bound. However,
1874 ;; watch out for the case when the upper bound is zero!
1875 (setf (interval-low rem) (list (interval-low rem))))
1878 ;; Divisor is always negative. The remainder is positive
1879 (let ((rem (interval-abs div)))
1880 (setf (interval-low rem) 0)
1881 (when (numberp (interval-high rem))
1882 ;; The remainder never contains the lower bound.
1883 (setf (interval-high rem) (list (interval-high rem))))
1886 ;; The divisor can be positive or negative. All bets off. The
1887 ;; magnitude of remainder is the maximum value of the divisor.
1888 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1889 ;; The bound never reaches the limit, so make the interval open.
1890 (make-interval :low (if limit
1893 :high (list limit))))))
1896 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
1897 => #S(INTERVAL :LOW 1 :HIGH 11)
1898 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1899 => #S(INTERVAL :LOW 1 :HIGH 11)
1900 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
1901 => #S(INTERVAL :LOW 1 :HIGH 10)
1902 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
1903 => #S(INTERVAL :LOW 1 :HIGH 10)
1904 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
1905 => #S(INTERVAL :LOW 1 :HIGH 11)
1906 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
1907 => #S(INTERVAL :LOW 1 :HIGH 11)
1908 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1909 => #S(INTERVAL :LOW -1 :HIGH 11)
1910 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1911 => #S(INTERVAL :LOW 0 :HIGH 11)
1912 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
1913 => #S(INTERVAL :LOW -1 :HIGH 11)
1915 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
1916 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
1917 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
1918 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1919 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
1920 => #S(INTERVAL :LOW 0 :HIGH (10))
1921 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
1922 => #S(INTERVAL :LOW (-10) :HIGH 0)
1923 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
1924 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
1925 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
1926 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1929 (defun truncate-quotient-bound (quot)
1930 ;; For positive quotients, truncate is exactly like floor. For
1931 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
1932 ;; it's the union of the two pieces.
1933 (case (interval-range-info quot)
1936 (floor-quotient-bound quot))
1938 ;; just like CEILING
1939 (ceiling-quotient-bound quot))
1941 ;; Split the interval into positive and negative pieces, compute
1942 ;; the result for each piece and put them back together.
1943 (destructuring-bind (neg pos) (interval-split 0 quot t t)
1944 (interval-merge-pair (ceiling-quotient-bound neg)
1945 (floor-quotient-bound pos))))))
1947 (defun truncate-rem-bound (num div)
1948 ;; This is significantly more complicated than FLOOR or CEILING. We
1949 ;; need both the number and the divisor to determine the range. The
1950 ;; basic idea is to split the ranges of NUM and DEN into positive
1951 ;; and negative pieces and deal with each of the four possibilities
1953 (case (interval-range-info num)
1955 (case (interval-range-info div)
1957 (floor-rem-bound div))
1959 (ceiling-rem-bound div))
1961 (destructuring-bind (neg pos) (interval-split 0 div t t)
1962 (interval-merge-pair (truncate-rem-bound num neg)
1963 (truncate-rem-bound num pos))))))
1965 (case (interval-range-info div)
1967 (ceiling-rem-bound div))
1969 (floor-rem-bound div))
1971 (destructuring-bind (neg pos) (interval-split 0 div t t)
1972 (interval-merge-pair (truncate-rem-bound num neg)
1973 (truncate-rem-bound num pos))))))
1975 (destructuring-bind (neg pos) (interval-split 0 num t t)
1976 (interval-merge-pair (truncate-rem-bound neg div)
1977 (truncate-rem-bound pos div))))))
1980 ;;; Derive useful information about the range. Returns three values:
1981 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
1982 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
1983 ;;; - The abs of the maximal value if there is one, or nil if it is
1985 (defun numeric-range-info (low high)
1986 (cond ((and low (not (minusp low)))
1987 (values '+ low high))
1988 ((and high (not (plusp high)))
1989 (values '- (- high) (if low (- low) nil)))
1991 (values nil 0 (and low high (max (- low) high))))))
1993 (defun integer-truncate-derive-type
1994 (number-low number-high divisor-low divisor-high)
1995 ;; The result cannot be larger in magnitude than the number, but the
1996 ;; sign might change. If we can determine the sign of either the
1997 ;; number or the divisor, we can eliminate some of the cases.
1998 (multiple-value-bind (number-sign number-min number-max)
1999 (numeric-range-info number-low number-high)
2000 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2001 (numeric-range-info divisor-low divisor-high)
2002 (when (and divisor-max (zerop divisor-max))
2003 ;; We've got a problem: guaranteed division by zero.
2004 (return-from integer-truncate-derive-type t))
2005 (when (zerop divisor-min)
2006 ;; We'll assume that they aren't going to divide by zero.
2008 (cond ((and number-sign divisor-sign)
2009 ;; We know the sign of both.
2010 (if (eq number-sign divisor-sign)
2011 ;; Same sign, so the result will be positive.
2012 `(integer ,(if divisor-max
2013 (truncate number-min divisor-max)
2016 (truncate number-max divisor-min)
2018 ;; Different signs, the result will be negative.
2019 `(integer ,(if number-max
2020 (- (truncate number-max divisor-min))
2023 (- (truncate number-min divisor-max))
2025 ((eq divisor-sign '+)
2026 ;; The divisor is positive. Therefore, the number will just
2027 ;; become closer to zero.
2028 `(integer ,(if number-low
2029 (truncate number-low divisor-min)
2032 (truncate number-high divisor-min)
2034 ((eq divisor-sign '-)
2035 ;; The divisor is negative. Therefore, the absolute value of
2036 ;; the number will become closer to zero, but the sign will also
2038 `(integer ,(if number-high
2039 (- (truncate number-high divisor-min))
2042 (- (truncate number-low divisor-min))
2044 ;; The divisor could be either positive or negative.
2046 ;; The number we are dividing has a bound. Divide that by the
2047 ;; smallest posible divisor.
2048 (let ((bound (truncate number-max divisor-min)))
2049 `(integer ,(- bound) ,bound)))
2051 ;; The number we are dividing is unbounded, so we can't tell
2052 ;; anything about the result.
2055 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2056 (defun integer-rem-derive-type
2057 (number-low number-high divisor-low divisor-high)
2058 (if (and divisor-low divisor-high)
2059 ;; We know the range of the divisor, and the remainder must be
2060 ;; smaller than the divisor. We can tell the sign of the
2061 ;; remainer if we know the sign of the number.
2062 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2063 `(integer ,(if (or (null number-low)
2064 (minusp number-low))
2067 ,(if (or (null number-high)
2068 (plusp number-high))
2071 ;; The divisor is potentially either very positive or very
2072 ;; negative. Therefore, the remainer is unbounded, but we might
2073 ;; be able to tell something about the sign from the number.
2074 `(integer ,(if (and number-low (not (minusp number-low)))
2075 ;; The number we are dividing is positive.
2076 ;; Therefore, the remainder must be positive.
2079 ,(if (and number-high (not (plusp number-high)))
2080 ;; The number we are dividing is negative.
2081 ;; Therefore, the remainder must be negative.
2085 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2086 (defoptimizer (random derive-type) ((bound &optional state))
2087 (let ((type (lvar-type bound)))
2088 (when (numeric-type-p type)
2089 (let ((class (numeric-type-class type))
2090 (high (numeric-type-high type))
2091 (format (numeric-type-format type)))
2095 :low (coerce 0 (or format class 'real))
2096 :high (cond ((not high) nil)
2097 ((eq class 'integer) (max (1- high) 0))
2098 ((or (consp high) (zerop high)) high)
2101 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2102 (defun random-derive-type-aux (type)
2103 (let ((class (numeric-type-class type))
2104 (high (numeric-type-high type))
2105 (format (numeric-type-format type)))
2109 :low (coerce 0 (or format class 'real))
2110 :high (cond ((not high) nil)
2111 ((eq class 'integer) (max (1- high) 0))
2112 ((or (consp high) (zerop high)) high)
2115 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2116 (defoptimizer (random derive-type) ((bound &optional state))
2117 (one-arg-derive-type bound #'random-derive-type-aux nil))
2119 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2121 ;;; Return the maximum number of bits an integer of the supplied type
2122 ;;; can take up, or NIL if it is unbounded. The second (third) value
2123 ;;; is T if the integer can be positive (negative) and NIL if not.
2124 ;;; Zero counts as positive.
2125 (defun integer-type-length (type)
2126 (if (numeric-type-p type)
2127 (let ((min (numeric-type-low type))
2128 (max (numeric-type-high type)))
2129 (values (and min max (max (integer-length min) (integer-length max)))
2130 (or (null max) (not (minusp max)))
2131 (or (null min) (minusp min))))
2134 (defun logand-derive-type-aux (x y &optional same-leaf)
2136 (return-from logand-derive-type-aux x))
2137 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2138 (declare (ignore x-pos))
2139 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2140 (declare (ignore y-pos))
2142 ;; X must be positive.
2144 ;; They must both be positive.
2145 (cond ((and (null x-len) (null y-len))
2146 (specifier-type 'unsigned-byte))
2148 (specifier-type `(unsigned-byte* ,y-len)))
2150 (specifier-type `(unsigned-byte* ,x-len)))
2152 (specifier-type `(unsigned-byte* ,(min x-len y-len)))))
2153 ;; X is positive, but Y might be negative.
2155 (specifier-type 'unsigned-byte))
2157 (specifier-type `(unsigned-byte* ,x-len)))))
2158 ;; X might be negative.
2160 ;; Y must be positive.
2162 (specifier-type 'unsigned-byte))
2163 (t (specifier-type `(unsigned-byte* ,y-len))))
2164 ;; Either might be negative.
2165 (if (and x-len y-len)
2166 ;; The result is bounded.
2167 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2168 ;; We can't tell squat about the result.
2169 (specifier-type 'integer)))))))
2171 (defun logior-derive-type-aux (x y &optional same-leaf)
2173 (return-from logior-derive-type-aux x))
2174 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2175 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2177 ((and (not x-neg) (not y-neg))
2178 ;; Both are positive.
2179 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2183 ;; X must be negative.
2185 ;; Both are negative. The result is going to be negative
2186 ;; and be the same length or shorter than the smaller.
2187 (if (and x-len y-len)
2189 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2191 (specifier-type '(integer * -1)))
2192 ;; X is negative, but we don't know about Y. The result
2193 ;; will be negative, but no more negative than X.
2195 `(integer ,(or (numeric-type-low x) '*)
2198 ;; X might be either positive or negative.
2200 ;; But Y is negative. The result will be negative.
2202 `(integer ,(or (numeric-type-low y) '*)
2204 ;; We don't know squat about either. It won't get any bigger.
2205 (if (and x-len y-len)
2207 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2209 (specifier-type 'integer))))))))
2211 (defun logxor-derive-type-aux (x y &optional same-leaf)
2213 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2214 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2215 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2217 ((or (and (not x-neg) (not y-neg))
2218 (and (not x-pos) (not y-pos)))
2219 ;; Either both are negative or both are positive. The result
2220 ;; will be positive, and as long as the longer.
2221 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2224 ((or (and (not x-pos) (not y-neg))
2225 (and (not y-pos) (not x-neg)))
2226 ;; Either X is negative and Y is positive or vice-versa. The
2227 ;; result will be negative.
2228 (specifier-type `(integer ,(if (and x-len y-len)
2229 (ash -1 (max x-len y-len))
2232 ;; We can't tell what the sign of the result is going to be.
2233 ;; All we know is that we don't create new bits.
2235 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2237 (specifier-type 'integer))))))
2239 (macrolet ((deffrob (logfun)
2240 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2241 `(defoptimizer (,logfun derive-type) ((x y))
2242 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2247 (defoptimizer (logeqv derive-type) ((x y))
2248 (two-arg-derive-type x y (lambda (x y same-leaf)
2249 (lognot-derive-type-aux
2250 (logxor-derive-type-aux x y same-leaf)))
2252 (defoptimizer (lognand derive-type) ((x y))
2253 (two-arg-derive-type x y (lambda (x y same-leaf)
2254 (lognot-derive-type-aux
2255 (logand-derive-type-aux x y same-leaf)))
2257 (defoptimizer (lognor derive-type) ((x y))
2258 (two-arg-derive-type x y (lambda (x y same-leaf)
2259 (lognot-derive-type-aux
2260 (logior-derive-type-aux x y same-leaf)))
2262 (defoptimizer (logandc1 derive-type) ((x y))
2263 (two-arg-derive-type x y (lambda (x y same-leaf)
2265 (specifier-type '(eql 0))
2266 (logand-derive-type-aux
2267 (lognot-derive-type-aux x) y nil)))
2269 (defoptimizer (logandc2 derive-type) ((x y))
2270 (two-arg-derive-type x y (lambda (x y same-leaf)
2272 (specifier-type '(eql 0))
2273 (logand-derive-type-aux
2274 x (lognot-derive-type-aux y) nil)))
2276 (defoptimizer (logorc1 derive-type) ((x y))
2277 (two-arg-derive-type x y (lambda (x y same-leaf)
2279 (specifier-type '(eql -1))
2280 (logior-derive-type-aux
2281 (lognot-derive-type-aux x) y nil)))
2283 (defoptimizer (logorc2 derive-type) ((x y))
2284 (two-arg-derive-type x y (lambda (x y same-leaf)
2286 (specifier-type '(eql -1))
2287 (logior-derive-type-aux
2288 x (lognot-derive-type-aux y) nil)))
2291 ;;;; miscellaneous derive-type methods
2293 (defoptimizer (integer-length derive-type) ((x))
2294 (let ((x-type (lvar-type x)))
2295 (when (numeric-type-p x-type)
2296 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2297 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2298 ;; careful about LO or HI being NIL, though. Also, if 0 is
2299 ;; contained in X, the lower bound is obviously 0.
2300 (flet ((null-or-min (a b)
2301 (and a b (min (integer-length a)
2302 (integer-length b))))
2304 (and a b (max (integer-length a)
2305 (integer-length b)))))
2306 (let* ((min (numeric-type-low x-type))
2307 (max (numeric-type-high x-type))
2308 (min-len (null-or-min min max))
2309 (max-len (null-or-max min max)))
2310 (when (ctypep 0 x-type)
2312 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2314 (defoptimizer (isqrt derive-type) ((x))
2315 (let ((x-type (lvar-type x)))
2316 (when (numeric-type-p x-type)
2317 (let* ((lo (numeric-type-low x-type))
2318 (hi (numeric-type-high x-type))
2319 (lo-res (if lo (isqrt lo) '*))
2320 (hi-res (if hi (isqrt hi) '*)))
2321 (specifier-type `(integer ,lo-res ,hi-res))))))
2323 (defoptimizer (code-char derive-type) ((code))
2324 (specifier-type 'base-char))
2326 (defoptimizer (values derive-type) ((&rest values))
2327 (make-values-type :required (mapcar #'lvar-type values)))
2329 (defun signum-derive-type-aux (type)
2330 (if (eq (numeric-type-complexp type) :complex)
2331 (let* ((format (case (numeric-type-class type)
2332 ((integer rational) 'single-float)
2333 (t (numeric-type-format type))))
2334 (bound-format (or format 'float)))
2335 (make-numeric-type :class 'float
2338 :low (coerce -1 bound-format)
2339 :high (coerce 1 bound-format)))
2340 (let* ((interval (numeric-type->interval type))
2341 (range-info (interval-range-info interval))
2342 (contains-0-p (interval-contains-p 0 interval))
2343 (class (numeric-type-class type))
2344 (format (numeric-type-format type))
2345 (one (coerce 1 (or format class 'real)))
2346 (zero (coerce 0 (or format class 'real)))
2347 (minus-one (coerce -1 (or format class 'real)))
2348 (plus (make-numeric-type :class class :format format
2349 :low one :high one))
2350 (minus (make-numeric-type :class class :format format
2351 :low minus-one :high minus-one))
2352 ;; KLUDGE: here we have a fairly horrible hack to deal
2353 ;; with the schizophrenia in the type derivation engine.
2354 ;; The problem is that the type derivers reinterpret
2355 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2356 ;; 0d0) within the derivation mechanism doesn't include
2357 ;; -0d0. Ugh. So force it in here, instead.
2358 (zero (make-numeric-type :class class :format format
2359 :low (- zero) :high zero)))
2361 (+ (if contains-0-p (type-union plus zero) plus))
2362 (- (if contains-0-p (type-union minus zero) minus))
2363 (t (type-union minus zero plus))))))
2365 (defoptimizer (signum derive-type) ((num))
2366 (one-arg-derive-type num #'signum-derive-type-aux nil))
2368 ;;;; byte operations
2370 ;;;; We try to turn byte operations into simple logical operations.
2371 ;;;; First, we convert byte specifiers into separate size and position
2372 ;;;; arguments passed to internal %FOO functions. We then attempt to
2373 ;;;; transform the %FOO functions into boolean operations when the
2374 ;;;; size and position are constant and the operands are fixnums.
2376 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2377 ;; expressions that evaluate to the SIZE and POSITION of
2378 ;; the byte-specifier form SPEC. We may wrap a let around
2379 ;; the result of the body to bind some variables.
2381 ;; If the spec is a BYTE form, then bind the vars to the
2382 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2383 ;; and BYTE-POSITION. The goal of this transformation is to
2384 ;; avoid consing up byte specifiers and then immediately
2385 ;; throwing them away.
2386 (with-byte-specifier ((size-var pos-var spec) &body body)
2387 (once-only ((spec `(macroexpand ,spec))
2389 `(if (and (consp ,spec)
2390 (eq (car ,spec) 'byte)
2391 (= (length ,spec) 3))
2392 (let ((,size-var (second ,spec))
2393 (,pos-var (third ,spec)))
2395 (let ((,size-var `(byte-size ,,temp))
2396 (,pos-var `(byte-position ,,temp)))
2397 `(let ((,,temp ,,spec))
2400 (define-source-transform ldb (spec int)
2401 (with-byte-specifier (size pos spec)
2402 `(%ldb ,size ,pos ,int)))
2404 (define-source-transform dpb (newbyte spec int)
2405 (with-byte-specifier (size pos spec)
2406 `(%dpb ,newbyte ,size ,pos ,int)))
2408 (define-source-transform mask-field (spec int)
2409 (with-byte-specifier (size pos spec)
2410 `(%mask-field ,size ,pos ,int)))
2412 (define-source-transform deposit-field (newbyte spec int)
2413 (with-byte-specifier (size pos spec)
2414 `(%deposit-field ,newbyte ,size ,pos ,int))))
2416 (defoptimizer (%ldb derive-type) ((size posn num))
2417 (let ((size (lvar-type size)))
2418 (if (and (numeric-type-p size)
2419 (csubtypep size (specifier-type 'integer)))
2420 (let ((size-high (numeric-type-high size)))
2421 (if (and size-high (<= size-high sb!vm:n-word-bits))
2422 (specifier-type `(unsigned-byte* ,size-high))
2423 (specifier-type 'unsigned-byte)))
2426 (defoptimizer (%mask-field derive-type) ((size posn num))
2427 (let ((size (lvar-type size))
2428 (posn (lvar-type posn)))
2429 (if (and (numeric-type-p size)
2430 (csubtypep size (specifier-type 'integer))
2431 (numeric-type-p posn)
2432 (csubtypep posn (specifier-type 'integer)))
2433 (let ((size-high (numeric-type-high size))
2434 (posn-high (numeric-type-high posn)))
2435 (if (and size-high posn-high
2436 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2437 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2438 (specifier-type 'unsigned-byte)))
2441 (defun %deposit-field-derive-type-aux (size posn int)
2442 (let ((size (lvar-type size))
2443 (posn (lvar-type posn))
2444 (int (lvar-type int)))
2445 (when (and (numeric-type-p size)
2446 (numeric-type-p posn)
2447 (numeric-type-p int))
2448 (let ((size-high (numeric-type-high size))
2449 (posn-high (numeric-type-high posn))
2450 (high (numeric-type-high int))
2451 (low (numeric-type-low int)))
2452 (when (and size-high posn-high high low
2453 ;; KLUDGE: we need this cutoff here, otherwise we
2454 ;; will merrily derive the type of %DPB as
2455 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2456 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2457 ;; 1073741822))), with hilarious consequences. We
2458 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2459 ;; over a reasonable amount of shifting, even on
2460 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2461 ;; machine integers are 64-bits. -- CSR,
2463 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2464 (let ((raw-bit-count (max (integer-length high)
2465 (integer-length low)
2466 (+ size-high posn-high))))
2469 `(signed-byte ,(1+ raw-bit-count))
2470 `(unsigned-byte* ,raw-bit-count)))))))))
2472 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2473 (%deposit-field-derive-type-aux size posn int))
2475 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2476 (%deposit-field-derive-type-aux size posn int))
2478 (deftransform %ldb ((size posn int)
2479 (fixnum fixnum integer)
2480 (unsigned-byte #.sb!vm:n-word-bits))
2481 "convert to inline logical operations"
2482 `(logand (ash int (- posn))
2483 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2484 (- size ,sb!vm:n-word-bits))))
2486 (deftransform %mask-field ((size posn int)
2487 (fixnum fixnum integer)
2488 (unsigned-byte #.sb!vm:n-word-bits))
2489 "convert to inline logical operations"
2491 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2492 (- size ,sb!vm:n-word-bits))
2495 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2496 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2497 ;;; as the result type, as that would allow result types that cover
2498 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2499 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2501 (deftransform %dpb ((new size posn int)
2503 (unsigned-byte #.sb!vm:n-word-bits))
2504 "convert to inline logical operations"
2505 `(let ((mask (ldb (byte size 0) -1)))
2506 (logior (ash (logand new mask) posn)
2507 (logand int (lognot (ash mask posn))))))
2509 (deftransform %dpb ((new size posn int)
2511 (signed-byte #.sb!vm:n-word-bits))
2512 "convert to inline logical operations"
2513 `(let ((mask (ldb (byte size 0) -1)))
2514 (logior (ash (logand new mask) posn)
2515 (logand int (lognot (ash mask posn))))))
2517 (deftransform %deposit-field ((new size posn int)
2519 (unsigned-byte #.sb!vm:n-word-bits))
2520 "convert to inline logical operations"
2521 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2522 (logior (logand new mask)
2523 (logand int (lognot mask)))))
2525 (deftransform %deposit-field ((new size posn int)
2527 (signed-byte #.sb!vm:n-word-bits))
2528 "convert to inline logical operations"
2529 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2530 (logior (logand new mask)
2531 (logand int (lognot mask)))))
2533 ;;; Modular functions
2535 ;;; (ldb (byte s 0) (foo x y ...)) =
2536 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2538 ;;; and similar for other arguments.
2540 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2542 ;;; For good functions, we just recursively cut arguments; their
2543 ;;; "goodness" means that the result will not increase (in the
2544 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2545 ;;; replaced with the version, cutting its result to WIDTH or more
2546 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2547 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2548 ;;; arguments (maybe to a different width) and returning the name of a
2549 ;;; modular version, if it exists, or NIL. If we have changed
2550 ;;; anything, we need to flush old derived types, because they have
2551 ;;; nothing in common with the new code.
2552 (defun cut-to-width (lvar width)
2553 (declare (type lvar lvar) (type (integer 0) width))
2554 (labels ((reoptimize-node (node name)
2555 (setf (node-derived-type node)
2557 (info :function :type name)))
2558 (setf (lvar-%derived-type (node-lvar node)) nil)
2559 (setf (node-reoptimize node) t)
2560 (setf (block-reoptimize (node-block node)) t)
2561 (setf (component-reoptimize (node-component node)) t))
2562 (cut-node (node &aux did-something)
2563 (when (and (not (block-delete-p (node-block node)))
2564 (combination-p node)
2565 (eq (basic-combination-kind node) :known))
2566 (let* ((fun-ref (lvar-use (combination-fun node)))
2567 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2568 (modular-fun (find-modular-version fun-name width)))
2569 (when (and modular-fun
2570 (not (and (eq fun-name 'logand)
2572 (single-value-type (node-derived-type node))
2573 (specifier-type `(unsigned-byte* ,width))))))
2574 (binding* ((name (etypecase modular-fun
2575 ((eql :good) fun-name)
2577 (modular-fun-info-name modular-fun))
2579 (funcall modular-fun node width)))
2581 (unless (eql modular-fun :good)
2582 (setq did-something t)
2585 (find-free-fun name "in a strange place"))
2586 (setf (combination-kind node) :full))
2587 (unless (functionp modular-fun)
2588 (dolist (arg (basic-combination-args node))
2589 (when (cut-lvar arg)
2590 (setq did-something t))))
2592 (reoptimize-node node name))
2594 (cut-lvar (lvar &aux did-something)
2595 (do-uses (node lvar)
2596 (when (cut-node node)
2597 (setq did-something t)))
2601 (defoptimizer (logand optimizer) ((x y) node)
2602 (let ((result-type (single-value-type (node-derived-type node))))
2603 (when (numeric-type-p result-type)
2604 (let ((low (numeric-type-low result-type))
2605 (high (numeric-type-high result-type)))
2606 (when (and (numberp low)
2609 (let ((width (integer-length high)))
2610 (when (some (lambda (x) (<= width x))
2611 *modular-funs-widths*)
2612 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2613 (cut-to-width x width)
2614 (cut-to-width y width)
2615 nil ; After fixing above, replace with T.
2618 ;;; miscellanous numeric transforms
2620 ;;; If a constant appears as the first arg, swap the args.
2621 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2622 (if (and (constant-lvar-p x)
2623 (not (constant-lvar-p y)))
2624 `(,(lvar-fun-name (basic-combination-fun node))
2627 (give-up-ir1-transform)))
2629 (dolist (x '(= char= + * logior logand logxor))
2630 (%deftransform x '(function * *) #'commutative-arg-swap
2631 "place constant arg last"))
2633 ;;; Handle the case of a constant BOOLE-CODE.
2634 (deftransform boole ((op x y) * *)
2635 "convert to inline logical operations"
2636 (unless (constant-lvar-p op)
2637 (give-up-ir1-transform "BOOLE code is not a constant."))
2638 (let ((control (lvar-value op)))
2640 (#.sb!xc:boole-clr 0)
2641 (#.sb!xc:boole-set -1)
2642 (#.sb!xc:boole-1 'x)
2643 (#.sb!xc:boole-2 'y)
2644 (#.sb!xc:boole-c1 '(lognot x))
2645 (#.sb!xc:boole-c2 '(lognot y))
2646 (#.sb!xc:boole-and '(logand x y))
2647 (#.sb!xc:boole-ior '(logior x y))
2648 (#.sb!xc:boole-xor '(logxor x y))
2649 (#.sb!xc:boole-eqv '(logeqv x y))
2650 (#.sb!xc:boole-nand '(lognand x y))
2651 (#.sb!xc:boole-nor '(lognor x y))
2652 (#.sb!xc:boole-andc1 '(logandc1 x y))
2653 (#.sb!xc:boole-andc2 '(logandc2 x y))
2654 (#.sb!xc:boole-orc1 '(logorc1 x y))
2655 (#.sb!xc:boole-orc2 '(logorc2 x y))
2657 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2660 ;;;; converting special case multiply/divide to shifts
2662 ;;; If arg is a constant power of two, turn * into a shift.
2663 (deftransform * ((x y) (integer integer) *)
2664 "convert x*2^k to shift"
2665 (unless (constant-lvar-p y)
2666 (give-up-ir1-transform))
2667 (let* ((y (lvar-value y))
2669 (len (1- (integer-length y-abs))))
2670 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2671 (give-up-ir1-transform))
2676 ;;; If arg is a constant power of two, turn FLOOR into a shift and
2677 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
2679 (flet ((frob (y ceil-p)
2680 (unless (constant-lvar-p y)
2681 (give-up-ir1-transform))
2682 (let* ((y (lvar-value y))
2684 (len (1- (integer-length y-abs))))
2685 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2686 (give-up-ir1-transform))
2687 (let ((shift (- len))
2689 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
2690 `(let ((x (+ x ,delta)))
2692 `(values (ash (- x) ,shift)
2693 (- (- (logand (- x) ,mask)) ,delta))
2694 `(values (ash x ,shift)
2695 (- (logand x ,mask) ,delta))))))))
2696 (deftransform floor ((x y) (integer integer) *)
2697 "convert division by 2^k to shift"
2699 (deftransform ceiling ((x y) (integer integer) *)
2700 "convert division by 2^k to shift"
2703 ;;; Do the same for MOD.
2704 (deftransform mod ((x y) (integer integer) *)
2705 "convert remainder mod 2^k to LOGAND"
2706 (unless (constant-lvar-p y)
2707 (give-up-ir1-transform))
2708 (let* ((y (lvar-value y))
2710 (len (1- (integer-length y-abs))))
2711 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2712 (give-up-ir1-transform))
2713 (let ((mask (1- y-abs)))
2715 `(- (logand (- x) ,mask))
2716 `(logand x ,mask)))))
2718 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
2719 (deftransform truncate ((x y) (integer integer))
2720 "convert division by 2^k to shift"
2721 (unless (constant-lvar-p y)
2722 (give-up-ir1-transform))
2723 (let* ((y (lvar-value y))
2725 (len (1- (integer-length y-abs))))
2726 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2727 (give-up-ir1-transform))
2728 (let* ((shift (- len))
2731 (values ,(if (minusp y)
2733 `(- (ash (- x) ,shift)))
2734 (- (logand (- x) ,mask)))
2735 (values ,(if (minusp y)
2736 `(ash (- ,mask x) ,shift)
2738 (logand x ,mask))))))
2740 ;;; And the same for REM.
2741 (deftransform rem ((x y) (integer integer) *)
2742 "convert remainder mod 2^k to LOGAND"
2743 (unless (constant-lvar-p y)
2744 (give-up-ir1-transform))
2745 (let* ((y (lvar-value y))
2747 (len (1- (integer-length y-abs))))
2748 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2749 (give-up-ir1-transform))
2750 (let ((mask (1- y-abs)))
2752 (- (logand (- x) ,mask))
2753 (logand x ,mask)))))
2755 ;;;; arithmetic and logical identity operation elimination
2757 ;;; Flush calls to various arith functions that convert to the
2758 ;;; identity function or a constant.
2759 (macrolet ((def (name identity result)
2760 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
2761 "fold identity operations"
2768 (def logxor -1 (lognot x))
2771 (deftransform logand ((x y) (* (constant-arg t)) *)
2772 "fold identity operation"
2773 (let ((y (lvar-value y)))
2774 (unless (and (plusp y)
2775 (= y (1- (ash 1 (integer-length y)))))
2776 (give-up-ir1-transform))
2777 (unless (csubtypep (lvar-type x)
2778 (specifier-type `(integer 0 ,y)))
2779 (give-up-ir1-transform))
2782 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
2783 ;;; (* 0 -4.0) is -0.0.
2784 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
2785 "convert (- 0 x) to negate"
2787 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
2788 "convert (* x 0) to 0"
2791 ;;; Return T if in an arithmetic op including lvars X and Y, the
2792 ;;; result type is not affected by the type of X. That is, Y is at
2793 ;;; least as contagious as X.
2795 (defun not-more-contagious (x y)
2796 (declare (type continuation x y))
2797 (let ((x (lvar-type x))
2799 (values (type= (numeric-contagion x y)
2800 (numeric-contagion y y)))))
2801 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
2802 ;;; XXX needs more work as valid transforms are missed; some cases are
2803 ;;; specific to particular transform functions so the use of this
2804 ;;; function may need a re-think.
2805 (defun not-more-contagious (x y)
2806 (declare (type lvar x y))
2807 (flet ((simple-numeric-type (num)
2808 (and (numeric-type-p num)
2809 ;; Return non-NIL if NUM is integer, rational, or a float
2810 ;; of some type (but not FLOAT)
2811 (case (numeric-type-class num)
2815 (numeric-type-format num))
2818 (let ((x (lvar-type x))
2820 (if (and (simple-numeric-type x)
2821 (simple-numeric-type y))
2822 (values (type= (numeric-contagion x y)
2823 (numeric-contagion y y)))))))
2827 ;;; If y is not constant, not zerop, or is contagious, or a positive
2828 ;;; float +0.0 then give up.
2829 (deftransform + ((x y) (t (constant-arg t)) *)
2831 (let ((val (lvar-value y)))
2832 (unless (and (zerop val)
2833 (not (and (floatp val) (plusp (float-sign val))))
2834 (not-more-contagious y x))
2835 (give-up-ir1-transform)))
2840 ;;; If y is not constant, not zerop, or is contagious, or a negative
2841 ;;; float -0.0 then give up.
2842 (deftransform - ((x y) (t (constant-arg t)) *)
2844 (let ((val (lvar-value y)))
2845 (unless (and (zerop val)
2846 (not (and (floatp val) (minusp (float-sign val))))
2847 (not-more-contagious y x))
2848 (give-up-ir1-transform)))
2851 ;;; Fold (OP x +/-1)
2852 (macrolet ((def (name result minus-result)
2853 `(deftransform ,name ((x y) (t (constant-arg real)) *)
2854 "fold identity operations"
2855 (let ((val (lvar-value y)))
2856 (unless (and (= (abs val) 1)
2857 (not-more-contagious y x))
2858 (give-up-ir1-transform))
2859 (if (minusp val) ',minus-result ',result)))))
2860 (def * x (%negate x))
2861 (def / x (%negate x))
2862 (def expt x (/ 1 x)))
2864 ;;; Fold (expt x n) into multiplications for small integral values of
2865 ;;; N; convert (expt x 1/2) to sqrt.
2866 (deftransform expt ((x y) (t (constant-arg real)) *)
2867 "recode as multiplication or sqrt"
2868 (let ((val (lvar-value y)))
2869 ;; If Y would cause the result to be promoted to the same type as
2870 ;; Y, we give up. If not, then the result will be the same type
2871 ;; as X, so we can replace the exponentiation with simple
2872 ;; multiplication and division for small integral powers.
2873 (unless (not-more-contagious y x)
2874 (give-up-ir1-transform))
2876 (let ((x-type (lvar-type x)))
2877 (cond ((csubtypep x-type (specifier-type '(or rational
2878 (complex rational))))
2880 ((csubtypep x-type (specifier-type 'real))
2884 ((csubtypep x-type (specifier-type 'complex))
2885 ;; both parts are float
2887 (t (give-up-ir1-transform)))))
2888 ((= val 2) '(* x x))
2889 ((= val -2) '(/ (* x x)))
2890 ((= val 3) '(* x x x))
2891 ((= val -3) '(/ (* x x x)))
2892 ((= val 1/2) '(sqrt x))
2893 ((= val -1/2) '(/ (sqrt x)))
2894 (t (give-up-ir1-transform)))))
2896 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
2897 ;;; transformations?
2898 ;;; Perhaps we should have to prove that the denominator is nonzero before
2899 ;;; doing them? -- WHN 19990917
2900 (macrolet ((def (name)
2901 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
2908 (macrolet ((def (name)
2909 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
2918 ;;;; character operations
2920 (deftransform char-equal ((a b) (base-char base-char))
2922 '(let* ((ac (char-code a))
2924 (sum (logxor ac bc)))
2926 (when (eql sum #x20)
2927 (let ((sum (+ ac bc)))
2928 (and (> sum 161) (< sum 213)))))))
2930 (deftransform char-upcase ((x) (base-char))
2932 '(let ((n-code (char-code x)))
2933 (if (and (> n-code #o140) ; Octal 141 is #\a.
2934 (< n-code #o173)) ; Octal 172 is #\z.
2935 (code-char (logxor #x20 n-code))
2938 (deftransform char-downcase ((x) (base-char))
2940 '(let ((n-code (char-code x)))
2941 (if (and (> n-code 64) ; 65 is #\A.
2942 (< n-code 91)) ; 90 is #\Z.
2943 (code-char (logxor #x20 n-code))
2946 ;;;; equality predicate transforms
2948 ;;; Return true if X and Y are lvars whose only use is a
2949 ;;; reference to the same leaf, and the value of the leaf cannot
2951 (defun same-leaf-ref-p (x y)
2952 (declare (type lvar x y))
2953 (let ((x-use (principal-lvar-use x))
2954 (y-use (principal-lvar-use y)))
2957 (eq (ref-leaf x-use) (ref-leaf y-use))
2958 (constant-reference-p x-use))))
2960 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
2961 ;;; if there is no intersection between the types of the arguments,
2962 ;;; then the result is definitely false.
2963 (deftransform simple-equality-transform ((x y) * *
2965 (cond ((same-leaf-ref-p x y)
2967 ((not (types-equal-or-intersect (lvar-type x)
2971 (give-up-ir1-transform))))
2974 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
2979 ;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also
2980 ;;; try to convert to a type-specific predicate or EQ:
2981 ;;; -- If both args are characters, convert to CHAR=. This is better than
2982 ;;; just converting to EQ, since CHAR= may have special compilation
2983 ;;; strategies for non-standard representations, etc.
2984 ;;; -- If either arg is definitely not a number, then we can compare
2986 ;;; -- Otherwise, we try to put the arg we know more about second. If X
2987 ;;; is constant then we put it second. If X is a subtype of Y, we put
2988 ;;; it second. These rules make it easier for the back end to match
2989 ;;; these interesting cases.
2990 ;;; -- If Y is a fixnum, then we quietly pass because the back end can
2991 ;;; handle that case, otherwise give an efficiency note.
2992 (deftransform eql ((x y) * *)
2993 "convert to simpler equality predicate"
2994 (let ((x-type (lvar-type x))
2995 (y-type (lvar-type y))
2996 (char-type (specifier-type 'character))
2997 (number-type (specifier-type 'number)))
2998 (cond ((same-leaf-ref-p x y)
3000 ((not (types-equal-or-intersect x-type y-type))
3002 ((and (csubtypep x-type char-type)
3003 (csubtypep y-type char-type))
3005 ((or (not (types-equal-or-intersect x-type number-type))
3006 (not (types-equal-or-intersect y-type number-type)))
3008 ((and (not (constant-lvar-p y))
3009 (or (constant-lvar-p x)
3010 (and (csubtypep x-type y-type)
3011 (not (csubtypep y-type x-type)))))
3014 (give-up-ir1-transform)))))
3016 ;;; Convert to EQL if both args are rational and complexp is specified
3017 ;;; and the same for both.
3018 (deftransform = ((x y) * *)
3020 (let ((x-type (lvar-type x))
3021 (y-type (lvar-type y)))
3022 (if (and (csubtypep x-type (specifier-type 'number))
3023 (csubtypep y-type (specifier-type 'number)))
3024 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3025 (csubtypep y-type (specifier-type 'float)))
3026 (and (csubtypep x-type (specifier-type '(complex float)))
3027 (csubtypep y-type (specifier-type '(complex float)))))
3028 ;; They are both floats. Leave as = so that -0.0 is
3029 ;; handled correctly.
3030 (give-up-ir1-transform))
3031 ((or (and (csubtypep x-type (specifier-type 'rational))
3032 (csubtypep y-type (specifier-type 'rational)))
3033 (and (csubtypep x-type
3034 (specifier-type '(complex rational)))
3036 (specifier-type '(complex rational)))))
3037 ;; They are both rationals and complexp is the same.
3041 (give-up-ir1-transform
3042 "The operands might not be the same type.")))
3043 (give-up-ir1-transform
3044 "The operands might not be the same type."))))
3046 ;;; If LVAR's type is a numeric type, then return the type, otherwise
3047 ;;; GIVE-UP-IR1-TRANSFORM.
3048 (defun numeric-type-or-lose (lvar)
3049 (declare (type lvar lvar))
3050 (let ((res (lvar-type lvar)))
3051 (unless (numeric-type-p res) (give-up-ir1-transform))
3054 ;;; See whether we can statically determine (< X Y) using type
3055 ;;; information. If X's high bound is < Y's low, then X < Y.
3056 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3057 ;;; NIL). If not, at least make sure any constant arg is second.
3058 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3059 `(deftransform ,name ((x y))
3060 (if (same-leaf-ref-p x y)
3062 (let ((ix (or (type-approximate-interval (lvar-type x))
3063 (give-up-ir1-transform)))
3064 (iy (or (type-approximate-interval (lvar-type y))
3065 (give-up-ir1-transform))))
3070 ((and (constant-lvar-p x)
3071 (not (constant-lvar-p y)))
3074 (give-up-ir1-transform))))))))
3075 (def < > nil (interval-< ix iy) (interval->= ix iy))
3076 (def > < nil (interval-< iy ix) (interval->= iy ix))
3077 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3078 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3080 (defun ir1-transform-char< (x y first second inverse)
3082 ((same-leaf-ref-p x y) nil)
3083 ;; If we had interval representation of character types, as we
3084 ;; might eventually have to to support 2^21 characters, then here
3085 ;; we could do some compile-time computation as in transforms for
3086 ;; < above. -- CSR, 2003-07-01
3087 ((and (constant-lvar-p first)
3088 (not (constant-lvar-p second)))
3090 (t (give-up-ir1-transform))))
3092 (deftransform char< ((x y) (character character) *)
3093 (ir1-transform-char< x y x y 'char>))
3095 (deftransform char> ((x y) (character character) *)
3096 (ir1-transform-char< y x x y 'char<))
3098 ;;;; converting N-arg comparisons
3100 ;;;; We convert calls to N-arg comparison functions such as < into
3101 ;;;; two-arg calls. This transformation is enabled for all such
3102 ;;;; comparisons in this file. If any of these predicates are not
3103 ;;;; open-coded, then the transformation should be removed at some
3104 ;;;; point to avoid pessimization.
3106 ;;; This function is used for source transformation of N-arg
3107 ;;; comparison functions other than inequality. We deal both with
3108 ;;; converting to two-arg calls and inverting the sense of the test,
3109 ;;; if necessary. If the call has two args, then we pass or return a
3110 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3111 ;;; then we transform to code that returns true. Otherwise, we bind
3112 ;;; all the arguments and expand into a bunch of IFs.
3113 (declaim (ftype (function (symbol list boolean t) *) multi-compare))
3114 (defun multi-compare (predicate args not-p type)
3115 (let ((nargs (length args)))
3116 (cond ((< nargs 1) (values nil t))
3117 ((= nargs 1) `(progn (the ,type ,@args) t))
3120 `(if (,predicate ,(first args) ,(second args)) nil t)
3123 (do* ((i (1- nargs) (1- i))
3125 (current (gensym) (gensym))
3126 (vars (list current) (cons current vars))
3128 `(if (,predicate ,current ,last)
3130 `(if (,predicate ,current ,last)
3133 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3136 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3137 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3138 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3139 (define-source-transform <= (&rest args) (multi-compare '> args t 'real))
3140 (define-source-transform >= (&rest args) (multi-compare '< args t 'real))
3142 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3144 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3146 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3148 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3150 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3153 (define-source-transform char-equal (&rest args)
3154 (multi-compare 'char-equal args nil 'character))
3155 (define-source-transform char-lessp (&rest args)
3156 (multi-compare 'char-lessp args nil 'character))
3157 (define-source-transform char-greaterp (&rest args)
3158 (multi-compare 'char-greaterp args nil 'character))
3159 (define-source-transform char-not-greaterp (&rest args)
3160 (multi-compare 'char-greaterp args t 'character))
3161 (define-source-transform char-not-lessp (&rest args)
3162 (multi-compare 'char-lessp args t 'character))
3164 ;;; This function does source transformation of N-arg inequality
3165 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3166 ;;; arg cases. If there are more than two args, then we expand into
3167 ;;; the appropriate n^2 comparisons only when speed is important.
3168 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3169 (defun multi-not-equal (predicate args type)
3170 (let ((nargs (length args)))
3171 (cond ((< nargs 1) (values nil t))
3172 ((= nargs 1) `(progn (the ,type ,@args) t))
3174 `(if (,predicate ,(first args) ,(second args)) nil t))
3175 ((not (policy *lexenv*
3176 (and (>= speed space)
3177 (>= speed compilation-speed))))
3180 (let ((vars (make-gensym-list nargs)))
3181 (do ((var vars next)
3182 (next (cdr vars) (cdr next))
3185 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3187 (let ((v1 (first var)))
3189 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3191 (define-source-transform /= (&rest args)
3192 (multi-not-equal '= args 'number))
3193 (define-source-transform char/= (&rest args)
3194 (multi-not-equal 'char= args 'character))
3195 (define-source-transform char-not-equal (&rest args)
3196 (multi-not-equal 'char-equal args 'character))
3198 ;;; Expand MAX and MIN into the obvious comparisons.
3199 (define-source-transform max (arg0 &rest rest)
3200 (once-only ((arg0 arg0))
3202 `(values (the real ,arg0))
3203 `(let ((maxrest (max ,@rest)))
3204 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3205 (define-source-transform min (arg0 &rest rest)
3206 (once-only ((arg0 arg0))
3208 `(values (the real ,arg0))
3209 `(let ((minrest (min ,@rest)))
3210 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3212 ;;;; converting N-arg arithmetic functions
3214 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3215 ;;;; versions, and degenerate cases are flushed.
3217 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3218 (declaim (ftype (function (symbol t list) list) associate-args))
3219 (defun associate-args (function first-arg more-args)
3220 (let ((next (rest more-args))
3221 (arg (first more-args)))
3223 `(,function ,first-arg ,arg)
3224 (associate-args function `(,function ,first-arg ,arg) next))))
3226 ;;; Do source transformations for transitive functions such as +.
3227 ;;; One-arg cases are replaced with the arg and zero arg cases with
3228 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3229 ;;; ensure (with THE) that the argument in one-argument calls is.
3230 (defun source-transform-transitive (fun args identity
3231 &optional one-arg-result-type)
3232 (declare (symbol fun) (list args))
3235 (1 (if one-arg-result-type
3236 `(values (the ,one-arg-result-type ,(first args)))
3237 `(values ,(first args))))
3240 (associate-args fun (first args) (rest args)))))
3242 (define-source-transform + (&rest args)
3243 (source-transform-transitive '+ args 0 'number))
3244 (define-source-transform * (&rest args)
3245 (source-transform-transitive '* args 1 'number))
3246 (define-source-transform logior (&rest args)
3247 (source-transform-transitive 'logior args 0 'integer))
3248 (define-source-transform logxor (&rest args)
3249 (source-transform-transitive 'logxor args 0 'integer))
3250 (define-source-transform logand (&rest args)
3251 (source-transform-transitive 'logand args -1 'integer))
3252 (define-source-transform logeqv (&rest args)
3253 (source-transform-transitive 'logeqv args -1 'integer))
3255 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3256 ;;; because when they are given one argument, they return its absolute
3259 (define-source-transform gcd (&rest args)
3262 (1 `(abs (the integer ,(first args))))
3264 (t (associate-args 'gcd (first args) (rest args)))))
3266 (define-source-transform lcm (&rest args)
3269 (1 `(abs (the integer ,(first args))))
3271 (t (associate-args 'lcm (first args) (rest args)))))
3273 ;;; Do source transformations for intransitive n-arg functions such as
3274 ;;; /. With one arg, we form the inverse. With two args we pass.
3275 ;;; Otherwise we associate into two-arg calls.
3276 (declaim (ftype (function (symbol list t)
3277 (values list &optional (member nil t)))
3278 source-transform-intransitive))
3279 (defun source-transform-intransitive (function args inverse)
3281 ((0 2) (values nil t))
3282 (1 `(,@inverse ,(first args)))
3283 (t (associate-args function (first args) (rest args)))))
3285 (define-source-transform - (&rest args)
3286 (source-transform-intransitive '- args '(%negate)))
3287 (define-source-transform / (&rest args)
3288 (source-transform-intransitive '/ args '(/ 1)))
3290 ;;;; transforming APPLY
3292 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3293 ;;; only needs to understand one kind of variable-argument call. It is
3294 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3295 (define-source-transform apply (fun arg &rest more-args)
3296 (let ((args (cons arg more-args)))
3297 `(multiple-value-call ,fun
3298 ,@(mapcar (lambda (x)
3301 (values-list ,(car (last args))))))
3303 ;;;; transforming FORMAT
3305 ;;;; If the control string is a compile-time constant, then replace it
3306 ;;;; with a use of the FORMATTER macro so that the control string is
3307 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3308 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3309 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3311 ;;; for compile-time argument count checking.
3313 ;;; FIXME II: In some cases, type information could be correlated; for
3314 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3315 ;;; of a corresponding argument is known and does not intersect the
3316 ;;; list type, a warning could be signalled.
3317 (defun check-format-args (string args fun)
3318 (declare (type string string))
3319 (unless (typep string 'simple-string)
3320 (setq string (coerce string 'simple-string)))
3321 (multiple-value-bind (min max)
3322 (handler-case (sb!format:%compiler-walk-format-string string args)
3323 (sb!format:format-error (c)
3324 (compiler-warn "~A" c)))
3326 (let ((nargs (length args)))
3329 (warn 'format-too-few-args-warning
3331 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3332 :format-arguments (list nargs fun string min)))
3334 (warn 'format-too-many-args-warning
3336 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3337 :format-arguments (list nargs fun string max))))))))
3339 (defoptimizer (format optimizer) ((dest control &rest args))
3340 (when (constant-lvar-p control)
3341 (let ((x (lvar-value control)))
3343 (check-format-args x args 'format)))))
3345 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3346 :policy (> speed space))
3347 (unless (constant-lvar-p control)
3348 (give-up-ir1-transform "The control string is not a constant."))
3349 (let ((arg-names (make-gensym-list (length args))))
3350 `(lambda (dest control ,@arg-names)
3351 (declare (ignore control))
3352 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3354 (deftransform format ((stream control &rest args) (stream function &rest t) *
3355 :policy (> speed space))
3356 (let ((arg-names (make-gensym-list (length args))))
3357 `(lambda (stream control ,@arg-names)
3358 (funcall control stream ,@arg-names)
3361 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3362 :policy (> speed space))
3363 (let ((arg-names (make-gensym-list (length args))))
3364 `(lambda (tee control ,@arg-names)
3365 (declare (ignore tee))
3366 (funcall control *standard-output* ,@arg-names)
3371 `(defoptimizer (,name optimizer) ((control &rest args))
3372 (when (constant-lvar-p control)
3373 (let ((x (lvar-value control)))
3375 (check-format-args x args ',name)))))))
3378 #+sb-xc-host ; Only we should be using these
3381 (def compiler-abort)
3382 (def compiler-error)
3384 (def compiler-style-warn)
3385 (def compiler-notify)
3386 (def maybe-compiler-notify)
3389 (defoptimizer (cerror optimizer) ((report control &rest args))
3390 (when (and (constant-lvar-p control)
3391 (constant-lvar-p report))
3392 (let ((x (lvar-value control))
3393 (y (lvar-value report)))
3394 (when (and (stringp x) (stringp y))
3395 (multiple-value-bind (min1 max1)
3397 (sb!format:%compiler-walk-format-string x args)
3398 (sb!format:format-error (c)
3399 (compiler-warn "~A" c)))
3401 (multiple-value-bind (min2 max2)
3403 (sb!format:%compiler-walk-format-string y args)
3404 (sb!format:format-error (c)
3405 (compiler-warn "~A" c)))
3407 (let ((nargs (length args)))
3409 ((< nargs (min min1 min2))
3410 (warn 'format-too-few-args-warning
3412 "Too few arguments (~D) to ~S ~S ~S: ~
3413 requires at least ~D."
3415 (list nargs 'cerror y x (min min1 min2))))
3416 ((> nargs (max max1 max2))
3417 (warn 'format-too-many-args-warning
3419 "Too many arguments (~D) to ~S ~S ~S: ~
3422 (list nargs 'cerror y x (max max1 max2))))))))))))))
3424 (defoptimizer (coerce derive-type) ((value type))
3426 ((constant-lvar-p type)
3427 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3428 ;; but dealing with the niggle that complex canonicalization gets
3429 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3431 (let* ((specifier (lvar-value type))
3432 (result-typeoid (careful-specifier-type specifier)))
3434 ((null result-typeoid) nil)
3435 ((csubtypep result-typeoid (specifier-type 'number))
3436 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3437 ;; Rule of Canonical Representation for Complex Rationals,
3438 ;; which is a truly nasty delivery to field.
3440 ((csubtypep result-typeoid (specifier-type 'real))
3441 ;; cleverness required here: it would be nice to deduce
3442 ;; that something of type (INTEGER 2 3) coerced to type
3443 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3444 ;; FLOAT gets its own clause because it's implemented as
3445 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3448 ((and (numeric-type-p result-typeoid)
3449 (eq (numeric-type-complexp result-typeoid) :real))
3450 ;; FIXME: is this clause (a) necessary or (b) useful?
3452 ((or (csubtypep result-typeoid
3453 (specifier-type '(complex single-float)))
3454 (csubtypep result-typeoid
3455 (specifier-type '(complex double-float)))
3457 (csubtypep result-typeoid
3458 (specifier-type '(complex long-float))))
3459 ;; float complex types are never canonicalized.
3462 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3463 ;; probably just a COMPLEX or equivalent. So, in that
3464 ;; case, we will return a complex or an object of the
3465 ;; provided type if it's rational:
3466 (type-union result-typeoid
3467 (type-intersection (lvar-type value)
3468 (specifier-type 'rational))))))
3469 (t result-typeoid))))
3471 ;; OK, the result-type argument isn't constant. However, there
3472 ;; are common uses where we can still do better than just
3473 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3474 ;; where Y is of a known type. See messages on cmucl-imp
3475 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3476 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3477 ;; the basis that it's unlikely that other uses are both
3478 ;; time-critical and get to this branch of the COND (non-constant
3479 ;; second argument to COERCE). -- CSR, 2002-12-16
3480 (let ((value-type (lvar-type value))
3481 (type-type (lvar-type type)))
3483 ((good-cons-type-p (cons-type)
3484 ;; Make sure the cons-type we're looking at is something
3485 ;; we're prepared to handle which is basically something
3486 ;; that array-element-type can return.
3487 (or (and (member-type-p cons-type)
3488 (null (rest (member-type-members cons-type)))
3489 (null (first (member-type-members cons-type))))
3490 (let ((car-type (cons-type-car-type cons-type)))
3491 (and (member-type-p car-type)
3492 (null (rest (member-type-members car-type)))
3493 (or (symbolp (first (member-type-members car-type)))
3494 (numberp (first (member-type-members car-type)))
3495 (and (listp (first (member-type-members
3497 (numberp (first (first (member-type-members
3499 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3500 (unconsify-type (good-cons-type)
3501 ;; Convert the "printed" respresentation of a cons
3502 ;; specifier into a type specifier. That is, the
3503 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3504 ;; NULL)) is converted to (SIGNED-BYTE 16).
3505 (cond ((or (null good-cons-type)
3506 (eq good-cons-type 'null))
3508 ((and (eq (first good-cons-type) 'cons)
3509 (eq (first (second good-cons-type)) 'member))
3510 `(,(second (second good-cons-type))
3511 ,@(unconsify-type (caddr good-cons-type))))))
3512 (coerceable-p (c-type)
3513 ;; Can the value be coerced to the given type? Coerce is
3514 ;; complicated, so we don't handle every possible case
3515 ;; here---just the most common and easiest cases:
3517 ;; * Any REAL can be coerced to a FLOAT type.
3518 ;; * Any NUMBER can be coerced to a (COMPLEX
3519 ;; SINGLE/DOUBLE-FLOAT).
3521 ;; FIXME I: we should also be able to deal with characters
3524 ;; FIXME II: I'm not sure that anything is necessary
3525 ;; here, at least while COMPLEX is not a specialized
3526 ;; array element type in the system. Reasoning: if
3527 ;; something cannot be coerced to the requested type, an
3528 ;; error will be raised (and so any downstream compiled
3529 ;; code on the assumption of the returned type is
3530 ;; unreachable). If something can, then it will be of
3531 ;; the requested type, because (by assumption) COMPLEX
3532 ;; (and other difficult types like (COMPLEX INTEGER)
3533 ;; aren't specialized types.
3534 (let ((coerced-type c-type))
3535 (or (and (subtypep coerced-type 'float)
3536 (csubtypep value-type (specifier-type 'real)))
3537 (and (subtypep coerced-type
3538 '(or (complex single-float)
3539 (complex double-float)))
3540 (csubtypep value-type (specifier-type 'number))))))
3541 (process-types (type)
3542 ;; FIXME: This needs some work because we should be able
3543 ;; to derive the resulting type better than just the
3544 ;; type arg of coerce. That is, if X is (INTEGER 10
3545 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3546 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3548 (cond ((member-type-p type)
3549 (let ((members (member-type-members type)))
3550 (if (every #'coerceable-p members)
3551 (specifier-type `(or ,@members))
3553 ((and (cons-type-p type)
3554 (good-cons-type-p type))
3555 (let ((c-type (unconsify-type (type-specifier type))))
3556 (if (coerceable-p c-type)
3557 (specifier-type c-type)
3560 *universal-type*))))
3561 (cond ((union-type-p type-type)
3562 (apply #'type-union (mapcar #'process-types
3563 (union-type-types type-type))))
3564 ((or (member-type-p type-type)
3565 (cons-type-p type-type))
3566 (process-types type-type))
3568 *universal-type*)))))))
3570 (defoptimizer (compile derive-type) ((nameoid function))
3571 (when (csubtypep (lvar-type nameoid)
3572 (specifier-type 'null))
3573 (values-specifier-type '(values function boolean boolean))))
3575 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3576 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3577 ;;; optimizer, above).
3578 (defoptimizer (array-element-type derive-type) ((array))
3579 (let ((array-type (lvar-type array)))
3580 (labels ((consify (list)
3583 `(cons (eql ,(car list)) ,(consify (rest list)))))
3584 (get-element-type (a)
3586 (type-specifier (array-type-specialized-element-type a))))
3587 (cond ((eq element-type '*)
3588 (specifier-type 'type-specifier))
3589 ((symbolp element-type)
3590 (make-member-type :members (list element-type)))
3591 ((consp element-type)
3592 (specifier-type (consify element-type)))
3594 (error "can't understand type ~S~%" element-type))))))
3595 (cond ((array-type-p array-type)
3596 (get-element-type array-type))
3597 ((union-type-p array-type)
3599 (mapcar #'get-element-type (union-type-types array-type))))
3601 *universal-type*)))))
3603 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3604 ;;; isn't really related to the CMU CL code, since instead of trying
3605 ;;; to generalize the CMU CL code to allow START and END values, this
3606 ;;; code has been written from scratch following Chapter 7 of
3607 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3608 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
3609 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3610 ;; isn't really related to the CMU CL code, since instead of trying
3611 ;; to generalize the CMU CL code to allow START and END values, this
3612 ;; code has been written from scratch following Chapter 7 of
3613 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3614 `(macrolet ((%index (x) `(truly-the index ,x))
3615 (%parent (i) `(ash ,i -1))
3616 (%left (i) `(%index (ash ,i 1)))
3617 (%right (i) `(%index (1+ (ash ,i 1))))
3620 (left (%left i) (%left i)))
3621 ((> left current-heap-size))
3622 (declare (type index i left))
3623 (let* ((i-elt (%elt i))
3624 (i-key (funcall keyfun i-elt))
3625 (left-elt (%elt left))
3626 (left-key (funcall keyfun left-elt)))
3627 (multiple-value-bind (large large-elt large-key)
3628 (if (funcall ,',predicate i-key left-key)
3629 (values left left-elt left-key)
3630 (values i i-elt i-key))
3631 (let ((right (%right i)))
3632 (multiple-value-bind (largest largest-elt)
3633 (if (> right current-heap-size)
3634 (values large large-elt)
3635 (let* ((right-elt (%elt right))
3636 (right-key (funcall keyfun right-elt)))
3637 (if (funcall ,',predicate large-key right-key)
3638 (values right right-elt)
3639 (values large large-elt))))
3640 (cond ((= largest i)
3643 (setf (%elt i) largest-elt
3644 (%elt largest) i-elt
3646 (%sort-vector (keyfun &optional (vtype 'vector))
3647 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
3648 ;; trouble getting type inference to
3649 ;; propagate all the way through this
3650 ;; tangled mess of inlining. The TRULY-THE
3651 ;; here works around that. -- WHN
3653 `(aref (truly-the ,',vtype ,',',vector)
3654 (%index (+ (%index ,i) start-1)))))
3655 (let (;; Heaps prefer 1-based addressing.
3656 (start-1 (1- ,',start))
3657 (current-heap-size (- ,',end ,',start))
3659 (declare (type (integer -1 #.(1- most-positive-fixnum))
3661 (declare (type index current-heap-size))
3662 (declare (type function keyfun))
3663 (loop for i of-type index
3664 from (ash current-heap-size -1) downto 1 do
3667 (when (< current-heap-size 2)
3669 (rotatef (%elt 1) (%elt current-heap-size))
3670 (decf current-heap-size)
3672 (if (typep ,vector 'simple-vector)
3673 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
3674 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
3676 ;; Special-casing the KEY=NIL case lets us avoid some
3678 (%sort-vector #'identity simple-vector)
3679 (%sort-vector ,key simple-vector))
3680 ;; It's hard to anticipate many speed-critical applications for
3681 ;; sorting vector types other than (VECTOR T), so we just lump
3682 ;; them all together in one slow dynamically typed mess.
3684 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
3685 (%sort-vector (or ,key #'identity))))))
3687 ;;;; debuggers' little helpers
3689 ;;; for debugging when transforms are behaving mysteriously,
3690 ;;; e.g. when debugging a problem with an ASH transform
3691 ;;; (defun foo (&optional s)
3692 ;;; (sb-c::/report-lvar s "S outside WHEN")
3693 ;;; (when (and (integerp s) (> s 3))
3694 ;;; (sb-c::/report-lvar s "S inside WHEN")
3695 ;;; (let ((bound (ash 1 (1- s))))
3696 ;;; (sb-c::/report-lvar bound "BOUND")
3697 ;;; (let ((x (- bound))
3699 ;;; (sb-c::/report-lvar x "X")
3700 ;;; (sb-c::/report-lvar x "Y"))
3701 ;;; `(integer ,(- bound) ,(1- bound)))))
3702 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
3703 ;;; and the function doesn't do anything at all.)
3706 (defknown /report-lvar (t t) null)
3707 (deftransform /report-lvar ((x message) (t t))
3708 (format t "~%/in /REPORT-LVAR~%")
3709 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
3710 (when (constant-lvar-p x)
3711 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
3712 (format t "/MESSAGE=~S~%" (lvar-value message))
3713 (give-up-ir1-transform "not a real transform"))
3714 (defun /report-lvar (x message)
3715 (declare (ignore x message))))