1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
37 (declare (ignore ,rest))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
68 (let* ((name (car form))
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
75 `(,(ecase (char string i)
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; LIST with one arg is an extremely common operation (at least inside
118 ;;; SBCL itself); translate it to CONS to take advantage of common
119 ;;; allocation routines.
120 (define-source-transform list (&rest args)
122 (1 `(cons ,(first args) nil))
125 ;;; And similarly for LIST*.
126 (define-source-transform list* (&rest args)
128 (2 `(cons ,(first args) ,(second args)))
131 ;;; Translate RPLACx to LET and SETF.
132 (define-source-transform rplaca (x y)
137 (define-source-transform rplacd (x y)
143 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
145 (define-source-transform last (x) `(sb!impl::last1 ,x))
146 (define-source-transform gethash (&rest args)
148 (2 `(sb!impl::gethash2 ,@args))
149 (3 `(sb!impl::gethash3 ,@args))
151 (define-source-transform get (&rest args)
153 (2 `(sb!impl::get2 ,@args))
154 (3 `(sb!impl::get3 ,@args))
157 (defvar *default-nthcdr-open-code-limit* 6)
158 (defvar *extreme-nthcdr-open-code-limit* 20)
160 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
161 "convert NTHCDR to CAxxR"
162 (unless (constant-lvar-p n)
163 (give-up-ir1-transform))
164 (let ((n (lvar-value n)))
166 (if (policy node (and (= speed 3) (= space 0)))
167 *extreme-nthcdr-open-code-limit*
168 *default-nthcdr-open-code-limit*))
169 (give-up-ir1-transform))
174 `(cdr ,(frob (1- n))))))
177 ;;;; arithmetic and numerology
179 (define-source-transform plusp (x) `(> ,x 0))
180 (define-source-transform minusp (x) `(< ,x 0))
181 (define-source-transform zerop (x) `(= ,x 0))
183 (define-source-transform 1+ (x) `(+ ,x 1))
184 (define-source-transform 1- (x) `(- ,x 1))
186 (define-source-transform oddp (x) `(logtest ,x 1))
187 (define-source-transform evenp (x) `(not (logtest ,x 1)))
189 ;;; Note that all the integer division functions are available for
190 ;;; inline expansion.
192 (macrolet ((deffrob (fun)
193 `(define-source-transform ,fun (x &optional (y nil y-p))
200 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
202 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
205 ;;; This used to be a source transform (hence the lack of restrictions
206 ;;; on the argument types), but we make it a regular transform so that
207 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
208 ;;; to implement it differently. --njf, 06-02-2006
209 (deftransform logtest ((x y) * *)
210 `(not (zerop (logand x y))))
212 (deftransform logbitp
213 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
214 (unsigned-byte #.sb!vm:n-word-bits))))
215 `(if (>= index #.sb!vm:n-word-bits)
217 (not (zerop (logand integer (ash 1 index))))))
219 (define-source-transform byte (size position)
220 `(cons ,size ,position))
221 (define-source-transform byte-size (spec) `(car ,spec))
222 (define-source-transform byte-position (spec) `(cdr ,spec))
223 (define-source-transform ldb-test (bytespec integer)
224 `(not (zerop (mask-field ,bytespec ,integer))))
226 ;;; With the ratio and complex accessors, we pick off the "identity"
227 ;;; case, and use a primitive to handle the cell access case.
228 (define-source-transform numerator (num)
229 (once-only ((n-num `(the rational ,num)))
233 (define-source-transform denominator (num)
234 (once-only ((n-num `(the rational ,num)))
236 (%denominator ,n-num)
239 ;;;; interval arithmetic for computing bounds
241 ;;;; This is a set of routines for operating on intervals. It
242 ;;;; implements a simple interval arithmetic package. Although SBCL
243 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
244 ;;;; for two reasons:
246 ;;;; 1. This package is simpler than NUMERIC-TYPE.
248 ;;;; 2. It makes debugging much easier because you can just strip
249 ;;;; out these routines and test them independently of SBCL. (This is a
252 ;;;; One disadvantage is a probable increase in consing because we
253 ;;;; have to create these new interval structures even though
254 ;;;; numeric-type has everything we want to know. Reason 2 wins for
257 ;;; Support operations that mimic real arithmetic comparison
258 ;;; operators, but imposing a total order on the floating points such
259 ;;; that negative zeros are strictly less than positive zeros.
260 (macrolet ((def (name op)
263 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
264 (,op (float-sign x) (float-sign y))
266 (def signed-zero->= >=)
267 (def signed-zero-> >)
268 (def signed-zero-= =)
269 (def signed-zero-< <)
270 (def signed-zero-<= <=))
272 ;;; The basic interval type. It can handle open and closed intervals.
273 ;;; A bound is open if it is a list containing a number, just like
274 ;;; Lisp says. NIL means unbounded.
275 (defstruct (interval (:constructor %make-interval)
279 (defun make-interval (&key low high)
280 (labels ((normalize-bound (val)
283 (float-infinity-p val))
284 ;; Handle infinities.
288 ;; Handle any closed bounds.
291 ;; We have an open bound. Normalize the numeric
292 ;; bound. If the normalized bound is still a number
293 ;; (not nil), keep the bound open. Otherwise, the
294 ;; bound is really unbounded, so drop the openness.
295 (let ((new-val (normalize-bound (first val))))
297 ;; The bound exists, so keep it open still.
300 (error "unknown bound type in MAKE-INTERVAL")))))
301 (%make-interval :low (normalize-bound low)
302 :high (normalize-bound high))))
304 ;;; Given a number X, create a form suitable as a bound for an
305 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
306 #!-sb-fluid (declaim (inline set-bound))
307 (defun set-bound (x open-p)
308 (if (and x open-p) (list x) x))
310 ;;; Apply the function F to a bound X. If X is an open bound, then
311 ;;; the result will be open. IF X is NIL, the result is NIL.
312 (defun bound-func (f x)
313 (declare (type function f))
315 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
316 ;; With these traps masked, we might get things like infinity
317 ;; or negative infinity returned. Check for this and return
318 ;; NIL to indicate unbounded.
319 (let ((y (funcall f (type-bound-number x))))
321 (float-infinity-p y))
323 (set-bound y (consp x)))))))
325 ;;; Apply a binary operator OP to two bounds X and Y. The result is
326 ;;; NIL if either is NIL. Otherwise bound is computed and the result
327 ;;; is open if either X or Y is open.
329 ;;; FIXME: only used in this file, not needed in target runtime
331 ;;; ANSI contaigon specifies coercion to floating point if one of the
332 ;;; arguments is floating point. Here we should check to be sure that
333 ;;; the other argument is within the bounds of that floating point
336 (defmacro safely-binop (op x y)
338 ((typep ,x 'single-float)
339 (if (or (typep ,y 'single-float)
340 (<= most-negative-single-float ,y most-positive-single-float))
342 ((typep ,x 'double-float)
343 (if (or (typep ,y 'double-float)
344 (<= most-negative-double-float ,y most-positive-double-float))
346 ((typep ,y 'single-float)
347 (if (<= most-negative-single-float ,x most-positive-single-float)
349 ((typep ,y 'double-float)
350 (if (<= most-negative-double-float ,x most-positive-double-float)
354 (defmacro bound-binop (op x y)
356 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
357 (set-bound (safely-binop ,op (type-bound-number ,x)
358 (type-bound-number ,y))
359 (or (consp ,x) (consp ,y))))))
361 (defun coerce-for-bound (val type)
363 (list (coerce-for-bound (car val) type))
365 ((subtypep type 'double-float)
366 (if (<= most-negative-double-float val most-positive-double-float)
368 ((or (subtypep type 'single-float) (subtypep type 'float))
369 ;; coerce to float returns a single-float
370 (if (<= most-negative-single-float val most-positive-single-float)
372 (t (coerce val type)))))
374 (defun coerce-and-truncate-floats (val type)
377 (list (coerce-and-truncate-floats (car val) type))
379 ((subtypep type 'double-float)
380 (if (<= most-negative-double-float val most-positive-double-float)
382 (if (< val most-negative-double-float)
383 most-negative-double-float most-positive-double-float)))
384 ((or (subtypep type 'single-float) (subtypep type 'float))
385 ;; coerce to float returns a single-float
386 (if (<= most-negative-single-float val most-positive-single-float)
388 (if (< val most-negative-single-float)
389 most-negative-single-float most-positive-single-float)))
390 (t (coerce val type))))))
392 ;;; Convert a numeric-type object to an interval object.
393 (defun numeric-type->interval (x)
394 (declare (type numeric-type x))
395 (make-interval :low (numeric-type-low x)
396 :high (numeric-type-high x)))
398 (defun type-approximate-interval (type)
399 (declare (type ctype type))
400 (let ((types (prepare-arg-for-derive-type type))
403 (let ((type (if (member-type-p type)
404 (convert-member-type type)
406 (unless (numeric-type-p type)
407 (return-from type-approximate-interval nil))
408 (let ((interval (numeric-type->interval type)))
411 (interval-approximate-union result interval)
415 (defun copy-interval-limit (limit)
420 (defun copy-interval (x)
421 (declare (type interval x))
422 (make-interval :low (copy-interval-limit (interval-low x))
423 :high (copy-interval-limit (interval-high x))))
425 ;;; Given a point P contained in the interval X, split X into two
426 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
427 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
428 ;;; contains P. You can specify both to be T or NIL.
429 (defun interval-split (p x &optional close-lower close-upper)
430 (declare (type number p)
432 (list (make-interval :low (copy-interval-limit (interval-low x))
433 :high (if close-lower p (list p)))
434 (make-interval :low (if close-upper (list p) p)
435 :high (copy-interval-limit (interval-high x)))))
437 ;;; Return the closure of the interval. That is, convert open bounds
438 ;;; to closed bounds.
439 (defun interval-closure (x)
440 (declare (type interval x))
441 (make-interval :low (type-bound-number (interval-low x))
442 :high (type-bound-number (interval-high x))))
444 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
445 ;;; '-. Otherwise return NIL.
446 (defun interval-range-info (x &optional (point 0))
447 (declare (type interval x))
448 (let ((lo (interval-low x))
449 (hi (interval-high x)))
450 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
452 ((and hi (signed-zero->= point (type-bound-number hi)))
457 ;;; Test to see whether the interval X is bounded. HOW determines the
458 ;;; test, and should be either ABOVE, BELOW, or BOTH.
459 (defun interval-bounded-p (x how)
460 (declare (type interval x))
467 (and (interval-low x) (interval-high x)))))
469 ;;; See whether the interval X contains the number P, taking into
470 ;;; account that the interval might not be closed.
471 (defun interval-contains-p (p x)
472 (declare (type number p)
474 ;; Does the interval X contain the number P? This would be a lot
475 ;; easier if all intervals were closed!
476 (let ((lo (interval-low x))
477 (hi (interval-high x)))
479 ;; The interval is bounded
480 (if (and (signed-zero-<= (type-bound-number lo) p)
481 (signed-zero-<= p (type-bound-number hi)))
482 ;; P is definitely in the closure of the interval.
483 ;; We just need to check the end points now.
484 (cond ((signed-zero-= p (type-bound-number lo))
486 ((signed-zero-= p (type-bound-number hi))
491 ;; Interval with upper bound
492 (if (signed-zero-< p (type-bound-number hi))
494 (and (numberp hi) (signed-zero-= p hi))))
496 ;; Interval with lower bound
497 (if (signed-zero-> p (type-bound-number lo))
499 (and (numberp lo) (signed-zero-= p lo))))
501 ;; Interval with no bounds
504 ;;; Determine whether two intervals X and Y intersect. Return T if so.
505 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
506 ;;; were closed. Otherwise the intervals are treated as they are.
508 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
509 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
510 ;;; is T, then they do intersect because we use the closure of X = [0,
511 ;;; 1] and Y = [1, 2] to determine intersection.
512 (defun interval-intersect-p (x y &optional closed-intervals-p)
513 (declare (type interval x y))
514 (and (interval-intersection/difference (if closed-intervals-p
517 (if closed-intervals-p
522 ;;; Are the two intervals adjacent? That is, is there a number
523 ;;; between the two intervals that is not an element of either
524 ;;; interval? If so, they are not adjacent. For example [0, 1) and
525 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
526 ;;; between both intervals.
527 (defun interval-adjacent-p (x y)
528 (declare (type interval x y))
529 (flet ((adjacent (lo hi)
530 ;; Check to see whether lo and hi are adjacent. If either is
531 ;; nil, they can't be adjacent.
532 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
533 ;; The bounds are equal. They are adjacent if one of
534 ;; them is closed (a number). If both are open (consp),
535 ;; then there is a number that lies between them.
536 (or (numberp lo) (numberp hi)))))
537 (or (adjacent (interval-low y) (interval-high x))
538 (adjacent (interval-low x) (interval-high y)))))
540 ;;; Compute the intersection and difference between two intervals.
541 ;;; Two values are returned: the intersection and the difference.
543 ;;; Let the two intervals be X and Y, and let I and D be the two
544 ;;; values returned by this function. Then I = X intersect Y. If I
545 ;;; is NIL (the empty set), then D is X union Y, represented as the
546 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
547 ;;; - I, which is a list of two intervals.
549 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
550 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
551 (defun interval-intersection/difference (x y)
552 (declare (type interval x y))
553 (let ((x-lo (interval-low x))
554 (x-hi (interval-high x))
555 (y-lo (interval-low y))
556 (y-hi (interval-high y)))
559 ;; If p is an open bound, make it closed. If p is a closed
560 ;; bound, make it open.
564 (test-number (p int bound)
565 ;; Test whether P is in the interval.
566 (let ((pn (type-bound-number p)))
567 (when (interval-contains-p pn (interval-closure int))
568 ;; Check for endpoints.
569 (let* ((lo (interval-low int))
570 (hi (interval-high int))
571 (lon (type-bound-number lo))
572 (hin (type-bound-number hi)))
574 ;; Interval may be a point.
575 ((and lon hin (= lon hin pn))
576 (and (numberp p) (numberp lo) (numberp hi)))
577 ;; Point matches the low end.
578 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
579 ;; (P [P,?} => TRUE P) [P,?} => FALSE
580 ;; (P (P,?} => TRUE P) (P,?} => FALSE
581 ((and lon (= pn lon))
582 (or (and (numberp p) (numberp lo))
583 (and (consp p) (eq :low bound))))
584 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
585 ;; P) {?,P] => TRUE (P {?,P] => FALSE
586 ;; P) {?,P) => TRUE (P {?,P) => FALSE
587 ((and hin (= pn hin))
588 (or (and (numberp p) (numberp hi))
589 (and (consp p) (eq :high bound))))
590 ;; Not an endpoint, all is well.
593 (test-lower-bound (p int)
594 ;; P is a lower bound of an interval.
596 (test-number p int :low)
597 (not (interval-bounded-p int 'below))))
598 (test-upper-bound (p int)
599 ;; P is an upper bound of an interval.
601 (test-number p int :high)
602 (not (interval-bounded-p int 'above)))))
603 (let ((x-lo-in-y (test-lower-bound x-lo y))
604 (x-hi-in-y (test-upper-bound x-hi y))
605 (y-lo-in-x (test-lower-bound y-lo x))
606 (y-hi-in-x (test-upper-bound y-hi x)))
607 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
608 ;; Intervals intersect. Let's compute the intersection
609 ;; and the difference.
610 (multiple-value-bind (lo left-lo left-hi)
611 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
612 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
613 (multiple-value-bind (hi right-lo right-hi)
615 (values x-hi (opposite-bound x-hi) y-hi))
617 (values y-hi (opposite-bound y-hi) x-hi)))
618 (values (make-interval :low lo :high hi)
619 (list (make-interval :low left-lo
621 (make-interval :low right-lo
624 (values nil (list x y))))))))
626 ;;; If intervals X and Y intersect, return a new interval that is the
627 ;;; union of the two. If they do not intersect, return NIL.
628 (defun interval-merge-pair (x y)
629 (declare (type interval x y))
630 ;; If x and y intersect or are adjacent, create the union.
631 ;; Otherwise return nil
632 (when (or (interval-intersect-p x y)
633 (interval-adjacent-p x y))
634 (flet ((select-bound (x1 x2 min-op max-op)
635 (let ((x1-val (type-bound-number x1))
636 (x2-val (type-bound-number x2)))
638 ;; Both bounds are finite. Select the right one.
639 (cond ((funcall min-op x1-val x2-val)
640 ;; x1 is definitely better.
642 ((funcall max-op x1-val x2-val)
643 ;; x2 is definitely better.
646 ;; Bounds are equal. Select either
647 ;; value and make it open only if
649 (set-bound x1-val (and (consp x1) (consp x2))))))
651 ;; At least one bound is not finite. The
652 ;; non-finite bound always wins.
654 (let* ((x-lo (copy-interval-limit (interval-low x)))
655 (x-hi (copy-interval-limit (interval-high x)))
656 (y-lo (copy-interval-limit (interval-low y)))
657 (y-hi (copy-interval-limit (interval-high y))))
658 (make-interval :low (select-bound x-lo y-lo #'< #'>)
659 :high (select-bound x-hi y-hi #'> #'<))))))
661 ;;; return the minimal interval, containing X and Y
662 (defun interval-approximate-union (x y)
663 (cond ((interval-merge-pair x y))
665 (make-interval :low (copy-interval-limit (interval-low x))
666 :high (copy-interval-limit (interval-high y))))
668 (make-interval :low (copy-interval-limit (interval-low y))
669 :high (copy-interval-limit (interval-high x))))))
671 ;;; basic arithmetic operations on intervals. We probably should do
672 ;;; true interval arithmetic here, but it's complicated because we
673 ;;; have float and integer types and bounds can be open or closed.
675 ;;; the negative of an interval
676 (defun interval-neg (x)
677 (declare (type interval x))
678 (make-interval :low (bound-func #'- (interval-high x))
679 :high (bound-func #'- (interval-low x))))
681 ;;; Add two intervals.
682 (defun interval-add (x y)
683 (declare (type interval x y))
684 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
685 :high (bound-binop + (interval-high x) (interval-high y))))
687 ;;; Subtract two intervals.
688 (defun interval-sub (x y)
689 (declare (type interval x y))
690 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
691 :high (bound-binop - (interval-high x) (interval-low y))))
693 ;;; Multiply two intervals.
694 (defun interval-mul (x y)
695 (declare (type interval x y))
696 (flet ((bound-mul (x y)
697 (cond ((or (null x) (null y))
698 ;; Multiply by infinity is infinity
700 ((or (and (numberp x) (zerop x))
701 (and (numberp y) (zerop y)))
702 ;; Multiply by closed zero is special. The result
703 ;; is always a closed bound. But don't replace this
704 ;; with zero; we want the multiplication to produce
705 ;; the correct signed zero, if needed.
706 (* (type-bound-number x) (type-bound-number y)))
707 ((or (and (floatp x) (float-infinity-p x))
708 (and (floatp y) (float-infinity-p y)))
709 ;; Infinity times anything is infinity
712 ;; General multiply. The result is open if either is open.
713 (bound-binop * x y)))))
714 (let ((x-range (interval-range-info x))
715 (y-range (interval-range-info y)))
716 (cond ((null x-range)
717 ;; Split x into two and multiply each separately
718 (destructuring-bind (x- x+) (interval-split 0 x t t)
719 (interval-merge-pair (interval-mul x- y)
720 (interval-mul x+ y))))
722 ;; Split y into two and multiply each separately
723 (destructuring-bind (y- y+) (interval-split 0 y t t)
724 (interval-merge-pair (interval-mul x y-)
725 (interval-mul x y+))))
727 (interval-neg (interval-mul (interval-neg x) y)))
729 (interval-neg (interval-mul x (interval-neg y))))
730 ((and (eq x-range '+) (eq y-range '+))
731 ;; If we are here, X and Y are both positive.
733 :low (bound-mul (interval-low x) (interval-low y))
734 :high (bound-mul (interval-high x) (interval-high y))))
736 (bug "excluded case in INTERVAL-MUL"))))))
738 ;;; Divide two intervals.
739 (defun interval-div (top bot)
740 (declare (type interval top bot))
741 (flet ((bound-div (x y y-low-p)
744 ;; Divide by infinity means result is 0. However,
745 ;; we need to watch out for the sign of the result,
746 ;; to correctly handle signed zeros. We also need
747 ;; to watch out for positive or negative infinity.
748 (if (floatp (type-bound-number x))
750 (- (float-sign (type-bound-number x) 0.0))
751 (float-sign (type-bound-number x) 0.0))
753 ((zerop (type-bound-number y))
754 ;; Divide by zero means result is infinity
756 ((and (numberp x) (zerop x))
757 ;; Zero divided by anything is zero.
760 (bound-binop / x y)))))
761 (let ((top-range (interval-range-info top))
762 (bot-range (interval-range-info bot)))
763 (cond ((null bot-range)
764 ;; The denominator contains zero, so anything goes!
765 (make-interval :low nil :high nil))
767 ;; Denominator is negative so flip the sign, compute the
768 ;; result, and flip it back.
769 (interval-neg (interval-div top (interval-neg bot))))
771 ;; Split top into two positive and negative parts, and
772 ;; divide each separately
773 (destructuring-bind (top- top+) (interval-split 0 top t t)
774 (interval-merge-pair (interval-div top- bot)
775 (interval-div top+ bot))))
777 ;; Top is negative so flip the sign, divide, and flip the
778 ;; sign of the result.
779 (interval-neg (interval-div (interval-neg top) bot)))
780 ((and (eq top-range '+) (eq bot-range '+))
783 :low (bound-div (interval-low top) (interval-high bot) t)
784 :high (bound-div (interval-high top) (interval-low bot) nil)))
786 (bug "excluded case in INTERVAL-DIV"))))))
788 ;;; Apply the function F to the interval X. If X = [a, b], then the
789 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
790 ;;; result makes sense. It will if F is monotonic increasing (or
792 (defun interval-func (f x)
793 (declare (type function f)
795 (let ((lo (bound-func f (interval-low x)))
796 (hi (bound-func f (interval-high x))))
797 (make-interval :low lo :high hi)))
799 ;;; Return T if X < Y. That is every number in the interval X is
800 ;;; always less than any number in the interval Y.
801 (defun interval-< (x y)
802 (declare (type interval x y))
803 ;; X < Y only if X is bounded above, Y is bounded below, and they
805 (when (and (interval-bounded-p x 'above)
806 (interval-bounded-p y 'below))
807 ;; Intervals are bounded in the appropriate way. Make sure they
809 (let ((left (interval-high x))
810 (right (interval-low y)))
811 (cond ((> (type-bound-number left)
812 (type-bound-number right))
813 ;; The intervals definitely overlap, so result is NIL.
815 ((< (type-bound-number left)
816 (type-bound-number right))
817 ;; The intervals definitely don't touch, so result is T.
820 ;; Limits are equal. Check for open or closed bounds.
821 ;; Don't overlap if one or the other are open.
822 (or (consp left) (consp right)))))))
824 ;;; Return T if X >= Y. That is, every number in the interval X is
825 ;;; always greater than any number in the interval Y.
826 (defun interval->= (x y)
827 (declare (type interval x y))
828 ;; X >= Y if lower bound of X >= upper bound of Y
829 (when (and (interval-bounded-p x 'below)
830 (interval-bounded-p y 'above))
831 (>= (type-bound-number (interval-low x))
832 (type-bound-number (interval-high y)))))
834 ;;; Return T if X = Y.
835 (defun interval-= (x y)
836 (declare (type interval x y))
837 (and (interval-bounded-p x 'both)
838 (interval-bounded-p y 'both)
842 ;; Open intervals cannot be =
843 (return-from interval-= nil))))
844 ;; Both intervals refer to the same point
845 (= (bound (interval-high x)) (bound (interval-low x))
846 (bound (interval-high y)) (bound (interval-low y))))))
848 ;;; Return T if X /= Y
849 (defun interval-/= (x y)
850 (not (interval-intersect-p x y)))
852 ;;; Return an interval that is the absolute value of X. Thus, if
853 ;;; X = [-1 10], the result is [0, 10].
854 (defun interval-abs (x)
855 (declare (type interval x))
856 (case (interval-range-info x)
862 (destructuring-bind (x- x+) (interval-split 0 x t t)
863 (interval-merge-pair (interval-neg x-) x+)))))
865 ;;; Compute the square of an interval.
866 (defun interval-sqr (x)
867 (declare (type interval x))
868 (interval-func (lambda (x) (* x x))
871 ;;;; numeric DERIVE-TYPE methods
873 ;;; a utility for defining derive-type methods of integer operations. If
874 ;;; the types of both X and Y are integer types, then we compute a new
875 ;;; integer type with bounds determined Fun when applied to X and Y.
876 ;;; Otherwise, we use NUMERIC-CONTAGION.
877 (defun derive-integer-type-aux (x y fun)
878 (declare (type function fun))
879 (if (and (numeric-type-p x) (numeric-type-p y)
880 (eq (numeric-type-class x) 'integer)
881 (eq (numeric-type-class y) 'integer)
882 (eq (numeric-type-complexp x) :real)
883 (eq (numeric-type-complexp y) :real))
884 (multiple-value-bind (low high) (funcall fun x y)
885 (make-numeric-type :class 'integer
889 (numeric-contagion x y)))
891 (defun derive-integer-type (x y fun)
892 (declare (type lvar x y) (type function fun))
893 (let ((x (lvar-type x))
895 (derive-integer-type-aux x y fun)))
897 ;;; simple utility to flatten a list
898 (defun flatten-list (x)
899 (labels ((flatten-and-append (tree list)
900 (cond ((null tree) list)
901 ((atom tree) (cons tree list))
902 (t (flatten-and-append
903 (car tree) (flatten-and-append (cdr tree) list))))))
904 (flatten-and-append x nil)))
906 ;;; Take some type of lvar and massage it so that we get a list of the
907 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
909 (defun prepare-arg-for-derive-type (arg)
910 (flet ((listify (arg)
915 (union-type-types arg))
918 (unless (eq arg *empty-type*)
919 ;; Make sure all args are some type of numeric-type. For member
920 ;; types, convert the list of members into a union of equivalent
921 ;; single-element member-type's.
922 (let ((new-args nil))
923 (dolist (arg (listify arg))
924 (if (member-type-p arg)
925 ;; Run down the list of members and convert to a list of
927 (dolist (member (member-type-members arg))
928 (push (if (numberp member)
929 (make-member-type :members (list member))
932 (push arg new-args)))
933 (unless (member *empty-type* new-args)
936 ;;; Convert from the standard type convention for which -0.0 and 0.0
937 ;;; are equal to an intermediate convention for which they are
938 ;;; considered different which is more natural for some of the
940 (defun convert-numeric-type (type)
941 (declare (type numeric-type type))
942 ;;; Only convert real float interval delimiters types.
943 (if (eq (numeric-type-complexp type) :real)
944 (let* ((lo (numeric-type-low type))
945 (lo-val (type-bound-number lo))
946 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
947 (hi (numeric-type-high type))
948 (hi-val (type-bound-number hi))
949 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
950 (if (or lo-float-zero-p hi-float-zero-p)
952 :class (numeric-type-class type)
953 :format (numeric-type-format type)
955 :low (if lo-float-zero-p
957 (list (float 0.0 lo-val))
958 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
960 :high (if hi-float-zero-p
962 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
969 ;;; Convert back from the intermediate convention for which -0.0 and
970 ;;; 0.0 are considered different to the standard type convention for
972 (defun convert-back-numeric-type (type)
973 (declare (type numeric-type type))
974 ;;; Only convert real float interval delimiters types.
975 (if (eq (numeric-type-complexp type) :real)
976 (let* ((lo (numeric-type-low type))
977 (lo-val (type-bound-number lo))
979 (and lo (floatp lo-val) (= lo-val 0.0)
980 (float-sign lo-val)))
981 (hi (numeric-type-high type))
982 (hi-val (type-bound-number hi))
984 (and hi (floatp hi-val) (= hi-val 0.0)
985 (float-sign hi-val))))
987 ;; (float +0.0 +0.0) => (member 0.0)
988 ;; (float -0.0 -0.0) => (member -0.0)
989 ((and lo-float-zero-p hi-float-zero-p)
990 ;; shouldn't have exclusive bounds here..
991 (aver (and (not (consp lo)) (not (consp hi))))
992 (if (= lo-float-zero-p hi-float-zero-p)
993 ;; (float +0.0 +0.0) => (member 0.0)
994 ;; (float -0.0 -0.0) => (member -0.0)
995 (specifier-type `(member ,lo-val))
996 ;; (float -0.0 +0.0) => (float 0.0 0.0)
997 ;; (float +0.0 -0.0) => (float 0.0 0.0)
998 (make-numeric-type :class (numeric-type-class type)
999 :format (numeric-type-format type)
1005 ;; (float -0.0 x) => (float 0.0 x)
1006 ((and (not (consp lo)) (minusp lo-float-zero-p))
1007 (make-numeric-type :class (numeric-type-class type)
1008 :format (numeric-type-format type)
1010 :low (float 0.0 lo-val)
1012 ;; (float (+0.0) x) => (float (0.0) x)
1013 ((and (consp lo) (plusp lo-float-zero-p))
1014 (make-numeric-type :class (numeric-type-class type)
1015 :format (numeric-type-format type)
1017 :low (list (float 0.0 lo-val))
1020 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1021 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1022 (list (make-member-type :members (list (float 0.0 lo-val)))
1023 (make-numeric-type :class (numeric-type-class type)
1024 :format (numeric-type-format type)
1026 :low (list (float 0.0 lo-val))
1030 ;; (float x +0.0) => (float x 0.0)
1031 ((and (not (consp hi)) (plusp hi-float-zero-p))
1032 (make-numeric-type :class (numeric-type-class type)
1033 :format (numeric-type-format type)
1036 :high (float 0.0 hi-val)))
1037 ;; (float x (-0.0)) => (float x (0.0))
1038 ((and (consp hi) (minusp hi-float-zero-p))
1039 (make-numeric-type :class (numeric-type-class type)
1040 :format (numeric-type-format type)
1043 :high (list (float 0.0 hi-val))))
1045 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1046 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1047 (list (make-member-type :members (list (float -0.0 hi-val)))
1048 (make-numeric-type :class (numeric-type-class type)
1049 :format (numeric-type-format type)
1052 :high (list (float 0.0 hi-val)))))))
1058 ;;; Convert back a possible list of numeric types.
1059 (defun convert-back-numeric-type-list (type-list)
1062 (let ((results '()))
1063 (dolist (type type-list)
1064 (if (numeric-type-p type)
1065 (let ((result (convert-back-numeric-type type)))
1067 (setf results (append results result))
1068 (push result results)))
1069 (push type results)))
1072 (convert-back-numeric-type type-list))
1074 (convert-back-numeric-type-list (union-type-types type-list)))
1078 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1079 ;;; belong in the kernel's type logic, invoked always, instead of in
1080 ;;; the compiler, invoked only during some type optimizations. (In
1081 ;;; fact, as of 0.pre8.100 or so they probably are, under
1082 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1084 ;;; Take a list of types and return a canonical type specifier,
1085 ;;; combining any MEMBER types together. If both positive and negative
1086 ;;; MEMBER types are present they are converted to a float type.
1087 ;;; XXX This would be far simpler if the type-union methods could handle
1088 ;;; member/number unions.
1089 (defun make-canonical-union-type (type-list)
1092 (dolist (type type-list)
1093 (if (member-type-p type)
1094 (setf members (union members (member-type-members type)))
1095 (push type misc-types)))
1097 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members))
1098 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types)
1099 (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0))))
1100 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members))
1101 (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types)
1102 (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0))))
1103 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members))
1104 (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types)
1105 (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0))))
1107 (apply #'type-union (make-member-type :members members) misc-types)
1108 (apply #'type-union misc-types))))
1110 ;;; Convert a member type with a single member to a numeric type.
1111 (defun convert-member-type (arg)
1112 (let* ((members (member-type-members arg))
1113 (member (first members))
1114 (member-type (type-of member)))
1115 (aver (not (rest members)))
1116 (specifier-type (cond ((typep member 'integer)
1117 `(integer ,member ,member))
1118 ((memq member-type '(short-float single-float
1119 double-float long-float))
1120 `(,member-type ,member ,member))
1124 ;;; This is used in defoptimizers for computing the resulting type of
1127 ;;; Given the lvar ARG, derive the resulting type using the
1128 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1129 ;;; "atomic" lvar type like numeric-type or member-type (containing
1130 ;;; just one element). It should return the resulting type, which can
1131 ;;; be a list of types.
1133 ;;; For the case of member types, if a MEMBER-FUN is given it is
1134 ;;; called to compute the result otherwise the member type is first
1135 ;;; converted to a numeric type and the DERIVE-FUN is called.
1136 (defun one-arg-derive-type (arg derive-fun member-fun
1137 &optional (convert-type t))
1138 (declare (type function derive-fun)
1139 (type (or null function) member-fun))
1140 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1146 (with-float-traps-masked
1147 (:underflow :overflow :divide-by-zero)
1149 `(eql ,(funcall member-fun
1150 (first (member-type-members x))))))
1151 ;; Otherwise convert to a numeric type.
1152 (let ((result-type-list
1153 (funcall derive-fun (convert-member-type x))))
1155 (convert-back-numeric-type-list result-type-list)
1156 result-type-list))))
1159 (convert-back-numeric-type-list
1160 (funcall derive-fun (convert-numeric-type x)))
1161 (funcall derive-fun x)))
1163 *universal-type*))))
1164 ;; Run down the list of args and derive the type of each one,
1165 ;; saving all of the results in a list.
1166 (let ((results nil))
1167 (dolist (arg arg-list)
1168 (let ((result (deriver arg)))
1170 (setf results (append results result))
1171 (push result results))))
1173 (make-canonical-union-type results)
1174 (first results)))))))
1176 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1177 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1178 ;;; original args and a third which is T to indicate if the two args
1179 ;;; really represent the same lvar. This is useful for deriving the
1180 ;;; type of things like (* x x), which should always be positive. If
1181 ;;; we didn't do this, we wouldn't be able to tell.
1182 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1183 &optional (convert-type t))
1184 (declare (type function derive-fun fun))
1185 (flet ((deriver (x y same-arg)
1186 (cond ((and (member-type-p x) (member-type-p y))
1187 (let* ((x (first (member-type-members x)))
1188 (y (first (member-type-members y)))
1189 (result (ignore-errors
1190 (with-float-traps-masked
1191 (:underflow :overflow :divide-by-zero
1193 (funcall fun x y)))))
1194 (cond ((null result) *empty-type*)
1195 ((and (floatp result) (float-nan-p result))
1196 (make-numeric-type :class 'float
1197 :format (type-of result)
1200 (specifier-type `(eql ,result))))))
1201 ((and (member-type-p x) (numeric-type-p y))
1202 (let* ((x (convert-member-type x))
1203 (y (if convert-type (convert-numeric-type y) y))
1204 (result (funcall derive-fun x y same-arg)))
1206 (convert-back-numeric-type-list result)
1208 ((and (numeric-type-p x) (member-type-p y))
1209 (let* ((x (if convert-type (convert-numeric-type x) x))
1210 (y (convert-member-type y))
1211 (result (funcall derive-fun x y same-arg)))
1213 (convert-back-numeric-type-list result)
1215 ((and (numeric-type-p x) (numeric-type-p y))
1216 (let* ((x (if convert-type (convert-numeric-type x) x))
1217 (y (if convert-type (convert-numeric-type y) y))
1218 (result (funcall derive-fun x y same-arg)))
1220 (convert-back-numeric-type-list result)
1223 *universal-type*))))
1224 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1225 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1226 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1228 (let ((results nil))
1230 ;; Since the args are the same LVARs, just run down the
1233 (let ((result (deriver x x same-arg)))
1235 (setf results (append results result))
1236 (push result results))))
1237 ;; Try all pairwise combinations.
1240 (let ((result (or (deriver x y same-arg)
1241 (numeric-contagion x y))))
1243 (setf results (append results result))
1244 (push result results))))))
1246 (make-canonical-union-type results)
1247 (first results)))))))
1249 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1251 (defoptimizer (+ derive-type) ((x y))
1252 (derive-integer-type
1259 (values (frob (numeric-type-low x) (numeric-type-low y))
1260 (frob (numeric-type-high x) (numeric-type-high y)))))))
1262 (defoptimizer (- derive-type) ((x y))
1263 (derive-integer-type
1270 (values (frob (numeric-type-low x) (numeric-type-high y))
1271 (frob (numeric-type-high x) (numeric-type-low y)))))))
1273 (defoptimizer (* derive-type) ((x y))
1274 (derive-integer-type
1277 (let ((x-low (numeric-type-low x))
1278 (x-high (numeric-type-high x))
1279 (y-low (numeric-type-low y))
1280 (y-high (numeric-type-high y)))
1281 (cond ((not (and x-low y-low))
1283 ((or (minusp x-low) (minusp y-low))
1284 (if (and x-high y-high)
1285 (let ((max (* (max (abs x-low) (abs x-high))
1286 (max (abs y-low) (abs y-high)))))
1287 (values (- max) max))
1290 (values (* x-low y-low)
1291 (if (and x-high y-high)
1295 (defoptimizer (/ derive-type) ((x y))
1296 (numeric-contagion (lvar-type x) (lvar-type y)))
1300 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1302 (defun +-derive-type-aux (x y same-arg)
1303 (if (and (numeric-type-real-p x)
1304 (numeric-type-real-p y))
1307 (let ((x-int (numeric-type->interval x)))
1308 (interval-add x-int x-int))
1309 (interval-add (numeric-type->interval x)
1310 (numeric-type->interval y))))
1311 (result-type (numeric-contagion x y)))
1312 ;; If the result type is a float, we need to be sure to coerce
1313 ;; the bounds into the correct type.
1314 (when (eq (numeric-type-class result-type) 'float)
1315 (setf result (interval-func
1317 (coerce-for-bound x (or (numeric-type-format result-type)
1321 :class (if (and (eq (numeric-type-class x) 'integer)
1322 (eq (numeric-type-class y) 'integer))
1323 ;; The sum of integers is always an integer.
1325 (numeric-type-class result-type))
1326 :format (numeric-type-format result-type)
1327 :low (interval-low result)
1328 :high (interval-high result)))
1329 ;; general contagion
1330 (numeric-contagion x y)))
1332 (defoptimizer (+ derive-type) ((x y))
1333 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1335 (defun --derive-type-aux (x y same-arg)
1336 (if (and (numeric-type-real-p x)
1337 (numeric-type-real-p y))
1339 ;; (- X X) is always 0.
1341 (make-interval :low 0 :high 0)
1342 (interval-sub (numeric-type->interval x)
1343 (numeric-type->interval y))))
1344 (result-type (numeric-contagion x y)))
1345 ;; If the result type is a float, we need to be sure to coerce
1346 ;; the bounds into the correct type.
1347 (when (eq (numeric-type-class result-type) 'float)
1348 (setf result (interval-func
1350 (coerce-for-bound x (or (numeric-type-format result-type)
1354 :class (if (and (eq (numeric-type-class x) 'integer)
1355 (eq (numeric-type-class y) 'integer))
1356 ;; The difference of integers is always an integer.
1358 (numeric-type-class result-type))
1359 :format (numeric-type-format result-type)
1360 :low (interval-low result)
1361 :high (interval-high result)))
1362 ;; general contagion
1363 (numeric-contagion x y)))
1365 (defoptimizer (- derive-type) ((x y))
1366 (two-arg-derive-type x y #'--derive-type-aux #'-))
1368 (defun *-derive-type-aux (x y same-arg)
1369 (if (and (numeric-type-real-p x)
1370 (numeric-type-real-p y))
1372 ;; (* X X) is always positive, so take care to do it right.
1374 (interval-sqr (numeric-type->interval x))
1375 (interval-mul (numeric-type->interval x)
1376 (numeric-type->interval y))))
1377 (result-type (numeric-contagion x y)))
1378 ;; If the result type is a float, we need to be sure to coerce
1379 ;; the bounds into the correct type.
1380 (when (eq (numeric-type-class result-type) 'float)
1381 (setf result (interval-func
1383 (coerce-for-bound x (or (numeric-type-format result-type)
1387 :class (if (and (eq (numeric-type-class x) 'integer)
1388 (eq (numeric-type-class y) 'integer))
1389 ;; The product of integers is always an integer.
1391 (numeric-type-class result-type))
1392 :format (numeric-type-format result-type)
1393 :low (interval-low result)
1394 :high (interval-high result)))
1395 (numeric-contagion x y)))
1397 (defoptimizer (* derive-type) ((x y))
1398 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1400 (defun /-derive-type-aux (x y same-arg)
1401 (if (and (numeric-type-real-p x)
1402 (numeric-type-real-p y))
1404 ;; (/ X X) is always 1, except if X can contain 0. In
1405 ;; that case, we shouldn't optimize the division away
1406 ;; because we want 0/0 to signal an error.
1408 (not (interval-contains-p
1409 0 (interval-closure (numeric-type->interval y)))))
1410 (make-interval :low 1 :high 1)
1411 (interval-div (numeric-type->interval x)
1412 (numeric-type->interval y))))
1413 (result-type (numeric-contagion x y)))
1414 ;; If the result type is a float, we need to be sure to coerce
1415 ;; the bounds into the correct type.
1416 (when (eq (numeric-type-class result-type) 'float)
1417 (setf result (interval-func
1419 (coerce-for-bound x (or (numeric-type-format result-type)
1422 (make-numeric-type :class (numeric-type-class result-type)
1423 :format (numeric-type-format result-type)
1424 :low (interval-low result)
1425 :high (interval-high result)))
1426 (numeric-contagion x y)))
1428 (defoptimizer (/ derive-type) ((x y))
1429 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1433 (defun ash-derive-type-aux (n-type shift same-arg)
1434 (declare (ignore same-arg))
1435 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1436 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1437 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1438 ;; two bignums yielding zero) and it's hard to avoid that
1439 ;; calculation in here.
1440 #+(and cmu sb-xc-host)
1441 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1442 (typep (numeric-type-high n-type) 'bignum))
1443 (or (typep (numeric-type-low shift) 'bignum)
1444 (typep (numeric-type-high shift) 'bignum)))
1445 (return-from ash-derive-type-aux *universal-type*))
1446 (flet ((ash-outer (n s)
1447 (when (and (fixnump s)
1449 (> s sb!xc:most-negative-fixnum))
1451 ;; KLUDGE: The bare 64's here should be related to
1452 ;; symbolic machine word size values somehow.
1455 (if (and (fixnump s)
1456 (> s sb!xc:most-negative-fixnum))
1458 (if (minusp n) -1 0))))
1459 (or (and (csubtypep n-type (specifier-type 'integer))
1460 (csubtypep shift (specifier-type 'integer))
1461 (let ((n-low (numeric-type-low n-type))
1462 (n-high (numeric-type-high n-type))
1463 (s-low (numeric-type-low shift))
1464 (s-high (numeric-type-high shift)))
1465 (make-numeric-type :class 'integer :complexp :real
1468 (ash-outer n-low s-high)
1469 (ash-inner n-low s-low)))
1472 (ash-inner n-high s-low)
1473 (ash-outer n-high s-high))))))
1476 (defoptimizer (ash derive-type) ((n shift))
1477 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1479 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1480 (macrolet ((frob (fun)
1481 `#'(lambda (type type2)
1482 (declare (ignore type2))
1483 (let ((lo (numeric-type-low type))
1484 (hi (numeric-type-high type)))
1485 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1487 (defoptimizer (%negate derive-type) ((num))
1488 (derive-integer-type num num (frob -))))
1490 (defun lognot-derive-type-aux (int)
1491 (derive-integer-type-aux int int
1492 (lambda (type type2)
1493 (declare (ignore type2))
1494 (let ((lo (numeric-type-low type))
1495 (hi (numeric-type-high type)))
1496 (values (if hi (lognot hi) nil)
1497 (if lo (lognot lo) nil)
1498 (numeric-type-class type)
1499 (numeric-type-format type))))))
1501 (defoptimizer (lognot derive-type) ((int))
1502 (lognot-derive-type-aux (lvar-type int)))
1504 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1505 (defoptimizer (%negate derive-type) ((num))
1506 (flet ((negate-bound (b)
1508 (set-bound (- (type-bound-number b))
1510 (one-arg-derive-type num
1512 (modified-numeric-type
1514 :low (negate-bound (numeric-type-high type))
1515 :high (negate-bound (numeric-type-low type))))
1518 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1519 (defoptimizer (abs derive-type) ((num))
1520 (let ((type (lvar-type num)))
1521 (if (and (numeric-type-p type)
1522 (eq (numeric-type-class type) 'integer)
1523 (eq (numeric-type-complexp type) :real))
1524 (let ((lo (numeric-type-low type))
1525 (hi (numeric-type-high type)))
1526 (make-numeric-type :class 'integer :complexp :real
1527 :low (cond ((and hi (minusp hi))
1533 :high (if (and hi lo)
1534 (max (abs hi) (abs lo))
1536 (numeric-contagion type type))))
1538 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1539 (defun abs-derive-type-aux (type)
1540 (cond ((eq (numeric-type-complexp type) :complex)
1541 ;; The absolute value of a complex number is always a
1542 ;; non-negative float.
1543 (let* ((format (case (numeric-type-class type)
1544 ((integer rational) 'single-float)
1545 (t (numeric-type-format type))))
1546 (bound-format (or format 'float)))
1547 (make-numeric-type :class 'float
1550 :low (coerce 0 bound-format)
1553 ;; The absolute value of a real number is a non-negative real
1554 ;; of the same type.
1555 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1556 (class (numeric-type-class type))
1557 (format (numeric-type-format type))
1558 (bound-type (or format class 'real)))
1563 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1564 :high (coerce-and-truncate-floats
1565 (interval-high abs-bnd) bound-type))))))
1567 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1568 (defoptimizer (abs derive-type) ((num))
1569 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1571 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1572 (defoptimizer (truncate derive-type) ((number divisor))
1573 (let ((number-type (lvar-type number))
1574 (divisor-type (lvar-type divisor))
1575 (integer-type (specifier-type 'integer)))
1576 (if (and (numeric-type-p number-type)
1577 (csubtypep number-type integer-type)
1578 (numeric-type-p divisor-type)
1579 (csubtypep divisor-type integer-type))
1580 (let ((number-low (numeric-type-low number-type))
1581 (number-high (numeric-type-high number-type))
1582 (divisor-low (numeric-type-low divisor-type))
1583 (divisor-high (numeric-type-high divisor-type)))
1584 (values-specifier-type
1585 `(values ,(integer-truncate-derive-type number-low number-high
1586 divisor-low divisor-high)
1587 ,(integer-rem-derive-type number-low number-high
1588 divisor-low divisor-high))))
1591 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1594 (defun rem-result-type (number-type divisor-type)
1595 ;; Figure out what the remainder type is. The remainder is an
1596 ;; integer if both args are integers; a rational if both args are
1597 ;; rational; and a float otherwise.
1598 (cond ((and (csubtypep number-type (specifier-type 'integer))
1599 (csubtypep divisor-type (specifier-type 'integer)))
1601 ((and (csubtypep number-type (specifier-type 'rational))
1602 (csubtypep divisor-type (specifier-type 'rational)))
1604 ((and (csubtypep number-type (specifier-type 'float))
1605 (csubtypep divisor-type (specifier-type 'float)))
1606 ;; Both are floats so the result is also a float, of
1607 ;; the largest type.
1608 (or (float-format-max (numeric-type-format number-type)
1609 (numeric-type-format divisor-type))
1611 ((and (csubtypep number-type (specifier-type 'float))
1612 (csubtypep divisor-type (specifier-type 'rational)))
1613 ;; One of the arguments is a float and the other is a
1614 ;; rational. The remainder is a float of the same
1616 (or (numeric-type-format number-type) 'float))
1617 ((and (csubtypep divisor-type (specifier-type 'float))
1618 (csubtypep number-type (specifier-type 'rational)))
1619 ;; One of the arguments is a float and the other is a
1620 ;; rational. The remainder is a float of the same
1622 (or (numeric-type-format divisor-type) 'float))
1624 ;; Some unhandled combination. This usually means both args
1625 ;; are REAL so the result is a REAL.
1628 (defun truncate-derive-type-quot (number-type divisor-type)
1629 (let* ((rem-type (rem-result-type number-type divisor-type))
1630 (number-interval (numeric-type->interval number-type))
1631 (divisor-interval (numeric-type->interval divisor-type)))
1632 ;;(declare (type (member '(integer rational float)) rem-type))
1633 ;; We have real numbers now.
1634 (cond ((eq rem-type 'integer)
1635 ;; Since the remainder type is INTEGER, both args are
1637 (let* ((res (integer-truncate-derive-type
1638 (interval-low number-interval)
1639 (interval-high number-interval)
1640 (interval-low divisor-interval)
1641 (interval-high divisor-interval))))
1642 (specifier-type (if (listp res) res 'integer))))
1644 (let ((quot (truncate-quotient-bound
1645 (interval-div number-interval
1646 divisor-interval))))
1647 (specifier-type `(integer ,(or (interval-low quot) '*)
1648 ,(or (interval-high quot) '*))))))))
1650 (defun truncate-derive-type-rem (number-type divisor-type)
1651 (let* ((rem-type (rem-result-type number-type divisor-type))
1652 (number-interval (numeric-type->interval number-type))
1653 (divisor-interval (numeric-type->interval divisor-type))
1654 (rem (truncate-rem-bound number-interval divisor-interval)))
1655 ;;(declare (type (member '(integer rational float)) rem-type))
1656 ;; We have real numbers now.
1657 (cond ((eq rem-type 'integer)
1658 ;; Since the remainder type is INTEGER, both args are
1660 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1661 ,(or (interval-high rem) '*))))
1663 (multiple-value-bind (class format)
1666 (values 'integer nil))
1668 (values 'rational nil))
1669 ((or single-float double-float #!+long-float long-float)
1670 (values 'float rem-type))
1672 (values 'float nil))
1675 (when (member rem-type '(float single-float double-float
1676 #!+long-float long-float))
1677 (setf rem (interval-func #'(lambda (x)
1678 (coerce-for-bound x rem-type))
1680 (make-numeric-type :class class
1682 :low (interval-low rem)
1683 :high (interval-high rem)))))))
1685 (defun truncate-derive-type-quot-aux (num div same-arg)
1686 (declare (ignore same-arg))
1687 (if (and (numeric-type-real-p num)
1688 (numeric-type-real-p div))
1689 (truncate-derive-type-quot num div)
1692 (defun truncate-derive-type-rem-aux (num div same-arg)
1693 (declare (ignore same-arg))
1694 (if (and (numeric-type-real-p num)
1695 (numeric-type-real-p div))
1696 (truncate-derive-type-rem num div)
1699 (defoptimizer (truncate derive-type) ((number divisor))
1700 (let ((quot (two-arg-derive-type number divisor
1701 #'truncate-derive-type-quot-aux #'truncate))
1702 (rem (two-arg-derive-type number divisor
1703 #'truncate-derive-type-rem-aux #'rem)))
1704 (when (and quot rem)
1705 (make-values-type :required (list quot rem)))))
1707 (defun ftruncate-derive-type-quot (number-type divisor-type)
1708 ;; The bounds are the same as for truncate. However, the first
1709 ;; result is a float of some type. We need to determine what that
1710 ;; type is. Basically it's the more contagious of the two types.
1711 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1712 (res-type (numeric-contagion number-type divisor-type)))
1713 (make-numeric-type :class 'float
1714 :format (numeric-type-format res-type)
1715 :low (numeric-type-low q-type)
1716 :high (numeric-type-high q-type))))
1718 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1719 (declare (ignore same-arg))
1720 (if (and (numeric-type-real-p n)
1721 (numeric-type-real-p d))
1722 (ftruncate-derive-type-quot n d)
1725 (defoptimizer (ftruncate derive-type) ((number divisor))
1727 (two-arg-derive-type number divisor
1728 #'ftruncate-derive-type-quot-aux #'ftruncate))
1729 (rem (two-arg-derive-type number divisor
1730 #'truncate-derive-type-rem-aux #'rem)))
1731 (when (and quot rem)
1732 (make-values-type :required (list quot rem)))))
1734 (defun %unary-truncate-derive-type-aux (number)
1735 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1737 (defoptimizer (%unary-truncate derive-type) ((number))
1738 (one-arg-derive-type number
1739 #'%unary-truncate-derive-type-aux
1742 (defoptimizer (%unary-ftruncate derive-type) ((number))
1743 (let ((divisor (specifier-type '(integer 1 1))))
1744 (one-arg-derive-type number
1746 (ftruncate-derive-type-quot-aux n divisor nil))
1747 #'%unary-ftruncate)))
1749 ;;; Define optimizers for FLOOR and CEILING.
1751 ((def (name q-name r-name)
1752 (let ((q-aux (symbolicate q-name "-AUX"))
1753 (r-aux (symbolicate r-name "-AUX")))
1755 ;; Compute type of quotient (first) result.
1756 (defun ,q-aux (number-type divisor-type)
1757 (let* ((number-interval
1758 (numeric-type->interval number-type))
1760 (numeric-type->interval divisor-type))
1761 (quot (,q-name (interval-div number-interval
1762 divisor-interval))))
1763 (specifier-type `(integer ,(or (interval-low quot) '*)
1764 ,(or (interval-high quot) '*)))))
1765 ;; Compute type of remainder.
1766 (defun ,r-aux (number-type divisor-type)
1767 (let* ((divisor-interval
1768 (numeric-type->interval divisor-type))
1769 (rem (,r-name divisor-interval))
1770 (result-type (rem-result-type number-type divisor-type)))
1771 (multiple-value-bind (class format)
1774 (values 'integer nil))
1776 (values 'rational nil))
1777 ((or single-float double-float #!+long-float long-float)
1778 (values 'float result-type))
1780 (values 'float nil))
1783 (when (member result-type '(float single-float double-float
1784 #!+long-float long-float))
1785 ;; Make sure that the limits on the interval have
1787 (setf rem (interval-func (lambda (x)
1788 (coerce-for-bound x result-type))
1790 (make-numeric-type :class class
1792 :low (interval-low rem)
1793 :high (interval-high rem)))))
1794 ;; the optimizer itself
1795 (defoptimizer (,name derive-type) ((number divisor))
1796 (flet ((derive-q (n d same-arg)
1797 (declare (ignore same-arg))
1798 (if (and (numeric-type-real-p n)
1799 (numeric-type-real-p d))
1802 (derive-r (n d same-arg)
1803 (declare (ignore same-arg))
1804 (if (and (numeric-type-real-p n)
1805 (numeric-type-real-p d))
1808 (let ((quot (two-arg-derive-type
1809 number divisor #'derive-q #',name))
1810 (rem (two-arg-derive-type
1811 number divisor #'derive-r #'mod)))
1812 (when (and quot rem)
1813 (make-values-type :required (list quot rem))))))))))
1815 (def floor floor-quotient-bound floor-rem-bound)
1816 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1818 ;;; Define optimizers for FFLOOR and FCEILING
1819 (macrolet ((def (name q-name r-name)
1820 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1821 (r-aux (symbolicate r-name "-AUX")))
1823 ;; Compute type of quotient (first) result.
1824 (defun ,q-aux (number-type divisor-type)
1825 (let* ((number-interval
1826 (numeric-type->interval number-type))
1828 (numeric-type->interval divisor-type))
1829 (quot (,q-name (interval-div number-interval
1831 (res-type (numeric-contagion number-type
1834 :class (numeric-type-class res-type)
1835 :format (numeric-type-format res-type)
1836 :low (interval-low quot)
1837 :high (interval-high quot))))
1839 (defoptimizer (,name derive-type) ((number divisor))
1840 (flet ((derive-q (n d same-arg)
1841 (declare (ignore same-arg))
1842 (if (and (numeric-type-real-p n)
1843 (numeric-type-real-p d))
1846 (derive-r (n d same-arg)
1847 (declare (ignore same-arg))
1848 (if (and (numeric-type-real-p n)
1849 (numeric-type-real-p d))
1852 (let ((quot (two-arg-derive-type
1853 number divisor #'derive-q #',name))
1854 (rem (two-arg-derive-type
1855 number divisor #'derive-r #'mod)))
1856 (when (and quot rem)
1857 (make-values-type :required (list quot rem))))))))))
1859 (def ffloor floor-quotient-bound floor-rem-bound)
1860 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1862 ;;; functions to compute the bounds on the quotient and remainder for
1863 ;;; the FLOOR function
1864 (defun floor-quotient-bound (quot)
1865 ;; Take the floor of the quotient and then massage it into what we
1867 (let ((lo (interval-low quot))
1868 (hi (interval-high quot)))
1869 ;; Take the floor of the lower bound. The result is always a
1870 ;; closed lower bound.
1872 (floor (type-bound-number lo))
1874 ;; For the upper bound, we need to be careful.
1877 ;; An open bound. We need to be careful here because
1878 ;; the floor of '(10.0) is 9, but the floor of
1880 (multiple-value-bind (q r) (floor (first hi))
1885 ;; A closed bound, so the answer is obvious.
1889 (make-interval :low lo :high hi)))
1890 (defun floor-rem-bound (div)
1891 ;; The remainder depends only on the divisor. Try to get the
1892 ;; correct sign for the remainder if we can.
1893 (case (interval-range-info div)
1895 ;; The divisor is always positive.
1896 (let ((rem (interval-abs div)))
1897 (setf (interval-low rem) 0)
1898 (when (and (numberp (interval-high rem))
1899 (not (zerop (interval-high rem))))
1900 ;; The remainder never contains the upper bound. However,
1901 ;; watch out for the case where the high limit is zero!
1902 (setf (interval-high rem) (list (interval-high rem))))
1905 ;; The divisor is always negative.
1906 (let ((rem (interval-neg (interval-abs div))))
1907 (setf (interval-high rem) 0)
1908 (when (numberp (interval-low rem))
1909 ;; The remainder never contains the lower bound.
1910 (setf (interval-low rem) (list (interval-low rem))))
1913 ;; The divisor can be positive or negative. All bets off. The
1914 ;; magnitude of remainder is the maximum value of the divisor.
1915 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1916 ;; The bound never reaches the limit, so make the interval open.
1917 (make-interval :low (if limit
1920 :high (list limit))))))
1922 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1923 => #S(INTERVAL :LOW 0 :HIGH 10)
1924 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1925 => #S(INTERVAL :LOW 0 :HIGH 10)
1926 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1927 => #S(INTERVAL :LOW 0 :HIGH 10)
1928 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1929 => #S(INTERVAL :LOW 0 :HIGH 9)
1930 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1931 => #S(INTERVAL :LOW 0 :HIGH 10)
1932 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1933 => #S(INTERVAL :LOW 0 :HIGH 10)
1934 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1935 => #S(INTERVAL :LOW -2 :HIGH 10)
1936 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1937 => #S(INTERVAL :LOW -1 :HIGH 10)
1938 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1939 => #S(INTERVAL :LOW -1 :HIGH 10)
1941 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1942 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1943 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1944 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1945 (floor-rem-bound (make-interval :low -10 :high -2.3))
1946 #S(INTERVAL :LOW (-10) :HIGH 0)
1947 (floor-rem-bound (make-interval :low 0.3 :high 10))
1948 => #S(INTERVAL :LOW 0 :HIGH '(10))
1949 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1950 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1951 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1952 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1955 ;;; same functions for CEILING
1956 (defun ceiling-quotient-bound (quot)
1957 ;; Take the ceiling of the quotient and then massage it into what we
1959 (let ((lo (interval-low quot))
1960 (hi (interval-high quot)))
1961 ;; Take the ceiling of the upper bound. The result is always a
1962 ;; closed upper bound.
1964 (ceiling (type-bound-number hi))
1966 ;; For the lower bound, we need to be careful.
1969 ;; An open bound. We need to be careful here because
1970 ;; the ceiling of '(10.0) is 11, but the ceiling of
1972 (multiple-value-bind (q r) (ceiling (first lo))
1977 ;; A closed bound, so the answer is obvious.
1981 (make-interval :low lo :high hi)))
1982 (defun ceiling-rem-bound (div)
1983 ;; The remainder depends only on the divisor. Try to get the
1984 ;; correct sign for the remainder if we can.
1985 (case (interval-range-info div)
1987 ;; Divisor is always positive. The remainder is negative.
1988 (let ((rem (interval-neg (interval-abs div))))
1989 (setf (interval-high rem) 0)
1990 (when (and (numberp (interval-low rem))
1991 (not (zerop (interval-low rem))))
1992 ;; The remainder never contains the upper bound. However,
1993 ;; watch out for the case when the upper bound is zero!
1994 (setf (interval-low rem) (list (interval-low rem))))
1997 ;; Divisor is always negative. The remainder is positive
1998 (let ((rem (interval-abs div)))
1999 (setf (interval-low rem) 0)
2000 (when (numberp (interval-high rem))
2001 ;; The remainder never contains the lower bound.
2002 (setf (interval-high rem) (list (interval-high rem))))
2005 ;; The divisor can be positive or negative. All bets off. The
2006 ;; magnitude of remainder is the maximum value of the divisor.
2007 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2008 ;; The bound never reaches the limit, so make the interval open.
2009 (make-interval :low (if limit
2012 :high (list limit))))))
2015 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2016 => #S(INTERVAL :LOW 1 :HIGH 11)
2017 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2018 => #S(INTERVAL :LOW 1 :HIGH 11)
2019 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2020 => #S(INTERVAL :LOW 1 :HIGH 10)
2021 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2022 => #S(INTERVAL :LOW 1 :HIGH 10)
2023 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2024 => #S(INTERVAL :LOW 1 :HIGH 11)
2025 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2026 => #S(INTERVAL :LOW 1 :HIGH 11)
2027 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2028 => #S(INTERVAL :LOW -1 :HIGH 11)
2029 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2030 => #S(INTERVAL :LOW 0 :HIGH 11)
2031 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2032 => #S(INTERVAL :LOW -1 :HIGH 11)
2034 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2035 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2036 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2037 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2038 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2039 => #S(INTERVAL :LOW 0 :HIGH (10))
2040 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2041 => #S(INTERVAL :LOW (-10) :HIGH 0)
2042 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2043 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2044 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2045 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2048 (defun truncate-quotient-bound (quot)
2049 ;; For positive quotients, truncate is exactly like floor. For
2050 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2051 ;; it's the union of the two pieces.
2052 (case (interval-range-info quot)
2055 (floor-quotient-bound quot))
2057 ;; just like CEILING
2058 (ceiling-quotient-bound quot))
2060 ;; Split the interval into positive and negative pieces, compute
2061 ;; the result for each piece and put them back together.
2062 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2063 (interval-merge-pair (ceiling-quotient-bound neg)
2064 (floor-quotient-bound pos))))))
2066 (defun truncate-rem-bound (num div)
2067 ;; This is significantly more complicated than FLOOR or CEILING. We
2068 ;; need both the number and the divisor to determine the range. The
2069 ;; basic idea is to split the ranges of NUM and DEN into positive
2070 ;; and negative pieces and deal with each of the four possibilities
2072 (case (interval-range-info num)
2074 (case (interval-range-info div)
2076 (floor-rem-bound div))
2078 (ceiling-rem-bound div))
2080 (destructuring-bind (neg pos) (interval-split 0 div t t)
2081 (interval-merge-pair (truncate-rem-bound num neg)
2082 (truncate-rem-bound num pos))))))
2084 (case (interval-range-info div)
2086 (ceiling-rem-bound div))
2088 (floor-rem-bound div))
2090 (destructuring-bind (neg pos) (interval-split 0 div t t)
2091 (interval-merge-pair (truncate-rem-bound num neg)
2092 (truncate-rem-bound num pos))))))
2094 (destructuring-bind (neg pos) (interval-split 0 num t t)
2095 (interval-merge-pair (truncate-rem-bound neg div)
2096 (truncate-rem-bound pos div))))))
2099 ;;; Derive useful information about the range. Returns three values:
2100 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2101 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2102 ;;; - The abs of the maximal value if there is one, or nil if it is
2104 (defun numeric-range-info (low high)
2105 (cond ((and low (not (minusp low)))
2106 (values '+ low high))
2107 ((and high (not (plusp high)))
2108 (values '- (- high) (if low (- low) nil)))
2110 (values nil 0 (and low high (max (- low) high))))))
2112 (defun integer-truncate-derive-type
2113 (number-low number-high divisor-low divisor-high)
2114 ;; The result cannot be larger in magnitude than the number, but the
2115 ;; sign might change. If we can determine the sign of either the
2116 ;; number or the divisor, we can eliminate some of the cases.
2117 (multiple-value-bind (number-sign number-min number-max)
2118 (numeric-range-info number-low number-high)
2119 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2120 (numeric-range-info divisor-low divisor-high)
2121 (when (and divisor-max (zerop divisor-max))
2122 ;; We've got a problem: guaranteed division by zero.
2123 (return-from integer-truncate-derive-type t))
2124 (when (zerop divisor-min)
2125 ;; We'll assume that they aren't going to divide by zero.
2127 (cond ((and number-sign divisor-sign)
2128 ;; We know the sign of both.
2129 (if (eq number-sign divisor-sign)
2130 ;; Same sign, so the result will be positive.
2131 `(integer ,(if divisor-max
2132 (truncate number-min divisor-max)
2135 (truncate number-max divisor-min)
2137 ;; Different signs, the result will be negative.
2138 `(integer ,(if number-max
2139 (- (truncate number-max divisor-min))
2142 (- (truncate number-min divisor-max))
2144 ((eq divisor-sign '+)
2145 ;; The divisor is positive. Therefore, the number will just
2146 ;; become closer to zero.
2147 `(integer ,(if number-low
2148 (truncate number-low divisor-min)
2151 (truncate number-high divisor-min)
2153 ((eq divisor-sign '-)
2154 ;; The divisor is negative. Therefore, the absolute value of
2155 ;; the number will become closer to zero, but the sign will also
2157 `(integer ,(if number-high
2158 (- (truncate number-high divisor-min))
2161 (- (truncate number-low divisor-min))
2163 ;; The divisor could be either positive or negative.
2165 ;; The number we are dividing has a bound. Divide that by the
2166 ;; smallest posible divisor.
2167 (let ((bound (truncate number-max divisor-min)))
2168 `(integer ,(- bound) ,bound)))
2170 ;; The number we are dividing is unbounded, so we can't tell
2171 ;; anything about the result.
2174 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2175 (defun integer-rem-derive-type
2176 (number-low number-high divisor-low divisor-high)
2177 (if (and divisor-low divisor-high)
2178 ;; We know the range of the divisor, and the remainder must be
2179 ;; smaller than the divisor. We can tell the sign of the
2180 ;; remainer if we know the sign of the number.
2181 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2182 `(integer ,(if (or (null number-low)
2183 (minusp number-low))
2186 ,(if (or (null number-high)
2187 (plusp number-high))
2190 ;; The divisor is potentially either very positive or very
2191 ;; negative. Therefore, the remainer is unbounded, but we might
2192 ;; be able to tell something about the sign from the number.
2193 `(integer ,(if (and number-low (not (minusp number-low)))
2194 ;; The number we are dividing is positive.
2195 ;; Therefore, the remainder must be positive.
2198 ,(if (and number-high (not (plusp number-high)))
2199 ;; The number we are dividing is negative.
2200 ;; Therefore, the remainder must be negative.
2204 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2205 (defoptimizer (random derive-type) ((bound &optional state))
2206 (let ((type (lvar-type bound)))
2207 (when (numeric-type-p type)
2208 (let ((class (numeric-type-class type))
2209 (high (numeric-type-high type))
2210 (format (numeric-type-format type)))
2214 :low (coerce 0 (or format class 'real))
2215 :high (cond ((not high) nil)
2216 ((eq class 'integer) (max (1- high) 0))
2217 ((or (consp high) (zerop high)) high)
2220 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2221 (defun random-derive-type-aux (type)
2222 (let ((class (numeric-type-class type))
2223 (high (numeric-type-high type))
2224 (format (numeric-type-format type)))
2228 :low (coerce 0 (or format class 'real))
2229 :high (cond ((not high) nil)
2230 ((eq class 'integer) (max (1- high) 0))
2231 ((or (consp high) (zerop high)) high)
2234 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2235 (defoptimizer (random derive-type) ((bound &optional state))
2236 (one-arg-derive-type bound #'random-derive-type-aux nil))
2238 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2240 ;;; Return the maximum number of bits an integer of the supplied type
2241 ;;; can take up, or NIL if it is unbounded. The second (third) value
2242 ;;; is T if the integer can be positive (negative) and NIL if not.
2243 ;;; Zero counts as positive.
2244 (defun integer-type-length (type)
2245 (if (numeric-type-p type)
2246 (let ((min (numeric-type-low type))
2247 (max (numeric-type-high type)))
2248 (values (and min max (max (integer-length min) (integer-length max)))
2249 (or (null max) (not (minusp max)))
2250 (or (null min) (minusp min))))
2253 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2254 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2255 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2256 ;;; versions in CMUCL, from which these functions copy liberally.
2258 (defun logand-derive-unsigned-low-bound (x y)
2259 (let ((a (numeric-type-low x))
2260 (b (numeric-type-high x))
2261 (c (numeric-type-low y))
2262 (d (numeric-type-high y)))
2263 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2265 (unless (zerop (logand m (lognot a) (lognot c)))
2266 (let ((temp (logandc2 (logior a m) (1- m))))
2270 (setf temp (logandc2 (logior c m) (1- m)))
2274 finally (return (logand a c)))))
2276 (defun logand-derive-unsigned-high-bound (x y)
2277 (let ((a (numeric-type-low x))
2278 (b (numeric-type-high x))
2279 (c (numeric-type-low y))
2280 (d (numeric-type-high y)))
2281 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2284 ((not (zerop (logand b (lognot d) m)))
2285 (let ((temp (logior (logandc2 b m) (1- m))))
2289 ((not (zerop (logand (lognot b) d m)))
2290 (let ((temp (logior (logandc2 d m) (1- m))))
2294 finally (return (logand b d)))))
2296 (defun logand-derive-type-aux (x y &optional same-leaf)
2298 (return-from logand-derive-type-aux x))
2299 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2300 (declare (ignore x-pos))
2301 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2302 (declare (ignore y-pos))
2304 ;; X must be positive.
2306 ;; They must both be positive.
2307 (cond ((and (null x-len) (null y-len))
2308 (specifier-type 'unsigned-byte))
2310 (specifier-type `(unsigned-byte* ,y-len)))
2312 (specifier-type `(unsigned-byte* ,x-len)))
2314 (let ((low (logand-derive-unsigned-low-bound x y))
2315 (high (logand-derive-unsigned-high-bound x y)))
2316 (specifier-type `(integer ,low ,high)))))
2317 ;; X is positive, but Y might be negative.
2319 (specifier-type 'unsigned-byte))
2321 (specifier-type `(unsigned-byte* ,x-len)))))
2322 ;; X might be negative.
2324 ;; Y must be positive.
2326 (specifier-type 'unsigned-byte))
2327 (t (specifier-type `(unsigned-byte* ,y-len))))
2328 ;; Either might be negative.
2329 (if (and x-len y-len)
2330 ;; The result is bounded.
2331 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2332 ;; We can't tell squat about the result.
2333 (specifier-type 'integer)))))))
2335 (defun logior-derive-unsigned-low-bound (x y)
2336 (let ((a (numeric-type-low x))
2337 (b (numeric-type-high x))
2338 (c (numeric-type-low y))
2339 (d (numeric-type-high y)))
2340 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2343 ((not (zerop (logandc2 (logand c m) a)))
2344 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2348 ((not (zerop (logandc2 (logand a m) c)))
2349 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2353 finally (return (logior a c)))))
2355 (defun logior-derive-unsigned-high-bound (x y)
2356 (let ((a (numeric-type-low x))
2357 (b (numeric-type-high x))
2358 (c (numeric-type-low y))
2359 (d (numeric-type-high y)))
2360 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2362 (unless (zerop (logand b d m))
2363 (let ((temp (logior (- b m) (1- m))))
2367 (setf temp (logior (- d m) (1- m)))
2371 finally (return (logior b d)))))
2373 (defun logior-derive-type-aux (x y &optional same-leaf)
2375 (return-from logior-derive-type-aux x))
2376 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2377 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2379 ((and (not x-neg) (not y-neg))
2380 ;; Both are positive.
2381 (if (and x-len y-len)
2382 (let ((low (logior-derive-unsigned-low-bound x y))
2383 (high (logior-derive-unsigned-high-bound x y)))
2384 (specifier-type `(integer ,low ,high)))
2385 (specifier-type `(unsigned-byte* *))))
2387 ;; X must be negative.
2389 ;; Both are negative. The result is going to be negative
2390 ;; and be the same length or shorter than the smaller.
2391 (if (and x-len y-len)
2393 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2395 (specifier-type '(integer * -1)))
2396 ;; X is negative, but we don't know about Y. The result
2397 ;; will be negative, but no more negative than X.
2399 `(integer ,(or (numeric-type-low x) '*)
2402 ;; X might be either positive or negative.
2404 ;; But Y is negative. The result will be negative.
2406 `(integer ,(or (numeric-type-low y) '*)
2408 ;; We don't know squat about either. It won't get any bigger.
2409 (if (and x-len y-len)
2411 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2413 (specifier-type 'integer))))))))
2415 (defun logxor-derive-unsigned-low-bound (x y)
2416 (let ((a (numeric-type-low x))
2417 (b (numeric-type-high x))
2418 (c (numeric-type-low y))
2419 (d (numeric-type-high y)))
2420 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2423 ((not (zerop (logandc2 (logand c m) a)))
2424 (let ((temp (logand (logior a m)
2428 ((not (zerop (logandc2 (logand a m) c)))
2429 (let ((temp (logand (logior c m)
2433 finally (return (logxor a c)))))
2435 (defun logxor-derive-unsigned-high-bound (x y)
2436 (let ((a (numeric-type-low x))
2437 (b (numeric-type-high x))
2438 (c (numeric-type-low y))
2439 (d (numeric-type-high y)))
2440 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2442 (unless (zerop (logand b d m))
2443 (let ((temp (logior (- b m) (1- m))))
2445 ((>= temp a) (setf b temp))
2446 (t (let ((temp (logior (- d m) (1- m))))
2449 finally (return (logxor b d)))))
2451 (defun logxor-derive-type-aux (x y &optional same-leaf)
2453 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2454 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2455 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2457 ((and (not x-neg) (not y-neg))
2458 ;; Both are positive
2459 (if (and x-len y-len)
2460 (let ((low (logxor-derive-unsigned-low-bound x y))
2461 (high (logxor-derive-unsigned-high-bound x y)))
2462 (specifier-type `(integer ,low ,high)))
2463 (specifier-type '(unsigned-byte* *))))
2464 ((and (not x-pos) (not y-pos))
2465 ;; Both are negative. The result will be positive, and as long
2467 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2470 ((or (and (not x-pos) (not y-neg))
2471 (and (not y-pos) (not x-neg)))
2472 ;; Either X is negative and Y is positive or vice-versa. The
2473 ;; result will be negative.
2474 (specifier-type `(integer ,(if (and x-len y-len)
2475 (ash -1 (max x-len y-len))
2478 ;; We can't tell what the sign of the result is going to be.
2479 ;; All we know is that we don't create new bits.
2481 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2483 (specifier-type 'integer))))))
2485 (macrolet ((deffrob (logfun)
2486 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2487 `(defoptimizer (,logfun derive-type) ((x y))
2488 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2493 (defoptimizer (logeqv derive-type) ((x y))
2494 (two-arg-derive-type x y (lambda (x y same-leaf)
2495 (lognot-derive-type-aux
2496 (logxor-derive-type-aux x y same-leaf)))
2498 (defoptimizer (lognand derive-type) ((x y))
2499 (two-arg-derive-type x y (lambda (x y same-leaf)
2500 (lognot-derive-type-aux
2501 (logand-derive-type-aux x y same-leaf)))
2503 (defoptimizer (lognor derive-type) ((x y))
2504 (two-arg-derive-type x y (lambda (x y same-leaf)
2505 (lognot-derive-type-aux
2506 (logior-derive-type-aux x y same-leaf)))
2508 (defoptimizer (logandc1 derive-type) ((x y))
2509 (two-arg-derive-type x y (lambda (x y same-leaf)
2511 (specifier-type '(eql 0))
2512 (logand-derive-type-aux
2513 (lognot-derive-type-aux x) y nil)))
2515 (defoptimizer (logandc2 derive-type) ((x y))
2516 (two-arg-derive-type x y (lambda (x y same-leaf)
2518 (specifier-type '(eql 0))
2519 (logand-derive-type-aux
2520 x (lognot-derive-type-aux y) nil)))
2522 (defoptimizer (logorc1 derive-type) ((x y))
2523 (two-arg-derive-type x y (lambda (x y same-leaf)
2525 (specifier-type '(eql -1))
2526 (logior-derive-type-aux
2527 (lognot-derive-type-aux x) y nil)))
2529 (defoptimizer (logorc2 derive-type) ((x y))
2530 (two-arg-derive-type x y (lambda (x y same-leaf)
2532 (specifier-type '(eql -1))
2533 (logior-derive-type-aux
2534 x (lognot-derive-type-aux y) nil)))
2537 ;;;; miscellaneous derive-type methods
2539 (defoptimizer (integer-length derive-type) ((x))
2540 (let ((x-type (lvar-type x)))
2541 (when (numeric-type-p x-type)
2542 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2543 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2544 ;; careful about LO or HI being NIL, though. Also, if 0 is
2545 ;; contained in X, the lower bound is obviously 0.
2546 (flet ((null-or-min (a b)
2547 (and a b (min (integer-length a)
2548 (integer-length b))))
2550 (and a b (max (integer-length a)
2551 (integer-length b)))))
2552 (let* ((min (numeric-type-low x-type))
2553 (max (numeric-type-high x-type))
2554 (min-len (null-or-min min max))
2555 (max-len (null-or-max min max)))
2556 (when (ctypep 0 x-type)
2558 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2560 (defoptimizer (isqrt derive-type) ((x))
2561 (let ((x-type (lvar-type x)))
2562 (when (numeric-type-p x-type)
2563 (let* ((lo (numeric-type-low x-type))
2564 (hi (numeric-type-high x-type))
2565 (lo-res (if lo (isqrt lo) '*))
2566 (hi-res (if hi (isqrt hi) '*)))
2567 (specifier-type `(integer ,lo-res ,hi-res))))))
2569 (defoptimizer (code-char derive-type) ((code))
2570 (let ((type (lvar-type code)))
2571 ;; FIXME: unions of integral ranges? It ought to be easier to do
2572 ;; this, given that CHARACTER-SET is basically an integral range
2573 ;; type. -- CSR, 2004-10-04
2574 (when (numeric-type-p type)
2575 (let* ((lo (numeric-type-low type))
2576 (hi (numeric-type-high type))
2577 (type (specifier-type `(character-set ((,lo . ,hi))))))
2579 ;; KLUDGE: when running on the host, we lose a slight amount
2580 ;; of precision so that we don't have to "unparse" types
2581 ;; that formally we can't, such as (CHARACTER-SET ((0
2582 ;; . 0))). -- CSR, 2004-10-06
2584 ((csubtypep type (specifier-type 'standard-char)) type)
2586 ((csubtypep type (specifier-type 'base-char))
2587 (specifier-type 'base-char))
2589 ((csubtypep type (specifier-type 'extended-char))
2590 (specifier-type 'extended-char))
2591 (t #+sb-xc-host (specifier-type 'character)
2592 #-sb-xc-host type))))))
2594 (defoptimizer (values derive-type) ((&rest values))
2595 (make-values-type :required (mapcar #'lvar-type values)))
2597 (defun signum-derive-type-aux (type)
2598 (if (eq (numeric-type-complexp type) :complex)
2599 (let* ((format (case (numeric-type-class type)
2600 ((integer rational) 'single-float)
2601 (t (numeric-type-format type))))
2602 (bound-format (or format 'float)))
2603 (make-numeric-type :class 'float
2606 :low (coerce -1 bound-format)
2607 :high (coerce 1 bound-format)))
2608 (let* ((interval (numeric-type->interval type))
2609 (range-info (interval-range-info interval))
2610 (contains-0-p (interval-contains-p 0 interval))
2611 (class (numeric-type-class type))
2612 (format (numeric-type-format type))
2613 (one (coerce 1 (or format class 'real)))
2614 (zero (coerce 0 (or format class 'real)))
2615 (minus-one (coerce -1 (or format class 'real)))
2616 (plus (make-numeric-type :class class :format format
2617 :low one :high one))
2618 (minus (make-numeric-type :class class :format format
2619 :low minus-one :high minus-one))
2620 ;; KLUDGE: here we have a fairly horrible hack to deal
2621 ;; with the schizophrenia in the type derivation engine.
2622 ;; The problem is that the type derivers reinterpret
2623 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2624 ;; 0d0) within the derivation mechanism doesn't include
2625 ;; -0d0. Ugh. So force it in here, instead.
2626 (zero (make-numeric-type :class class :format format
2627 :low (- zero) :high zero)))
2629 (+ (if contains-0-p (type-union plus zero) plus))
2630 (- (if contains-0-p (type-union minus zero) minus))
2631 (t (type-union minus zero plus))))))
2633 (defoptimizer (signum derive-type) ((num))
2634 (one-arg-derive-type num #'signum-derive-type-aux nil))
2636 ;;;; byte operations
2638 ;;;; We try to turn byte operations into simple logical operations.
2639 ;;;; First, we convert byte specifiers into separate size and position
2640 ;;;; arguments passed to internal %FOO functions. We then attempt to
2641 ;;;; transform the %FOO functions into boolean operations when the
2642 ;;;; size and position are constant and the operands are fixnums.
2644 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2645 ;; expressions that evaluate to the SIZE and POSITION of
2646 ;; the byte-specifier form SPEC. We may wrap a let around
2647 ;; the result of the body to bind some variables.
2649 ;; If the spec is a BYTE form, then bind the vars to the
2650 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2651 ;; and BYTE-POSITION. The goal of this transformation is to
2652 ;; avoid consing up byte specifiers and then immediately
2653 ;; throwing them away.
2654 (with-byte-specifier ((size-var pos-var spec) &body body)
2655 (once-only ((spec `(macroexpand ,spec))
2657 `(if (and (consp ,spec)
2658 (eq (car ,spec) 'byte)
2659 (= (length ,spec) 3))
2660 (let ((,size-var (second ,spec))
2661 (,pos-var (third ,spec)))
2663 (let ((,size-var `(byte-size ,,temp))
2664 (,pos-var `(byte-position ,,temp)))
2665 `(let ((,,temp ,,spec))
2668 (define-source-transform ldb (spec int)
2669 (with-byte-specifier (size pos spec)
2670 `(%ldb ,size ,pos ,int)))
2672 (define-source-transform dpb (newbyte spec int)
2673 (with-byte-specifier (size pos spec)
2674 `(%dpb ,newbyte ,size ,pos ,int)))
2676 (define-source-transform mask-field (spec int)
2677 (with-byte-specifier (size pos spec)
2678 `(%mask-field ,size ,pos ,int)))
2680 (define-source-transform deposit-field (newbyte spec int)
2681 (with-byte-specifier (size pos spec)
2682 `(%deposit-field ,newbyte ,size ,pos ,int))))
2684 (defoptimizer (%ldb derive-type) ((size posn num))
2685 (let ((size (lvar-type size)))
2686 (if (and (numeric-type-p size)
2687 (csubtypep size (specifier-type 'integer)))
2688 (let ((size-high (numeric-type-high size)))
2689 (if (and size-high (<= size-high sb!vm:n-word-bits))
2690 (specifier-type `(unsigned-byte* ,size-high))
2691 (specifier-type 'unsigned-byte)))
2694 (defoptimizer (%mask-field derive-type) ((size posn num))
2695 (let ((size (lvar-type size))
2696 (posn (lvar-type posn)))
2697 (if (and (numeric-type-p size)
2698 (csubtypep size (specifier-type 'integer))
2699 (numeric-type-p posn)
2700 (csubtypep posn (specifier-type 'integer)))
2701 (let ((size-high (numeric-type-high size))
2702 (posn-high (numeric-type-high posn)))
2703 (if (and size-high posn-high
2704 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2705 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2706 (specifier-type 'unsigned-byte)))
2709 (defun %deposit-field-derive-type-aux (size posn int)
2710 (let ((size (lvar-type size))
2711 (posn (lvar-type posn))
2712 (int (lvar-type int)))
2713 (when (and (numeric-type-p size)
2714 (numeric-type-p posn)
2715 (numeric-type-p int))
2716 (let ((size-high (numeric-type-high size))
2717 (posn-high (numeric-type-high posn))
2718 (high (numeric-type-high int))
2719 (low (numeric-type-low int)))
2720 (when (and size-high posn-high high low
2721 ;; KLUDGE: we need this cutoff here, otherwise we
2722 ;; will merrily derive the type of %DPB as
2723 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2724 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2725 ;; 1073741822))), with hilarious consequences. We
2726 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2727 ;; over a reasonable amount of shifting, even on
2728 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2729 ;; machine integers are 64-bits. -- CSR,
2731 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2732 (let ((raw-bit-count (max (integer-length high)
2733 (integer-length low)
2734 (+ size-high posn-high))))
2737 `(signed-byte ,(1+ raw-bit-count))
2738 `(unsigned-byte* ,raw-bit-count)))))))))
2740 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2741 (%deposit-field-derive-type-aux size posn int))
2743 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2744 (%deposit-field-derive-type-aux size posn int))
2746 (deftransform %ldb ((size posn int)
2747 (fixnum fixnum integer)
2748 (unsigned-byte #.sb!vm:n-word-bits))
2749 "convert to inline logical operations"
2750 `(logand (ash int (- posn))
2751 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2752 (- size ,sb!vm:n-word-bits))))
2754 (deftransform %mask-field ((size posn int)
2755 (fixnum fixnum integer)
2756 (unsigned-byte #.sb!vm:n-word-bits))
2757 "convert to inline logical operations"
2759 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2760 (- size ,sb!vm:n-word-bits))
2763 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2764 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2765 ;;; as the result type, as that would allow result types that cover
2766 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2767 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2769 (deftransform %dpb ((new size posn int)
2771 (unsigned-byte #.sb!vm:n-word-bits))
2772 "convert to inline logical operations"
2773 `(let ((mask (ldb (byte size 0) -1)))
2774 (logior (ash (logand new mask) posn)
2775 (logand int (lognot (ash mask posn))))))
2777 (deftransform %dpb ((new size posn int)
2779 (signed-byte #.sb!vm:n-word-bits))
2780 "convert to inline logical operations"
2781 `(let ((mask (ldb (byte size 0) -1)))
2782 (logior (ash (logand new mask) posn)
2783 (logand int (lognot (ash mask posn))))))
2785 (deftransform %deposit-field ((new size posn int)
2787 (unsigned-byte #.sb!vm:n-word-bits))
2788 "convert to inline logical operations"
2789 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2790 (logior (logand new mask)
2791 (logand int (lognot mask)))))
2793 (deftransform %deposit-field ((new size posn int)
2795 (signed-byte #.sb!vm:n-word-bits))
2796 "convert to inline logical operations"
2797 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2798 (logior (logand new mask)
2799 (logand int (lognot mask)))))
2801 (defoptimizer (mask-signed-field derive-type) ((size x))
2802 (let ((size (lvar-type size)))
2803 (if (numeric-type-p size)
2804 (let ((size-high (numeric-type-high size)))
2805 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2806 (specifier-type `(signed-byte ,size-high))
2811 ;;; Modular functions
2813 ;;; (ldb (byte s 0) (foo x y ...)) =
2814 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2816 ;;; and similar for other arguments.
2818 (defun make-modular-fun-type-deriver (prototype class width)
2820 (binding* ((info (info :function :info prototype) :exit-if-null)
2821 (fun (fun-info-derive-type info) :exit-if-null)
2822 (mask-type (specifier-type
2824 (:unsigned (let ((mask (1- (ash 1 width))))
2825 `(integer ,mask ,mask)))
2826 (:signed `(signed-byte ,width))))))
2828 (let ((res (funcall fun call)))
2830 (if (eq class :unsigned)
2831 (logand-derive-type-aux res mask-type))))))
2834 (binding* ((info (info :function :info prototype) :exit-if-null)
2835 (fun (fun-info-derive-type info) :exit-if-null)
2836 (res (funcall fun call) :exit-if-null)
2837 (mask-type (specifier-type
2839 (:unsigned (let ((mask (1- (ash 1 width))))
2840 `(integer ,mask ,mask)))
2841 (:signed `(signed-byte ,width))))))
2842 (if (eq class :unsigned)
2843 (logand-derive-type-aux res mask-type)))))
2845 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2847 ;;; For good functions, we just recursively cut arguments; their
2848 ;;; "goodness" means that the result will not increase (in the
2849 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2850 ;;; replaced with the version, cutting its result to WIDTH or more
2851 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2852 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2853 ;;; arguments (maybe to a different width) and returning the name of a
2854 ;;; modular version, if it exists, or NIL. If we have changed
2855 ;;; anything, we need to flush old derived types, because they have
2856 ;;; nothing in common with the new code.
2857 (defun cut-to-width (lvar class width)
2858 (declare (type lvar lvar) (type (integer 0) width))
2859 (let ((type (specifier-type (if (zerop width)
2861 `(,(ecase class (:unsigned 'unsigned-byte)
2862 (:signed 'signed-byte))
2864 (labels ((reoptimize-node (node name)
2865 (setf (node-derived-type node)
2867 (info :function :type name)))
2868 (setf (lvar-%derived-type (node-lvar node)) nil)
2869 (setf (node-reoptimize node) t)
2870 (setf (block-reoptimize (node-block node)) t)
2871 (reoptimize-component (node-component node) :maybe))
2872 (cut-node (node &aux did-something)
2873 (when (and (not (block-delete-p (node-block node)))
2874 (combination-p node)
2875 (eq (basic-combination-kind node) :known))
2876 (let* ((fun-ref (lvar-use (combination-fun node)))
2877 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2878 (modular-fun (find-modular-version fun-name class width)))
2879 (when (and modular-fun
2880 (not (and (eq fun-name 'logand)
2882 (single-value-type (node-derived-type node))
2884 (binding* ((name (etypecase modular-fun
2885 ((eql :good) fun-name)
2887 (modular-fun-info-name modular-fun))
2889 (funcall modular-fun node width)))
2891 (unless (eql modular-fun :good)
2892 (setq did-something t)
2895 (find-free-fun name "in a strange place"))
2896 (setf (combination-kind node) :full))
2897 (unless (functionp modular-fun)
2898 (dolist (arg (basic-combination-args node))
2899 (when (cut-lvar arg)
2900 (setq did-something t))))
2902 (reoptimize-node node name))
2904 (cut-lvar (lvar &aux did-something)
2905 (do-uses (node lvar)
2906 (when (cut-node node)
2907 (setq did-something t)))
2911 (defoptimizer (logand optimizer) ((x y) node)
2912 (let ((result-type (single-value-type (node-derived-type node))))
2913 (when (numeric-type-p result-type)
2914 (let ((low (numeric-type-low result-type))
2915 (high (numeric-type-high result-type)))
2916 (when (and (numberp low)
2919 (let ((width (integer-length high)))
2920 (when (some (lambda (x) (<= width x))
2921 (modular-class-widths *unsigned-modular-class*))
2922 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2923 (cut-to-width x :unsigned width)
2924 (cut-to-width y :unsigned width)
2925 nil ; After fixing above, replace with T.
2928 (defoptimizer (mask-signed-field optimizer) ((width x) node)
2929 (let ((result-type (single-value-type (node-derived-type node))))
2930 (when (numeric-type-p result-type)
2931 (let ((low (numeric-type-low result-type))
2932 (high (numeric-type-high result-type)))
2933 (when (and (numberp low) (numberp high))
2934 (let ((width (max (integer-length high) (integer-length low))))
2935 (when (some (lambda (x) (<= width x))
2936 (modular-class-widths *signed-modular-class*))
2937 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2938 (cut-to-width x :signed width)
2939 nil ; After fixing above, replace with T.
2942 ;;; miscellanous numeric transforms
2944 ;;; If a constant appears as the first arg, swap the args.
2945 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2946 (if (and (constant-lvar-p x)
2947 (not (constant-lvar-p y)))
2948 `(,(lvar-fun-name (basic-combination-fun node))
2951 (give-up-ir1-transform)))
2953 (dolist (x '(= char= + * logior logand logxor))
2954 (%deftransform x '(function * *) #'commutative-arg-swap
2955 "place constant arg last"))
2957 ;;; Handle the case of a constant BOOLE-CODE.
2958 (deftransform boole ((op x y) * *)
2959 "convert to inline logical operations"
2960 (unless (constant-lvar-p op)
2961 (give-up-ir1-transform "BOOLE code is not a constant."))
2962 (let ((control (lvar-value op)))
2964 (#.sb!xc:boole-clr 0)
2965 (#.sb!xc:boole-set -1)
2966 (#.sb!xc:boole-1 'x)
2967 (#.sb!xc:boole-2 'y)
2968 (#.sb!xc:boole-c1 '(lognot x))
2969 (#.sb!xc:boole-c2 '(lognot y))
2970 (#.sb!xc:boole-and '(logand x y))
2971 (#.sb!xc:boole-ior '(logior x y))
2972 (#.sb!xc:boole-xor '(logxor x y))
2973 (#.sb!xc:boole-eqv '(logeqv x y))
2974 (#.sb!xc:boole-nand '(lognand x y))
2975 (#.sb!xc:boole-nor '(lognor x y))
2976 (#.sb!xc:boole-andc1 '(logandc1 x y))
2977 (#.sb!xc:boole-andc2 '(logandc2 x y))
2978 (#.sb!xc:boole-orc1 '(logorc1 x y))
2979 (#.sb!xc:boole-orc2 '(logorc2 x y))
2981 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2984 ;;;; converting special case multiply/divide to shifts
2986 ;;; If arg is a constant power of two, turn * into a shift.
2987 (deftransform * ((x y) (integer integer) *)
2988 "convert x*2^k to shift"
2989 (unless (constant-lvar-p y)
2990 (give-up-ir1-transform))
2991 (let* ((y (lvar-value y))
2993 (len (1- (integer-length y-abs))))
2994 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2995 (give-up-ir1-transform))
3000 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3001 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3003 (flet ((frob (y ceil-p)
3004 (unless (constant-lvar-p y)
3005 (give-up-ir1-transform))
3006 (let* ((y (lvar-value y))
3008 (len (1- (integer-length y-abs))))
3009 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3010 (give-up-ir1-transform))
3011 (let ((shift (- len))
3013 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3014 `(let ((x (+ x ,delta)))
3016 `(values (ash (- x) ,shift)
3017 (- (- (logand (- x) ,mask)) ,delta))
3018 `(values (ash x ,shift)
3019 (- (logand x ,mask) ,delta))))))))
3020 (deftransform floor ((x y) (integer integer) *)
3021 "convert division by 2^k to shift"
3023 (deftransform ceiling ((x y) (integer integer) *)
3024 "convert division by 2^k to shift"
3027 ;;; Do the same for MOD.
3028 (deftransform mod ((x y) (integer integer) *)
3029 "convert remainder mod 2^k to LOGAND"
3030 (unless (constant-lvar-p y)
3031 (give-up-ir1-transform))
3032 (let* ((y (lvar-value y))
3034 (len (1- (integer-length y-abs))))
3035 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3036 (give-up-ir1-transform))
3037 (let ((mask (1- y-abs)))
3039 `(- (logand (- x) ,mask))
3040 `(logand x ,mask)))))
3042 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3043 (deftransform truncate ((x y) (integer integer))
3044 "convert division by 2^k to shift"
3045 (unless (constant-lvar-p y)
3046 (give-up-ir1-transform))
3047 (let* ((y (lvar-value y))
3049 (len (1- (integer-length y-abs))))
3050 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3051 (give-up-ir1-transform))
3052 (let* ((shift (- len))
3055 (values ,(if (minusp y)
3057 `(- (ash (- x) ,shift)))
3058 (- (logand (- x) ,mask)))
3059 (values ,(if (minusp y)
3060 `(ash (- ,mask x) ,shift)
3062 (logand x ,mask))))))
3064 ;;; And the same for REM.
3065 (deftransform rem ((x y) (integer integer) *)
3066 "convert remainder mod 2^k to LOGAND"
3067 (unless (constant-lvar-p y)
3068 (give-up-ir1-transform))
3069 (let* ((y (lvar-value y))
3071 (len (1- (integer-length y-abs))))
3072 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3073 (give-up-ir1-transform))
3074 (let ((mask (1- y-abs)))
3076 (- (logand (- x) ,mask))
3077 (logand x ,mask)))))
3079 ;;;; arithmetic and logical identity operation elimination
3081 ;;; Flush calls to various arith functions that convert to the
3082 ;;; identity function or a constant.
3083 (macrolet ((def (name identity result)
3084 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3085 "fold identity operations"
3092 (def logxor -1 (lognot x))
3095 (deftransform logand ((x y) (* (constant-arg t)) *)
3096 "fold identity operation"
3097 (let ((y (lvar-value y)))
3098 (unless (and (plusp y)
3099 (= y (1- (ash 1 (integer-length y)))))
3100 (give-up-ir1-transform))
3101 (unless (csubtypep (lvar-type x)
3102 (specifier-type `(integer 0 ,y)))
3103 (give-up-ir1-transform))
3106 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3107 "fold identity operation"
3108 (let ((size (lvar-value size)))
3109 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3110 (give-up-ir1-transform))
3113 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3114 ;;; (* 0 -4.0) is -0.0.
3115 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3116 "convert (- 0 x) to negate"
3118 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3119 "convert (* x 0) to 0"
3122 ;;; Return T if in an arithmetic op including lvars X and Y, the
3123 ;;; result type is not affected by the type of X. That is, Y is at
3124 ;;; least as contagious as X.
3126 (defun not-more-contagious (x y)
3127 (declare (type continuation x y))
3128 (let ((x (lvar-type x))
3130 (values (type= (numeric-contagion x y)
3131 (numeric-contagion y y)))))
3132 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3133 ;;; XXX needs more work as valid transforms are missed; some cases are
3134 ;;; specific to particular transform functions so the use of this
3135 ;;; function may need a re-think.
3136 (defun not-more-contagious (x y)
3137 (declare (type lvar x y))
3138 (flet ((simple-numeric-type (num)
3139 (and (numeric-type-p num)
3140 ;; Return non-NIL if NUM is integer, rational, or a float
3141 ;; of some type (but not FLOAT)
3142 (case (numeric-type-class num)
3146 (numeric-type-format num))
3149 (let ((x (lvar-type x))
3151 (if (and (simple-numeric-type x)
3152 (simple-numeric-type y))
3153 (values (type= (numeric-contagion x y)
3154 (numeric-contagion y y)))))))
3158 ;;; If y is not constant, not zerop, or is contagious, or a positive
3159 ;;; float +0.0 then give up.
3160 (deftransform + ((x y) (t (constant-arg t)) *)
3162 (let ((val (lvar-value y)))
3163 (unless (and (zerop val)
3164 (not (and (floatp val) (plusp (float-sign val))))
3165 (not-more-contagious y x))
3166 (give-up-ir1-transform)))
3171 ;;; If y is not constant, not zerop, or is contagious, or a negative
3172 ;;; float -0.0 then give up.
3173 (deftransform - ((x y) (t (constant-arg t)) *)
3175 (let ((val (lvar-value y)))
3176 (unless (and (zerop val)
3177 (not (and (floatp val) (minusp (float-sign val))))
3178 (not-more-contagious y x))
3179 (give-up-ir1-transform)))
3182 ;;; Fold (OP x +/-1)
3183 (macrolet ((def (name result minus-result)
3184 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3185 "fold identity operations"
3186 (let ((val (lvar-value y)))
3187 (unless (and (= (abs val) 1)
3188 (not-more-contagious y x))
3189 (give-up-ir1-transform))
3190 (if (minusp val) ',minus-result ',result)))))
3191 (def * x (%negate x))
3192 (def / x (%negate x))
3193 (def expt x (/ 1 x)))
3195 ;;; Fold (expt x n) into multiplications for small integral values of
3196 ;;; N; convert (expt x 1/2) to sqrt.
3197 (deftransform expt ((x y) (t (constant-arg real)) *)
3198 "recode as multiplication or sqrt"
3199 (let ((val (lvar-value y)))
3200 ;; If Y would cause the result to be promoted to the same type as
3201 ;; Y, we give up. If not, then the result will be the same type
3202 ;; as X, so we can replace the exponentiation with simple
3203 ;; multiplication and division for small integral powers.
3204 (unless (not-more-contagious y x)
3205 (give-up-ir1-transform))
3207 (let ((x-type (lvar-type x)))
3208 (cond ((csubtypep x-type (specifier-type '(or rational
3209 (complex rational))))
3211 ((csubtypep x-type (specifier-type 'real))
3215 ((csubtypep x-type (specifier-type 'complex))
3216 ;; both parts are float
3218 (t (give-up-ir1-transform)))))
3219 ((= val 2) '(* x x))
3220 ((= val -2) '(/ (* x x)))
3221 ((= val 3) '(* x x x))
3222 ((= val -3) '(/ (* x x x)))
3223 ((= val 1/2) '(sqrt x))
3224 ((= val -1/2) '(/ (sqrt x)))
3225 (t (give-up-ir1-transform)))))
3227 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3228 ;;; transformations?
3229 ;;; Perhaps we should have to prove that the denominator is nonzero before
3230 ;;; doing them? -- WHN 19990917
3231 (macrolet ((def (name)
3232 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3239 (macrolet ((def (name)
3240 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3249 ;;;; character operations
3251 (deftransform char-equal ((a b) (base-char base-char))
3253 '(let* ((ac (char-code a))
3255 (sum (logxor ac bc)))
3257 (when (eql sum #x20)
3258 (let ((sum (+ ac bc)))
3259 (or (and (> sum 161) (< sum 213))
3260 (and (> sum 415) (< sum 461))
3261 (and (> sum 463) (< sum 477))))))))
3263 (deftransform char-upcase ((x) (base-char))
3265 '(let ((n-code (char-code x)))
3266 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3267 (< n-code #o173)) ; Octal 172 is #\z.
3268 (and (> n-code #o337)
3270 (and (> n-code #o367)
3272 (code-char (logxor #x20 n-code))
3275 (deftransform char-downcase ((x) (base-char))
3277 '(let ((n-code (char-code x)))
3278 (if (or (and (> n-code 64) ; 65 is #\A.
3279 (< n-code 91)) ; 90 is #\Z.
3284 (code-char (logxor #x20 n-code))
3287 ;;;; equality predicate transforms
3289 ;;; Return true if X and Y are lvars whose only use is a
3290 ;;; reference to the same leaf, and the value of the leaf cannot
3292 (defun same-leaf-ref-p (x y)
3293 (declare (type lvar x y))
3294 (let ((x-use (principal-lvar-use x))
3295 (y-use (principal-lvar-use y)))
3298 (eq (ref-leaf x-use) (ref-leaf y-use))
3299 (constant-reference-p x-use))))
3301 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3302 ;;; if there is no intersection between the types of the arguments,
3303 ;;; then the result is definitely false.
3304 (deftransform simple-equality-transform ((x y) * *
3307 ((same-leaf-ref-p x y) t)
3308 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3310 (t (give-up-ir1-transform))))
3313 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3317 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3318 ;;; try to convert to a type-specific predicate or EQ:
3319 ;;; -- If both args are characters, convert to CHAR=. This is better than
3320 ;;; just converting to EQ, since CHAR= may have special compilation
3321 ;;; strategies for non-standard representations, etc.
3322 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3323 ;;; constant and if so, put X second. Doing this results in better
3324 ;;; code from the backend, since the backend assumes that any constant
3325 ;;; argument comes second.
3326 ;;; -- If either arg is definitely not a number or a fixnum, then we
3327 ;;; can compare with EQ.
3328 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3329 ;;; is constant then we put it second. If X is a subtype of Y, we put
3330 ;;; it second. These rules make it easier for the back end to match
3331 ;;; these interesting cases.
3332 (deftransform eql ((x y) * * :node node)
3333 "convert to simpler equality predicate"
3334 (let ((x-type (lvar-type x))
3335 (y-type (lvar-type y))
3336 (char-type (specifier-type 'character)))
3337 (flet ((simple-type-p (type)
3338 (csubtypep type (specifier-type '(or fixnum (not number)))))
3339 (fixnum-type-p (type)
3340 (csubtypep type (specifier-type 'fixnum))))
3342 ((same-leaf-ref-p x y) t)
3343 ((not (types-equal-or-intersect x-type y-type))
3345 ((and (csubtypep x-type char-type)
3346 (csubtypep y-type char-type))
3348 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3349 (commutative-arg-swap node))
3350 ((or (simple-type-p x-type) (simple-type-p y-type))
3352 ((and (not (constant-lvar-p y))
3353 (or (constant-lvar-p x)
3354 (and (csubtypep x-type y-type)
3355 (not (csubtypep y-type x-type)))))
3358 (give-up-ir1-transform))))))
3360 ;;; similarly to the EQL transform above, we attempt to constant-fold
3361 ;;; or convert to a simpler predicate: mostly we have to be careful
3362 ;;; with strings and bit-vectors.
3363 (deftransform equal ((x y) * *)
3364 "convert to simpler equality predicate"
3365 (let ((x-type (lvar-type x))
3366 (y-type (lvar-type y))
3367 (string-type (specifier-type 'string))
3368 (bit-vector-type (specifier-type 'bit-vector)))
3370 ((same-leaf-ref-p x y) t)
3371 ((and (csubtypep x-type string-type)
3372 (csubtypep y-type string-type))
3374 ((and (csubtypep x-type bit-vector-type)
3375 (csubtypep y-type bit-vector-type))
3376 '(bit-vector-= x y))
3377 ;; if at least one is not a string, and at least one is not a
3378 ;; bit-vector, then we can reason from types.
3379 ((and (not (and (types-equal-or-intersect x-type string-type)
3380 (types-equal-or-intersect y-type string-type)))
3381 (not (and (types-equal-or-intersect x-type bit-vector-type)
3382 (types-equal-or-intersect y-type bit-vector-type)))
3383 (not (types-equal-or-intersect x-type y-type)))
3385 (t (give-up-ir1-transform)))))
3387 ;;; Convert to EQL if both args are rational and complexp is specified
3388 ;;; and the same for both.
3389 (deftransform = ((x y) (number number) *)
3391 (let ((x-type (lvar-type x))
3392 (y-type (lvar-type y)))
3393 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3394 (csubtypep y-type (specifier-type 'float)))
3395 (and (csubtypep x-type (specifier-type '(complex float)))
3396 (csubtypep y-type (specifier-type '(complex float)))))
3397 ;; They are both floats. Leave as = so that -0.0 is
3398 ;; handled correctly.
3399 (give-up-ir1-transform))
3400 ((or (and (csubtypep x-type (specifier-type 'rational))
3401 (csubtypep y-type (specifier-type 'rational)))
3402 (and (csubtypep x-type
3403 (specifier-type '(complex rational)))
3405 (specifier-type '(complex rational)))))
3406 ;; They are both rationals and complexp is the same.
3410 (give-up-ir1-transform
3411 "The operands might not be the same type.")))))
3413 (defun maybe-float-lvar-p (lvar)
3414 (neq *empty-type* (type-intersection (specifier-type 'float)
3417 (flet ((maybe-invert (node op inverted x y)
3418 ;; Don't invert if either argument can be a float (NaNs)
3420 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3421 (delay-ir1-transform node :constraint)
3422 `(or (,op x y) (= x y)))
3424 `(if (,inverted x y) nil t)))))
3425 (deftransform >= ((x y) (number number) * :node node)
3426 "invert or open code"
3427 (maybe-invert node '> '< x y))
3428 (deftransform <= ((x y) (number number) * :node node)
3429 "invert or open code"
3430 (maybe-invert node '< '> x y)))
3432 ;;; See whether we can statically determine (< X Y) using type
3433 ;;; information. If X's high bound is < Y's low, then X < Y.
3434 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3435 ;;; NIL). If not, at least make sure any constant arg is second.
3436 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3437 `(deftransform ,name ((x y))
3438 "optimize using intervals"
3439 (if (and (same-leaf-ref-p x y)
3440 ;; For non-reflexive functions we don't need
3441 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3442 ;; but with reflexive ones we don't know...
3444 '((and (not (maybe-float-lvar-p x))
3445 (not (maybe-float-lvar-p y))))))
3447 (let ((ix (or (type-approximate-interval (lvar-type x))
3448 (give-up-ir1-transform)))
3449 (iy (or (type-approximate-interval (lvar-type y))
3450 (give-up-ir1-transform))))
3455 ((and (constant-lvar-p x)
3456 (not (constant-lvar-p y)))
3459 (give-up-ir1-transform))))))))
3460 (def = = t (interval-= ix iy) (interval-/= ix iy))
3461 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3462 (def < > nil (interval-< ix iy) (interval->= ix iy))
3463 (def > < nil (interval-< iy ix) (interval->= iy ix))
3464 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3465 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3467 (defun ir1-transform-char< (x y first second inverse)
3469 ((same-leaf-ref-p x y) nil)
3470 ;; If we had interval representation of character types, as we
3471 ;; might eventually have to to support 2^21 characters, then here
3472 ;; we could do some compile-time computation as in transforms for
3473 ;; < above. -- CSR, 2003-07-01
3474 ((and (constant-lvar-p first)
3475 (not (constant-lvar-p second)))
3477 (t (give-up-ir1-transform))))
3479 (deftransform char< ((x y) (character character) *)
3480 (ir1-transform-char< x y x y 'char>))
3482 (deftransform char> ((x y) (character character) *)
3483 (ir1-transform-char< y x x y 'char<))
3485 ;;;; converting N-arg comparisons
3487 ;;;; We convert calls to N-arg comparison functions such as < into
3488 ;;;; two-arg calls. This transformation is enabled for all such
3489 ;;;; comparisons in this file. If any of these predicates are not
3490 ;;;; open-coded, then the transformation should be removed at some
3491 ;;;; point to avoid pessimization.
3493 ;;; This function is used for source transformation of N-arg
3494 ;;; comparison functions other than inequality. We deal both with
3495 ;;; converting to two-arg calls and inverting the sense of the test,
3496 ;;; if necessary. If the call has two args, then we pass or return a
3497 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3498 ;;; then we transform to code that returns true. Otherwise, we bind
3499 ;;; all the arguments and expand into a bunch of IFs.
3500 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3501 (let ((nargs (length args)))
3502 (cond ((< nargs 1) (values nil t))
3503 ((= nargs 1) `(progn (the ,type ,@args) t))
3506 `(if (,predicate ,(first args) ,(second args)) nil t)
3508 `(,predicate ,(first args) ,(second args))
3511 (do* ((i (1- nargs) (1- i))
3513 (current (gensym) (gensym))
3514 (vars (list current) (cons current vars))
3516 `(if (,predicate ,current ,last)
3518 `(if (,predicate ,current ,last)
3521 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3524 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3525 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3526 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3527 ;;; We cannot do the inversion for >= and <= here, since both
3528 ;;; (< NaN X) and (> NaN X)
3529 ;;; are false, and we don't have type-inforation available yet. The
3530 ;;; deftransforms for two-argument versions of >= and <= takes care of
3531 ;;; the inversion to > and < when possible.
3532 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3533 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3535 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3537 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3539 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3541 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3543 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3546 (define-source-transform char-equal (&rest args)
3547 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3548 (define-source-transform char-lessp (&rest args)
3549 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3550 (define-source-transform char-greaterp (&rest args)
3551 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3552 (define-source-transform char-not-greaterp (&rest args)
3553 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3554 (define-source-transform char-not-lessp (&rest args)
3555 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3557 ;;; This function does source transformation of N-arg inequality
3558 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3559 ;;; arg cases. If there are more than two args, then we expand into
3560 ;;; the appropriate n^2 comparisons only when speed is important.
3561 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3562 (defun multi-not-equal (predicate args type)
3563 (let ((nargs (length args)))
3564 (cond ((< nargs 1) (values nil t))
3565 ((= nargs 1) `(progn (the ,type ,@args) t))
3567 `(if (,predicate ,(first args) ,(second args)) nil t))
3568 ((not (policy *lexenv*
3569 (and (>= speed space)
3570 (>= speed compilation-speed))))
3573 (let ((vars (make-gensym-list nargs)))
3574 (do ((var vars next)
3575 (next (cdr vars) (cdr next))
3578 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3580 (let ((v1 (first var)))
3582 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3584 (define-source-transform /= (&rest args)
3585 (multi-not-equal '= args 'number))
3586 (define-source-transform char/= (&rest args)
3587 (multi-not-equal 'char= args 'character))
3588 (define-source-transform char-not-equal (&rest args)
3589 (multi-not-equal 'char-equal args 'character))
3591 ;;; Expand MAX and MIN into the obvious comparisons.
3592 (define-source-transform max (arg0 &rest rest)
3593 (once-only ((arg0 arg0))
3595 `(values (the real ,arg0))
3596 `(let ((maxrest (max ,@rest)))
3597 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3598 (define-source-transform min (arg0 &rest rest)
3599 (once-only ((arg0 arg0))
3601 `(values (the real ,arg0))
3602 `(let ((minrest (min ,@rest)))
3603 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3605 ;;;; converting N-arg arithmetic functions
3607 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3608 ;;;; versions, and degenerate cases are flushed.
3610 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3611 (declaim (ftype (function (symbol t list) list) associate-args))
3612 (defun associate-args (function first-arg more-args)
3613 (let ((next (rest more-args))
3614 (arg (first more-args)))
3616 `(,function ,first-arg ,arg)
3617 (associate-args function `(,function ,first-arg ,arg) next))))
3619 ;;; Do source transformations for transitive functions such as +.
3620 ;;; One-arg cases are replaced with the arg and zero arg cases with
3621 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3622 ;;; ensure (with THE) that the argument in one-argument calls is.
3623 (defun source-transform-transitive (fun args identity
3624 &optional one-arg-result-type)
3625 (declare (symbol fun) (list args))
3628 (1 (if one-arg-result-type
3629 `(values (the ,one-arg-result-type ,(first args)))
3630 `(values ,(first args))))
3633 (associate-args fun (first args) (rest args)))))
3635 (define-source-transform + (&rest args)
3636 (source-transform-transitive '+ args 0 'number))
3637 (define-source-transform * (&rest args)
3638 (source-transform-transitive '* args 1 'number))
3639 (define-source-transform logior (&rest args)
3640 (source-transform-transitive 'logior args 0 'integer))
3641 (define-source-transform logxor (&rest args)
3642 (source-transform-transitive 'logxor args 0 'integer))
3643 (define-source-transform logand (&rest args)
3644 (source-transform-transitive 'logand args -1 'integer))
3645 (define-source-transform logeqv (&rest args)
3646 (source-transform-transitive 'logeqv args -1 'integer))
3648 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3649 ;;; because when they are given one argument, they return its absolute
3652 (define-source-transform gcd (&rest args)
3655 (1 `(abs (the integer ,(first args))))
3657 (t (associate-args 'gcd (first args) (rest args)))))
3659 (define-source-transform lcm (&rest args)
3662 (1 `(abs (the integer ,(first args))))
3664 (t (associate-args 'lcm (first args) (rest args)))))
3666 ;;; Do source transformations for intransitive n-arg functions such as
3667 ;;; /. With one arg, we form the inverse. With two args we pass.
3668 ;;; Otherwise we associate into two-arg calls.
3669 (declaim (ftype (function (symbol list t)
3670 (values list &optional (member nil t)))
3671 source-transform-intransitive))
3672 (defun source-transform-intransitive (function args inverse)
3674 ((0 2) (values nil t))
3675 (1 `(,@inverse ,(first args)))
3676 (t (associate-args function (first args) (rest args)))))
3678 (define-source-transform - (&rest args)
3679 (source-transform-intransitive '- args '(%negate)))
3680 (define-source-transform / (&rest args)
3681 (source-transform-intransitive '/ args '(/ 1)))
3683 ;;;; transforming APPLY
3685 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3686 ;;; only needs to understand one kind of variable-argument call. It is
3687 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3688 (define-source-transform apply (fun arg &rest more-args)
3689 (let ((args (cons arg more-args)))
3690 `(multiple-value-call ,fun
3691 ,@(mapcar (lambda (x)
3694 (values-list ,(car (last args))))))
3696 ;;;; transforming FORMAT
3698 ;;;; If the control string is a compile-time constant, then replace it
3699 ;;;; with a use of the FORMATTER macro so that the control string is
3700 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3701 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3702 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3704 ;;; for compile-time argument count checking.
3706 ;;; FIXME II: In some cases, type information could be correlated; for
3707 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3708 ;;; of a corresponding argument is known and does not intersect the
3709 ;;; list type, a warning could be signalled.
3710 (defun check-format-args (string args fun)
3711 (declare (type string string))
3712 (unless (typep string 'simple-string)
3713 (setq string (coerce string 'simple-string)))
3714 (multiple-value-bind (min max)
3715 (handler-case (sb!format:%compiler-walk-format-string string args)
3716 (sb!format:format-error (c)
3717 (compiler-warn "~A" c)))
3719 (let ((nargs (length args)))
3722 (warn 'format-too-few-args-warning
3724 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3725 :format-arguments (list nargs fun string min)))
3727 (warn 'format-too-many-args-warning
3729 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3730 :format-arguments (list nargs fun string max))))))))
3732 (defoptimizer (format optimizer) ((dest control &rest args))
3733 (when (constant-lvar-p control)
3734 (let ((x (lvar-value control)))
3736 (check-format-args x args 'format)))))
3738 ;;; We disable this transform in the cross-compiler to save memory in
3739 ;;; the target image; most of the uses of FORMAT in the compiler are for
3740 ;;; error messages, and those don't need to be particularly fast.
3742 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3743 :policy (> speed space))
3744 (unless (constant-lvar-p control)
3745 (give-up-ir1-transform "The control string is not a constant."))
3746 (let ((arg-names (make-gensym-list (length args))))
3747 `(lambda (dest control ,@arg-names)
3748 (declare (ignore control))
3749 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3751 (deftransform format ((stream control &rest args) (stream function &rest t) *
3752 :policy (> speed space))
3753 (let ((arg-names (make-gensym-list (length args))))
3754 `(lambda (stream control ,@arg-names)
3755 (funcall control stream ,@arg-names)
3758 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3759 :policy (> speed space))
3760 (let ((arg-names (make-gensym-list (length args))))
3761 `(lambda (tee control ,@arg-names)
3762 (declare (ignore tee))
3763 (funcall control *standard-output* ,@arg-names)
3766 (deftransform pathname ((pathspec) (pathname) *)
3769 (deftransform pathname ((pathspec) (string) *)
3770 '(values (parse-namestring pathspec)))
3774 `(defoptimizer (,name optimizer) ((control &rest args))
3775 (when (constant-lvar-p control)
3776 (let ((x (lvar-value control)))
3778 (check-format-args x args ',name)))))))
3781 #+sb-xc-host ; Only we should be using these
3784 (def compiler-error)
3786 (def compiler-style-warn)
3787 (def compiler-notify)
3788 (def maybe-compiler-notify)
3791 (defoptimizer (cerror optimizer) ((report control &rest args))
3792 (when (and (constant-lvar-p control)
3793 (constant-lvar-p report))
3794 (let ((x (lvar-value control))
3795 (y (lvar-value report)))
3796 (when (and (stringp x) (stringp y))
3797 (multiple-value-bind (min1 max1)
3799 (sb!format:%compiler-walk-format-string x args)
3800 (sb!format:format-error (c)
3801 (compiler-warn "~A" c)))
3803 (multiple-value-bind (min2 max2)
3805 (sb!format:%compiler-walk-format-string y args)
3806 (sb!format:format-error (c)
3807 (compiler-warn "~A" c)))
3809 (let ((nargs (length args)))
3811 ((< nargs (min min1 min2))
3812 (warn 'format-too-few-args-warning
3814 "Too few arguments (~D) to ~S ~S ~S: ~
3815 requires at least ~D."
3817 (list nargs 'cerror y x (min min1 min2))))
3818 ((> nargs (max max1 max2))
3819 (warn 'format-too-many-args-warning
3821 "Too many arguments (~D) to ~S ~S ~S: ~
3824 (list nargs 'cerror y x (max max1 max2))))))))))))))
3826 (defoptimizer (coerce derive-type) ((value type))
3828 ((constant-lvar-p type)
3829 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3830 ;; but dealing with the niggle that complex canonicalization gets
3831 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3833 (let* ((specifier (lvar-value type))
3834 (result-typeoid (careful-specifier-type specifier)))
3836 ((null result-typeoid) nil)
3837 ((csubtypep result-typeoid (specifier-type 'number))
3838 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3839 ;; Rule of Canonical Representation for Complex Rationals,
3840 ;; which is a truly nasty delivery to field.
3842 ((csubtypep result-typeoid (specifier-type 'real))
3843 ;; cleverness required here: it would be nice to deduce
3844 ;; that something of type (INTEGER 2 3) coerced to type
3845 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3846 ;; FLOAT gets its own clause because it's implemented as
3847 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3850 ((and (numeric-type-p result-typeoid)
3851 (eq (numeric-type-complexp result-typeoid) :real))
3852 ;; FIXME: is this clause (a) necessary or (b) useful?
3854 ((or (csubtypep result-typeoid
3855 (specifier-type '(complex single-float)))
3856 (csubtypep result-typeoid
3857 (specifier-type '(complex double-float)))
3859 (csubtypep result-typeoid
3860 (specifier-type '(complex long-float))))
3861 ;; float complex types are never canonicalized.
3864 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3865 ;; probably just a COMPLEX or equivalent. So, in that
3866 ;; case, we will return a complex or an object of the
3867 ;; provided type if it's rational:
3868 (type-union result-typeoid
3869 (type-intersection (lvar-type value)
3870 (specifier-type 'rational))))))
3871 (t result-typeoid))))
3873 ;; OK, the result-type argument isn't constant. However, there
3874 ;; are common uses where we can still do better than just
3875 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3876 ;; where Y is of a known type. See messages on cmucl-imp
3877 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3878 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3879 ;; the basis that it's unlikely that other uses are both
3880 ;; time-critical and get to this branch of the COND (non-constant
3881 ;; second argument to COERCE). -- CSR, 2002-12-16
3882 (let ((value-type (lvar-type value))
3883 (type-type (lvar-type type)))
3885 ((good-cons-type-p (cons-type)
3886 ;; Make sure the cons-type we're looking at is something
3887 ;; we're prepared to handle which is basically something
3888 ;; that array-element-type can return.
3889 (or (and (member-type-p cons-type)
3890 (null (rest (member-type-members cons-type)))
3891 (null (first (member-type-members cons-type))))
3892 (let ((car-type (cons-type-car-type cons-type)))
3893 (and (member-type-p car-type)
3894 (null (rest (member-type-members car-type)))
3895 (or (symbolp (first (member-type-members car-type)))
3896 (numberp (first (member-type-members car-type)))
3897 (and (listp (first (member-type-members
3899 (numberp (first (first (member-type-members
3901 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3902 (unconsify-type (good-cons-type)
3903 ;; Convert the "printed" respresentation of a cons
3904 ;; specifier into a type specifier. That is, the
3905 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3906 ;; NULL)) is converted to (SIGNED-BYTE 16).
3907 (cond ((or (null good-cons-type)
3908 (eq good-cons-type 'null))
3910 ((and (eq (first good-cons-type) 'cons)
3911 (eq (first (second good-cons-type)) 'member))
3912 `(,(second (second good-cons-type))
3913 ,@(unconsify-type (caddr good-cons-type))))))
3914 (coerceable-p (c-type)
3915 ;; Can the value be coerced to the given type? Coerce is
3916 ;; complicated, so we don't handle every possible case
3917 ;; here---just the most common and easiest cases:
3919 ;; * Any REAL can be coerced to a FLOAT type.
3920 ;; * Any NUMBER can be coerced to a (COMPLEX
3921 ;; SINGLE/DOUBLE-FLOAT).
3923 ;; FIXME I: we should also be able to deal with characters
3926 ;; FIXME II: I'm not sure that anything is necessary
3927 ;; here, at least while COMPLEX is not a specialized
3928 ;; array element type in the system. Reasoning: if
3929 ;; something cannot be coerced to the requested type, an
3930 ;; error will be raised (and so any downstream compiled
3931 ;; code on the assumption of the returned type is
3932 ;; unreachable). If something can, then it will be of
3933 ;; the requested type, because (by assumption) COMPLEX
3934 ;; (and other difficult types like (COMPLEX INTEGER)
3935 ;; aren't specialized types.
3936 (let ((coerced-type c-type))
3937 (or (and (subtypep coerced-type 'float)
3938 (csubtypep value-type (specifier-type 'real)))
3939 (and (subtypep coerced-type
3940 '(or (complex single-float)
3941 (complex double-float)))
3942 (csubtypep value-type (specifier-type 'number))))))
3943 (process-types (type)
3944 ;; FIXME: This needs some work because we should be able
3945 ;; to derive the resulting type better than just the
3946 ;; type arg of coerce. That is, if X is (INTEGER 10
3947 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3948 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3950 (cond ((member-type-p type)
3951 (let ((members (member-type-members type)))
3952 (if (every #'coerceable-p members)
3953 (specifier-type `(or ,@members))
3955 ((and (cons-type-p type)
3956 (good-cons-type-p type))
3957 (let ((c-type (unconsify-type (type-specifier type))))
3958 (if (coerceable-p c-type)
3959 (specifier-type c-type)
3962 *universal-type*))))
3963 (cond ((union-type-p type-type)
3964 (apply #'type-union (mapcar #'process-types
3965 (union-type-types type-type))))
3966 ((or (member-type-p type-type)
3967 (cons-type-p type-type))
3968 (process-types type-type))
3970 *universal-type*)))))))
3972 (defoptimizer (compile derive-type) ((nameoid function))
3973 (when (csubtypep (lvar-type nameoid)
3974 (specifier-type 'null))
3975 (values-specifier-type '(values function boolean boolean))))
3977 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3978 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3979 ;;; optimizer, above).
3980 (defoptimizer (array-element-type derive-type) ((array))
3981 (let ((array-type (lvar-type array)))
3982 (labels ((consify (list)
3985 `(cons (eql ,(car list)) ,(consify (rest list)))))
3986 (get-element-type (a)
3988 (type-specifier (array-type-specialized-element-type a))))
3989 (cond ((eq element-type '*)
3990 (specifier-type 'type-specifier))
3991 ((symbolp element-type)
3992 (make-member-type :members (list element-type)))
3993 ((consp element-type)
3994 (specifier-type (consify element-type)))
3996 (error "can't understand type ~S~%" element-type))))))
3997 (cond ((array-type-p array-type)
3998 (get-element-type array-type))
3999 ((union-type-p array-type)
4001 (mapcar #'get-element-type (union-type-types array-type))))
4003 *universal-type*)))))
4005 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4006 ;;; isn't really related to the CMU CL code, since instead of trying
4007 ;;; to generalize the CMU CL code to allow START and END values, this
4008 ;;; code has been written from scratch following Chapter 7 of
4009 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4010 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4011 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4012 ;; isn't really related to the CMU CL code, since instead of trying
4013 ;; to generalize the CMU CL code to allow START and END values, this
4014 ;; code has been written from scratch following Chapter 7 of
4015 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4016 `(macrolet ((%index (x) `(truly-the index ,x))
4017 (%parent (i) `(ash ,i -1))
4018 (%left (i) `(%index (ash ,i 1)))
4019 (%right (i) `(%index (1+ (ash ,i 1))))
4022 (left (%left i) (%left i)))
4023 ((> left current-heap-size))
4024 (declare (type index i left))
4025 (let* ((i-elt (%elt i))
4026 (i-key (funcall keyfun i-elt))
4027 (left-elt (%elt left))
4028 (left-key (funcall keyfun left-elt)))
4029 (multiple-value-bind (large large-elt large-key)
4030 (if (funcall ,',predicate i-key left-key)
4031 (values left left-elt left-key)
4032 (values i i-elt i-key))
4033 (let ((right (%right i)))
4034 (multiple-value-bind (largest largest-elt)
4035 (if (> right current-heap-size)
4036 (values large large-elt)
4037 (let* ((right-elt (%elt right))
4038 (right-key (funcall keyfun right-elt)))
4039 (if (funcall ,',predicate large-key right-key)
4040 (values right right-elt)
4041 (values large large-elt))))
4042 (cond ((= largest i)
4045 (setf (%elt i) largest-elt
4046 (%elt largest) i-elt
4048 (%sort-vector (keyfun &optional (vtype 'vector))
4049 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4050 ;; trouble getting type inference to
4051 ;; propagate all the way through this
4052 ;; tangled mess of inlining. The TRULY-THE
4053 ;; here works around that. -- WHN
4055 `(aref (truly-the ,',vtype ,',',vector)
4056 (%index (+ (%index ,i) start-1)))))
4057 (let (;; Heaps prefer 1-based addressing.
4058 (start-1 (1- ,',start))
4059 (current-heap-size (- ,',end ,',start))
4061 (declare (type (integer -1 #.(1- most-positive-fixnum))
4063 (declare (type index current-heap-size))
4064 (declare (type function keyfun))
4065 (loop for i of-type index
4066 from (ash current-heap-size -1) downto 1 do
4069 (when (< current-heap-size 2)
4071 (rotatef (%elt 1) (%elt current-heap-size))
4072 (decf current-heap-size)
4074 (if (typep ,vector 'simple-vector)
4075 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4076 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4078 ;; Special-casing the KEY=NIL case lets us avoid some
4080 (%sort-vector #'identity simple-vector)
4081 (%sort-vector ,key simple-vector))
4082 ;; It's hard to anticipate many speed-critical applications for
4083 ;; sorting vector types other than (VECTOR T), so we just lump
4084 ;; them all together in one slow dynamically typed mess.
4086 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4087 (%sort-vector (or ,key #'identity))))))
4089 ;;;; debuggers' little helpers
4091 ;;; for debugging when transforms are behaving mysteriously,
4092 ;;; e.g. when debugging a problem with an ASH transform
4093 ;;; (defun foo (&optional s)
4094 ;;; (sb-c::/report-lvar s "S outside WHEN")
4095 ;;; (when (and (integerp s) (> s 3))
4096 ;;; (sb-c::/report-lvar s "S inside WHEN")
4097 ;;; (let ((bound (ash 1 (1- s))))
4098 ;;; (sb-c::/report-lvar bound "BOUND")
4099 ;;; (let ((x (- bound))
4101 ;;; (sb-c::/report-lvar x "X")
4102 ;;; (sb-c::/report-lvar x "Y"))
4103 ;;; `(integer ,(- bound) ,(1- bound)))))
4104 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4105 ;;; and the function doesn't do anything at all.)
4108 (defknown /report-lvar (t t) null)
4109 (deftransform /report-lvar ((x message) (t t))
4110 (format t "~%/in /REPORT-LVAR~%")
4111 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4112 (when (constant-lvar-p x)
4113 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4114 (format t "/MESSAGE=~S~%" (lvar-value message))
4115 (give-up-ir1-transform "not a real transform"))
4116 (defun /report-lvar (x message)
4117 (declare (ignore x message))))
4120 ;;;; Transforms for internal compiler utilities
4122 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4123 ;;; checking that it's still valid at run-time.
4124 (deftransform policy-quality ((policy quality-name)
4126 (unless (and (constant-lvar-p quality-name)
4127 (policy-quality-name-p (lvar-value quality-name)))
4128 (give-up-ir1-transform))
4129 `(let* ((acons (assoc quality-name policy))
4130 (result (or (cdr acons) 1)))