1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the values and make a closure that returns them.
33 (define-source-transform constantly (value)
34 (let ((rest (gensym "CONSTANTLY-REST-")))
35 `(lambda (&rest ,rest)
36 (declare (ignore ,rest))
39 ;;; If the function has a known number of arguments, then return a
40 ;;; lambda with the appropriate fixed number of args. If the
41 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
42 ;;; MV optimization figure things out.
43 (deftransform complement ((fun) * * :node node)
45 (multiple-value-bind (min max)
46 (fun-type-nargs (continuation-type fun))
48 ((and min (eql min max))
49 (let ((dums (make-gensym-list min)))
50 `#'(lambda ,dums (not (funcall fun ,@dums)))))
51 ((let* ((cont (node-cont node))
52 (dest (continuation-dest cont)))
53 (and (combination-p dest)
54 (eq (combination-fun dest) cont)))
55 '#'(lambda (&rest args)
56 (not (apply fun args))))
58 (give-up-ir1-transform
59 "The function doesn't have a fixed argument count.")))))
63 ;;; Translate CxR into CAR/CDR combos.
64 (defun source-transform-cxr (form)
65 (if (/= (length form) 2)
67 (let ((name (symbol-name (car form))))
68 (do ((i (- (length name) 2) (1- i))
70 `(,(ecase (char name i)
76 ;;; Make source transforms to turn CxR forms into combinations of CAR
77 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
79 (/show0 "about to set CxR source transforms")
80 (loop for i of-type index from 2 upto 4 do
81 ;; Iterate over BUF = all names CxR where x = an I-element
82 ;; string of #\A or #\D characters.
83 (let ((buf (make-string (+ 2 i))))
84 (setf (aref buf 0) #\C
85 (aref buf (1+ i)) #\R)
86 (dotimes (j (ash 2 i))
87 (declare (type index j))
89 (declare (type index k))
90 (setf (aref buf (1+ k))
91 (if (logbitp k j) #\A #\D)))
92 (setf (info :function :source-transform (intern buf))
93 #'source-transform-cxr))))
94 (/show0 "done setting CxR source transforms")
96 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
97 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
98 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
100 (define-source-transform first (x) `(car ,x))
101 (define-source-transform rest (x) `(cdr ,x))
102 (define-source-transform second (x) `(cadr ,x))
103 (define-source-transform third (x) `(caddr ,x))
104 (define-source-transform fourth (x) `(cadddr ,x))
105 (define-source-transform fifth (x) `(nth 4 ,x))
106 (define-source-transform sixth (x) `(nth 5 ,x))
107 (define-source-transform seventh (x) `(nth 6 ,x))
108 (define-source-transform eighth (x) `(nth 7 ,x))
109 (define-source-transform ninth (x) `(nth 8 ,x))
110 (define-source-transform tenth (x) `(nth 9 ,x))
112 ;;; Translate RPLACx to LET and SETF.
113 (define-source-transform rplaca (x y)
118 (define-source-transform rplacd (x y)
124 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
126 (defvar *default-nthcdr-open-code-limit* 6)
127 (defvar *extreme-nthcdr-open-code-limit* 20)
129 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
130 "convert NTHCDR to CAxxR"
131 (unless (constant-continuation-p n)
132 (give-up-ir1-transform))
133 (let ((n (continuation-value n)))
135 (if (policy node (and (= speed 3) (= space 0)))
136 *extreme-nthcdr-open-code-limit*
137 *default-nthcdr-open-code-limit*))
138 (give-up-ir1-transform))
143 `(cdr ,(frob (1- n))))))
146 ;;;; arithmetic and numerology
148 (define-source-transform plusp (x) `(> ,x 0))
149 (define-source-transform minusp (x) `(< ,x 0))
150 (define-source-transform zerop (x) `(= ,x 0))
152 (define-source-transform 1+ (x) `(+ ,x 1))
153 (define-source-transform 1- (x) `(- ,x 1))
155 (define-source-transform oddp (x) `(not (zerop (logand ,x 1))))
156 (define-source-transform evenp (x) `(zerop (logand ,x 1)))
158 ;;; Note that all the integer division functions are available for
159 ;;; inline expansion.
161 (macrolet ((deffrob (fun)
162 `(define-source-transform ,fun (x &optional (y nil y-p))
169 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
171 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
174 (define-source-transform lognand (x y) `(lognot (logand ,x ,y)))
175 (define-source-transform lognor (x y) `(lognot (logior ,x ,y)))
176 (define-source-transform logandc1 (x y) `(logand (lognot ,x) ,y))
177 (define-source-transform logandc2 (x y) `(logand ,x (lognot ,y)))
178 (define-source-transform logorc1 (x y) `(logior (lognot ,x) ,y))
179 (define-source-transform logorc2 (x y) `(logior ,x (lognot ,y)))
180 (define-source-transform logtest (x y) `(not (zerop (logand ,x ,y))))
181 (define-source-transform logbitp (index integer)
182 `(not (zerop (logand (ash 1 ,index) ,integer))))
183 (define-source-transform byte (size position)
184 `(cons ,size ,position))
185 (define-source-transform byte-size (spec) `(car ,spec))
186 (define-source-transform byte-position (spec) `(cdr ,spec))
187 (define-source-transform ldb-test (bytespec integer)
188 `(not (zerop (mask-field ,bytespec ,integer))))
190 ;;; With the ratio and complex accessors, we pick off the "identity"
191 ;;; case, and use a primitive to handle the cell access case.
192 (define-source-transform numerator (num)
193 (once-only ((n-num `(the rational ,num)))
197 (define-source-transform denominator (num)
198 (once-only ((n-num `(the rational ,num)))
200 (%denominator ,n-num)
203 ;;;; interval arithmetic for computing bounds
205 ;;;; This is a set of routines for operating on intervals. It
206 ;;;; implements a simple interval arithmetic package. Although SBCL
207 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
208 ;;;; for two reasons:
210 ;;;; 1. This package is simpler than NUMERIC-TYPE.
212 ;;;; 2. It makes debugging much easier because you can just strip
213 ;;;; out these routines and test them independently of SBCL. (This is a
216 ;;;; One disadvantage is a probable increase in consing because we
217 ;;;; have to create these new interval structures even though
218 ;;;; numeric-type has everything we want to know. Reason 2 wins for
221 ;;; The basic interval type. It can handle open and closed intervals.
222 ;;; A bound is open if it is a list containing a number, just like
223 ;;; Lisp says. NIL means unbounded.
224 (defstruct (interval (:constructor %make-interval)
228 (defun make-interval (&key low high)
229 (labels ((normalize-bound (val)
230 (cond ((and (floatp val)
231 (float-infinity-p val))
232 ;; Handle infinities.
236 ;; Handle any closed bounds.
239 ;; We have an open bound. Normalize the numeric
240 ;; bound. If the normalized bound is still a number
241 ;; (not nil), keep the bound open. Otherwise, the
242 ;; bound is really unbounded, so drop the openness.
243 (let ((new-val (normalize-bound (first val))))
245 ;; The bound exists, so keep it open still.
248 (error "unknown bound type in MAKE-INTERVAL")))))
249 (%make-interval :low (normalize-bound low)
250 :high (normalize-bound high))))
252 ;;; Given a number X, create a form suitable as a bound for an
253 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
254 #!-sb-fluid (declaim (inline set-bound))
255 (defun set-bound (x open-p)
256 (if (and x open-p) (list x) x))
258 ;;; Apply the function F to a bound X. If X is an open bound, then
259 ;;; the result will be open. IF X is NIL, the result is NIL.
260 (defun bound-func (f x)
262 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
263 ;; With these traps masked, we might get things like infinity
264 ;; or negative infinity returned. Check for this and return
265 ;; NIL to indicate unbounded.
266 (let ((y (funcall f (type-bound-number x))))
268 (float-infinity-p y))
270 (set-bound (funcall f (type-bound-number x)) (consp x)))))))
272 ;;; Apply a binary operator OP to two bounds X and Y. The result is
273 ;;; NIL if either is NIL. Otherwise bound is computed and the result
274 ;;; is open if either X or Y is open.
276 ;;; FIXME: only used in this file, not needed in target runtime
277 (defmacro bound-binop (op x y)
279 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
280 (set-bound (,op (type-bound-number ,x)
281 (type-bound-number ,y))
282 (or (consp ,x) (consp ,y))))))
284 ;;; Convert a numeric-type object to an interval object.
285 (defun numeric-type->interval (x)
286 (declare (type numeric-type x))
287 (make-interval :low (numeric-type-low x)
288 :high (numeric-type-high x)))
290 (defun copy-interval-limit (limit)
295 (defun copy-interval (x)
296 (declare (type interval x))
297 (make-interval :low (copy-interval-limit (interval-low x))
298 :high (copy-interval-limit (interval-high x))))
300 ;;; Given a point P contained in the interval X, split X into two
301 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
302 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
303 ;;; contains P. You can specify both to be T or NIL.
304 (defun interval-split (p x &optional close-lower close-upper)
305 (declare (type number p)
307 (list (make-interval :low (copy-interval-limit (interval-low x))
308 :high (if close-lower p (list p)))
309 (make-interval :low (if close-upper (list p) p)
310 :high (copy-interval-limit (interval-high x)))))
312 ;;; Return the closure of the interval. That is, convert open bounds
313 ;;; to closed bounds.
314 (defun interval-closure (x)
315 (declare (type interval x))
316 (make-interval :low (type-bound-number (interval-low x))
317 :high (type-bound-number (interval-high x))))
319 (defun signed-zero->= (x y)
323 (>= (float-sign (float x))
324 (float-sign (float y))))))
326 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
327 ;;; '-. Otherwise return NIL.
329 (defun interval-range-info (x &optional (point 0))
330 (declare (type interval x))
331 (let ((lo (interval-low x))
332 (hi (interval-high x)))
333 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
335 ((and hi (signed-zero->= point (type-bound-number hi)))
339 (defun interval-range-info (x &optional (point 0))
340 (declare (type interval x))
341 (labels ((signed->= (x y)
342 (if (and (zerop x) (zerop y) (floatp x) (floatp y))
343 (>= (float-sign x) (float-sign y))
345 (let ((lo (interval-low x))
346 (hi (interval-high x)))
347 (cond ((and lo (signed->= (type-bound-number lo) point))
349 ((and hi (signed->= point (type-bound-number hi)))
354 ;;; Test to see whether the interval X is bounded. HOW determines the
355 ;;; test, and should be either ABOVE, BELOW, or BOTH.
356 (defun interval-bounded-p (x how)
357 (declare (type interval x))
364 (and (interval-low x) (interval-high x)))))
366 ;;; signed zero comparison functions. Use these functions if we need
367 ;;; to distinguish between signed zeroes.
368 (defun signed-zero-< (x y)
372 (< (float-sign (float x))
373 (float-sign (float y))))))
374 (defun signed-zero-> (x y)
378 (> (float-sign (float x))
379 (float-sign (float y))))))
380 (defun signed-zero-= (x y)
383 (= (float-sign (float x))
384 (float-sign (float y)))))
385 (defun signed-zero-<= (x y)
389 (<= (float-sign (float x))
390 (float-sign (float y))))))
392 ;;; See whether the interval X contains the number P, taking into
393 ;;; account that the interval might not be closed.
394 (defun interval-contains-p (p x)
395 (declare (type number p)
397 ;; Does the interval X contain the number P? This would be a lot
398 ;; easier if all intervals were closed!
399 (let ((lo (interval-low x))
400 (hi (interval-high x)))
402 ;; The interval is bounded
403 (if (and (signed-zero-<= (type-bound-number lo) p)
404 (signed-zero-<= p (type-bound-number hi)))
405 ;; P is definitely in the closure of the interval.
406 ;; We just need to check the end points now.
407 (cond ((signed-zero-= p (type-bound-number lo))
409 ((signed-zero-= p (type-bound-number hi))
414 ;; Interval with upper bound
415 (if (signed-zero-< p (type-bound-number hi))
417 (and (numberp hi) (signed-zero-= p hi))))
419 ;; Interval with lower bound
420 (if (signed-zero-> p (type-bound-number lo))
422 (and (numberp lo) (signed-zero-= p lo))))
424 ;; Interval with no bounds
427 ;;; Determine whether two intervals X and Y intersect. Return T if so.
428 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
429 ;;; were closed. Otherwise the intervals are treated as they are.
431 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
432 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
433 ;;; is T, then they do intersect because we use the closure of X = [0,
434 ;;; 1] and Y = [1, 2] to determine intersection.
435 (defun interval-intersect-p (x y &optional closed-intervals-p)
436 (declare (type interval x y))
437 (multiple-value-bind (intersect diff)
438 (interval-intersection/difference (if closed-intervals-p
441 (if closed-intervals-p
444 (declare (ignore diff))
447 ;;; Are the two intervals adjacent? That is, is there a number
448 ;;; between the two intervals that is not an element of either
449 ;;; interval? If so, they are not adjacent. For example [0, 1) and
450 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
451 ;;; between both intervals.
452 (defun interval-adjacent-p (x y)
453 (declare (type interval x y))
454 (flet ((adjacent (lo hi)
455 ;; Check to see whether lo and hi are adjacent. If either is
456 ;; nil, they can't be adjacent.
457 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
458 ;; The bounds are equal. They are adjacent if one of
459 ;; them is closed (a number). If both are open (consp),
460 ;; then there is a number that lies between them.
461 (or (numberp lo) (numberp hi)))))
462 (or (adjacent (interval-low y) (interval-high x))
463 (adjacent (interval-low x) (interval-high y)))))
465 ;;; Compute the intersection and difference between two intervals.
466 ;;; Two values are returned: the intersection and the difference.
468 ;;; Let the two intervals be X and Y, and let I and D be the two
469 ;;; values returned by this function. Then I = X intersect Y. If I
470 ;;; is NIL (the empty set), then D is X union Y, represented as the
471 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
472 ;;; - I, which is a list of two intervals.
474 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
475 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
476 (defun interval-intersection/difference (x y)
477 (declare (type interval x y))
478 (let ((x-lo (interval-low x))
479 (x-hi (interval-high x))
480 (y-lo (interval-low y))
481 (y-hi (interval-high y)))
484 ;; If p is an open bound, make it closed. If p is a closed
485 ;; bound, make it open.
490 ;; Test whether P is in the interval.
491 (when (interval-contains-p (type-bound-number p)
492 (interval-closure int))
493 (let ((lo (interval-low int))
494 (hi (interval-high int)))
495 ;; Check for endpoints.
496 (cond ((and lo (= (type-bound-number p) (type-bound-number lo)))
497 (not (and (consp p) (numberp lo))))
498 ((and hi (= (type-bound-number p) (type-bound-number hi)))
499 (not (and (numberp p) (consp hi))))
501 (test-lower-bound (p int)
502 ;; P is a lower bound of an interval.
505 (not (interval-bounded-p int 'below))))
506 (test-upper-bound (p int)
507 ;; P is an upper bound of an interval.
510 (not (interval-bounded-p int 'above)))))
511 (let ((x-lo-in-y (test-lower-bound x-lo y))
512 (x-hi-in-y (test-upper-bound x-hi y))
513 (y-lo-in-x (test-lower-bound y-lo x))
514 (y-hi-in-x (test-upper-bound y-hi x)))
515 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
516 ;; Intervals intersect. Let's compute the intersection
517 ;; and the difference.
518 (multiple-value-bind (lo left-lo left-hi)
519 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
520 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
521 (multiple-value-bind (hi right-lo right-hi)
523 (values x-hi (opposite-bound x-hi) y-hi))
525 (values y-hi (opposite-bound y-hi) x-hi)))
526 (values (make-interval :low lo :high hi)
527 (list (make-interval :low left-lo
529 (make-interval :low right-lo
532 (values nil (list x y))))))))
534 ;;; If intervals X and Y intersect, return a new interval that is the
535 ;;; union of the two. If they do not intersect, return NIL.
536 (defun interval-merge-pair (x y)
537 (declare (type interval x y))
538 ;; If x and y intersect or are adjacent, create the union.
539 ;; Otherwise return nil
540 (when (or (interval-intersect-p x y)
541 (interval-adjacent-p x y))
542 (flet ((select-bound (x1 x2 min-op max-op)
543 (let ((x1-val (type-bound-number x1))
544 (x2-val (type-bound-number x2)))
546 ;; Both bounds are finite. Select the right one.
547 (cond ((funcall min-op x1-val x2-val)
548 ;; x1 is definitely better.
550 ((funcall max-op x1-val x2-val)
551 ;; x2 is definitely better.
554 ;; Bounds are equal. Select either
555 ;; value and make it open only if
557 (set-bound x1-val (and (consp x1) (consp x2))))))
559 ;; At least one bound is not finite. The
560 ;; non-finite bound always wins.
562 (let* ((x-lo (copy-interval-limit (interval-low x)))
563 (x-hi (copy-interval-limit (interval-high x)))
564 (y-lo (copy-interval-limit (interval-low y)))
565 (y-hi (copy-interval-limit (interval-high y))))
566 (make-interval :low (select-bound x-lo y-lo #'< #'>)
567 :high (select-bound x-hi y-hi #'> #'<))))))
569 ;;; basic arithmetic operations on intervals. We probably should do
570 ;;; true interval arithmetic here, but it's complicated because we
571 ;;; have float and integer types and bounds can be open or closed.
573 ;;; the negative of an interval
574 (defun interval-neg (x)
575 (declare (type interval x))
576 (make-interval :low (bound-func #'- (interval-high x))
577 :high (bound-func #'- (interval-low x))))
579 ;;; Add two intervals.
580 (defun interval-add (x y)
581 (declare (type interval x y))
582 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
583 :high (bound-binop + (interval-high x) (interval-high y))))
585 ;;; Subtract two intervals.
586 (defun interval-sub (x y)
587 (declare (type interval x y))
588 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
589 :high (bound-binop - (interval-high x) (interval-low y))))
591 ;;; Multiply two intervals.
592 (defun interval-mul (x y)
593 (declare (type interval x y))
594 (flet ((bound-mul (x y)
595 (cond ((or (null x) (null y))
596 ;; Multiply by infinity is infinity
598 ((or (and (numberp x) (zerop x))
599 (and (numberp y) (zerop y)))
600 ;; Multiply by closed zero is special. The result
601 ;; is always a closed bound. But don't replace this
602 ;; with zero; we want the multiplication to produce
603 ;; the correct signed zero, if needed.
604 (* (type-bound-number x) (type-bound-number y)))
605 ((or (and (floatp x) (float-infinity-p x))
606 (and (floatp y) (float-infinity-p y)))
607 ;; Infinity times anything is infinity
610 ;; General multiply. The result is open if either is open.
611 (bound-binop * x y)))))
612 (let ((x-range (interval-range-info x))
613 (y-range (interval-range-info y)))
614 (cond ((null x-range)
615 ;; Split x into two and multiply each separately
616 (destructuring-bind (x- x+) (interval-split 0 x t t)
617 (interval-merge-pair (interval-mul x- y)
618 (interval-mul x+ y))))
620 ;; Split y into two and multiply each separately
621 (destructuring-bind (y- y+) (interval-split 0 y t t)
622 (interval-merge-pair (interval-mul x y-)
623 (interval-mul x y+))))
625 (interval-neg (interval-mul (interval-neg x) y)))
627 (interval-neg (interval-mul x (interval-neg y))))
628 ((and (eq x-range '+) (eq y-range '+))
629 ;; If we are here, X and Y are both positive.
631 :low (bound-mul (interval-low x) (interval-low y))
632 :high (bound-mul (interval-high x) (interval-high y))))
634 (bug "excluded case in INTERVAL-MUL"))))))
636 ;;; Divide two intervals.
637 (defun interval-div (top bot)
638 (declare (type interval top bot))
639 (flet ((bound-div (x y y-low-p)
642 ;; Divide by infinity means result is 0. However,
643 ;; we need to watch out for the sign of the result,
644 ;; to correctly handle signed zeros. We also need
645 ;; to watch out for positive or negative infinity.
646 (if (floatp (type-bound-number x))
648 (- (float-sign (type-bound-number x) 0.0))
649 (float-sign (type-bound-number x) 0.0))
651 ((zerop (type-bound-number y))
652 ;; Divide by zero means result is infinity
654 ((and (numberp x) (zerop x))
655 ;; Zero divided by anything is zero.
658 (bound-binop / x y)))))
659 (let ((top-range (interval-range-info top))
660 (bot-range (interval-range-info bot)))
661 (cond ((null bot-range)
662 ;; The denominator contains zero, so anything goes!
663 (make-interval :low nil :high nil))
665 ;; Denominator is negative so flip the sign, compute the
666 ;; result, and flip it back.
667 (interval-neg (interval-div top (interval-neg bot))))
669 ;; Split top into two positive and negative parts, and
670 ;; divide each separately
671 (destructuring-bind (top- top+) (interval-split 0 top t t)
672 (interval-merge-pair (interval-div top- bot)
673 (interval-div top+ bot))))
675 ;; Top is negative so flip the sign, divide, and flip the
676 ;; sign of the result.
677 (interval-neg (interval-div (interval-neg top) bot)))
678 ((and (eq top-range '+) (eq bot-range '+))
681 :low (bound-div (interval-low top) (interval-high bot) t)
682 :high (bound-div (interval-high top) (interval-low bot) nil)))
684 (bug "excluded case in INTERVAL-DIV"))))))
686 ;;; Apply the function F to the interval X. If X = [a, b], then the
687 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
688 ;;; result makes sense. It will if F is monotonic increasing (or
690 (defun interval-func (f x)
691 (declare (type interval x))
692 (let ((lo (bound-func f (interval-low x)))
693 (hi (bound-func f (interval-high x))))
694 (make-interval :low lo :high hi)))
696 ;;; Return T if X < Y. That is every number in the interval X is
697 ;;; always less than any number in the interval Y.
698 (defun interval-< (x y)
699 (declare (type interval x y))
700 ;; X < Y only if X is bounded above, Y is bounded below, and they
702 (when (and (interval-bounded-p x 'above)
703 (interval-bounded-p y 'below))
704 ;; Intervals are bounded in the appropriate way. Make sure they
706 (let ((left (interval-high x))
707 (right (interval-low y)))
708 (cond ((> (type-bound-number left)
709 (type-bound-number right))
710 ;; The intervals definitely overlap, so result is NIL.
712 ((< (type-bound-number left)
713 (type-bound-number right))
714 ;; The intervals definitely don't touch, so result is T.
717 ;; Limits are equal. Check for open or closed bounds.
718 ;; Don't overlap if one or the other are open.
719 (or (consp left) (consp right)))))))
721 ;;; Return T if X >= Y. That is, every number in the interval X is
722 ;;; always greater than any number in the interval Y.
723 (defun interval->= (x y)
724 (declare (type interval x y))
725 ;; X >= Y if lower bound of X >= upper bound of Y
726 (when (and (interval-bounded-p x 'below)
727 (interval-bounded-p y 'above))
728 (>= (type-bound-number (interval-low x))
729 (type-bound-number (interval-high y)))))
731 ;;; Return an interval that is the absolute value of X. Thus, if
732 ;;; X = [-1 10], the result is [0, 10].
733 (defun interval-abs (x)
734 (declare (type interval x))
735 (case (interval-range-info x)
741 (destructuring-bind (x- x+) (interval-split 0 x t t)
742 (interval-merge-pair (interval-neg x-) x+)))))
744 ;;; Compute the square of an interval.
745 (defun interval-sqr (x)
746 (declare (type interval x))
747 (interval-func (lambda (x) (* x x))
750 ;;;; numeric DERIVE-TYPE methods
752 ;;; a utility for defining derive-type methods of integer operations. If
753 ;;; the types of both X and Y are integer types, then we compute a new
754 ;;; integer type with bounds determined Fun when applied to X and Y.
755 ;;; Otherwise, we use Numeric-Contagion.
756 (defun derive-integer-type (x y fun)
757 (declare (type continuation x y) (type function fun))
758 (let ((x (continuation-type x))
759 (y (continuation-type y)))
760 (if (and (numeric-type-p x) (numeric-type-p y)
761 (eq (numeric-type-class x) 'integer)
762 (eq (numeric-type-class y) 'integer)
763 (eq (numeric-type-complexp x) :real)
764 (eq (numeric-type-complexp y) :real))
765 (multiple-value-bind (low high) (funcall fun x y)
766 (make-numeric-type :class 'integer
770 (numeric-contagion x y))))
772 ;;; simple utility to flatten a list
773 (defun flatten-list (x)
774 (labels ((flatten-helper (x r);; 'r' is the stuff to the 'right'.
778 (t (flatten-helper (car x)
779 (flatten-helper (cdr x) r))))))
780 (flatten-helper x nil)))
782 ;;; Take some type of continuation and massage it so that we get a
783 ;;; list of the constituent types. If ARG is *EMPTY-TYPE*, return NIL
784 ;;; to indicate failure.
785 (defun prepare-arg-for-derive-type (arg)
786 (flet ((listify (arg)
791 (union-type-types arg))
794 (unless (eq arg *empty-type*)
795 ;; Make sure all args are some type of numeric-type. For member
796 ;; types, convert the list of members into a union of equivalent
797 ;; single-element member-type's.
798 (let ((new-args nil))
799 (dolist (arg (listify arg))
800 (if (member-type-p arg)
801 ;; Run down the list of members and convert to a list of
803 (dolist (member (member-type-members arg))
804 (push (if (numberp member)
805 (make-member-type :members (list member))
808 (push arg new-args)))
809 (unless (member *empty-type* new-args)
812 ;;; Convert from the standard type convention for which -0.0 and 0.0
813 ;;; are equal to an intermediate convention for which they are
814 ;;; considered different which is more natural for some of the
816 #!-negative-zero-is-not-zero
817 (defun convert-numeric-type (type)
818 (declare (type numeric-type type))
819 ;;; Only convert real float interval delimiters types.
820 (if (eq (numeric-type-complexp type) :real)
821 (let* ((lo (numeric-type-low type))
822 (lo-val (type-bound-number lo))
823 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
824 (hi (numeric-type-high type))
825 (hi-val (type-bound-number hi))
826 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
827 (if (or lo-float-zero-p hi-float-zero-p)
829 :class (numeric-type-class type)
830 :format (numeric-type-format type)
832 :low (if lo-float-zero-p
834 (list (float 0.0 lo-val))
837 :high (if hi-float-zero-p
839 (list (float -0.0 hi-val))
846 ;;; Convert back from the intermediate convention for which -0.0 and
847 ;;; 0.0 are considered different to the standard type convention for
849 #!-negative-zero-is-not-zero
850 (defun convert-back-numeric-type (type)
851 (declare (type numeric-type type))
852 ;;; Only convert real float interval delimiters types.
853 (if (eq (numeric-type-complexp type) :real)
854 (let* ((lo (numeric-type-low type))
855 (lo-val (type-bound-number lo))
857 (and lo (floatp lo-val) (= lo-val 0.0)
858 (float-sign lo-val)))
859 (hi (numeric-type-high type))
860 (hi-val (type-bound-number hi))
862 (and hi (floatp hi-val) (= hi-val 0.0)
863 (float-sign hi-val))))
865 ;; (float +0.0 +0.0) => (member 0.0)
866 ;; (float -0.0 -0.0) => (member -0.0)
867 ((and lo-float-zero-p hi-float-zero-p)
868 ;; shouldn't have exclusive bounds here..
869 (aver (and (not (consp lo)) (not (consp hi))))
870 (if (= lo-float-zero-p hi-float-zero-p)
871 ;; (float +0.0 +0.0) => (member 0.0)
872 ;; (float -0.0 -0.0) => (member -0.0)
873 (specifier-type `(member ,lo-val))
874 ;; (float -0.0 +0.0) => (float 0.0 0.0)
875 ;; (float +0.0 -0.0) => (float 0.0 0.0)
876 (make-numeric-type :class (numeric-type-class type)
877 :format (numeric-type-format type)
883 ;; (float -0.0 x) => (float 0.0 x)
884 ((and (not (consp lo)) (minusp lo-float-zero-p))
885 (make-numeric-type :class (numeric-type-class type)
886 :format (numeric-type-format type)
888 :low (float 0.0 lo-val)
890 ;; (float (+0.0) x) => (float (0.0) x)
891 ((and (consp lo) (plusp lo-float-zero-p))
892 (make-numeric-type :class (numeric-type-class type)
893 :format (numeric-type-format type)
895 :low (list (float 0.0 lo-val))
898 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
899 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
900 (list (make-member-type :members (list (float 0.0 lo-val)))
901 (make-numeric-type :class (numeric-type-class type)
902 :format (numeric-type-format type)
904 :low (list (float 0.0 lo-val))
908 ;; (float x +0.0) => (float x 0.0)
909 ((and (not (consp hi)) (plusp hi-float-zero-p))
910 (make-numeric-type :class (numeric-type-class type)
911 :format (numeric-type-format type)
914 :high (float 0.0 hi-val)))
915 ;; (float x (-0.0)) => (float x (0.0))
916 ((and (consp hi) (minusp hi-float-zero-p))
917 (make-numeric-type :class (numeric-type-class type)
918 :format (numeric-type-format type)
921 :high (list (float 0.0 hi-val))))
923 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
924 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
925 (list (make-member-type :members (list (float -0.0 hi-val)))
926 (make-numeric-type :class (numeric-type-class type)
927 :format (numeric-type-format type)
930 :high (list (float 0.0 hi-val)))))))
936 ;;; Convert back a possible list of numeric types.
937 #!-negative-zero-is-not-zero
938 (defun convert-back-numeric-type-list (type-list)
942 (dolist (type type-list)
943 (if (numeric-type-p type)
944 (let ((result (convert-back-numeric-type type)))
946 (setf results (append results result))
947 (push result results)))
948 (push type results)))
951 (convert-back-numeric-type type-list))
953 (convert-back-numeric-type-list (union-type-types type-list)))
957 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
958 ;;; belong in the kernel's type logic, invoked always, instead of in
959 ;;; the compiler, invoked only during some type optimizations.
961 ;;; Take a list of types and return a canonical type specifier,
962 ;;; combining any MEMBER types together. If both positive and negative
963 ;;; MEMBER types are present they are converted to a float type.
964 ;;; XXX This would be far simpler if the type-union methods could handle
965 ;;; member/number unions.
966 (defun make-canonical-union-type (type-list)
969 (dolist (type type-list)
970 (if (member-type-p type)
971 (setf members (union members (member-type-members type)))
972 (push type misc-types)))
974 (when (null (set-difference '(-0l0 0l0) members))
975 #!-negative-zero-is-not-zero
976 (push (specifier-type '(long-float 0l0 0l0)) misc-types)
977 #!+negative-zero-is-not-zero
978 (push (specifier-type '(long-float -0l0 0l0)) misc-types)
979 (setf members (set-difference members '(-0l0 0l0))))
980 (when (null (set-difference '(-0d0 0d0) members))
981 #!-negative-zero-is-not-zero
982 (push (specifier-type '(double-float 0d0 0d0)) misc-types)
983 #!+negative-zero-is-not-zero
984 (push (specifier-type '(double-float -0d0 0d0)) misc-types)
985 (setf members (set-difference members '(-0d0 0d0))))
986 (when (null (set-difference '(-0f0 0f0) members))
987 #!-negative-zero-is-not-zero
988 (push (specifier-type '(single-float 0f0 0f0)) misc-types)
989 #!+negative-zero-is-not-zero
990 (push (specifier-type '(single-float -0f0 0f0)) misc-types)
991 (setf members (set-difference members '(-0f0 0f0))))
993 (apply #'type-union (make-member-type :members members) misc-types)
994 (apply #'type-union misc-types))))
996 ;;; Convert a member type with a single member to a numeric type.
997 (defun convert-member-type (arg)
998 (let* ((members (member-type-members arg))
999 (member (first members))
1000 (member-type (type-of member)))
1001 (aver (not (rest members)))
1002 (specifier-type `(,(if (subtypep member-type 'integer)
1007 ;;; This is used in defoptimizers for computing the resulting type of
1010 ;;; Given the continuation ARG, derive the resulting type using the
1011 ;;; DERIVE-FCN. DERIVE-FCN takes exactly one argument which is some
1012 ;;; "atomic" continuation type like numeric-type or member-type
1013 ;;; (containing just one element). It should return the resulting
1014 ;;; type, which can be a list of types.
1016 ;;; For the case of member types, if a member-fcn is given it is
1017 ;;; called to compute the result otherwise the member type is first
1018 ;;; converted to a numeric type and the derive-fcn is call.
1019 (defun one-arg-derive-type (arg derive-fcn member-fcn
1020 &optional (convert-type t))
1021 (declare (type function derive-fcn)
1022 (type (or null function) member-fcn)
1023 #!+negative-zero-is-not-zero (ignore convert-type))
1024 (let ((arg-list (prepare-arg-for-derive-type (continuation-type arg))))
1030 (with-float-traps-masked
1031 (:underflow :overflow :divide-by-zero)
1035 (first (member-type-members x))))))
1036 ;; Otherwise convert to a numeric type.
1037 (let ((result-type-list
1038 (funcall derive-fcn (convert-member-type x))))
1039 #!-negative-zero-is-not-zero
1041 (convert-back-numeric-type-list result-type-list)
1043 #!+negative-zero-is-not-zero
1046 #!-negative-zero-is-not-zero
1048 (convert-back-numeric-type-list
1049 (funcall derive-fcn (convert-numeric-type x)))
1050 (funcall derive-fcn x))
1051 #!+negative-zero-is-not-zero
1052 (funcall derive-fcn x))
1054 *universal-type*))))
1055 ;; Run down the list of args and derive the type of each one,
1056 ;; saving all of the results in a list.
1057 (let ((results nil))
1058 (dolist (arg arg-list)
1059 (let ((result (deriver arg)))
1061 (setf results (append results result))
1062 (push result results))))
1064 (make-canonical-union-type results)
1065 (first results)))))))
1067 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1068 ;;; two arguments. DERIVE-FCN takes 3 args in this case: the two
1069 ;;; original args and a third which is T to indicate if the two args
1070 ;;; really represent the same continuation. This is useful for
1071 ;;; deriving the type of things like (* x x), which should always be
1072 ;;; positive. If we didn't do this, we wouldn't be able to tell.
1073 (defun two-arg-derive-type (arg1 arg2 derive-fcn fcn
1074 &optional (convert-type t))
1075 #!+negative-zero-is-not-zero
1076 (declare (ignore convert-type))
1077 (flet (#!-negative-zero-is-not-zero
1078 (deriver (x y same-arg)
1079 (cond ((and (member-type-p x) (member-type-p y))
1080 (let* ((x (first (member-type-members x)))
1081 (y (first (member-type-members y)))
1082 (result (with-float-traps-masked
1083 (:underflow :overflow :divide-by-zero
1085 (funcall fcn x y))))
1086 (cond ((null result))
1087 ((and (floatp result) (float-nan-p result))
1088 (make-numeric-type :class 'float
1089 :format (type-of result)
1092 (make-member-type :members (list result))))))
1093 ((and (member-type-p x) (numeric-type-p y))
1094 (let* ((x (convert-member-type x))
1095 (y (if convert-type (convert-numeric-type y) y))
1096 (result (funcall derive-fcn x y same-arg)))
1098 (convert-back-numeric-type-list result)
1100 ((and (numeric-type-p x) (member-type-p y))
1101 (let* ((x (if convert-type (convert-numeric-type x) x))
1102 (y (convert-member-type y))
1103 (result (funcall derive-fcn x y same-arg)))
1105 (convert-back-numeric-type-list result)
1107 ((and (numeric-type-p x) (numeric-type-p y))
1108 (let* ((x (if convert-type (convert-numeric-type x) x))
1109 (y (if convert-type (convert-numeric-type y) y))
1110 (result (funcall derive-fcn x y same-arg)))
1112 (convert-back-numeric-type-list result)
1116 #!+negative-zero-is-not-zero
1117 (deriver (x y same-arg)
1118 (cond ((and (member-type-p x) (member-type-p y))
1119 (let* ((x (first (member-type-members x)))
1120 (y (first (member-type-members y)))
1121 (result (with-float-traps-masked
1122 (:underflow :overflow :divide-by-zero)
1123 (funcall fcn x y))))
1125 (make-member-type :members (list result)))))
1126 ((and (member-type-p x) (numeric-type-p y))
1127 (let ((x (convert-member-type x)))
1128 (funcall derive-fcn x y same-arg)))
1129 ((and (numeric-type-p x) (member-type-p y))
1130 (let ((y (convert-member-type y)))
1131 (funcall derive-fcn x y same-arg)))
1132 ((and (numeric-type-p x) (numeric-type-p y))
1133 (funcall derive-fcn x y same-arg))
1135 *universal-type*))))
1136 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1137 (a1 (prepare-arg-for-derive-type (continuation-type arg1)))
1138 (a2 (prepare-arg-for-derive-type (continuation-type arg2))))
1140 (let ((results nil))
1142 ;; Since the args are the same continuation, just run
1145 (let ((result (deriver x x same-arg)))
1147 (setf results (append results result))
1148 (push result results))))
1149 ;; Try all pairwise combinations.
1152 (let ((result (or (deriver x y same-arg)
1153 (numeric-contagion x y))))
1155 (setf results (append results result))
1156 (push result results))))))
1158 (make-canonical-union-type results)
1159 (first results)))))))
1161 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1163 (defoptimizer (+ derive-type) ((x y))
1164 (derive-integer-type
1171 (values (frob (numeric-type-low x) (numeric-type-low y))
1172 (frob (numeric-type-high x) (numeric-type-high y)))))))
1174 (defoptimizer (- derive-type) ((x y))
1175 (derive-integer-type
1182 (values (frob (numeric-type-low x) (numeric-type-high y))
1183 (frob (numeric-type-high x) (numeric-type-low y)))))))
1185 (defoptimizer (* derive-type) ((x y))
1186 (derive-integer-type
1189 (let ((x-low (numeric-type-low x))
1190 (x-high (numeric-type-high x))
1191 (y-low (numeric-type-low y))
1192 (y-high (numeric-type-high y)))
1193 (cond ((not (and x-low y-low))
1195 ((or (minusp x-low) (minusp y-low))
1196 (if (and x-high y-high)
1197 (let ((max (* (max (abs x-low) (abs x-high))
1198 (max (abs y-low) (abs y-high)))))
1199 (values (- max) max))
1202 (values (* x-low y-low)
1203 (if (and x-high y-high)
1207 (defoptimizer (/ derive-type) ((x y))
1208 (numeric-contagion (continuation-type x) (continuation-type y)))
1212 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1214 (defun +-derive-type-aux (x y same-arg)
1215 (if (and (numeric-type-real-p x)
1216 (numeric-type-real-p y))
1219 (let ((x-int (numeric-type->interval x)))
1220 (interval-add x-int x-int))
1221 (interval-add (numeric-type->interval x)
1222 (numeric-type->interval y))))
1223 (result-type (numeric-contagion x y)))
1224 ;; If the result type is a float, we need to be sure to coerce
1225 ;; the bounds into the correct type.
1226 (when (eq (numeric-type-class result-type) 'float)
1227 (setf result (interval-func
1229 (coerce x (or (numeric-type-format result-type)
1233 :class (if (and (eq (numeric-type-class x) 'integer)
1234 (eq (numeric-type-class y) 'integer))
1235 ;; The sum of integers is always an integer.
1237 (numeric-type-class result-type))
1238 :format (numeric-type-format result-type)
1239 :low (interval-low result)
1240 :high (interval-high result)))
1241 ;; general contagion
1242 (numeric-contagion x y)))
1244 (defoptimizer (+ derive-type) ((x y))
1245 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1247 (defun --derive-type-aux (x y same-arg)
1248 (if (and (numeric-type-real-p x)
1249 (numeric-type-real-p y))
1251 ;; (- X X) is always 0.
1253 (make-interval :low 0 :high 0)
1254 (interval-sub (numeric-type->interval x)
1255 (numeric-type->interval y))))
1256 (result-type (numeric-contagion x y)))
1257 ;; If the result type is a float, we need to be sure to coerce
1258 ;; the bounds into the correct type.
1259 (when (eq (numeric-type-class result-type) 'float)
1260 (setf result (interval-func
1262 (coerce x (or (numeric-type-format result-type)
1266 :class (if (and (eq (numeric-type-class x) 'integer)
1267 (eq (numeric-type-class y) 'integer))
1268 ;; The difference of integers is always an integer.
1270 (numeric-type-class result-type))
1271 :format (numeric-type-format result-type)
1272 :low (interval-low result)
1273 :high (interval-high result)))
1274 ;; general contagion
1275 (numeric-contagion x y)))
1277 (defoptimizer (- derive-type) ((x y))
1278 (two-arg-derive-type x y #'--derive-type-aux #'-))
1280 (defun *-derive-type-aux (x y same-arg)
1281 (if (and (numeric-type-real-p x)
1282 (numeric-type-real-p y))
1284 ;; (* X X) is always positive, so take care to do it right.
1286 (interval-sqr (numeric-type->interval x))
1287 (interval-mul (numeric-type->interval x)
1288 (numeric-type->interval y))))
1289 (result-type (numeric-contagion x y)))
1290 ;; If the result type is a float, we need to be sure to coerce
1291 ;; the bounds into the correct type.
1292 (when (eq (numeric-type-class result-type) 'float)
1293 (setf result (interval-func
1295 (coerce x (or (numeric-type-format result-type)
1299 :class (if (and (eq (numeric-type-class x) 'integer)
1300 (eq (numeric-type-class y) 'integer))
1301 ;; The product of integers is always an integer.
1303 (numeric-type-class result-type))
1304 :format (numeric-type-format result-type)
1305 :low (interval-low result)
1306 :high (interval-high result)))
1307 (numeric-contagion x y)))
1309 (defoptimizer (* derive-type) ((x y))
1310 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1312 (defun /-derive-type-aux (x y same-arg)
1313 (if (and (numeric-type-real-p x)
1314 (numeric-type-real-p y))
1316 ;; (/ X X) is always 1, except if X can contain 0. In
1317 ;; that case, we shouldn't optimize the division away
1318 ;; because we want 0/0 to signal an error.
1320 (not (interval-contains-p
1321 0 (interval-closure (numeric-type->interval y)))))
1322 (make-interval :low 1 :high 1)
1323 (interval-div (numeric-type->interval x)
1324 (numeric-type->interval y))))
1325 (result-type (numeric-contagion x y)))
1326 ;; If the result type is a float, we need to be sure to coerce
1327 ;; the bounds into the correct type.
1328 (when (eq (numeric-type-class result-type) 'float)
1329 (setf result (interval-func
1331 (coerce x (or (numeric-type-format result-type)
1334 (make-numeric-type :class (numeric-type-class result-type)
1335 :format (numeric-type-format result-type)
1336 :low (interval-low result)
1337 :high (interval-high result)))
1338 (numeric-contagion x y)))
1340 (defoptimizer (/ derive-type) ((x y))
1341 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1346 ;;; KLUDGE: All this ASH optimization is suppressed under CMU CL
1347 ;;; because as of version 2.4.6 for Debian, CMU CL blows up on (ASH
1348 ;;; 1000000000 -100000000000) (i.e. ASH of two bignums yielding zero)
1349 ;;; and it's hard to avoid that calculation in here.
1350 #-(and cmu sb-xc-host)
1353 (defun ash-derive-type-aux (n-type shift same-arg)
1354 (declare (ignore same-arg))
1355 (flet ((ash-outer (n s)
1356 (when (and (fixnump s)
1358 (> s sb!xc:most-negative-fixnum))
1360 ;; KLUDGE: The bare 64's here should be related to
1361 ;; symbolic machine word size values somehow.
1364 (if (and (fixnump s)
1365 (> s sb!xc:most-negative-fixnum))
1367 (if (minusp n) -1 0))))
1368 (or (and (csubtypep n-type (specifier-type 'integer))
1369 (csubtypep shift (specifier-type 'integer))
1370 (let ((n-low (numeric-type-low n-type))
1371 (n-high (numeric-type-high n-type))
1372 (s-low (numeric-type-low shift))
1373 (s-high (numeric-type-high shift)))
1374 (make-numeric-type :class 'integer :complexp :real
1377 (ash-outer n-low s-high)
1378 (ash-inner n-low s-low)))
1381 (ash-inner n-high s-low)
1382 (ash-outer n-high s-high))))))
1385 (defoptimizer (ash derive-type) ((n shift))
1386 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1389 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1390 (macrolet ((frob (fun)
1391 `#'(lambda (type type2)
1392 (declare (ignore type2))
1393 (let ((lo (numeric-type-low type))
1394 (hi (numeric-type-high type)))
1395 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1397 (defoptimizer (%negate derive-type) ((num))
1398 (derive-integer-type num num (frob -))))
1400 (defoptimizer (lognot derive-type) ((int))
1401 (derive-integer-type int int
1402 (lambda (type type2)
1403 (declare (ignore type2))
1404 (let ((lo (numeric-type-low type))
1405 (hi (numeric-type-high type)))
1406 (values (if hi (lognot hi) nil)
1407 (if lo (lognot lo) nil)
1408 (numeric-type-class type)
1409 (numeric-type-format type))))))
1411 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1412 (defoptimizer (%negate derive-type) ((num))
1413 (flet ((negate-bound (b)
1415 (set-bound (- (type-bound-number b))
1417 (one-arg-derive-type num
1419 (modified-numeric-type
1421 :low (negate-bound (numeric-type-high type))
1422 :high (negate-bound (numeric-type-low type))))
1425 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1426 (defoptimizer (abs derive-type) ((num))
1427 (let ((type (continuation-type num)))
1428 (if (and (numeric-type-p type)
1429 (eq (numeric-type-class type) 'integer)
1430 (eq (numeric-type-complexp type) :real))
1431 (let ((lo (numeric-type-low type))
1432 (hi (numeric-type-high type)))
1433 (make-numeric-type :class 'integer :complexp :real
1434 :low (cond ((and hi (minusp hi))
1440 :high (if (and hi lo)
1441 (max (abs hi) (abs lo))
1443 (numeric-contagion type type))))
1445 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1446 (defun abs-derive-type-aux (type)
1447 (cond ((eq (numeric-type-complexp type) :complex)
1448 ;; The absolute value of a complex number is always a
1449 ;; non-negative float.
1450 (let* ((format (case (numeric-type-class type)
1451 ((integer rational) 'single-float)
1452 (t (numeric-type-format type))))
1453 (bound-format (or format 'float)))
1454 (make-numeric-type :class 'float
1457 :low (coerce 0 bound-format)
1460 ;; The absolute value of a real number is a non-negative real
1461 ;; of the same type.
1462 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1463 (class (numeric-type-class type))
1464 (format (numeric-type-format type))
1465 (bound-type (or format class 'real)))
1470 :low (coerce-numeric-bound (interval-low abs-bnd) bound-type)
1471 :high (coerce-numeric-bound
1472 (interval-high abs-bnd) bound-type))))))
1474 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1475 (defoptimizer (abs derive-type) ((num))
1476 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1478 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1479 (defoptimizer (truncate derive-type) ((number divisor))
1480 (let ((number-type (continuation-type number))
1481 (divisor-type (continuation-type divisor))
1482 (integer-type (specifier-type 'integer)))
1483 (if (and (numeric-type-p number-type)
1484 (csubtypep number-type integer-type)
1485 (numeric-type-p divisor-type)
1486 (csubtypep divisor-type integer-type))
1487 (let ((number-low (numeric-type-low number-type))
1488 (number-high (numeric-type-high number-type))
1489 (divisor-low (numeric-type-low divisor-type))
1490 (divisor-high (numeric-type-high divisor-type)))
1491 (values-specifier-type
1492 `(values ,(integer-truncate-derive-type number-low number-high
1493 divisor-low divisor-high)
1494 ,(integer-rem-derive-type number-low number-high
1495 divisor-low divisor-high))))
1498 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1501 (defun rem-result-type (number-type divisor-type)
1502 ;; Figure out what the remainder type is. The remainder is an
1503 ;; integer if both args are integers; a rational if both args are
1504 ;; rational; and a float otherwise.
1505 (cond ((and (csubtypep number-type (specifier-type 'integer))
1506 (csubtypep divisor-type (specifier-type 'integer)))
1508 ((and (csubtypep number-type (specifier-type 'rational))
1509 (csubtypep divisor-type (specifier-type 'rational)))
1511 ((and (csubtypep number-type (specifier-type 'float))
1512 (csubtypep divisor-type (specifier-type 'float)))
1513 ;; Both are floats so the result is also a float, of
1514 ;; the largest type.
1515 (or (float-format-max (numeric-type-format number-type)
1516 (numeric-type-format divisor-type))
1518 ((and (csubtypep number-type (specifier-type 'float))
1519 (csubtypep divisor-type (specifier-type 'rational)))
1520 ;; One of the arguments is a float and the other is a
1521 ;; rational. The remainder is a float of the same
1523 (or (numeric-type-format number-type) 'float))
1524 ((and (csubtypep divisor-type (specifier-type 'float))
1525 (csubtypep number-type (specifier-type 'rational)))
1526 ;; One of the arguments is a float and the other is a
1527 ;; rational. The remainder is a float of the same
1529 (or (numeric-type-format divisor-type) 'float))
1531 ;; Some unhandled combination. This usually means both args
1532 ;; are REAL so the result is a REAL.
1535 (defun truncate-derive-type-quot (number-type divisor-type)
1536 (let* ((rem-type (rem-result-type number-type divisor-type))
1537 (number-interval (numeric-type->interval number-type))
1538 (divisor-interval (numeric-type->interval divisor-type)))
1539 ;;(declare (type (member '(integer rational float)) rem-type))
1540 ;; We have real numbers now.
1541 (cond ((eq rem-type 'integer)
1542 ;; Since the remainder type is INTEGER, both args are
1544 (let* ((res (integer-truncate-derive-type
1545 (interval-low number-interval)
1546 (interval-high number-interval)
1547 (interval-low divisor-interval)
1548 (interval-high divisor-interval))))
1549 (specifier-type (if (listp res) res 'integer))))
1551 (let ((quot (truncate-quotient-bound
1552 (interval-div number-interval
1553 divisor-interval))))
1554 (specifier-type `(integer ,(or (interval-low quot) '*)
1555 ,(or (interval-high quot) '*))))))))
1557 (defun truncate-derive-type-rem (number-type divisor-type)
1558 (let* ((rem-type (rem-result-type number-type divisor-type))
1559 (number-interval (numeric-type->interval number-type))
1560 (divisor-interval (numeric-type->interval divisor-type))
1561 (rem (truncate-rem-bound number-interval divisor-interval)))
1562 ;;(declare (type (member '(integer rational float)) rem-type))
1563 ;; We have real numbers now.
1564 (cond ((eq rem-type 'integer)
1565 ;; Since the remainder type is INTEGER, both args are
1567 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1568 ,(or (interval-high rem) '*))))
1570 (multiple-value-bind (class format)
1573 (values 'integer nil))
1575 (values 'rational nil))
1576 ((or single-float double-float #!+long-float long-float)
1577 (values 'float rem-type))
1579 (values 'float nil))
1582 (when (member rem-type '(float single-float double-float
1583 #!+long-float long-float))
1584 (setf rem (interval-func #'(lambda (x)
1585 (coerce x rem-type))
1587 (make-numeric-type :class class
1589 :low (interval-low rem)
1590 :high (interval-high rem)))))))
1592 (defun truncate-derive-type-quot-aux (num div same-arg)
1593 (declare (ignore same-arg))
1594 (if (and (numeric-type-real-p num)
1595 (numeric-type-real-p div))
1596 (truncate-derive-type-quot num div)
1599 (defun truncate-derive-type-rem-aux (num div same-arg)
1600 (declare (ignore same-arg))
1601 (if (and (numeric-type-real-p num)
1602 (numeric-type-real-p div))
1603 (truncate-derive-type-rem num div)
1606 (defoptimizer (truncate derive-type) ((number divisor))
1607 (let ((quot (two-arg-derive-type number divisor
1608 #'truncate-derive-type-quot-aux #'truncate))
1609 (rem (two-arg-derive-type number divisor
1610 #'truncate-derive-type-rem-aux #'rem)))
1611 (when (and quot rem)
1612 (make-values-type :required (list quot rem)))))
1614 (defun ftruncate-derive-type-quot (number-type divisor-type)
1615 ;; The bounds are the same as for truncate. However, the first
1616 ;; result is a float of some type. We need to determine what that
1617 ;; type is. Basically it's the more contagious of the two types.
1618 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1619 (res-type (numeric-contagion number-type divisor-type)))
1620 (make-numeric-type :class 'float
1621 :format (numeric-type-format res-type)
1622 :low (numeric-type-low q-type)
1623 :high (numeric-type-high q-type))))
1625 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1626 (declare (ignore same-arg))
1627 (if (and (numeric-type-real-p n)
1628 (numeric-type-real-p d))
1629 (ftruncate-derive-type-quot n d)
1632 (defoptimizer (ftruncate derive-type) ((number divisor))
1634 (two-arg-derive-type number divisor
1635 #'ftruncate-derive-type-quot-aux #'ftruncate))
1636 (rem (two-arg-derive-type number divisor
1637 #'truncate-derive-type-rem-aux #'rem)))
1638 (when (and quot rem)
1639 (make-values-type :required (list quot rem)))))
1641 (defun %unary-truncate-derive-type-aux (number)
1642 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1644 (defoptimizer (%unary-truncate derive-type) ((number))
1645 (one-arg-derive-type number
1646 #'%unary-truncate-derive-type-aux
1649 ;;; Define optimizers for FLOOR and CEILING.
1651 ((def (name q-name r-name)
1652 (let ((q-aux (symbolicate q-name "-AUX"))
1653 (r-aux (symbolicate r-name "-AUX")))
1655 ;; Compute type of quotient (first) result.
1656 (defun ,q-aux (number-type divisor-type)
1657 (let* ((number-interval
1658 (numeric-type->interval number-type))
1660 (numeric-type->interval divisor-type))
1661 (quot (,q-name (interval-div number-interval
1662 divisor-interval))))
1663 (specifier-type `(integer ,(or (interval-low quot) '*)
1664 ,(or (interval-high quot) '*)))))
1665 ;; Compute type of remainder.
1666 (defun ,r-aux (number-type divisor-type)
1667 (let* ((divisor-interval
1668 (numeric-type->interval divisor-type))
1669 (rem (,r-name divisor-interval))
1670 (result-type (rem-result-type number-type divisor-type)))
1671 (multiple-value-bind (class format)
1674 (values 'integer nil))
1676 (values 'rational nil))
1677 ((or single-float double-float #!+long-float long-float)
1678 (values 'float result-type))
1680 (values 'float nil))
1683 (when (member result-type '(float single-float double-float
1684 #!+long-float long-float))
1685 ;; Make sure that the limits on the interval have
1687 (setf rem (interval-func (lambda (x)
1688 (coerce x result-type))
1690 (make-numeric-type :class class
1692 :low (interval-low rem)
1693 :high (interval-high rem)))))
1694 ;; the optimizer itself
1695 (defoptimizer (,name derive-type) ((number divisor))
1696 (flet ((derive-q (n d same-arg)
1697 (declare (ignore same-arg))
1698 (if (and (numeric-type-real-p n)
1699 (numeric-type-real-p d))
1702 (derive-r (n d same-arg)
1703 (declare (ignore same-arg))
1704 (if (and (numeric-type-real-p n)
1705 (numeric-type-real-p d))
1708 (let ((quot (two-arg-derive-type
1709 number divisor #'derive-q #',name))
1710 (rem (two-arg-derive-type
1711 number divisor #'derive-r #'mod)))
1712 (when (and quot rem)
1713 (make-values-type :required (list quot rem))))))))))
1715 (def floor floor-quotient-bound floor-rem-bound)
1716 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1718 ;;; Define optimizers for FFLOOR and FCEILING
1719 (macrolet ((def (name q-name r-name)
1720 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1721 (r-aux (symbolicate r-name "-AUX")))
1723 ;; Compute type of quotient (first) result.
1724 (defun ,q-aux (number-type divisor-type)
1725 (let* ((number-interval
1726 (numeric-type->interval number-type))
1728 (numeric-type->interval divisor-type))
1729 (quot (,q-name (interval-div number-interval
1731 (res-type (numeric-contagion number-type
1734 :class (numeric-type-class res-type)
1735 :format (numeric-type-format res-type)
1736 :low (interval-low quot)
1737 :high (interval-high quot))))
1739 (defoptimizer (,name derive-type) ((number divisor))
1740 (flet ((derive-q (n d same-arg)
1741 (declare (ignore same-arg))
1742 (if (and (numeric-type-real-p n)
1743 (numeric-type-real-p d))
1746 (derive-r (n d same-arg)
1747 (declare (ignore same-arg))
1748 (if (and (numeric-type-real-p n)
1749 (numeric-type-real-p d))
1752 (let ((quot (two-arg-derive-type
1753 number divisor #'derive-q #',name))
1754 (rem (two-arg-derive-type
1755 number divisor #'derive-r #'mod)))
1756 (when (and quot rem)
1757 (make-values-type :required (list quot rem))))))))))
1759 (def ffloor floor-quotient-bound floor-rem-bound)
1760 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1762 ;;; functions to compute the bounds on the quotient and remainder for
1763 ;;; the FLOOR function
1764 (defun floor-quotient-bound (quot)
1765 ;; Take the floor of the quotient and then massage it into what we
1767 (let ((lo (interval-low quot))
1768 (hi (interval-high quot)))
1769 ;; Take the floor of the lower bound. The result is always a
1770 ;; closed lower bound.
1772 (floor (type-bound-number lo))
1774 ;; For the upper bound, we need to be careful.
1777 ;; An open bound. We need to be careful here because
1778 ;; the floor of '(10.0) is 9, but the floor of
1780 (multiple-value-bind (q r) (floor (first hi))
1785 ;; A closed bound, so the answer is obvious.
1789 (make-interval :low lo :high hi)))
1790 (defun floor-rem-bound (div)
1791 ;; The remainder depends only on the divisor. Try to get the
1792 ;; correct sign for the remainder if we can.
1793 (case (interval-range-info div)
1795 ;; The divisor is always positive.
1796 (let ((rem (interval-abs div)))
1797 (setf (interval-low rem) 0)
1798 (when (and (numberp (interval-high rem))
1799 (not (zerop (interval-high rem))))
1800 ;; The remainder never contains the upper bound. However,
1801 ;; watch out for the case where the high limit is zero!
1802 (setf (interval-high rem) (list (interval-high rem))))
1805 ;; The divisor is always negative.
1806 (let ((rem (interval-neg (interval-abs div))))
1807 (setf (interval-high rem) 0)
1808 (when (numberp (interval-low rem))
1809 ;; The remainder never contains the lower bound.
1810 (setf (interval-low rem) (list (interval-low rem))))
1813 ;; The divisor can be positive or negative. All bets off. The
1814 ;; magnitude of remainder is the maximum value of the divisor.
1815 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1816 ;; The bound never reaches the limit, so make the interval open.
1817 (make-interval :low (if limit
1820 :high (list limit))))))
1822 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1823 => #S(INTERVAL :LOW 0 :HIGH 10)
1824 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1825 => #S(INTERVAL :LOW 0 :HIGH 10)
1826 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1827 => #S(INTERVAL :LOW 0 :HIGH 10)
1828 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1829 => #S(INTERVAL :LOW 0 :HIGH 9)
1830 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1831 => #S(INTERVAL :LOW 0 :HIGH 10)
1832 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1833 => #S(INTERVAL :LOW 0 :HIGH 10)
1834 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1835 => #S(INTERVAL :LOW -2 :HIGH 10)
1836 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1837 => #S(INTERVAL :LOW -1 :HIGH 10)
1838 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1839 => #S(INTERVAL :LOW -1 :HIGH 10)
1841 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1842 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1843 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1844 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1845 (floor-rem-bound (make-interval :low -10 :high -2.3))
1846 #S(INTERVAL :LOW (-10) :HIGH 0)
1847 (floor-rem-bound (make-interval :low 0.3 :high 10))
1848 => #S(INTERVAL :LOW 0 :HIGH '(10))
1849 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1850 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1851 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1852 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1855 ;;; same functions for CEILING
1856 (defun ceiling-quotient-bound (quot)
1857 ;; Take the ceiling of the quotient and then massage it into what we
1859 (let ((lo (interval-low quot))
1860 (hi (interval-high quot)))
1861 ;; Take the ceiling of the upper bound. The result is always a
1862 ;; closed upper bound.
1864 (ceiling (type-bound-number hi))
1866 ;; For the lower bound, we need to be careful.
1869 ;; An open bound. We need to be careful here because
1870 ;; the ceiling of '(10.0) is 11, but the ceiling of
1872 (multiple-value-bind (q r) (ceiling (first lo))
1877 ;; A closed bound, so the answer is obvious.
1881 (make-interval :low lo :high hi)))
1882 (defun ceiling-rem-bound (div)
1883 ;; The remainder depends only on the divisor. Try to get the
1884 ;; correct sign for the remainder if we can.
1885 (case (interval-range-info div)
1887 ;; Divisor is always positive. The remainder is negative.
1888 (let ((rem (interval-neg (interval-abs div))))
1889 (setf (interval-high rem) 0)
1890 (when (and (numberp (interval-low rem))
1891 (not (zerop (interval-low rem))))
1892 ;; The remainder never contains the upper bound. However,
1893 ;; watch out for the case when the upper bound is zero!
1894 (setf (interval-low rem) (list (interval-low rem))))
1897 ;; Divisor is always negative. The remainder is positive
1898 (let ((rem (interval-abs div)))
1899 (setf (interval-low rem) 0)
1900 (when (numberp (interval-high rem))
1901 ;; The remainder never contains the lower bound.
1902 (setf (interval-high rem) (list (interval-high rem))))
1905 ;; The divisor can be positive or negative. All bets off. The
1906 ;; magnitude of remainder is the maximum value of the divisor.
1907 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1908 ;; The bound never reaches the limit, so make the interval open.
1909 (make-interval :low (if limit
1912 :high (list limit))))))
1915 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
1916 => #S(INTERVAL :LOW 1 :HIGH 11)
1917 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1918 => #S(INTERVAL :LOW 1 :HIGH 11)
1919 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
1920 => #S(INTERVAL :LOW 1 :HIGH 10)
1921 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
1922 => #S(INTERVAL :LOW 1 :HIGH 10)
1923 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
1924 => #S(INTERVAL :LOW 1 :HIGH 11)
1925 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
1926 => #S(INTERVAL :LOW 1 :HIGH 11)
1927 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1928 => #S(INTERVAL :LOW -1 :HIGH 11)
1929 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1930 => #S(INTERVAL :LOW 0 :HIGH 11)
1931 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
1932 => #S(INTERVAL :LOW -1 :HIGH 11)
1934 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
1935 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
1936 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
1937 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1938 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
1939 => #S(INTERVAL :LOW 0 :HIGH (10))
1940 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
1941 => #S(INTERVAL :LOW (-10) :HIGH 0)
1942 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
1943 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
1944 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
1945 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1948 (defun truncate-quotient-bound (quot)
1949 ;; For positive quotients, truncate is exactly like floor. For
1950 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
1951 ;; it's the union of the two pieces.
1952 (case (interval-range-info quot)
1955 (floor-quotient-bound quot))
1957 ;; just like CEILING
1958 (ceiling-quotient-bound quot))
1960 ;; Split the interval into positive and negative pieces, compute
1961 ;; the result for each piece and put them back together.
1962 (destructuring-bind (neg pos) (interval-split 0 quot t t)
1963 (interval-merge-pair (ceiling-quotient-bound neg)
1964 (floor-quotient-bound pos))))))
1966 (defun truncate-rem-bound (num div)
1967 ;; This is significantly more complicated than FLOOR or CEILING. We
1968 ;; need both the number and the divisor to determine the range. The
1969 ;; basic idea is to split the ranges of NUM and DEN into positive
1970 ;; and negative pieces and deal with each of the four possibilities
1972 (case (interval-range-info num)
1974 (case (interval-range-info div)
1976 (floor-rem-bound div))
1978 (ceiling-rem-bound div))
1980 (destructuring-bind (neg pos) (interval-split 0 div t t)
1981 (interval-merge-pair (truncate-rem-bound num neg)
1982 (truncate-rem-bound num pos))))))
1984 (case (interval-range-info div)
1986 (ceiling-rem-bound div))
1988 (floor-rem-bound div))
1990 (destructuring-bind (neg pos) (interval-split 0 div t t)
1991 (interval-merge-pair (truncate-rem-bound num neg)
1992 (truncate-rem-bound num pos))))))
1994 (destructuring-bind (neg pos) (interval-split 0 num t t)
1995 (interval-merge-pair (truncate-rem-bound neg div)
1996 (truncate-rem-bound pos div))))))
1999 ;;; Derive useful information about the range. Returns three values:
2000 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2001 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2002 ;;; - The abs of the maximal value if there is one, or nil if it is
2004 (defun numeric-range-info (low high)
2005 (cond ((and low (not (minusp low)))
2006 (values '+ low high))
2007 ((and high (not (plusp high)))
2008 (values '- (- high) (if low (- low) nil)))
2010 (values nil 0 (and low high (max (- low) high))))))
2012 (defun integer-truncate-derive-type
2013 (number-low number-high divisor-low divisor-high)
2014 ;; The result cannot be larger in magnitude than the number, but the
2015 ;; sign might change. If we can determine the sign of either the
2016 ;; number or the divisor, we can eliminate some of the cases.
2017 (multiple-value-bind (number-sign number-min number-max)
2018 (numeric-range-info number-low number-high)
2019 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2020 (numeric-range-info divisor-low divisor-high)
2021 (when (and divisor-max (zerop divisor-max))
2022 ;; We've got a problem: guaranteed division by zero.
2023 (return-from integer-truncate-derive-type t))
2024 (when (zerop divisor-min)
2025 ;; We'll assume that they aren't going to divide by zero.
2027 (cond ((and number-sign divisor-sign)
2028 ;; We know the sign of both.
2029 (if (eq number-sign divisor-sign)
2030 ;; Same sign, so the result will be positive.
2031 `(integer ,(if divisor-max
2032 (truncate number-min divisor-max)
2035 (truncate number-max divisor-min)
2037 ;; Different signs, the result will be negative.
2038 `(integer ,(if number-max
2039 (- (truncate number-max divisor-min))
2042 (- (truncate number-min divisor-max))
2044 ((eq divisor-sign '+)
2045 ;; The divisor is positive. Therefore, the number will just
2046 ;; become closer to zero.
2047 `(integer ,(if number-low
2048 (truncate number-low divisor-min)
2051 (truncate number-high divisor-min)
2053 ((eq divisor-sign '-)
2054 ;; The divisor is negative. Therefore, the absolute value of
2055 ;; the number will become closer to zero, but the sign will also
2057 `(integer ,(if number-high
2058 (- (truncate number-high divisor-min))
2061 (- (truncate number-low divisor-min))
2063 ;; The divisor could be either positive or negative.
2065 ;; The number we are dividing has a bound. Divide that by the
2066 ;; smallest posible divisor.
2067 (let ((bound (truncate number-max divisor-min)))
2068 `(integer ,(- bound) ,bound)))
2070 ;; The number we are dividing is unbounded, so we can't tell
2071 ;; anything about the result.
2074 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2075 (defun integer-rem-derive-type
2076 (number-low number-high divisor-low divisor-high)
2077 (if (and divisor-low divisor-high)
2078 ;; We know the range of the divisor, and the remainder must be
2079 ;; smaller than the divisor. We can tell the sign of the
2080 ;; remainer if we know the sign of the number.
2081 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2082 `(integer ,(if (or (null number-low)
2083 (minusp number-low))
2086 ,(if (or (null number-high)
2087 (plusp number-high))
2090 ;; The divisor is potentially either very positive or very
2091 ;; negative. Therefore, the remainer is unbounded, but we might
2092 ;; be able to tell something about the sign from the number.
2093 `(integer ,(if (and number-low (not (minusp number-low)))
2094 ;; The number we are dividing is positive.
2095 ;; Therefore, the remainder must be positive.
2098 ,(if (and number-high (not (plusp number-high)))
2099 ;; The number we are dividing is negative.
2100 ;; Therefore, the remainder must be negative.
2104 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2105 (defoptimizer (random derive-type) ((bound &optional state))
2106 (let ((type (continuation-type bound)))
2107 (when (numeric-type-p type)
2108 (let ((class (numeric-type-class type))
2109 (high (numeric-type-high type))
2110 (format (numeric-type-format type)))
2114 :low (coerce 0 (or format class 'real))
2115 :high (cond ((not high) nil)
2116 ((eq class 'integer) (max (1- high) 0))
2117 ((or (consp high) (zerop high)) high)
2120 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2121 (defun random-derive-type-aux (type)
2122 (let ((class (numeric-type-class type))
2123 (high (numeric-type-high type))
2124 (format (numeric-type-format type)))
2128 :low (coerce 0 (or format class 'real))
2129 :high (cond ((not high) nil)
2130 ((eq class 'integer) (max (1- high) 0))
2131 ((or (consp high) (zerop high)) high)
2134 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2135 (defoptimizer (random derive-type) ((bound &optional state))
2136 (one-arg-derive-type bound #'random-derive-type-aux nil))
2138 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2140 ;;; Return the maximum number of bits an integer of the supplied type
2141 ;;; can take up, or NIL if it is unbounded. The second (third) value
2142 ;;; is T if the integer can be positive (negative) and NIL if not.
2143 ;;; Zero counts as positive.
2144 (defun integer-type-length (type)
2145 (if (numeric-type-p type)
2146 (let ((min (numeric-type-low type))
2147 (max (numeric-type-high type)))
2148 (values (and min max (max (integer-length min) (integer-length max)))
2149 (or (null max) (not (minusp max)))
2150 (or (null min) (minusp min))))
2153 (defun logand-derive-type-aux (x y &optional same-leaf)
2154 (declare (ignore same-leaf))
2155 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2156 (declare (ignore x-pos))
2157 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2158 (declare (ignore y-pos))
2160 ;; X must be positive.
2162 ;; They must both be positive.
2163 (cond ((or (null x-len) (null y-len))
2164 (specifier-type 'unsigned-byte))
2165 ((or (zerop x-len) (zerop y-len))
2166 (specifier-type '(integer 0 0)))
2168 (specifier-type `(unsigned-byte ,(min x-len y-len)))))
2169 ;; X is positive, but Y might be negative.
2171 (specifier-type 'unsigned-byte))
2173 (specifier-type '(integer 0 0)))
2175 (specifier-type `(unsigned-byte ,x-len)))))
2176 ;; X might be negative.
2178 ;; Y must be positive.
2180 (specifier-type 'unsigned-byte))
2182 (specifier-type '(integer 0 0)))
2185 `(unsigned-byte ,y-len))))
2186 ;; Either might be negative.
2187 (if (and x-len y-len)
2188 ;; The result is bounded.
2189 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2190 ;; We can't tell squat about the result.
2191 (specifier-type 'integer)))))))
2193 (defun logior-derive-type-aux (x y &optional same-leaf)
2194 (declare (ignore same-leaf))
2195 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2196 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2198 ((and (not x-neg) (not y-neg))
2199 ;; Both are positive.
2200 (if (and x-len y-len (zerop x-len) (zerop y-len))
2201 (specifier-type '(integer 0 0))
2202 (specifier-type `(unsigned-byte ,(if (and x-len y-len)
2206 ;; X must be negative.
2208 ;; Both are negative. The result is going to be negative
2209 ;; and be the same length or shorter than the smaller.
2210 (if (and x-len y-len)
2212 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2214 (specifier-type '(integer * -1)))
2215 ;; X is negative, but we don't know about Y. The result
2216 ;; will be negative, but no more negative than X.
2218 `(integer ,(or (numeric-type-low x) '*)
2221 ;; X might be either positive or negative.
2223 ;; But Y is negative. The result will be negative.
2225 `(integer ,(or (numeric-type-low y) '*)
2227 ;; We don't know squat about either. It won't get any bigger.
2228 (if (and x-len y-len)
2230 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2232 (specifier-type 'integer))))))))
2234 (defun logxor-derive-type-aux (x y &optional same-leaf)
2235 (declare (ignore same-leaf))
2236 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2237 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2239 ((or (and (not x-neg) (not y-neg))
2240 (and (not x-pos) (not y-pos)))
2241 ;; Either both are negative or both are positive. The result
2242 ;; will be positive, and as long as the longer.
2243 (if (and x-len y-len (zerop x-len) (zerop y-len))
2244 (specifier-type '(integer 0 0))
2245 (specifier-type `(unsigned-byte ,(if (and x-len y-len)
2248 ((or (and (not x-pos) (not y-neg))
2249 (and (not y-neg) (not y-pos)))
2250 ;; Either X is negative and Y is positive of vice-versa. The
2251 ;; result will be negative.
2252 (specifier-type `(integer ,(if (and x-len y-len)
2253 (ash -1 (max x-len y-len))
2256 ;; We can't tell what the sign of the result is going to be.
2257 ;; All we know is that we don't create new bits.
2259 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2261 (specifier-type 'integer))))))
2263 (macrolet ((deffrob (logfcn)
2264 (let ((fcn-aux (symbolicate logfcn "-DERIVE-TYPE-AUX")))
2265 `(defoptimizer (,logfcn derive-type) ((x y))
2266 (two-arg-derive-type x y #',fcn-aux #',logfcn)))))
2271 ;;;; miscellaneous derive-type methods
2273 (defoptimizer (integer-length derive-type) ((x))
2274 (let ((x-type (continuation-type x)))
2275 (when (and (numeric-type-p x-type)
2276 (csubtypep x-type (specifier-type 'integer)))
2277 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2278 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2279 ;; careful about LO or HI being NIL, though. Also, if 0 is
2280 ;; contained in X, the lower bound is obviously 0.
2281 (flet ((null-or-min (a b)
2282 (and a b (min (integer-length a)
2283 (integer-length b))))
2285 (and a b (max (integer-length a)
2286 (integer-length b)))))
2287 (let* ((min (numeric-type-low x-type))
2288 (max (numeric-type-high x-type))
2289 (min-len (null-or-min min max))
2290 (max-len (null-or-max min max)))
2291 (when (ctypep 0 x-type)
2293 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2295 (defoptimizer (code-char derive-type) ((code))
2296 (specifier-type 'base-char))
2298 (defoptimizer (values derive-type) ((&rest values))
2299 (values-specifier-type
2300 `(values ,@(mapcar (lambda (x)
2301 (type-specifier (continuation-type x)))
2304 ;;;; byte operations
2306 ;;;; We try to turn byte operations into simple logical operations.
2307 ;;;; First, we convert byte specifiers into separate size and position
2308 ;;;; arguments passed to internal %FOO functions. We then attempt to
2309 ;;;; transform the %FOO functions into boolean operations when the
2310 ;;;; size and position are constant and the operands are fixnums.
2312 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2313 ;; expressions that evaluate to the SIZE and POSITION of
2314 ;; the byte-specifier form SPEC. We may wrap a let around
2315 ;; the result of the body to bind some variables.
2317 ;; If the spec is a BYTE form, then bind the vars to the
2318 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2319 ;; and BYTE-POSITION. The goal of this transformation is to
2320 ;; avoid consing up byte specifiers and then immediately
2321 ;; throwing them away.
2322 (with-byte-specifier ((size-var pos-var spec) &body body)
2323 (once-only ((spec `(macroexpand ,spec))
2325 `(if (and (consp ,spec)
2326 (eq (car ,spec) 'byte)
2327 (= (length ,spec) 3))
2328 (let ((,size-var (second ,spec))
2329 (,pos-var (third ,spec)))
2331 (let ((,size-var `(byte-size ,,temp))
2332 (,pos-var `(byte-position ,,temp)))
2333 `(let ((,,temp ,,spec))
2336 (define-source-transform ldb (spec int)
2337 (with-byte-specifier (size pos spec)
2338 `(%ldb ,size ,pos ,int)))
2340 (define-source-transform dpb (newbyte spec int)
2341 (with-byte-specifier (size pos spec)
2342 `(%dpb ,newbyte ,size ,pos ,int)))
2344 (define-source-transform mask-field (spec int)
2345 (with-byte-specifier (size pos spec)
2346 `(%mask-field ,size ,pos ,int)))
2348 (define-source-transform deposit-field (newbyte spec int)
2349 (with-byte-specifier (size pos spec)
2350 `(%deposit-field ,newbyte ,size ,pos ,int))))
2352 (defoptimizer (%ldb derive-type) ((size posn num))
2353 (let ((size (continuation-type size)))
2354 (if (and (numeric-type-p size)
2355 (csubtypep size (specifier-type 'integer)))
2356 (let ((size-high (numeric-type-high size)))
2357 (if (and size-high (<= size-high sb!vm:n-word-bits))
2358 (specifier-type `(unsigned-byte ,size-high))
2359 (specifier-type 'unsigned-byte)))
2362 (defoptimizer (%mask-field derive-type) ((size posn num))
2363 (let ((size (continuation-type size))
2364 (posn (continuation-type posn)))
2365 (if (and (numeric-type-p size)
2366 (csubtypep size (specifier-type 'integer))
2367 (numeric-type-p posn)
2368 (csubtypep posn (specifier-type 'integer)))
2369 (let ((size-high (numeric-type-high size))
2370 (posn-high (numeric-type-high posn)))
2371 (if (and size-high posn-high
2372 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2373 (specifier-type `(unsigned-byte ,(+ size-high posn-high)))
2374 (specifier-type 'unsigned-byte)))
2377 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2378 (let ((size (continuation-type size))
2379 (posn (continuation-type posn))
2380 (int (continuation-type int)))
2381 (if (and (numeric-type-p size)
2382 (csubtypep size (specifier-type 'integer))
2383 (numeric-type-p posn)
2384 (csubtypep posn (specifier-type 'integer))
2385 (numeric-type-p int)
2386 (csubtypep int (specifier-type 'integer)))
2387 (let ((size-high (numeric-type-high size))
2388 (posn-high (numeric-type-high posn))
2389 (high (numeric-type-high int))
2390 (low (numeric-type-low int)))
2391 (if (and size-high posn-high high low
2392 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2394 (list (if (minusp low) 'signed-byte 'unsigned-byte)
2395 (max (integer-length high)
2396 (integer-length low)
2397 (+ size-high posn-high))))
2401 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2402 (let ((size (continuation-type size))
2403 (posn (continuation-type posn))
2404 (int (continuation-type int)))
2405 (if (and (numeric-type-p size)
2406 (csubtypep size (specifier-type 'integer))
2407 (numeric-type-p posn)
2408 (csubtypep posn (specifier-type 'integer))
2409 (numeric-type-p int)
2410 (csubtypep int (specifier-type 'integer)))
2411 (let ((size-high (numeric-type-high size))
2412 (posn-high (numeric-type-high posn))
2413 (high (numeric-type-high int))
2414 (low (numeric-type-low int)))
2415 (if (and size-high posn-high high low
2416 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2418 (list (if (minusp low) 'signed-byte 'unsigned-byte)
2419 (max (integer-length high)
2420 (integer-length low)
2421 (+ size-high posn-high))))
2425 (deftransform %ldb ((size posn int)
2426 (fixnum fixnum integer)
2427 (unsigned-byte #.sb!vm:n-word-bits))
2428 "convert to inline logical operations"
2429 `(logand (ash int (- posn))
2430 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2431 (- size ,sb!vm:n-word-bits))))
2433 (deftransform %mask-field ((size posn int)
2434 (fixnum fixnum integer)
2435 (unsigned-byte #.sb!vm:n-word-bits))
2436 "convert to inline logical operations"
2438 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2439 (- size ,sb!vm:n-word-bits))
2442 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2443 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2444 ;;; as the result type, as that would allow result types that cover
2445 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2446 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2448 (deftransform %dpb ((new size posn int)
2450 (unsigned-byte #.sb!vm:n-word-bits))
2451 "convert to inline logical operations"
2452 `(let ((mask (ldb (byte size 0) -1)))
2453 (logior (ash (logand new mask) posn)
2454 (logand int (lognot (ash mask posn))))))
2456 (deftransform %dpb ((new size posn int)
2458 (signed-byte #.sb!vm:n-word-bits))
2459 "convert to inline logical operations"
2460 `(let ((mask (ldb (byte size 0) -1)))
2461 (logior (ash (logand new mask) posn)
2462 (logand int (lognot (ash mask posn))))))
2464 (deftransform %deposit-field ((new size posn int)
2466 (unsigned-byte #.sb!vm:n-word-bits))
2467 "convert to inline logical operations"
2468 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2469 (logior (logand new mask)
2470 (logand int (lognot mask)))))
2472 (deftransform %deposit-field ((new size posn int)
2474 (signed-byte #.sb!vm:n-word-bits))
2475 "convert to inline logical operations"
2476 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2477 (logior (logand new mask)
2478 (logand int (lognot mask)))))
2480 ;;; miscellanous numeric transforms
2482 ;;; If a constant appears as the first arg, swap the args.
2483 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2484 (if (and (constant-continuation-p x)
2485 (not (constant-continuation-p y)))
2486 `(,(continuation-fun-name (basic-combination-fun node))
2488 ,(continuation-value x))
2489 (give-up-ir1-transform)))
2491 (dolist (x '(= char= + * logior logand logxor))
2492 (%deftransform x '(function * *) #'commutative-arg-swap
2493 "place constant arg last"))
2495 ;;; Handle the case of a constant BOOLE-CODE.
2496 (deftransform boole ((op x y) * *)
2497 "convert to inline logical operations"
2498 (unless (constant-continuation-p op)
2499 (give-up-ir1-transform "BOOLE code is not a constant."))
2500 (let ((control (continuation-value op)))
2506 (#.boole-c1 '(lognot x))
2507 (#.boole-c2 '(lognot y))
2508 (#.boole-and '(logand x y))
2509 (#.boole-ior '(logior x y))
2510 (#.boole-xor '(logxor x y))
2511 (#.boole-eqv '(logeqv x y))
2512 (#.boole-nand '(lognand x y))
2513 (#.boole-nor '(lognor x y))
2514 (#.boole-andc1 '(logandc1 x y))
2515 (#.boole-andc2 '(logandc2 x y))
2516 (#.boole-orc1 '(logorc1 x y))
2517 (#.boole-orc2 '(logorc2 x y))
2519 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2522 ;;;; converting special case multiply/divide to shifts
2524 ;;; If arg is a constant power of two, turn * into a shift.
2525 (deftransform * ((x y) (integer integer) *)
2526 "convert x*2^k to shift"
2527 (unless (constant-continuation-p y)
2528 (give-up-ir1-transform))
2529 (let* ((y (continuation-value y))
2531 (len (1- (integer-length y-abs))))
2532 (unless (= y-abs (ash 1 len))
2533 (give-up-ir1-transform))
2538 ;;; If both arguments and the result are (UNSIGNED-BYTE 32), try to
2539 ;;; come up with a ``better'' multiplication using multiplier
2540 ;;; recoding. There are two different ways the multiplier can be
2541 ;;; recoded. The more obvious is to shift X by the correct amount for
2542 ;;; each bit set in Y and to sum the results. But if there is a string
2543 ;;; of bits that are all set, you can add X shifted by one more then
2544 ;;; the bit position of the first set bit and subtract X shifted by
2545 ;;; the bit position of the last set bit. We can't use this second
2546 ;;; method when the high order bit is bit 31 because shifting by 32
2547 ;;; doesn't work too well.
2548 (deftransform * ((x y)
2549 ((unsigned-byte 32) (unsigned-byte 32))
2551 "recode as shift and add"
2552 (unless (constant-continuation-p y)
2553 (give-up-ir1-transform))
2554 (let ((y (continuation-value y))
2557 (labels ((tub32 (x) `(truly-the (unsigned-byte 32) ,x))
2562 `(+ ,result ,(tub32 next-factor))
2564 (declare (inline add))
2565 (dotimes (bitpos 32)
2567 (when (not (logbitp bitpos y))
2568 (add (if (= (1+ first-one) bitpos)
2569 ;; There is only a single bit in the string.
2571 ;; There are at least two.
2572 `(- ,(tub32 `(ash x ,bitpos))
2573 ,(tub32 `(ash x ,first-one)))))
2574 (setf first-one nil))
2575 (when (logbitp bitpos y)
2576 (setf first-one bitpos))))
2578 (cond ((= first-one 31))
2582 (add `(- ,(tub32 '(ash x 31)) ,(tub32 `(ash x ,first-one))))))
2586 ;;; If arg is a constant power of two, turn FLOOR into a shift and
2587 ;;; mask. If CEILING, add in (1- (ABS Y)) and then do FLOOR.
2588 (flet ((frob (y ceil-p)
2589 (unless (constant-continuation-p y)
2590 (give-up-ir1-transform))
2591 (let* ((y (continuation-value y))
2593 (len (1- (integer-length y-abs))))
2594 (unless (= y-abs (ash 1 len))
2595 (give-up-ir1-transform))
2596 (let ((shift (- len))
2598 `(let ,(when ceil-p `((x (+ x ,(1- y-abs)))))
2600 `(values (ash (- x) ,shift)
2601 (- (logand (- x) ,mask)))
2602 `(values (ash x ,shift)
2603 (logand x ,mask))))))))
2604 (deftransform floor ((x y) (integer integer) *)
2605 "convert division by 2^k to shift"
2607 (deftransform ceiling ((x y) (integer integer) *)
2608 "convert division by 2^k to shift"
2611 ;;; Do the same for MOD.
2612 (deftransform mod ((x y) (integer integer) *)
2613 "convert remainder mod 2^k to LOGAND"
2614 (unless (constant-continuation-p y)
2615 (give-up-ir1-transform))
2616 (let* ((y (continuation-value y))
2618 (len (1- (integer-length y-abs))))
2619 (unless (= y-abs (ash 1 len))
2620 (give-up-ir1-transform))
2621 (let ((mask (1- y-abs)))
2623 `(- (logand (- x) ,mask))
2624 `(logand x ,mask)))))
2626 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
2627 (deftransform truncate ((x y) (integer integer))
2628 "convert division by 2^k to shift"
2629 (unless (constant-continuation-p y)
2630 (give-up-ir1-transform))
2631 (let* ((y (continuation-value y))
2633 (len (1- (integer-length y-abs))))
2634 (unless (= y-abs (ash 1 len))
2635 (give-up-ir1-transform))
2636 (let* ((shift (- len))
2639 (values ,(if (minusp y)
2641 `(- (ash (- x) ,shift)))
2642 (- (logand (- x) ,mask)))
2643 (values ,(if (minusp y)
2644 `(- (ash (- x) ,shift))
2646 (logand x ,mask))))))
2648 ;;; And the same for REM.
2649 (deftransform rem ((x y) (integer integer) *)
2650 "convert remainder mod 2^k to LOGAND"
2651 (unless (constant-continuation-p y)
2652 (give-up-ir1-transform))
2653 (let* ((y (continuation-value y))
2655 (len (1- (integer-length y-abs))))
2656 (unless (= y-abs (ash 1 len))
2657 (give-up-ir1-transform))
2658 (let ((mask (1- y-abs)))
2660 (- (logand (- x) ,mask))
2661 (logand x ,mask)))))
2663 ;;;; arithmetic and logical identity operation elimination
2665 ;;; Flush calls to various arith functions that convert to the
2666 ;;; identity function or a constant.
2667 (macrolet ((def (name identity result)
2668 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
2669 "fold identity operations"
2676 (def logxor -1 (lognot x))
2679 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
2680 ;;; (* 0 -4.0) is -0.0.
2681 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
2682 "convert (- 0 x) to negate"
2684 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
2685 "convert (* x 0) to 0"
2688 ;;; Return T if in an arithmetic op including continuations X and Y,
2689 ;;; the result type is not affected by the type of X. That is, Y is at
2690 ;;; least as contagious as X.
2692 (defun not-more-contagious (x y)
2693 (declare (type continuation x y))
2694 (let ((x (continuation-type x))
2695 (y (continuation-type y)))
2696 (values (type= (numeric-contagion x y)
2697 (numeric-contagion y y)))))
2698 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
2699 ;;; XXX needs more work as valid transforms are missed; some cases are
2700 ;;; specific to particular transform functions so the use of this
2701 ;;; function may need a re-think.
2702 (defun not-more-contagious (x y)
2703 (declare (type continuation x y))
2704 (flet ((simple-numeric-type (num)
2705 (and (numeric-type-p num)
2706 ;; Return non-NIL if NUM is integer, rational, or a float
2707 ;; of some type (but not FLOAT)
2708 (case (numeric-type-class num)
2712 (numeric-type-format num))
2715 (let ((x (continuation-type x))
2716 (y (continuation-type y)))
2717 (if (and (simple-numeric-type x)
2718 (simple-numeric-type y))
2719 (values (type= (numeric-contagion x y)
2720 (numeric-contagion y y)))))))
2724 ;;; If y is not constant, not zerop, or is contagious, or a positive
2725 ;;; float +0.0 then give up.
2726 (deftransform + ((x y) (t (constant-arg t)) *)
2728 (let ((val (continuation-value y)))
2729 (unless (and (zerop val)
2730 (not (and (floatp val) (plusp (float-sign val))))
2731 (not-more-contagious y x))
2732 (give-up-ir1-transform)))
2737 ;;; If y is not constant, not zerop, or is contagious, or a negative
2738 ;;; float -0.0 then give up.
2739 (deftransform - ((x y) (t (constant-arg t)) *)
2741 (let ((val (continuation-value y)))
2742 (unless (and (zerop val)
2743 (not (and (floatp val) (minusp (float-sign val))))
2744 (not-more-contagious y x))
2745 (give-up-ir1-transform)))
2748 ;;; Fold (OP x +/-1)
2749 (macrolet ((def (name result minus-result)
2750 `(deftransform ,name ((x y) (t (constant-arg real)) *)
2751 "fold identity operations"
2752 (let ((val (continuation-value y)))
2753 (unless (and (= (abs val) 1)
2754 (not-more-contagious y x))
2755 (give-up-ir1-transform))
2756 (if (minusp val) ',minus-result ',result)))))
2757 (def * x (%negate x))
2758 (def / x (%negate x))
2759 (def expt x (/ 1 x)))
2761 ;;; Fold (expt x n) into multiplications for small integral values of
2762 ;;; N; convert (expt x 1/2) to sqrt.
2763 (deftransform expt ((x y) (t (constant-arg real)) *)
2764 "recode as multiplication or sqrt"
2765 (let ((val (continuation-value y)))
2766 ;; If Y would cause the result to be promoted to the same type as
2767 ;; Y, we give up. If not, then the result will be the same type
2768 ;; as X, so we can replace the exponentiation with simple
2769 ;; multiplication and division for small integral powers.
2770 (unless (not-more-contagious y x)
2771 (give-up-ir1-transform))
2772 (cond ((zerop val) '(float 1 x))
2773 ((= val 2) '(* x x))
2774 ((= val -2) '(/ (* x x)))
2775 ((= val 3) '(* x x x))
2776 ((= val -3) '(/ (* x x x)))
2777 ((= val 1/2) '(sqrt x))
2778 ((= val -1/2) '(/ (sqrt x)))
2779 (t (give-up-ir1-transform)))))
2781 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
2782 ;;; transformations?
2783 ;;; Perhaps we should have to prove that the denominator is nonzero before
2784 ;;; doing them? -- WHN 19990917
2785 (macrolet ((def (name)
2786 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
2793 (macrolet ((def (name)
2794 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
2803 ;;;; character operations
2805 (deftransform char-equal ((a b) (base-char base-char))
2807 '(let* ((ac (char-code a))
2809 (sum (logxor ac bc)))
2811 (when (eql sum #x20)
2812 (let ((sum (+ ac bc)))
2813 (and (> sum 161) (< sum 213)))))))
2815 (deftransform char-upcase ((x) (base-char))
2817 '(let ((n-code (char-code x)))
2818 (if (and (> n-code #o140) ; Octal 141 is #\a.
2819 (< n-code #o173)) ; Octal 172 is #\z.
2820 (code-char (logxor #x20 n-code))
2823 (deftransform char-downcase ((x) (base-char))
2825 '(let ((n-code (char-code x)))
2826 (if (and (> n-code 64) ; 65 is #\A.
2827 (< n-code 91)) ; 90 is #\Z.
2828 (code-char (logxor #x20 n-code))
2831 ;;;; equality predicate transforms
2833 ;;; Return true if X and Y are continuations whose only use is a
2834 ;;; reference to the same leaf, and the value of the leaf cannot
2836 (defun same-leaf-ref-p (x y)
2837 (declare (type continuation x y))
2838 (let ((x-use (continuation-use x))
2839 (y-use (continuation-use y)))
2842 (eq (ref-leaf x-use) (ref-leaf y-use))
2843 (constant-reference-p x-use))))
2845 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
2846 ;;; if there is no intersection between the types of the arguments,
2847 ;;; then the result is definitely false.
2848 (deftransform simple-equality-transform ((x y) * *
2850 (cond ((same-leaf-ref-p x y)
2852 ((not (types-equal-or-intersect (continuation-type x)
2853 (continuation-type y)))
2856 (give-up-ir1-transform))))
2859 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
2864 ;;; This is similar to SIMPLE-EQUALITY-PREDICATE, except that we also
2865 ;;; try to convert to a type-specific predicate or EQ:
2866 ;;; -- If both args are characters, convert to CHAR=. This is better than
2867 ;;; just converting to EQ, since CHAR= may have special compilation
2868 ;;; strategies for non-standard representations, etc.
2869 ;;; -- If either arg is definitely not a number, then we can compare
2871 ;;; -- Otherwise, we try to put the arg we know more about second. If X
2872 ;;; is constant then we put it second. If X is a subtype of Y, we put
2873 ;;; it second. These rules make it easier for the back end to match
2874 ;;; these interesting cases.
2875 ;;; -- If Y is a fixnum, then we quietly pass because the back end can
2876 ;;; handle that case, otherwise give an efficiency note.
2877 (deftransform eql ((x y) * *)
2878 "convert to simpler equality predicate"
2879 (let ((x-type (continuation-type x))
2880 (y-type (continuation-type y))
2881 (char-type (specifier-type 'character))
2882 (number-type (specifier-type 'number)))
2883 (cond ((same-leaf-ref-p x y)
2885 ((not (types-equal-or-intersect x-type y-type))
2887 ((and (csubtypep x-type char-type)
2888 (csubtypep y-type char-type))
2890 ((or (not (types-equal-or-intersect x-type number-type))
2891 (not (types-equal-or-intersect y-type number-type)))
2893 ((and (not (constant-continuation-p y))
2894 (or (constant-continuation-p x)
2895 (and (csubtypep x-type y-type)
2896 (not (csubtypep y-type x-type)))))
2899 (give-up-ir1-transform)))))
2901 ;;; Convert to EQL if both args are rational and complexp is specified
2902 ;;; and the same for both.
2903 (deftransform = ((x y) * *)
2905 (let ((x-type (continuation-type x))
2906 (y-type (continuation-type y)))
2907 (if (and (csubtypep x-type (specifier-type 'number))
2908 (csubtypep y-type (specifier-type 'number)))
2909 (cond ((or (and (csubtypep x-type (specifier-type 'float))
2910 (csubtypep y-type (specifier-type 'float)))
2911 (and (csubtypep x-type (specifier-type '(complex float)))
2912 (csubtypep y-type (specifier-type '(complex float)))))
2913 ;; They are both floats. Leave as = so that -0.0 is
2914 ;; handled correctly.
2915 (give-up-ir1-transform))
2916 ((or (and (csubtypep x-type (specifier-type 'rational))
2917 (csubtypep y-type (specifier-type 'rational)))
2918 (and (csubtypep x-type
2919 (specifier-type '(complex rational)))
2921 (specifier-type '(complex rational)))))
2922 ;; They are both rationals and complexp is the same.
2926 (give-up-ir1-transform
2927 "The operands might not be the same type.")))
2928 (give-up-ir1-transform
2929 "The operands might not be the same type."))))
2931 ;;; If CONT's type is a numeric type, then return the type, otherwise
2932 ;;; GIVE-UP-IR1-TRANSFORM.
2933 (defun numeric-type-or-lose (cont)
2934 (declare (type continuation cont))
2935 (let ((res (continuation-type cont)))
2936 (unless (numeric-type-p res) (give-up-ir1-transform))
2939 ;;; See whether we can statically determine (< X Y) using type
2940 ;;; information. If X's high bound is < Y's low, then X < Y.
2941 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
2942 ;;; NIL). If not, at least make sure any constant arg is second.
2944 ;;; FIXME: Why should constant argument be second? It would be nice to
2945 ;;; find out and explain.
2946 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2947 (defun ir1-transform-< (x y first second inverse)
2948 (if (same-leaf-ref-p x y)
2950 (let* ((x-type (numeric-type-or-lose x))
2951 (x-lo (numeric-type-low x-type))
2952 (x-hi (numeric-type-high x-type))
2953 (y-type (numeric-type-or-lose y))
2954 (y-lo (numeric-type-low y-type))
2955 (y-hi (numeric-type-high y-type)))
2956 (cond ((and x-hi y-lo (< x-hi y-lo))
2958 ((and y-hi x-lo (>= x-lo y-hi))
2960 ((and (constant-continuation-p first)
2961 (not (constant-continuation-p second)))
2964 (give-up-ir1-transform))))))
2965 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2966 (defun ir1-transform-< (x y first second inverse)
2967 (if (same-leaf-ref-p x y)
2969 (let ((xi (numeric-type->interval (numeric-type-or-lose x)))
2970 (yi (numeric-type->interval (numeric-type-or-lose y))))
2971 (cond ((interval-< xi yi)
2973 ((interval->= xi yi)
2975 ((and (constant-continuation-p first)
2976 (not (constant-continuation-p second)))
2979 (give-up-ir1-transform))))))
2981 (deftransform < ((x y) (integer integer) *)
2982 (ir1-transform-< x y x y '>))
2984 (deftransform > ((x y) (integer integer) *)
2985 (ir1-transform-< y x x y '<))
2987 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2988 (deftransform < ((x y) (float float) *)
2989 (ir1-transform-< x y x y '>))
2991 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2992 (deftransform > ((x y) (float float) *)
2993 (ir1-transform-< y x x y '<))
2995 ;;;; converting N-arg comparisons
2997 ;;;; We convert calls to N-arg comparison functions such as < into
2998 ;;;; two-arg calls. This transformation is enabled for all such
2999 ;;;; comparisons in this file. If any of these predicates are not
3000 ;;;; open-coded, then the transformation should be removed at some
3001 ;;;; point to avoid pessimization.
3003 ;;; This function is used for source transformation of N-arg
3004 ;;; comparison functions other than inequality. We deal both with
3005 ;;; converting to two-arg calls and inverting the sense of the test,
3006 ;;; if necessary. If the call has two args, then we pass or return a
3007 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3008 ;;; then we transform to code that returns true. Otherwise, we bind
3009 ;;; all the arguments and expand into a bunch of IFs.
3010 (declaim (ftype (function (symbol list boolean) *) multi-compare))
3011 (defun multi-compare (predicate args not-p)
3012 (let ((nargs (length args)))
3013 (cond ((< nargs 1) (values nil t))
3014 ((= nargs 1) `(progn ,@args t))
3017 `(if (,predicate ,(first args) ,(second args)) nil t)
3020 (do* ((i (1- nargs) (1- i))
3022 (current (gensym) (gensym))
3023 (vars (list current) (cons current vars))
3025 `(if (,predicate ,current ,last)
3027 `(if (,predicate ,current ,last)
3030 `((lambda ,vars ,result) . ,args)))))))
3032 (define-source-transform = (&rest args) (multi-compare '= args nil))
3033 (define-source-transform < (&rest args) (multi-compare '< args nil))
3034 (define-source-transform > (&rest args) (multi-compare '> args nil))
3035 (define-source-transform <= (&rest args) (multi-compare '> args t))
3036 (define-source-transform >= (&rest args) (multi-compare '< args t))
3038 (define-source-transform char= (&rest args) (multi-compare 'char= args nil))
3039 (define-source-transform char< (&rest args) (multi-compare 'char< args nil))
3040 (define-source-transform char> (&rest args) (multi-compare 'char> args nil))
3041 (define-source-transform char<= (&rest args) (multi-compare 'char> args t))
3042 (define-source-transform char>= (&rest args) (multi-compare 'char< args t))
3044 (define-source-transform char-equal (&rest args)
3045 (multi-compare 'char-equal args nil))
3046 (define-source-transform char-lessp (&rest args)
3047 (multi-compare 'char-lessp args nil))
3048 (define-source-transform char-greaterp (&rest args)
3049 (multi-compare 'char-greaterp args nil))
3050 (define-source-transform char-not-greaterp (&rest args)
3051 (multi-compare 'char-greaterp args t))
3052 (define-source-transform char-not-lessp (&rest args)
3053 (multi-compare 'char-lessp args t))
3055 ;;; This function does source transformation of N-arg inequality
3056 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3057 ;;; arg cases. If there are more than two args, then we expand into
3058 ;;; the appropriate n^2 comparisons only when speed is important.
3059 (declaim (ftype (function (symbol list) *) multi-not-equal))
3060 (defun multi-not-equal (predicate args)
3061 (let ((nargs (length args)))
3062 (cond ((< nargs 1) (values nil t))
3063 ((= nargs 1) `(progn ,@args t))
3065 `(if (,predicate ,(first args) ,(second args)) nil t))
3066 ((not (policy *lexenv*
3067 (and (>= speed space)
3068 (>= speed compilation-speed))))
3071 (let ((vars (make-gensym-list nargs)))
3072 (do ((var vars next)
3073 (next (cdr vars) (cdr next))
3076 `((lambda ,vars ,result) . ,args))
3077 (let ((v1 (first var)))
3079 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3081 (define-source-transform /= (&rest args) (multi-not-equal '= args))
3082 (define-source-transform char/= (&rest args) (multi-not-equal 'char= args))
3083 (define-source-transform char-not-equal (&rest args)
3084 (multi-not-equal 'char-equal args))
3086 ;;; FIXME: can go away once bug 194 is fixed and we can use (THE REAL X)
3088 (defun error-not-a-real (x)
3089 (error 'simple-type-error
3091 :expected-type 'real
3092 :format-control "not a REAL: ~S"
3093 :format-arguments (list x)))
3095 ;;; Expand MAX and MIN into the obvious comparisons.
3096 (define-source-transform max (arg0 &rest rest)
3097 (once-only ((arg0 arg0))
3099 `(values (the real ,arg0))
3100 `(let ((maxrest (max ,@rest)))
3101 (if (> ,arg0 maxrest) ,arg0 maxrest)))))
3102 (define-source-transform min (arg0 &rest rest)
3103 (once-only ((arg0 arg0))
3105 `(values (the real ,arg0))
3106 `(let ((minrest (min ,@rest)))
3107 (if (< ,arg0 minrest) ,arg0 minrest)))))
3109 ;;;; converting N-arg arithmetic functions
3111 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3112 ;;;; versions, and degenerate cases are flushed.
3114 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3115 (declaim (ftype (function (symbol t list) list) associate-args))
3116 (defun associate-args (function first-arg more-args)
3117 (let ((next (rest more-args))
3118 (arg (first more-args)))
3120 `(,function ,first-arg ,arg)
3121 (associate-args function `(,function ,first-arg ,arg) next))))
3123 ;;; Do source transformations for transitive functions such as +.
3124 ;;; One-arg cases are replaced with the arg and zero arg cases with
3125 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3126 ;;; ensure (with THE) that the argument in one-argument calls is.
3127 (defun source-transform-transitive (fun args identity
3128 &optional one-arg-result-type)
3129 (declare (symbol fun leaf-fun) (list args))
3132 (1 (if one-arg-result-type
3133 `(values (the ,one-arg-result-type ,(first args)))
3134 `(values ,(first args))))
3137 (associate-args fun (first args) (rest args)))))
3139 (define-source-transform + (&rest args)
3140 (source-transform-transitive '+ args 0 'number))
3141 (define-source-transform * (&rest args)
3142 (source-transform-transitive '* args 1 'number))
3143 (define-source-transform logior (&rest args)
3144 (source-transform-transitive 'logior args 0 'integer))
3145 (define-source-transform logxor (&rest args)
3146 (source-transform-transitive 'logxor args 0 'integer))
3147 (define-source-transform logand (&rest args)
3148 (source-transform-transitive 'logand args -1 'integer))
3150 (define-source-transform logeqv (&rest args)
3151 (if (evenp (length args))
3152 `(lognot (logxor ,@args))
3155 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3156 ;;; because when they are given one argument, they return its absolute
3159 (define-source-transform gcd (&rest args)
3162 (1 `(abs (the integer ,(first args))))
3164 (t (associate-args 'gcd (first args) (rest args)))))
3166 (define-source-transform lcm (&rest args)
3169 (1 `(abs (the integer ,(first args))))
3171 (t (associate-args 'lcm (first args) (rest args)))))
3173 ;;; Do source transformations for intransitive n-arg functions such as
3174 ;;; /. With one arg, we form the inverse. With two args we pass.
3175 ;;; Otherwise we associate into two-arg calls.
3176 (declaim (ftype (function (symbol list t)
3177 (values list &optional (member nil t)))
3178 source-transform-intransitive))
3179 (defun source-transform-intransitive (function args inverse)
3181 ((0 2) (values nil t))
3182 (1 `(,@inverse ,(first args)))
3183 (t (associate-args function (first args) (rest args)))))
3185 (define-source-transform - (&rest args)
3186 (source-transform-intransitive '- args '(%negate)))
3187 (define-source-transform / (&rest args)
3188 (source-transform-intransitive '/ args '(/ 1)))
3190 ;;;; transforming APPLY
3192 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3193 ;;; only needs to understand one kind of variable-argument call. It is
3194 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3195 (define-source-transform apply (fun arg &rest more-args)
3196 (let ((args (cons arg more-args)))
3197 `(multiple-value-call ,fun
3198 ,@(mapcar (lambda (x)
3201 (values-list ,(car (last args))))))
3203 ;;;; transforming FORMAT
3205 ;;;; If the control string is a compile-time constant, then replace it
3206 ;;;; with a use of the FORMATTER macro so that the control string is
3207 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3208 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3209 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3211 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3212 :policy (> speed space))
3213 (unless (constant-continuation-p control)
3214 (give-up-ir1-transform "The control string is not a constant."))
3215 (let ((arg-names (make-gensym-list (length args))))
3216 `(lambda (dest control ,@arg-names)
3217 (declare (ignore control))
3218 (format dest (formatter ,(continuation-value control)) ,@arg-names))))
3220 (deftransform format ((stream control &rest args) (stream function &rest t) *
3221 :policy (> speed space))
3222 (let ((arg-names (make-gensym-list (length args))))
3223 `(lambda (stream control ,@arg-names)
3224 (funcall control stream ,@arg-names)
3227 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3228 :policy (> speed space))
3229 (let ((arg-names (make-gensym-list (length args))))
3230 `(lambda (tee control ,@arg-names)
3231 (declare (ignore tee))
3232 (funcall control *standard-output* ,@arg-names)
3235 (defoptimizer (coerce derive-type) ((value type))
3236 (let ((value-type (continuation-type value))
3237 (type-type (continuation-type type)))
3239 ((good-cons-type-p (cons-type)
3240 ;; Make sure the cons-type we're looking at is something
3241 ;; we're prepared to handle which is basically something
3242 ;; that array-element-type can return.
3243 (or (and (member-type-p cons-type)
3244 (null (rest (member-type-members cons-type)))
3245 (null (first (member-type-members cons-type))))
3246 (let ((car-type (cons-type-car-type cons-type)))
3247 (and (member-type-p car-type)
3248 (null (rest (member-type-members car-type)))
3249 (or (symbolp (first (member-type-members car-type)))
3250 (numberp (first (member-type-members car-type)))
3251 (and (listp (first (member-type-members car-type)))
3252 (numberp (first (first (member-type-members
3254 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3255 (unconsify-type (good-cons-type)
3256 ;; Convert the "printed" respresentation of a cons
3257 ;; specifier into a type specifier. That is, the specifier
3258 ;; (cons (eql signed-byte) (cons (eql 16) null)) is
3259 ;; converted to (signed-byte 16).
3260 (cond ((or (null good-cons-type)
3261 (eq good-cons-type 'null))
3263 ((and (eq (first good-cons-type) 'cons)
3264 (eq (first (second good-cons-type)) 'member))
3265 `(,(second (second good-cons-type))
3266 ,@(unconsify-type (caddr good-cons-type))))))
3267 (coerceable-p (c-type)
3268 ;; Can the value be coerced to the given type? Coerce is
3269 ;; complicated, so we don't handle every possible case
3270 ;; here---just the most common and easiest cases:
3272 ;; o Any real can be coerced to a float type.
3273 ;; o Any number can be coerced to a complex single/double-float.
3274 ;; o An integer can be coerced to an integer.
3275 (let ((coerced-type c-type))
3276 (or (and (subtypep coerced-type 'float)
3277 (csubtypep value-type (specifier-type 'real)))
3278 (and (subtypep coerced-type
3279 '(or (complex single-float)
3280 (complex double-float)))
3281 (csubtypep value-type (specifier-type 'number)))
3282 (and (subtypep coerced-type 'integer)
3283 (csubtypep value-type (specifier-type 'integer))))))
3284 (process-types (type)
3286 ;; This needs some work because we should be able to derive
3287 ;; the resulting type better than just the type arg of
3288 ;; coerce. That is, if x is (integer 10 20), the (coerce x
3289 ;; 'double-float) should say (double-float 10d0 20d0)
3290 ;; instead of just double-float.
3291 (cond ((member-type-p type)
3292 (let ((members (member-type-members type)))
3293 (if (every #'coerceable-p members)
3294 (specifier-type `(or ,@members))
3296 ((and (cons-type-p type)
3297 (good-cons-type-p type))
3298 (let ((c-type (unconsify-type (type-specifier type))))
3299 (if (coerceable-p c-type)
3300 (specifier-type c-type)
3303 *universal-type*))))
3304 (cond ((union-type-p type-type)
3305 (apply #'type-union (mapcar #'process-types
3306 (union-type-types type-type))))
3307 ((or (member-type-p type-type)
3308 (cons-type-p type-type))
3309 (process-types type-type))
3311 *universal-type*)))))
3313 (defoptimizer (array-element-type derive-type) ((array))
3314 (let ((array-type (continuation-type array)))
3315 (labels ((consify (list)
3318 `(cons (eql ,(car list)) ,(consify (rest list)))))
3319 (get-element-type (a)
3321 (type-specifier (array-type-specialized-element-type a))))
3322 (cond ((eq element-type '*)
3323 (specifier-type 'type-specifier))
3324 ((symbolp element-type)
3325 (make-member-type :members (list element-type)))
3326 ((consp element-type)
3327 (specifier-type (consify element-type)))
3329 (error "can't understand type ~S~%" element-type))))))
3330 (cond ((array-type-p array-type)
3331 (get-element-type array-type))
3332 ((union-type-p array-type)
3334 (mapcar #'get-element-type (union-type-types array-type))))
3336 *universal-type*)))))
3338 ;;;; debuggers' little helpers
3340 ;;; for debugging when transforms are behaving mysteriously,
3341 ;;; e.g. when debugging a problem with an ASH transform
3342 ;;; (defun foo (&optional s)
3343 ;;; (sb-c::/report-continuation s "S outside WHEN")
3344 ;;; (when (and (integerp s) (> s 3))
3345 ;;; (sb-c::/report-continuation s "S inside WHEN")
3346 ;;; (let ((bound (ash 1 (1- s))))
3347 ;;; (sb-c::/report-continuation bound "BOUND")
3348 ;;; (let ((x (- bound))
3350 ;;; (sb-c::/report-continuation x "X")
3351 ;;; (sb-c::/report-continuation x "Y"))
3352 ;;; `(integer ,(- bound) ,(1- bound)))))
3353 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
3354 ;;; and the function doesn't do anything at all.)
3357 (defknown /report-continuation (t t) null)
3358 (deftransform /report-continuation ((x message) (t t))
3359 (format t "~%/in /REPORT-CONTINUATION~%")
3360 (format t "/(CONTINUATION-TYPE X)=~S~%" (continuation-type x))
3361 (when (constant-continuation-p x)
3362 (format t "/(CONTINUATION-VALUE X)=~S~%" (continuation-value x)))
3363 (format t "/MESSAGE=~S~%" (continuation-value message))
3364 (give-up-ir1-transform "not a real transform"))
3365 (defun /report-continuation (&rest rest)
3366 (declare (ignore rest))))