1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; Convert into an IF so that IF optimizations will eliminate redundant
18 (define-source-transform not (x) `(if ,x nil t))
19 (define-source-transform null (x) `(if ,x nil t))
21 ;;; ENDP is just NULL with a LIST assertion. The assertion will be
22 ;;; optimized away when SAFETY optimization is low; hopefully that
23 ;;; is consistent with ANSI's "should return an error".
24 (define-source-transform endp (x) `(null (the list ,x)))
26 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
27 ;;; returns the first value of its argument. Ditto for VALUES with one
29 (define-source-transform identity (x) `(prog1 ,x))
30 (define-source-transform values (x) `(prog1 ,x))
32 ;;; Bind the value and make a closure that returns it.
33 (define-source-transform constantly (value)
34 (with-unique-names (rest n-value)
35 `(let ((,n-value ,value))
37 (declare (ignore ,rest))
40 ;;; If the function has a known number of arguments, then return a
41 ;;; lambda with the appropriate fixed number of args. If the
42 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
43 ;;; MV optimization figure things out.
44 (deftransform complement ((fun) * * :node node)
46 (multiple-value-bind (min max)
47 (fun-type-nargs (lvar-type fun))
49 ((and min (eql min max))
50 (let ((dums (make-gensym-list min)))
51 `#'(lambda ,dums (not (funcall fun ,@dums)))))
52 ((awhen (node-lvar node)
53 (let ((dest (lvar-dest it)))
54 (and (combination-p dest)
55 (eq (combination-fun dest) it))))
56 '#'(lambda (&rest args)
57 (not (apply fun args))))
59 (give-up-ir1-transform
60 "The function doesn't have a fixed argument count.")))))
64 ;;; Translate CxR into CAR/CDR combos.
65 (defun source-transform-cxr (form)
66 (if (/= (length form) 2)
68 (let* ((name (car form))
72 (leaf (leaf-source-name name))))))
73 (do ((i (- (length string) 2) (1- i))
75 `(,(ecase (char string i)
81 ;;; Make source transforms to turn CxR forms into combinations of CAR
82 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
84 (/show0 "about to set CxR source transforms")
85 (loop for i of-type index from 2 upto 4 do
86 ;; Iterate over BUF = all names CxR where x = an I-element
87 ;; string of #\A or #\D characters.
88 (let ((buf (make-string (+ 2 i))))
89 (setf (aref buf 0) #\C
90 (aref buf (1+ i)) #\R)
91 (dotimes (j (ash 2 i))
92 (declare (type index j))
94 (declare (type index k))
95 (setf (aref buf (1+ k))
96 (if (logbitp k j) #\A #\D)))
97 (setf (info :function :source-transform (intern buf))
98 #'source-transform-cxr))))
99 (/show0 "done setting CxR source transforms")
101 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
102 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
103 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
105 (define-source-transform first (x) `(car ,x))
106 (define-source-transform rest (x) `(cdr ,x))
107 (define-source-transform second (x) `(cadr ,x))
108 (define-source-transform third (x) `(caddr ,x))
109 (define-source-transform fourth (x) `(cadddr ,x))
110 (define-source-transform fifth (x) `(nth 4 ,x))
111 (define-source-transform sixth (x) `(nth 5 ,x))
112 (define-source-transform seventh (x) `(nth 6 ,x))
113 (define-source-transform eighth (x) `(nth 7 ,x))
114 (define-source-transform ninth (x) `(nth 8 ,x))
115 (define-source-transform tenth (x) `(nth 9 ,x))
117 ;;; Translate RPLACx to LET and SETF.
118 (define-source-transform rplaca (x y)
123 (define-source-transform rplacd (x y)
129 (define-source-transform nth (n l) `(car (nthcdr ,n ,l)))
131 (define-source-transform last (x) `(sb!impl::last1 ,x))
132 (define-source-transform gethash (&rest args)
134 (2 `(sb!impl::gethash2 ,@args))
135 (3 `(sb!impl::gethash3 ,@args))
137 (define-source-transform get (&rest args)
139 (2 `(sb!impl::get2 ,@args))
140 (3 `(sb!impl::get3 ,@args))
143 (defvar *default-nthcdr-open-code-limit* 6)
144 (defvar *extreme-nthcdr-open-code-limit* 20)
146 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
147 "convert NTHCDR to CAxxR"
148 (unless (constant-lvar-p n)
149 (give-up-ir1-transform))
150 (let ((n (lvar-value n)))
152 (if (policy node (and (= speed 3) (= space 0)))
153 *extreme-nthcdr-open-code-limit*
154 *default-nthcdr-open-code-limit*))
155 (give-up-ir1-transform))
160 `(cdr ,(frob (1- n))))))
163 ;;;; arithmetic and numerology
165 (define-source-transform plusp (x) `(> ,x 0))
166 (define-source-transform minusp (x) `(< ,x 0))
167 (define-source-transform zerop (x) `(= ,x 0))
169 (define-source-transform 1+ (x) `(+ ,x 1))
170 (define-source-transform 1- (x) `(- ,x 1))
172 (define-source-transform oddp (x) `(not (zerop (logand ,x 1))))
173 (define-source-transform evenp (x) `(zerop (logand ,x 1)))
175 ;;; Note that all the integer division functions are available for
176 ;;; inline expansion.
178 (macrolet ((deffrob (fun)
179 `(define-source-transform ,fun (x &optional (y nil y-p))
186 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
188 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
191 ;;; This used to be a source transform (hence the lack of restrictions
192 ;;; on the argument types), but we make it a regular transform so that
193 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
194 ;;; to implement it differently. --njf, 06-02-2006
195 (deftransform logtest ((x y) * *)
196 `(not (zerop (logand x y))))
198 (deftransform logbitp
199 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
200 (unsigned-byte #.sb!vm:n-word-bits))))
201 `(if (>= index #.sb!vm:n-word-bits)
203 (not (zerop (logand integer (ash 1 index))))))
205 (define-source-transform byte (size position)
206 `(cons ,size ,position))
207 (define-source-transform byte-size (spec) `(car ,spec))
208 (define-source-transform byte-position (spec) `(cdr ,spec))
209 (define-source-transform ldb-test (bytespec integer)
210 `(not (zerop (mask-field ,bytespec ,integer))))
212 ;;; With the ratio and complex accessors, we pick off the "identity"
213 ;;; case, and use a primitive to handle the cell access case.
214 (define-source-transform numerator (num)
215 (once-only ((n-num `(the rational ,num)))
219 (define-source-transform denominator (num)
220 (once-only ((n-num `(the rational ,num)))
222 (%denominator ,n-num)
225 ;;;; interval arithmetic for computing bounds
227 ;;;; This is a set of routines for operating on intervals. It
228 ;;;; implements a simple interval arithmetic package. Although SBCL
229 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
230 ;;;; for two reasons:
232 ;;;; 1. This package is simpler than NUMERIC-TYPE.
234 ;;;; 2. It makes debugging much easier because you can just strip
235 ;;;; out these routines and test them independently of SBCL. (This is a
238 ;;;; One disadvantage is a probable increase in consing because we
239 ;;;; have to create these new interval structures even though
240 ;;;; numeric-type has everything we want to know. Reason 2 wins for
243 ;;; Support operations that mimic real arithmetic comparison
244 ;;; operators, but imposing a total order on the floating points such
245 ;;; that negative zeros are strictly less than positive zeros.
246 (macrolet ((def (name op)
249 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
250 (,op (float-sign x) (float-sign y))
252 (def signed-zero->= >=)
253 (def signed-zero-> >)
254 (def signed-zero-= =)
255 (def signed-zero-< <)
256 (def signed-zero-<= <=))
258 ;;; The basic interval type. It can handle open and closed intervals.
259 ;;; A bound is open if it is a list containing a number, just like
260 ;;; Lisp says. NIL means unbounded.
261 (defstruct (interval (:constructor %make-interval)
265 (defun make-interval (&key low high)
266 (labels ((normalize-bound (val)
269 (float-infinity-p val))
270 ;; Handle infinities.
274 ;; Handle any closed bounds.
277 ;; We have an open bound. Normalize the numeric
278 ;; bound. If the normalized bound is still a number
279 ;; (not nil), keep the bound open. Otherwise, the
280 ;; bound is really unbounded, so drop the openness.
281 (let ((new-val (normalize-bound (first val))))
283 ;; The bound exists, so keep it open still.
286 (error "unknown bound type in MAKE-INTERVAL")))))
287 (%make-interval :low (normalize-bound low)
288 :high (normalize-bound high))))
290 ;;; Given a number X, create a form suitable as a bound for an
291 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
292 #!-sb-fluid (declaim (inline set-bound))
293 (defun set-bound (x open-p)
294 (if (and x open-p) (list x) x))
296 ;;; Apply the function F to a bound X. If X is an open bound, then
297 ;;; the result will be open. IF X is NIL, the result is NIL.
298 (defun bound-func (f x)
299 (declare (type function f))
301 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
302 ;; With these traps masked, we might get things like infinity
303 ;; or negative infinity returned. Check for this and return
304 ;; NIL to indicate unbounded.
305 (let ((y (funcall f (type-bound-number x))))
307 (float-infinity-p y))
309 (set-bound y (consp x)))))))
311 ;;; Apply a binary operator OP to two bounds X and Y. The result is
312 ;;; NIL if either is NIL. Otherwise bound is computed and the result
313 ;;; is open if either X or Y is open.
315 ;;; FIXME: only used in this file, not needed in target runtime
317 ;;; ANSI contaigon specifies coercion to floating point if one of the
318 ;;; arguments is floating point. Here we should check to be sure that
319 ;;; the other argument is within the bounds of that floating point
322 (defmacro safely-binop (op x y)
324 ((typep ,x 'single-float)
325 (if (or (typep ,y 'single-float)
326 (<= most-negative-single-float ,y most-positive-single-float))
328 ((typep ,x 'double-float)
329 (if (or (typep ,y 'double-float)
330 (<= most-negative-double-float ,y most-positive-double-float))
332 ((typep ,y 'single-float)
333 (if (<= most-negative-single-float ,x most-positive-single-float)
335 ((typep ,y 'double-float)
336 (if (<= most-negative-double-float ,x most-positive-double-float)
340 (defmacro bound-binop (op x y)
342 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
343 (set-bound (safely-binop ,op (type-bound-number ,x)
344 (type-bound-number ,y))
345 (or (consp ,x) (consp ,y))))))
347 (defun coerce-for-bound (val type)
349 (list (coerce-for-bound (car val) type))
351 ((subtypep type 'double-float)
352 (if (<= most-negative-double-float val most-positive-double-float)
354 ((or (subtypep type 'single-float) (subtypep type 'float))
355 ;; coerce to float returns a single-float
356 (if (<= most-negative-single-float val most-positive-single-float)
358 (t (coerce val type)))))
360 (defun coerce-and-truncate-floats (val type)
363 (list (coerce-and-truncate-floats (car val) type))
365 ((subtypep type 'double-float)
366 (if (<= most-negative-double-float val most-positive-double-float)
368 (if (< val most-negative-double-float)
369 most-negative-double-float most-positive-double-float)))
370 ((or (subtypep type 'single-float) (subtypep type 'float))
371 ;; coerce to float returns a single-float
372 (if (<= most-negative-single-float val most-positive-single-float)
374 (if (< val most-negative-single-float)
375 most-negative-single-float most-positive-single-float)))
376 (t (coerce val type))))))
378 ;;; Convert a numeric-type object to an interval object.
379 (defun numeric-type->interval (x)
380 (declare (type numeric-type x))
381 (make-interval :low (numeric-type-low x)
382 :high (numeric-type-high x)))
384 (defun type-approximate-interval (type)
385 (declare (type ctype type))
386 (let ((types (prepare-arg-for-derive-type type))
389 (let ((type (if (member-type-p type)
390 (convert-member-type type)
392 (unless (numeric-type-p type)
393 (return-from type-approximate-interval nil))
394 (let ((interval (numeric-type->interval type)))
397 (interval-approximate-union result interval)
401 (defun copy-interval-limit (limit)
406 (defun copy-interval (x)
407 (declare (type interval x))
408 (make-interval :low (copy-interval-limit (interval-low x))
409 :high (copy-interval-limit (interval-high x))))
411 ;;; Given a point P contained in the interval X, split X into two
412 ;;; interval at the point P. If CLOSE-LOWER is T, then the left
413 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
414 ;;; contains P. You can specify both to be T or NIL.
415 (defun interval-split (p x &optional close-lower close-upper)
416 (declare (type number p)
418 (list (make-interval :low (copy-interval-limit (interval-low x))
419 :high (if close-lower p (list p)))
420 (make-interval :low (if close-upper (list p) p)
421 :high (copy-interval-limit (interval-high x)))))
423 ;;; Return the closure of the interval. That is, convert open bounds
424 ;;; to closed bounds.
425 (defun interval-closure (x)
426 (declare (type interval x))
427 (make-interval :low (type-bound-number (interval-low x))
428 :high (type-bound-number (interval-high x))))
430 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
431 ;;; '-. Otherwise return NIL.
432 (defun interval-range-info (x &optional (point 0))
433 (declare (type interval x))
434 (let ((lo (interval-low x))
435 (hi (interval-high x)))
436 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
438 ((and hi (signed-zero->= point (type-bound-number hi)))
443 ;;; Test to see whether the interval X is bounded. HOW determines the
444 ;;; test, and should be either ABOVE, BELOW, or BOTH.
445 (defun interval-bounded-p (x how)
446 (declare (type interval x))
453 (and (interval-low x) (interval-high x)))))
455 ;;; See whether the interval X contains the number P, taking into
456 ;;; account that the interval might not be closed.
457 (defun interval-contains-p (p x)
458 (declare (type number p)
460 ;; Does the interval X contain the number P? This would be a lot
461 ;; easier if all intervals were closed!
462 (let ((lo (interval-low x))
463 (hi (interval-high x)))
465 ;; The interval is bounded
466 (if (and (signed-zero-<= (type-bound-number lo) p)
467 (signed-zero-<= p (type-bound-number hi)))
468 ;; P is definitely in the closure of the interval.
469 ;; We just need to check the end points now.
470 (cond ((signed-zero-= p (type-bound-number lo))
472 ((signed-zero-= p (type-bound-number hi))
477 ;; Interval with upper bound
478 (if (signed-zero-< p (type-bound-number hi))
480 (and (numberp hi) (signed-zero-= p hi))))
482 ;; Interval with lower bound
483 (if (signed-zero-> p (type-bound-number lo))
485 (and (numberp lo) (signed-zero-= p lo))))
487 ;; Interval with no bounds
490 ;;; Determine whether two intervals X and Y intersect. Return T if so.
491 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
492 ;;; were closed. Otherwise the intervals are treated as they are.
494 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
495 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
496 ;;; is T, then they do intersect because we use the closure of X = [0,
497 ;;; 1] and Y = [1, 2] to determine intersection.
498 (defun interval-intersect-p (x y &optional closed-intervals-p)
499 (declare (type interval x y))
500 (multiple-value-bind (intersect diff)
501 (interval-intersection/difference (if closed-intervals-p
504 (if closed-intervals-p
507 (declare (ignore diff))
510 ;;; Are the two intervals adjacent? That is, is there a number
511 ;;; between the two intervals that is not an element of either
512 ;;; interval? If so, they are not adjacent. For example [0, 1) and
513 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
514 ;;; between both intervals.
515 (defun interval-adjacent-p (x y)
516 (declare (type interval x y))
517 (flet ((adjacent (lo hi)
518 ;; Check to see whether lo and hi are adjacent. If either is
519 ;; nil, they can't be adjacent.
520 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
521 ;; The bounds are equal. They are adjacent if one of
522 ;; them is closed (a number). If both are open (consp),
523 ;; then there is a number that lies between them.
524 (or (numberp lo) (numberp hi)))))
525 (or (adjacent (interval-low y) (interval-high x))
526 (adjacent (interval-low x) (interval-high y)))))
528 ;;; Compute the intersection and difference between two intervals.
529 ;;; Two values are returned: the intersection and the difference.
531 ;;; Let the two intervals be X and Y, and let I and D be the two
532 ;;; values returned by this function. Then I = X intersect Y. If I
533 ;;; is NIL (the empty set), then D is X union Y, represented as the
534 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
535 ;;; - I, which is a list of two intervals.
537 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
538 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
539 (defun interval-intersection/difference (x y)
540 (declare (type interval x y))
541 (let ((x-lo (interval-low x))
542 (x-hi (interval-high x))
543 (y-lo (interval-low y))
544 (y-hi (interval-high y)))
547 ;; If p is an open bound, make it closed. If p is a closed
548 ;; bound, make it open.
553 ;; Test whether P is in the interval.
554 (when (interval-contains-p (type-bound-number p)
555 (interval-closure int))
556 (let ((lo (interval-low int))
557 (hi (interval-high int)))
558 ;; Check for endpoints.
559 (cond ((and lo (= (type-bound-number p) (type-bound-number lo)))
560 (not (and (consp p) (numberp lo))))
561 ((and hi (= (type-bound-number p) (type-bound-number hi)))
562 (not (and (numberp p) (consp hi))))
564 (test-lower-bound (p int)
565 ;; P is a lower bound of an interval.
568 (not (interval-bounded-p int 'below))))
569 (test-upper-bound (p int)
570 ;; P is an upper bound of an interval.
573 (not (interval-bounded-p int 'above)))))
574 (let ((x-lo-in-y (test-lower-bound x-lo y))
575 (x-hi-in-y (test-upper-bound x-hi y))
576 (y-lo-in-x (test-lower-bound y-lo x))
577 (y-hi-in-x (test-upper-bound y-hi x)))
578 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
579 ;; Intervals intersect. Let's compute the intersection
580 ;; and the difference.
581 (multiple-value-bind (lo left-lo left-hi)
582 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
583 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
584 (multiple-value-bind (hi right-lo right-hi)
586 (values x-hi (opposite-bound x-hi) y-hi))
588 (values y-hi (opposite-bound y-hi) x-hi)))
589 (values (make-interval :low lo :high hi)
590 (list (make-interval :low left-lo
592 (make-interval :low right-lo
595 (values nil (list x y))))))))
597 ;;; If intervals X and Y intersect, return a new interval that is the
598 ;;; union of the two. If they do not intersect, return NIL.
599 (defun interval-merge-pair (x y)
600 (declare (type interval x y))
601 ;; If x and y intersect or are adjacent, create the union.
602 ;; Otherwise return nil
603 (when (or (interval-intersect-p x y)
604 (interval-adjacent-p x y))
605 (flet ((select-bound (x1 x2 min-op max-op)
606 (let ((x1-val (type-bound-number x1))
607 (x2-val (type-bound-number x2)))
609 ;; Both bounds are finite. Select the right one.
610 (cond ((funcall min-op x1-val x2-val)
611 ;; x1 is definitely better.
613 ((funcall max-op x1-val x2-val)
614 ;; x2 is definitely better.
617 ;; Bounds are equal. Select either
618 ;; value and make it open only if
620 (set-bound x1-val (and (consp x1) (consp x2))))))
622 ;; At least one bound is not finite. The
623 ;; non-finite bound always wins.
625 (let* ((x-lo (copy-interval-limit (interval-low x)))
626 (x-hi (copy-interval-limit (interval-high x)))
627 (y-lo (copy-interval-limit (interval-low y)))
628 (y-hi (copy-interval-limit (interval-high y))))
629 (make-interval :low (select-bound x-lo y-lo #'< #'>)
630 :high (select-bound x-hi y-hi #'> #'<))))))
632 ;;; return the minimal interval, containing X and Y
633 (defun interval-approximate-union (x y)
634 (cond ((interval-merge-pair x y))
636 (make-interval :low (copy-interval-limit (interval-low x))
637 :high (copy-interval-limit (interval-high y))))
639 (make-interval :low (copy-interval-limit (interval-low y))
640 :high (copy-interval-limit (interval-high x))))))
642 ;;; basic arithmetic operations on intervals. We probably should do
643 ;;; true interval arithmetic here, but it's complicated because we
644 ;;; have float and integer types and bounds can be open or closed.
646 ;;; the negative of an interval
647 (defun interval-neg (x)
648 (declare (type interval x))
649 (make-interval :low (bound-func #'- (interval-high x))
650 :high (bound-func #'- (interval-low x))))
652 ;;; Add two intervals.
653 (defun interval-add (x y)
654 (declare (type interval x y))
655 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
656 :high (bound-binop + (interval-high x) (interval-high y))))
658 ;;; Subtract two intervals.
659 (defun interval-sub (x y)
660 (declare (type interval x y))
661 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
662 :high (bound-binop - (interval-high x) (interval-low y))))
664 ;;; Multiply two intervals.
665 (defun interval-mul (x y)
666 (declare (type interval x y))
667 (flet ((bound-mul (x y)
668 (cond ((or (null x) (null y))
669 ;; Multiply by infinity is infinity
671 ((or (and (numberp x) (zerop x))
672 (and (numberp y) (zerop y)))
673 ;; Multiply by closed zero is special. The result
674 ;; is always a closed bound. But don't replace this
675 ;; with zero; we want the multiplication to produce
676 ;; the correct signed zero, if needed.
677 (* (type-bound-number x) (type-bound-number y)))
678 ((or (and (floatp x) (float-infinity-p x))
679 (and (floatp y) (float-infinity-p y)))
680 ;; Infinity times anything is infinity
683 ;; General multiply. The result is open if either is open.
684 (bound-binop * x y)))))
685 (let ((x-range (interval-range-info x))
686 (y-range (interval-range-info y)))
687 (cond ((null x-range)
688 ;; Split x into two and multiply each separately
689 (destructuring-bind (x- x+) (interval-split 0 x t t)
690 (interval-merge-pair (interval-mul x- y)
691 (interval-mul x+ y))))
693 ;; Split y into two and multiply each separately
694 (destructuring-bind (y- y+) (interval-split 0 y t t)
695 (interval-merge-pair (interval-mul x y-)
696 (interval-mul x y+))))
698 (interval-neg (interval-mul (interval-neg x) y)))
700 (interval-neg (interval-mul x (interval-neg y))))
701 ((and (eq x-range '+) (eq y-range '+))
702 ;; If we are here, X and Y are both positive.
704 :low (bound-mul (interval-low x) (interval-low y))
705 :high (bound-mul (interval-high x) (interval-high y))))
707 (bug "excluded case in INTERVAL-MUL"))))))
709 ;;; Divide two intervals.
710 (defun interval-div (top bot)
711 (declare (type interval top bot))
712 (flet ((bound-div (x y y-low-p)
715 ;; Divide by infinity means result is 0. However,
716 ;; we need to watch out for the sign of the result,
717 ;; to correctly handle signed zeros. We also need
718 ;; to watch out for positive or negative infinity.
719 (if (floatp (type-bound-number x))
721 (- (float-sign (type-bound-number x) 0.0))
722 (float-sign (type-bound-number x) 0.0))
724 ((zerop (type-bound-number y))
725 ;; Divide by zero means result is infinity
727 ((and (numberp x) (zerop x))
728 ;; Zero divided by anything is zero.
731 (bound-binop / x y)))))
732 (let ((top-range (interval-range-info top))
733 (bot-range (interval-range-info bot)))
734 (cond ((null bot-range)
735 ;; The denominator contains zero, so anything goes!
736 (make-interval :low nil :high nil))
738 ;; Denominator is negative so flip the sign, compute the
739 ;; result, and flip it back.
740 (interval-neg (interval-div top (interval-neg bot))))
742 ;; Split top into two positive and negative parts, and
743 ;; divide each separately
744 (destructuring-bind (top- top+) (interval-split 0 top t t)
745 (interval-merge-pair (interval-div top- bot)
746 (interval-div top+ bot))))
748 ;; Top is negative so flip the sign, divide, and flip the
749 ;; sign of the result.
750 (interval-neg (interval-div (interval-neg top) bot)))
751 ((and (eq top-range '+) (eq bot-range '+))
754 :low (bound-div (interval-low top) (interval-high bot) t)
755 :high (bound-div (interval-high top) (interval-low bot) nil)))
757 (bug "excluded case in INTERVAL-DIV"))))))
759 ;;; Apply the function F to the interval X. If X = [a, b], then the
760 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
761 ;;; result makes sense. It will if F is monotonic increasing (or
763 (defun interval-func (f x)
764 (declare (type function f)
766 (let ((lo (bound-func f (interval-low x)))
767 (hi (bound-func f (interval-high x))))
768 (make-interval :low lo :high hi)))
770 ;;; Return T if X < Y. That is every number in the interval X is
771 ;;; always less than any number in the interval Y.
772 (defun interval-< (x y)
773 (declare (type interval x y))
774 ;; X < Y only if X is bounded above, Y is bounded below, and they
776 (when (and (interval-bounded-p x 'above)
777 (interval-bounded-p y 'below))
778 ;; Intervals are bounded in the appropriate way. Make sure they
780 (let ((left (interval-high x))
781 (right (interval-low y)))
782 (cond ((> (type-bound-number left)
783 (type-bound-number right))
784 ;; The intervals definitely overlap, so result is NIL.
786 ((< (type-bound-number left)
787 (type-bound-number right))
788 ;; The intervals definitely don't touch, so result is T.
791 ;; Limits are equal. Check for open or closed bounds.
792 ;; Don't overlap if one or the other are open.
793 (or (consp left) (consp right)))))))
795 ;;; Return T if X >= Y. That is, every number in the interval X is
796 ;;; always greater than any number in the interval Y.
797 (defun interval->= (x y)
798 (declare (type interval x y))
799 ;; X >= Y if lower bound of X >= upper bound of Y
800 (when (and (interval-bounded-p x 'below)
801 (interval-bounded-p y 'above))
802 (>= (type-bound-number (interval-low x))
803 (type-bound-number (interval-high y)))))
805 ;;; Return an interval that is the absolute value of X. Thus, if
806 ;;; X = [-1 10], the result is [0, 10].
807 (defun interval-abs (x)
808 (declare (type interval x))
809 (case (interval-range-info x)
815 (destructuring-bind (x- x+) (interval-split 0 x t t)
816 (interval-merge-pair (interval-neg x-) x+)))))
818 ;;; Compute the square of an interval.
819 (defun interval-sqr (x)
820 (declare (type interval x))
821 (interval-func (lambda (x) (* x x))
824 ;;;; numeric DERIVE-TYPE methods
826 ;;; a utility for defining derive-type methods of integer operations. If
827 ;;; the types of both X and Y are integer types, then we compute a new
828 ;;; integer type with bounds determined Fun when applied to X and Y.
829 ;;; Otherwise, we use NUMERIC-CONTAGION.
830 (defun derive-integer-type-aux (x y fun)
831 (declare (type function fun))
832 (if (and (numeric-type-p x) (numeric-type-p y)
833 (eq (numeric-type-class x) 'integer)
834 (eq (numeric-type-class y) 'integer)
835 (eq (numeric-type-complexp x) :real)
836 (eq (numeric-type-complexp y) :real))
837 (multiple-value-bind (low high) (funcall fun x y)
838 (make-numeric-type :class 'integer
842 (numeric-contagion x y)))
844 (defun derive-integer-type (x y fun)
845 (declare (type lvar x y) (type function fun))
846 (let ((x (lvar-type x))
848 (derive-integer-type-aux x y fun)))
850 ;;; simple utility to flatten a list
851 (defun flatten-list (x)
852 (labels ((flatten-and-append (tree list)
853 (cond ((null tree) list)
854 ((atom tree) (cons tree list))
855 (t (flatten-and-append
856 (car tree) (flatten-and-append (cdr tree) list))))))
857 (flatten-and-append x nil)))
859 ;;; Take some type of lvar and massage it so that we get a list of the
860 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
862 (defun prepare-arg-for-derive-type (arg)
863 (flet ((listify (arg)
868 (union-type-types arg))
871 (unless (eq arg *empty-type*)
872 ;; Make sure all args are some type of numeric-type. For member
873 ;; types, convert the list of members into a union of equivalent
874 ;; single-element member-type's.
875 (let ((new-args nil))
876 (dolist (arg (listify arg))
877 (if (member-type-p arg)
878 ;; Run down the list of members and convert to a list of
880 (dolist (member (member-type-members arg))
881 (push (if (numberp member)
882 (make-member-type :members (list member))
885 (push arg new-args)))
886 (unless (member *empty-type* new-args)
889 ;;; Convert from the standard type convention for which -0.0 and 0.0
890 ;;; are equal to an intermediate convention for which they are
891 ;;; considered different which is more natural for some of the
893 (defun convert-numeric-type (type)
894 (declare (type numeric-type type))
895 ;;; Only convert real float interval delimiters types.
896 (if (eq (numeric-type-complexp type) :real)
897 (let* ((lo (numeric-type-low type))
898 (lo-val (type-bound-number lo))
899 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
900 (hi (numeric-type-high type))
901 (hi-val (type-bound-number hi))
902 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
903 (if (or lo-float-zero-p hi-float-zero-p)
905 :class (numeric-type-class type)
906 :format (numeric-type-format type)
908 :low (if lo-float-zero-p
910 (list (float 0.0 lo-val))
911 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
913 :high (if hi-float-zero-p
915 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
922 ;;; Convert back from the intermediate convention for which -0.0 and
923 ;;; 0.0 are considered different to the standard type convention for
925 (defun convert-back-numeric-type (type)
926 (declare (type numeric-type type))
927 ;;; Only convert real float interval delimiters types.
928 (if (eq (numeric-type-complexp type) :real)
929 (let* ((lo (numeric-type-low type))
930 (lo-val (type-bound-number lo))
932 (and lo (floatp lo-val) (= lo-val 0.0)
933 (float-sign lo-val)))
934 (hi (numeric-type-high type))
935 (hi-val (type-bound-number hi))
937 (and hi (floatp hi-val) (= hi-val 0.0)
938 (float-sign hi-val))))
940 ;; (float +0.0 +0.0) => (member 0.0)
941 ;; (float -0.0 -0.0) => (member -0.0)
942 ((and lo-float-zero-p hi-float-zero-p)
943 ;; shouldn't have exclusive bounds here..
944 (aver (and (not (consp lo)) (not (consp hi))))
945 (if (= lo-float-zero-p hi-float-zero-p)
946 ;; (float +0.0 +0.0) => (member 0.0)
947 ;; (float -0.0 -0.0) => (member -0.0)
948 (specifier-type `(member ,lo-val))
949 ;; (float -0.0 +0.0) => (float 0.0 0.0)
950 ;; (float +0.0 -0.0) => (float 0.0 0.0)
951 (make-numeric-type :class (numeric-type-class type)
952 :format (numeric-type-format type)
958 ;; (float -0.0 x) => (float 0.0 x)
959 ((and (not (consp lo)) (minusp lo-float-zero-p))
960 (make-numeric-type :class (numeric-type-class type)
961 :format (numeric-type-format type)
963 :low (float 0.0 lo-val)
965 ;; (float (+0.0) x) => (float (0.0) x)
966 ((and (consp lo) (plusp lo-float-zero-p))
967 (make-numeric-type :class (numeric-type-class type)
968 :format (numeric-type-format type)
970 :low (list (float 0.0 lo-val))
973 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
974 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
975 (list (make-member-type :members (list (float 0.0 lo-val)))
976 (make-numeric-type :class (numeric-type-class type)
977 :format (numeric-type-format type)
979 :low (list (float 0.0 lo-val))
983 ;; (float x +0.0) => (float x 0.0)
984 ((and (not (consp hi)) (plusp hi-float-zero-p))
985 (make-numeric-type :class (numeric-type-class type)
986 :format (numeric-type-format type)
989 :high (float 0.0 hi-val)))
990 ;; (float x (-0.0)) => (float x (0.0))
991 ((and (consp hi) (minusp hi-float-zero-p))
992 (make-numeric-type :class (numeric-type-class type)
993 :format (numeric-type-format type)
996 :high (list (float 0.0 hi-val))))
998 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
999 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1000 (list (make-member-type :members (list (float -0.0 hi-val)))
1001 (make-numeric-type :class (numeric-type-class type)
1002 :format (numeric-type-format type)
1005 :high (list (float 0.0 hi-val)))))))
1011 ;;; Convert back a possible list of numeric types.
1012 (defun convert-back-numeric-type-list (type-list)
1015 (let ((results '()))
1016 (dolist (type type-list)
1017 (if (numeric-type-p type)
1018 (let ((result (convert-back-numeric-type type)))
1020 (setf results (append results result))
1021 (push result results)))
1022 (push type results)))
1025 (convert-back-numeric-type type-list))
1027 (convert-back-numeric-type-list (union-type-types type-list)))
1031 ;;; FIXME: MAKE-CANONICAL-UNION-TYPE and CONVERT-MEMBER-TYPE probably
1032 ;;; belong in the kernel's type logic, invoked always, instead of in
1033 ;;; the compiler, invoked only during some type optimizations. (In
1034 ;;; fact, as of 0.pre8.100 or so they probably are, under
1035 ;;; MAKE-MEMBER-TYPE, so probably this code can be deleted)
1037 ;;; Take a list of types and return a canonical type specifier,
1038 ;;; combining any MEMBER types together. If both positive and negative
1039 ;;; MEMBER types are present they are converted to a float type.
1040 ;;; XXX This would be far simpler if the type-union methods could handle
1041 ;;; member/number unions.
1042 (defun make-canonical-union-type (type-list)
1045 (dolist (type type-list)
1046 (if (member-type-p type)
1047 (setf members (union members (member-type-members type)))
1048 (push type misc-types)))
1050 (when (null (set-difference `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0) members))
1051 (push (specifier-type '(long-float 0.0l0 0.0l0)) misc-types)
1052 (setf members (set-difference members `(,(load-time-value (make-unportable-float :long-float-negative-zero)) 0.0l0))))
1053 (when (null (set-difference `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0) members))
1054 (push (specifier-type '(double-float 0.0d0 0.0d0)) misc-types)
1055 (setf members (set-difference members `(,(load-time-value (make-unportable-float :double-float-negative-zero)) 0.0d0))))
1056 (when (null (set-difference `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0) members))
1057 (push (specifier-type '(single-float 0.0f0 0.0f0)) misc-types)
1058 (setf members (set-difference members `(,(load-time-value (make-unportable-float :single-float-negative-zero)) 0.0f0))))
1060 (apply #'type-union (make-member-type :members members) misc-types)
1061 (apply #'type-union misc-types))))
1063 ;;; Convert a member type with a single member to a numeric type.
1064 (defun convert-member-type (arg)
1065 (let* ((members (member-type-members arg))
1066 (member (first members))
1067 (member-type (type-of member)))
1068 (aver (not (rest members)))
1069 (specifier-type (cond ((typep member 'integer)
1070 `(integer ,member ,member))
1071 ((memq member-type '(short-float single-float
1072 double-float long-float))
1073 `(,member-type ,member ,member))
1077 ;;; This is used in defoptimizers for computing the resulting type of
1080 ;;; Given the lvar ARG, derive the resulting type using the
1081 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1082 ;;; "atomic" lvar type like numeric-type or member-type (containing
1083 ;;; just one element). It should return the resulting type, which can
1084 ;;; be a list of types.
1086 ;;; For the case of member types, if a MEMBER-FUN is given it is
1087 ;;; called to compute the result otherwise the member type is first
1088 ;;; converted to a numeric type and the DERIVE-FUN is called.
1089 (defun one-arg-derive-type (arg derive-fun member-fun
1090 &optional (convert-type t))
1091 (declare (type function derive-fun)
1092 (type (or null function) member-fun))
1093 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1099 (with-float-traps-masked
1100 (:underflow :overflow :divide-by-zero)
1102 `(eql ,(funcall member-fun
1103 (first (member-type-members x))))))
1104 ;; Otherwise convert to a numeric type.
1105 (let ((result-type-list
1106 (funcall derive-fun (convert-member-type x))))
1108 (convert-back-numeric-type-list result-type-list)
1109 result-type-list))))
1112 (convert-back-numeric-type-list
1113 (funcall derive-fun (convert-numeric-type x)))
1114 (funcall derive-fun x)))
1116 *universal-type*))))
1117 ;; Run down the list of args and derive the type of each one,
1118 ;; saving all of the results in a list.
1119 (let ((results nil))
1120 (dolist (arg arg-list)
1121 (let ((result (deriver arg)))
1123 (setf results (append results result))
1124 (push result results))))
1126 (make-canonical-union-type results)
1127 (first results)))))))
1129 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1130 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1131 ;;; original args and a third which is T to indicate if the two args
1132 ;;; really represent the same lvar. This is useful for deriving the
1133 ;;; type of things like (* x x), which should always be positive. If
1134 ;;; we didn't do this, we wouldn't be able to tell.
1135 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1136 &optional (convert-type t))
1137 (declare (type function derive-fun fun))
1138 (flet ((deriver (x y same-arg)
1139 (cond ((and (member-type-p x) (member-type-p y))
1140 (let* ((x (first (member-type-members x)))
1141 (y (first (member-type-members y)))
1142 (result (ignore-errors
1143 (with-float-traps-masked
1144 (:underflow :overflow :divide-by-zero
1146 (funcall fun x y)))))
1147 (cond ((null result) *empty-type*)
1148 ((and (floatp result) (float-nan-p result))
1149 (make-numeric-type :class 'float
1150 :format (type-of result)
1153 (specifier-type `(eql ,result))))))
1154 ((and (member-type-p x) (numeric-type-p y))
1155 (let* ((x (convert-member-type x))
1156 (y (if convert-type (convert-numeric-type y) y))
1157 (result (funcall derive-fun x y same-arg)))
1159 (convert-back-numeric-type-list result)
1161 ((and (numeric-type-p x) (member-type-p y))
1162 (let* ((x (if convert-type (convert-numeric-type x) x))
1163 (y (convert-member-type y))
1164 (result (funcall derive-fun x y same-arg)))
1166 (convert-back-numeric-type-list result)
1168 ((and (numeric-type-p x) (numeric-type-p y))
1169 (let* ((x (if convert-type (convert-numeric-type x) x))
1170 (y (if convert-type (convert-numeric-type y) y))
1171 (result (funcall derive-fun x y same-arg)))
1173 (convert-back-numeric-type-list result)
1176 *universal-type*))))
1177 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1178 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1179 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1181 (let ((results nil))
1183 ;; Since the args are the same LVARs, just run down the
1186 (let ((result (deriver x x same-arg)))
1188 (setf results (append results result))
1189 (push result results))))
1190 ;; Try all pairwise combinations.
1193 (let ((result (or (deriver x y same-arg)
1194 (numeric-contagion x y))))
1196 (setf results (append results result))
1197 (push result results))))))
1199 (make-canonical-union-type results)
1200 (first results)))))))
1202 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1204 (defoptimizer (+ derive-type) ((x y))
1205 (derive-integer-type
1212 (values (frob (numeric-type-low x) (numeric-type-low y))
1213 (frob (numeric-type-high x) (numeric-type-high y)))))))
1215 (defoptimizer (- derive-type) ((x y))
1216 (derive-integer-type
1223 (values (frob (numeric-type-low x) (numeric-type-high y))
1224 (frob (numeric-type-high x) (numeric-type-low y)))))))
1226 (defoptimizer (* derive-type) ((x y))
1227 (derive-integer-type
1230 (let ((x-low (numeric-type-low x))
1231 (x-high (numeric-type-high x))
1232 (y-low (numeric-type-low y))
1233 (y-high (numeric-type-high y)))
1234 (cond ((not (and x-low y-low))
1236 ((or (minusp x-low) (minusp y-low))
1237 (if (and x-high y-high)
1238 (let ((max (* (max (abs x-low) (abs x-high))
1239 (max (abs y-low) (abs y-high)))))
1240 (values (- max) max))
1243 (values (* x-low y-low)
1244 (if (and x-high y-high)
1248 (defoptimizer (/ derive-type) ((x y))
1249 (numeric-contagion (lvar-type x) (lvar-type y)))
1253 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1255 (defun +-derive-type-aux (x y same-arg)
1256 (if (and (numeric-type-real-p x)
1257 (numeric-type-real-p y))
1260 (let ((x-int (numeric-type->interval x)))
1261 (interval-add x-int x-int))
1262 (interval-add (numeric-type->interval x)
1263 (numeric-type->interval y))))
1264 (result-type (numeric-contagion x y)))
1265 ;; If the result type is a float, we need to be sure to coerce
1266 ;; the bounds into the correct type.
1267 (when (eq (numeric-type-class result-type) 'float)
1268 (setf result (interval-func
1270 (coerce-for-bound x (or (numeric-type-format result-type)
1274 :class (if (and (eq (numeric-type-class x) 'integer)
1275 (eq (numeric-type-class y) 'integer))
1276 ;; The sum of integers is always an integer.
1278 (numeric-type-class result-type))
1279 :format (numeric-type-format result-type)
1280 :low (interval-low result)
1281 :high (interval-high result)))
1282 ;; general contagion
1283 (numeric-contagion x y)))
1285 (defoptimizer (+ derive-type) ((x y))
1286 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1288 (defun --derive-type-aux (x y same-arg)
1289 (if (and (numeric-type-real-p x)
1290 (numeric-type-real-p y))
1292 ;; (- X X) is always 0.
1294 (make-interval :low 0 :high 0)
1295 (interval-sub (numeric-type->interval x)
1296 (numeric-type->interval y))))
1297 (result-type (numeric-contagion x y)))
1298 ;; If the result type is a float, we need to be sure to coerce
1299 ;; the bounds into the correct type.
1300 (when (eq (numeric-type-class result-type) 'float)
1301 (setf result (interval-func
1303 (coerce-for-bound x (or (numeric-type-format result-type)
1307 :class (if (and (eq (numeric-type-class x) 'integer)
1308 (eq (numeric-type-class y) 'integer))
1309 ;; The difference of integers is always an integer.
1311 (numeric-type-class result-type))
1312 :format (numeric-type-format result-type)
1313 :low (interval-low result)
1314 :high (interval-high result)))
1315 ;; general contagion
1316 (numeric-contagion x y)))
1318 (defoptimizer (- derive-type) ((x y))
1319 (two-arg-derive-type x y #'--derive-type-aux #'-))
1321 (defun *-derive-type-aux (x y same-arg)
1322 (if (and (numeric-type-real-p x)
1323 (numeric-type-real-p y))
1325 ;; (* X X) is always positive, so take care to do it right.
1327 (interval-sqr (numeric-type->interval x))
1328 (interval-mul (numeric-type->interval x)
1329 (numeric-type->interval y))))
1330 (result-type (numeric-contagion x y)))
1331 ;; If the result type is a float, we need to be sure to coerce
1332 ;; the bounds into the correct type.
1333 (when (eq (numeric-type-class result-type) 'float)
1334 (setf result (interval-func
1336 (coerce-for-bound x (or (numeric-type-format result-type)
1340 :class (if (and (eq (numeric-type-class x) 'integer)
1341 (eq (numeric-type-class y) 'integer))
1342 ;; The product of integers is always an integer.
1344 (numeric-type-class result-type))
1345 :format (numeric-type-format result-type)
1346 :low (interval-low result)
1347 :high (interval-high result)))
1348 (numeric-contagion x y)))
1350 (defoptimizer (* derive-type) ((x y))
1351 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1353 (defun /-derive-type-aux (x y same-arg)
1354 (if (and (numeric-type-real-p x)
1355 (numeric-type-real-p y))
1357 ;; (/ X X) is always 1, except if X can contain 0. In
1358 ;; that case, we shouldn't optimize the division away
1359 ;; because we want 0/0 to signal an error.
1361 (not (interval-contains-p
1362 0 (interval-closure (numeric-type->interval y)))))
1363 (make-interval :low 1 :high 1)
1364 (interval-div (numeric-type->interval x)
1365 (numeric-type->interval y))))
1366 (result-type (numeric-contagion x y)))
1367 ;; If the result type is a float, we need to be sure to coerce
1368 ;; the bounds into the correct type.
1369 (when (eq (numeric-type-class result-type) 'float)
1370 (setf result (interval-func
1372 (coerce-for-bound x (or (numeric-type-format result-type)
1375 (make-numeric-type :class (numeric-type-class result-type)
1376 :format (numeric-type-format result-type)
1377 :low (interval-low result)
1378 :high (interval-high result)))
1379 (numeric-contagion x y)))
1381 (defoptimizer (/ derive-type) ((x y))
1382 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1386 (defun ash-derive-type-aux (n-type shift same-arg)
1387 (declare (ignore same-arg))
1388 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1389 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1390 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1391 ;; two bignums yielding zero) and it's hard to avoid that
1392 ;; calculation in here.
1393 #+(and cmu sb-xc-host)
1394 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1395 (typep (numeric-type-high n-type) 'bignum))
1396 (or (typep (numeric-type-low shift) 'bignum)
1397 (typep (numeric-type-high shift) 'bignum)))
1398 (return-from ash-derive-type-aux *universal-type*))
1399 (flet ((ash-outer (n s)
1400 (when (and (fixnump s)
1402 (> s sb!xc:most-negative-fixnum))
1404 ;; KLUDGE: The bare 64's here should be related to
1405 ;; symbolic machine word size values somehow.
1408 (if (and (fixnump s)
1409 (> s sb!xc:most-negative-fixnum))
1411 (if (minusp n) -1 0))))
1412 (or (and (csubtypep n-type (specifier-type 'integer))
1413 (csubtypep shift (specifier-type 'integer))
1414 (let ((n-low (numeric-type-low n-type))
1415 (n-high (numeric-type-high n-type))
1416 (s-low (numeric-type-low shift))
1417 (s-high (numeric-type-high shift)))
1418 (make-numeric-type :class 'integer :complexp :real
1421 (ash-outer n-low s-high)
1422 (ash-inner n-low s-low)))
1425 (ash-inner n-high s-low)
1426 (ash-outer n-high s-high))))))
1429 (defoptimizer (ash derive-type) ((n shift))
1430 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1432 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1433 (macrolet ((frob (fun)
1434 `#'(lambda (type type2)
1435 (declare (ignore type2))
1436 (let ((lo (numeric-type-low type))
1437 (hi (numeric-type-high type)))
1438 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1440 (defoptimizer (%negate derive-type) ((num))
1441 (derive-integer-type num num (frob -))))
1443 (defun lognot-derive-type-aux (int)
1444 (derive-integer-type-aux int int
1445 (lambda (type type2)
1446 (declare (ignore type2))
1447 (let ((lo (numeric-type-low type))
1448 (hi (numeric-type-high type)))
1449 (values (if hi (lognot hi) nil)
1450 (if lo (lognot lo) nil)
1451 (numeric-type-class type)
1452 (numeric-type-format type))))))
1454 (defoptimizer (lognot derive-type) ((int))
1455 (lognot-derive-type-aux (lvar-type int)))
1457 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1458 (defoptimizer (%negate derive-type) ((num))
1459 (flet ((negate-bound (b)
1461 (set-bound (- (type-bound-number b))
1463 (one-arg-derive-type num
1465 (modified-numeric-type
1467 :low (negate-bound (numeric-type-high type))
1468 :high (negate-bound (numeric-type-low type))))
1471 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1472 (defoptimizer (abs derive-type) ((num))
1473 (let ((type (lvar-type num)))
1474 (if (and (numeric-type-p type)
1475 (eq (numeric-type-class type) 'integer)
1476 (eq (numeric-type-complexp type) :real))
1477 (let ((lo (numeric-type-low type))
1478 (hi (numeric-type-high type)))
1479 (make-numeric-type :class 'integer :complexp :real
1480 :low (cond ((and hi (minusp hi))
1486 :high (if (and hi lo)
1487 (max (abs hi) (abs lo))
1489 (numeric-contagion type type))))
1491 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1492 (defun abs-derive-type-aux (type)
1493 (cond ((eq (numeric-type-complexp type) :complex)
1494 ;; The absolute value of a complex number is always a
1495 ;; non-negative float.
1496 (let* ((format (case (numeric-type-class type)
1497 ((integer rational) 'single-float)
1498 (t (numeric-type-format type))))
1499 (bound-format (or format 'float)))
1500 (make-numeric-type :class 'float
1503 :low (coerce 0 bound-format)
1506 ;; The absolute value of a real number is a non-negative real
1507 ;; of the same type.
1508 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1509 (class (numeric-type-class type))
1510 (format (numeric-type-format type))
1511 (bound-type (or format class 'real)))
1516 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1517 :high (coerce-and-truncate-floats
1518 (interval-high abs-bnd) bound-type))))))
1520 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1521 (defoptimizer (abs derive-type) ((num))
1522 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1524 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1525 (defoptimizer (truncate derive-type) ((number divisor))
1526 (let ((number-type (lvar-type number))
1527 (divisor-type (lvar-type divisor))
1528 (integer-type (specifier-type 'integer)))
1529 (if (and (numeric-type-p number-type)
1530 (csubtypep number-type integer-type)
1531 (numeric-type-p divisor-type)
1532 (csubtypep divisor-type integer-type))
1533 (let ((number-low (numeric-type-low number-type))
1534 (number-high (numeric-type-high number-type))
1535 (divisor-low (numeric-type-low divisor-type))
1536 (divisor-high (numeric-type-high divisor-type)))
1537 (values-specifier-type
1538 `(values ,(integer-truncate-derive-type number-low number-high
1539 divisor-low divisor-high)
1540 ,(integer-rem-derive-type number-low number-high
1541 divisor-low divisor-high))))
1544 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1547 (defun rem-result-type (number-type divisor-type)
1548 ;; Figure out what the remainder type is. The remainder is an
1549 ;; integer if both args are integers; a rational if both args are
1550 ;; rational; and a float otherwise.
1551 (cond ((and (csubtypep number-type (specifier-type 'integer))
1552 (csubtypep divisor-type (specifier-type 'integer)))
1554 ((and (csubtypep number-type (specifier-type 'rational))
1555 (csubtypep divisor-type (specifier-type 'rational)))
1557 ((and (csubtypep number-type (specifier-type 'float))
1558 (csubtypep divisor-type (specifier-type 'float)))
1559 ;; Both are floats so the result is also a float, of
1560 ;; the largest type.
1561 (or (float-format-max (numeric-type-format number-type)
1562 (numeric-type-format divisor-type))
1564 ((and (csubtypep number-type (specifier-type 'float))
1565 (csubtypep divisor-type (specifier-type 'rational)))
1566 ;; One of the arguments is a float and the other is a
1567 ;; rational. The remainder is a float of the same
1569 (or (numeric-type-format number-type) 'float))
1570 ((and (csubtypep divisor-type (specifier-type 'float))
1571 (csubtypep number-type (specifier-type 'rational)))
1572 ;; One of the arguments is a float and the other is a
1573 ;; rational. The remainder is a float of the same
1575 (or (numeric-type-format divisor-type) 'float))
1577 ;; Some unhandled combination. This usually means both args
1578 ;; are REAL so the result is a REAL.
1581 (defun truncate-derive-type-quot (number-type divisor-type)
1582 (let* ((rem-type (rem-result-type number-type divisor-type))
1583 (number-interval (numeric-type->interval number-type))
1584 (divisor-interval (numeric-type->interval divisor-type)))
1585 ;;(declare (type (member '(integer rational float)) rem-type))
1586 ;; We have real numbers now.
1587 (cond ((eq rem-type 'integer)
1588 ;; Since the remainder type is INTEGER, both args are
1590 (let* ((res (integer-truncate-derive-type
1591 (interval-low number-interval)
1592 (interval-high number-interval)
1593 (interval-low divisor-interval)
1594 (interval-high divisor-interval))))
1595 (specifier-type (if (listp res) res 'integer))))
1597 (let ((quot (truncate-quotient-bound
1598 (interval-div number-interval
1599 divisor-interval))))
1600 (specifier-type `(integer ,(or (interval-low quot) '*)
1601 ,(or (interval-high quot) '*))))))))
1603 (defun truncate-derive-type-rem (number-type divisor-type)
1604 (let* ((rem-type (rem-result-type number-type divisor-type))
1605 (number-interval (numeric-type->interval number-type))
1606 (divisor-interval (numeric-type->interval divisor-type))
1607 (rem (truncate-rem-bound number-interval divisor-interval)))
1608 ;;(declare (type (member '(integer rational float)) rem-type))
1609 ;; We have real numbers now.
1610 (cond ((eq rem-type 'integer)
1611 ;; Since the remainder type is INTEGER, both args are
1613 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1614 ,(or (interval-high rem) '*))))
1616 (multiple-value-bind (class format)
1619 (values 'integer nil))
1621 (values 'rational nil))
1622 ((or single-float double-float #!+long-float long-float)
1623 (values 'float rem-type))
1625 (values 'float nil))
1628 (when (member rem-type '(float single-float double-float
1629 #!+long-float long-float))
1630 (setf rem (interval-func #'(lambda (x)
1631 (coerce-for-bound x rem-type))
1633 (make-numeric-type :class class
1635 :low (interval-low rem)
1636 :high (interval-high rem)))))))
1638 (defun truncate-derive-type-quot-aux (num div same-arg)
1639 (declare (ignore same-arg))
1640 (if (and (numeric-type-real-p num)
1641 (numeric-type-real-p div))
1642 (truncate-derive-type-quot num div)
1645 (defun truncate-derive-type-rem-aux (num div same-arg)
1646 (declare (ignore same-arg))
1647 (if (and (numeric-type-real-p num)
1648 (numeric-type-real-p div))
1649 (truncate-derive-type-rem num div)
1652 (defoptimizer (truncate derive-type) ((number divisor))
1653 (let ((quot (two-arg-derive-type number divisor
1654 #'truncate-derive-type-quot-aux #'truncate))
1655 (rem (two-arg-derive-type number divisor
1656 #'truncate-derive-type-rem-aux #'rem)))
1657 (when (and quot rem)
1658 (make-values-type :required (list quot rem)))))
1660 (defun ftruncate-derive-type-quot (number-type divisor-type)
1661 ;; The bounds are the same as for truncate. However, the first
1662 ;; result is a float of some type. We need to determine what that
1663 ;; type is. Basically it's the more contagious of the two types.
1664 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1665 (res-type (numeric-contagion number-type divisor-type)))
1666 (make-numeric-type :class 'float
1667 :format (numeric-type-format res-type)
1668 :low (numeric-type-low q-type)
1669 :high (numeric-type-high q-type))))
1671 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1672 (declare (ignore same-arg))
1673 (if (and (numeric-type-real-p n)
1674 (numeric-type-real-p d))
1675 (ftruncate-derive-type-quot n d)
1678 (defoptimizer (ftruncate derive-type) ((number divisor))
1680 (two-arg-derive-type number divisor
1681 #'ftruncate-derive-type-quot-aux #'ftruncate))
1682 (rem (two-arg-derive-type number divisor
1683 #'truncate-derive-type-rem-aux #'rem)))
1684 (when (and quot rem)
1685 (make-values-type :required (list quot rem)))))
1687 (defun %unary-truncate-derive-type-aux (number)
1688 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1690 (defoptimizer (%unary-truncate derive-type) ((number))
1691 (one-arg-derive-type number
1692 #'%unary-truncate-derive-type-aux
1695 (defoptimizer (%unary-ftruncate derive-type) ((number))
1696 (let ((divisor (specifier-type '(integer 1 1))))
1697 (one-arg-derive-type number
1699 (ftruncate-derive-type-quot-aux n divisor nil))
1700 #'%unary-ftruncate)))
1702 ;;; Define optimizers for FLOOR and CEILING.
1704 ((def (name q-name r-name)
1705 (let ((q-aux (symbolicate q-name "-AUX"))
1706 (r-aux (symbolicate r-name "-AUX")))
1708 ;; Compute type of quotient (first) result.
1709 (defun ,q-aux (number-type divisor-type)
1710 (let* ((number-interval
1711 (numeric-type->interval number-type))
1713 (numeric-type->interval divisor-type))
1714 (quot (,q-name (interval-div number-interval
1715 divisor-interval))))
1716 (specifier-type `(integer ,(or (interval-low quot) '*)
1717 ,(or (interval-high quot) '*)))))
1718 ;; Compute type of remainder.
1719 (defun ,r-aux (number-type divisor-type)
1720 (let* ((divisor-interval
1721 (numeric-type->interval divisor-type))
1722 (rem (,r-name divisor-interval))
1723 (result-type (rem-result-type number-type divisor-type)))
1724 (multiple-value-bind (class format)
1727 (values 'integer nil))
1729 (values 'rational nil))
1730 ((or single-float double-float #!+long-float long-float)
1731 (values 'float result-type))
1733 (values 'float nil))
1736 (when (member result-type '(float single-float double-float
1737 #!+long-float long-float))
1738 ;; Make sure that the limits on the interval have
1740 (setf rem (interval-func (lambda (x)
1741 (coerce-for-bound x result-type))
1743 (make-numeric-type :class class
1745 :low (interval-low rem)
1746 :high (interval-high rem)))))
1747 ;; the optimizer itself
1748 (defoptimizer (,name derive-type) ((number divisor))
1749 (flet ((derive-q (n d same-arg)
1750 (declare (ignore same-arg))
1751 (if (and (numeric-type-real-p n)
1752 (numeric-type-real-p d))
1755 (derive-r (n d same-arg)
1756 (declare (ignore same-arg))
1757 (if (and (numeric-type-real-p n)
1758 (numeric-type-real-p d))
1761 (let ((quot (two-arg-derive-type
1762 number divisor #'derive-q #',name))
1763 (rem (two-arg-derive-type
1764 number divisor #'derive-r #'mod)))
1765 (when (and quot rem)
1766 (make-values-type :required (list quot rem))))))))))
1768 (def floor floor-quotient-bound floor-rem-bound)
1769 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
1771 ;;; Define optimizers for FFLOOR and FCEILING
1772 (macrolet ((def (name q-name r-name)
1773 (let ((q-aux (symbolicate "F" q-name "-AUX"))
1774 (r-aux (symbolicate r-name "-AUX")))
1776 ;; Compute type of quotient (first) result.
1777 (defun ,q-aux (number-type divisor-type)
1778 (let* ((number-interval
1779 (numeric-type->interval number-type))
1781 (numeric-type->interval divisor-type))
1782 (quot (,q-name (interval-div number-interval
1784 (res-type (numeric-contagion number-type
1787 :class (numeric-type-class res-type)
1788 :format (numeric-type-format res-type)
1789 :low (interval-low quot)
1790 :high (interval-high quot))))
1792 (defoptimizer (,name derive-type) ((number divisor))
1793 (flet ((derive-q (n d same-arg)
1794 (declare (ignore same-arg))
1795 (if (and (numeric-type-real-p n)
1796 (numeric-type-real-p d))
1799 (derive-r (n d same-arg)
1800 (declare (ignore same-arg))
1801 (if (and (numeric-type-real-p n)
1802 (numeric-type-real-p d))
1805 (let ((quot (two-arg-derive-type
1806 number divisor #'derive-q #',name))
1807 (rem (two-arg-derive-type
1808 number divisor #'derive-r #'mod)))
1809 (when (and quot rem)
1810 (make-values-type :required (list quot rem))))))))))
1812 (def ffloor floor-quotient-bound floor-rem-bound)
1813 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
1815 ;;; functions to compute the bounds on the quotient and remainder for
1816 ;;; the FLOOR function
1817 (defun floor-quotient-bound (quot)
1818 ;; Take the floor of the quotient and then massage it into what we
1820 (let ((lo (interval-low quot))
1821 (hi (interval-high quot)))
1822 ;; Take the floor of the lower bound. The result is always a
1823 ;; closed lower bound.
1825 (floor (type-bound-number lo))
1827 ;; For the upper bound, we need to be careful.
1830 ;; An open bound. We need to be careful here because
1831 ;; the floor of '(10.0) is 9, but the floor of
1833 (multiple-value-bind (q r) (floor (first hi))
1838 ;; A closed bound, so the answer is obvious.
1842 (make-interval :low lo :high hi)))
1843 (defun floor-rem-bound (div)
1844 ;; The remainder depends only on the divisor. Try to get the
1845 ;; correct sign for the remainder if we can.
1846 (case (interval-range-info div)
1848 ;; The divisor is always positive.
1849 (let ((rem (interval-abs div)))
1850 (setf (interval-low rem) 0)
1851 (when (and (numberp (interval-high rem))
1852 (not (zerop (interval-high rem))))
1853 ;; The remainder never contains the upper bound. However,
1854 ;; watch out for the case where the high limit is zero!
1855 (setf (interval-high rem) (list (interval-high rem))))
1858 ;; The divisor is always negative.
1859 (let ((rem (interval-neg (interval-abs div))))
1860 (setf (interval-high rem) 0)
1861 (when (numberp (interval-low rem))
1862 ;; The remainder never contains the lower bound.
1863 (setf (interval-low rem) (list (interval-low rem))))
1866 ;; The divisor can be positive or negative. All bets off. The
1867 ;; magnitude of remainder is the maximum value of the divisor.
1868 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1869 ;; The bound never reaches the limit, so make the interval open.
1870 (make-interval :low (if limit
1873 :high (list limit))))))
1875 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
1876 => #S(INTERVAL :LOW 0 :HIGH 10)
1877 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1878 => #S(INTERVAL :LOW 0 :HIGH 10)
1879 (floor-quotient-bound (make-interval :low 0.3 :high 10))
1880 => #S(INTERVAL :LOW 0 :HIGH 10)
1881 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
1882 => #S(INTERVAL :LOW 0 :HIGH 9)
1883 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
1884 => #S(INTERVAL :LOW 0 :HIGH 10)
1885 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
1886 => #S(INTERVAL :LOW 0 :HIGH 10)
1887 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1888 => #S(INTERVAL :LOW -2 :HIGH 10)
1889 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1890 => #S(INTERVAL :LOW -1 :HIGH 10)
1891 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
1892 => #S(INTERVAL :LOW -1 :HIGH 10)
1894 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
1895 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1896 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
1897 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1898 (floor-rem-bound (make-interval :low -10 :high -2.3))
1899 #S(INTERVAL :LOW (-10) :HIGH 0)
1900 (floor-rem-bound (make-interval :low 0.3 :high 10))
1901 => #S(INTERVAL :LOW 0 :HIGH '(10))
1902 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
1903 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
1904 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
1905 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
1908 ;;; same functions for CEILING
1909 (defun ceiling-quotient-bound (quot)
1910 ;; Take the ceiling of the quotient and then massage it into what we
1912 (let ((lo (interval-low quot))
1913 (hi (interval-high quot)))
1914 ;; Take the ceiling of the upper bound. The result is always a
1915 ;; closed upper bound.
1917 (ceiling (type-bound-number hi))
1919 ;; For the lower bound, we need to be careful.
1922 ;; An open bound. We need to be careful here because
1923 ;; the ceiling of '(10.0) is 11, but the ceiling of
1925 (multiple-value-bind (q r) (ceiling (first lo))
1930 ;; A closed bound, so the answer is obvious.
1934 (make-interval :low lo :high hi)))
1935 (defun ceiling-rem-bound (div)
1936 ;; The remainder depends only on the divisor. Try to get the
1937 ;; correct sign for the remainder if we can.
1938 (case (interval-range-info div)
1940 ;; Divisor is always positive. The remainder is negative.
1941 (let ((rem (interval-neg (interval-abs div))))
1942 (setf (interval-high rem) 0)
1943 (when (and (numberp (interval-low rem))
1944 (not (zerop (interval-low rem))))
1945 ;; The remainder never contains the upper bound. However,
1946 ;; watch out for the case when the upper bound is zero!
1947 (setf (interval-low rem) (list (interval-low rem))))
1950 ;; Divisor is always negative. The remainder is positive
1951 (let ((rem (interval-abs div)))
1952 (setf (interval-low rem) 0)
1953 (when (numberp (interval-high rem))
1954 ;; The remainder never contains the lower bound.
1955 (setf (interval-high rem) (list (interval-high rem))))
1958 ;; The divisor can be positive or negative. All bets off. The
1959 ;; magnitude of remainder is the maximum value of the divisor.
1960 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
1961 ;; The bound never reaches the limit, so make the interval open.
1962 (make-interval :low (if limit
1965 :high (list limit))))))
1968 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
1969 => #S(INTERVAL :LOW 1 :HIGH 11)
1970 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
1971 => #S(INTERVAL :LOW 1 :HIGH 11)
1972 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
1973 => #S(INTERVAL :LOW 1 :HIGH 10)
1974 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
1975 => #S(INTERVAL :LOW 1 :HIGH 10)
1976 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
1977 => #S(INTERVAL :LOW 1 :HIGH 11)
1978 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
1979 => #S(INTERVAL :LOW 1 :HIGH 11)
1980 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
1981 => #S(INTERVAL :LOW -1 :HIGH 11)
1982 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
1983 => #S(INTERVAL :LOW 0 :HIGH 11)
1984 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
1985 => #S(INTERVAL :LOW -1 :HIGH 11)
1987 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
1988 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
1989 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
1990 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
1991 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
1992 => #S(INTERVAL :LOW 0 :HIGH (10))
1993 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
1994 => #S(INTERVAL :LOW (-10) :HIGH 0)
1995 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
1996 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
1997 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
1998 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2001 (defun truncate-quotient-bound (quot)
2002 ;; For positive quotients, truncate is exactly like floor. For
2003 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2004 ;; it's the union of the two pieces.
2005 (case (interval-range-info quot)
2008 (floor-quotient-bound quot))
2010 ;; just like CEILING
2011 (ceiling-quotient-bound quot))
2013 ;; Split the interval into positive and negative pieces, compute
2014 ;; the result for each piece and put them back together.
2015 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2016 (interval-merge-pair (ceiling-quotient-bound neg)
2017 (floor-quotient-bound pos))))))
2019 (defun truncate-rem-bound (num div)
2020 ;; This is significantly more complicated than FLOOR or CEILING. We
2021 ;; need both the number and the divisor to determine the range. The
2022 ;; basic idea is to split the ranges of NUM and DEN into positive
2023 ;; and negative pieces and deal with each of the four possibilities
2025 (case (interval-range-info num)
2027 (case (interval-range-info div)
2029 (floor-rem-bound div))
2031 (ceiling-rem-bound div))
2033 (destructuring-bind (neg pos) (interval-split 0 div t t)
2034 (interval-merge-pair (truncate-rem-bound num neg)
2035 (truncate-rem-bound num pos))))))
2037 (case (interval-range-info div)
2039 (ceiling-rem-bound div))
2041 (floor-rem-bound div))
2043 (destructuring-bind (neg pos) (interval-split 0 div t t)
2044 (interval-merge-pair (truncate-rem-bound num neg)
2045 (truncate-rem-bound num pos))))))
2047 (destructuring-bind (neg pos) (interval-split 0 num t t)
2048 (interval-merge-pair (truncate-rem-bound neg div)
2049 (truncate-rem-bound pos div))))))
2052 ;;; Derive useful information about the range. Returns three values:
2053 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2054 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2055 ;;; - The abs of the maximal value if there is one, or nil if it is
2057 (defun numeric-range-info (low high)
2058 (cond ((and low (not (minusp low)))
2059 (values '+ low high))
2060 ((and high (not (plusp high)))
2061 (values '- (- high) (if low (- low) nil)))
2063 (values nil 0 (and low high (max (- low) high))))))
2065 (defun integer-truncate-derive-type
2066 (number-low number-high divisor-low divisor-high)
2067 ;; The result cannot be larger in magnitude than the number, but the
2068 ;; sign might change. If we can determine the sign of either the
2069 ;; number or the divisor, we can eliminate some of the cases.
2070 (multiple-value-bind (number-sign number-min number-max)
2071 (numeric-range-info number-low number-high)
2072 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2073 (numeric-range-info divisor-low divisor-high)
2074 (when (and divisor-max (zerop divisor-max))
2075 ;; We've got a problem: guaranteed division by zero.
2076 (return-from integer-truncate-derive-type t))
2077 (when (zerop divisor-min)
2078 ;; We'll assume that they aren't going to divide by zero.
2080 (cond ((and number-sign divisor-sign)
2081 ;; We know the sign of both.
2082 (if (eq number-sign divisor-sign)
2083 ;; Same sign, so the result will be positive.
2084 `(integer ,(if divisor-max
2085 (truncate number-min divisor-max)
2088 (truncate number-max divisor-min)
2090 ;; Different signs, the result will be negative.
2091 `(integer ,(if number-max
2092 (- (truncate number-max divisor-min))
2095 (- (truncate number-min divisor-max))
2097 ((eq divisor-sign '+)
2098 ;; The divisor is positive. Therefore, the number will just
2099 ;; become closer to zero.
2100 `(integer ,(if number-low
2101 (truncate number-low divisor-min)
2104 (truncate number-high divisor-min)
2106 ((eq divisor-sign '-)
2107 ;; The divisor is negative. Therefore, the absolute value of
2108 ;; the number will become closer to zero, but the sign will also
2110 `(integer ,(if number-high
2111 (- (truncate number-high divisor-min))
2114 (- (truncate number-low divisor-min))
2116 ;; The divisor could be either positive or negative.
2118 ;; The number we are dividing has a bound. Divide that by the
2119 ;; smallest posible divisor.
2120 (let ((bound (truncate number-max divisor-min)))
2121 `(integer ,(- bound) ,bound)))
2123 ;; The number we are dividing is unbounded, so we can't tell
2124 ;; anything about the result.
2127 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2128 (defun integer-rem-derive-type
2129 (number-low number-high divisor-low divisor-high)
2130 (if (and divisor-low divisor-high)
2131 ;; We know the range of the divisor, and the remainder must be
2132 ;; smaller than the divisor. We can tell the sign of the
2133 ;; remainer if we know the sign of the number.
2134 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2135 `(integer ,(if (or (null number-low)
2136 (minusp number-low))
2139 ,(if (or (null number-high)
2140 (plusp number-high))
2143 ;; The divisor is potentially either very positive or very
2144 ;; negative. Therefore, the remainer is unbounded, but we might
2145 ;; be able to tell something about the sign from the number.
2146 `(integer ,(if (and number-low (not (minusp number-low)))
2147 ;; The number we are dividing is positive.
2148 ;; Therefore, the remainder must be positive.
2151 ,(if (and number-high (not (plusp number-high)))
2152 ;; The number we are dividing is negative.
2153 ;; Therefore, the remainder must be negative.
2157 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2158 (defoptimizer (random derive-type) ((bound &optional state))
2159 (let ((type (lvar-type bound)))
2160 (when (numeric-type-p type)
2161 (let ((class (numeric-type-class type))
2162 (high (numeric-type-high type))
2163 (format (numeric-type-format type)))
2167 :low (coerce 0 (or format class 'real))
2168 :high (cond ((not high) nil)
2169 ((eq class 'integer) (max (1- high) 0))
2170 ((or (consp high) (zerop high)) high)
2173 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2174 (defun random-derive-type-aux (type)
2175 (let ((class (numeric-type-class type))
2176 (high (numeric-type-high type))
2177 (format (numeric-type-format type)))
2181 :low (coerce 0 (or format class 'real))
2182 :high (cond ((not high) nil)
2183 ((eq class 'integer) (max (1- high) 0))
2184 ((or (consp high) (zerop high)) high)
2187 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2188 (defoptimizer (random derive-type) ((bound &optional state))
2189 (one-arg-derive-type bound #'random-derive-type-aux nil))
2191 ;;;; DERIVE-TYPE methods for LOGAND, LOGIOR, and friends
2193 ;;; Return the maximum number of bits an integer of the supplied type
2194 ;;; can take up, or NIL if it is unbounded. The second (third) value
2195 ;;; is T if the integer can be positive (negative) and NIL if not.
2196 ;;; Zero counts as positive.
2197 (defun integer-type-length (type)
2198 (if (numeric-type-p type)
2199 (let ((min (numeric-type-low type))
2200 (max (numeric-type-high type)))
2201 (values (and min max (max (integer-length min) (integer-length max)))
2202 (or (null max) (not (minusp max)))
2203 (or (null min) (minusp min))))
2206 ;;; See _Hacker's Delight_, Henry S. Warren, Jr. pp 58-63 for an
2207 ;;; explanation of LOG{AND,IOR,XOR}-DERIVE-UNSIGNED-{LOW,HIGH}-BOUND.
2208 ;;; Credit also goes to Raymond Toy for writing (and debugging!) similar
2209 ;;; versions in CMUCL, from which these functions copy liberally.
2211 (defun logand-derive-unsigned-low-bound (x y)
2212 (let ((a (numeric-type-low x))
2213 (b (numeric-type-high x))
2214 (c (numeric-type-low y))
2215 (d (numeric-type-high y)))
2216 (loop for m = (ash 1 (integer-length (lognor a c))) then (ash m -1)
2218 (unless (zerop (logand m (lognot a) (lognot c)))
2219 (let ((temp (logandc2 (logior a m) (1- m))))
2223 (setf temp (logandc2 (logior c m) (1- m)))
2227 finally (return (logand a c)))))
2229 (defun logand-derive-unsigned-high-bound (x y)
2230 (let ((a (numeric-type-low x))
2231 (b (numeric-type-high x))
2232 (c (numeric-type-low y))
2233 (d (numeric-type-high y)))
2234 (loop for m = (ash 1 (integer-length (logxor b d))) then (ash m -1)
2237 ((not (zerop (logand b (lognot d) m)))
2238 (let ((temp (logior (logandc2 b m) (1- m))))
2242 ((not (zerop (logand (lognot b) d m)))
2243 (let ((temp (logior (logandc2 d m) (1- m))))
2247 finally (return (logand b d)))))
2249 (defun logand-derive-type-aux (x y &optional same-leaf)
2251 (return-from logand-derive-type-aux x))
2252 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2253 (declare (ignore x-pos))
2254 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2255 (declare (ignore y-pos))
2257 ;; X must be positive.
2259 ;; They must both be positive.
2260 (cond ((and (null x-len) (null y-len))
2261 (specifier-type 'unsigned-byte))
2263 (specifier-type `(unsigned-byte* ,y-len)))
2265 (specifier-type `(unsigned-byte* ,x-len)))
2267 (let ((low (logand-derive-unsigned-low-bound x y))
2268 (high (logand-derive-unsigned-high-bound x y)))
2269 (specifier-type `(integer ,low ,high)))))
2270 ;; X is positive, but Y might be negative.
2272 (specifier-type 'unsigned-byte))
2274 (specifier-type `(unsigned-byte* ,x-len)))))
2275 ;; X might be negative.
2277 ;; Y must be positive.
2279 (specifier-type 'unsigned-byte))
2280 (t (specifier-type `(unsigned-byte* ,y-len))))
2281 ;; Either might be negative.
2282 (if (and x-len y-len)
2283 ;; The result is bounded.
2284 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2285 ;; We can't tell squat about the result.
2286 (specifier-type 'integer)))))))
2288 (defun logior-derive-unsigned-low-bound (x y)
2289 (let ((a (numeric-type-low x))
2290 (b (numeric-type-high x))
2291 (c (numeric-type-low y))
2292 (d (numeric-type-high y)))
2293 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2296 ((not (zerop (logandc2 (logand c m) a)))
2297 (let ((temp (logand (logior a m) (1+ (lognot m)))))
2301 ((not (zerop (logandc2 (logand a m) c)))
2302 (let ((temp (logand (logior c m) (1+ (lognot m)))))
2306 finally (return (logior a c)))))
2308 (defun logior-derive-unsigned-high-bound (x y)
2309 (let ((a (numeric-type-low x))
2310 (b (numeric-type-high x))
2311 (c (numeric-type-low y))
2312 (d (numeric-type-high y)))
2313 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2315 (unless (zerop (logand b d m))
2316 (let ((temp (logior (- b m) (1- m))))
2320 (setf temp (logior (- d m) (1- m)))
2324 finally (return (logior b d)))))
2326 (defun logior-derive-type-aux (x y &optional same-leaf)
2328 (return-from logior-derive-type-aux x))
2329 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2330 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2332 ((and (not x-neg) (not y-neg))
2333 ;; Both are positive.
2334 (if (and x-len y-len)
2335 (let ((low (logior-derive-unsigned-low-bound x y))
2336 (high (logior-derive-unsigned-high-bound x y)))
2337 (specifier-type `(integer ,low ,high)))
2338 (specifier-type `(unsigned-byte* *))))
2340 ;; X must be negative.
2342 ;; Both are negative. The result is going to be negative
2343 ;; and be the same length or shorter than the smaller.
2344 (if (and x-len y-len)
2346 (specifier-type `(integer ,(ash -1 (min x-len y-len)) -1))
2348 (specifier-type '(integer * -1)))
2349 ;; X is negative, but we don't know about Y. The result
2350 ;; will be negative, but no more negative than X.
2352 `(integer ,(or (numeric-type-low x) '*)
2355 ;; X might be either positive or negative.
2357 ;; But Y is negative. The result will be negative.
2359 `(integer ,(or (numeric-type-low y) '*)
2361 ;; We don't know squat about either. It won't get any bigger.
2362 (if (and x-len y-len)
2364 (specifier-type `(signed-byte ,(1+ (max x-len y-len))))
2366 (specifier-type 'integer))))))))
2368 (defun logxor-derive-unsigned-low-bound (x y)
2369 (let ((a (numeric-type-low x))
2370 (b (numeric-type-high x))
2371 (c (numeric-type-low y))
2372 (d (numeric-type-high y)))
2373 (loop for m = (ash 1 (integer-length (logxor a c))) then (ash m -1)
2376 ((not (zerop (logandc2 (logand c m) a)))
2377 (let ((temp (logand (logior a m)
2381 ((not (zerop (logandc2 (logand a m) c)))
2382 (let ((temp (logand (logior c m)
2386 finally (return (logxor a c)))))
2388 (defun logxor-derive-unsigned-high-bound (x y)
2389 (let ((a (numeric-type-low x))
2390 (b (numeric-type-high x))
2391 (c (numeric-type-low y))
2392 (d (numeric-type-high y)))
2393 (loop for m = (ash 1 (integer-length (logand b d))) then (ash m -1)
2395 (unless (zerop (logand b d m))
2396 (let ((temp (logior (- b m) (1- m))))
2398 ((>= temp a) (setf b temp))
2399 (t (let ((temp (logior (- d m) (1- m))))
2402 finally (return (logxor b d)))))
2404 (defun logxor-derive-type-aux (x y &optional same-leaf)
2406 (return-from logxor-derive-type-aux (specifier-type '(eql 0))))
2407 (multiple-value-bind (x-len x-pos x-neg) (integer-type-length x)
2408 (multiple-value-bind (y-len y-pos y-neg) (integer-type-length y)
2410 ((and (not x-neg) (not y-neg))
2411 ;; Both are positive
2412 (if (and x-len y-len)
2413 (let ((low (logxor-derive-unsigned-low-bound x y))
2414 (high (logxor-derive-unsigned-high-bound x y)))
2415 (specifier-type `(integer ,low ,high)))
2416 (specifier-type '(unsigned-byte* *))))
2417 ((and (not x-pos) (not y-pos))
2418 ;; Both are negative. The result will be positive, and as long
2420 (specifier-type `(unsigned-byte* ,(if (and x-len y-len)
2423 ((or (and (not x-pos) (not y-neg))
2424 (and (not y-pos) (not x-neg)))
2425 ;; Either X is negative and Y is positive or vice-versa. The
2426 ;; result will be negative.
2427 (specifier-type `(integer ,(if (and x-len y-len)
2428 (ash -1 (max x-len y-len))
2431 ;; We can't tell what the sign of the result is going to be.
2432 ;; All we know is that we don't create new bits.
2434 (specifier-type `(signed-byte ,(1+ (max x-len y-len)))))
2436 (specifier-type 'integer))))))
2438 (macrolet ((deffrob (logfun)
2439 (let ((fun-aux (symbolicate logfun "-DERIVE-TYPE-AUX")))
2440 `(defoptimizer (,logfun derive-type) ((x y))
2441 (two-arg-derive-type x y #',fun-aux #',logfun)))))
2446 (defoptimizer (logeqv derive-type) ((x y))
2447 (two-arg-derive-type x y (lambda (x y same-leaf)
2448 (lognot-derive-type-aux
2449 (logxor-derive-type-aux x y same-leaf)))
2451 (defoptimizer (lognand derive-type) ((x y))
2452 (two-arg-derive-type x y (lambda (x y same-leaf)
2453 (lognot-derive-type-aux
2454 (logand-derive-type-aux x y same-leaf)))
2456 (defoptimizer (lognor derive-type) ((x y))
2457 (two-arg-derive-type x y (lambda (x y same-leaf)
2458 (lognot-derive-type-aux
2459 (logior-derive-type-aux x y same-leaf)))
2461 (defoptimizer (logandc1 derive-type) ((x y))
2462 (two-arg-derive-type x y (lambda (x y same-leaf)
2464 (specifier-type '(eql 0))
2465 (logand-derive-type-aux
2466 (lognot-derive-type-aux x) y nil)))
2468 (defoptimizer (logandc2 derive-type) ((x y))
2469 (two-arg-derive-type x y (lambda (x y same-leaf)
2471 (specifier-type '(eql 0))
2472 (logand-derive-type-aux
2473 x (lognot-derive-type-aux y) nil)))
2475 (defoptimizer (logorc1 derive-type) ((x y))
2476 (two-arg-derive-type x y (lambda (x y same-leaf)
2478 (specifier-type '(eql -1))
2479 (logior-derive-type-aux
2480 (lognot-derive-type-aux x) y nil)))
2482 (defoptimizer (logorc2 derive-type) ((x y))
2483 (two-arg-derive-type x y (lambda (x y same-leaf)
2485 (specifier-type '(eql -1))
2486 (logior-derive-type-aux
2487 x (lognot-derive-type-aux y) nil)))
2490 ;;;; miscellaneous derive-type methods
2492 (defoptimizer (integer-length derive-type) ((x))
2493 (let ((x-type (lvar-type x)))
2494 (when (numeric-type-p x-type)
2495 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2496 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2497 ;; careful about LO or HI being NIL, though. Also, if 0 is
2498 ;; contained in X, the lower bound is obviously 0.
2499 (flet ((null-or-min (a b)
2500 (and a b (min (integer-length a)
2501 (integer-length b))))
2503 (and a b (max (integer-length a)
2504 (integer-length b)))))
2505 (let* ((min (numeric-type-low x-type))
2506 (max (numeric-type-high x-type))
2507 (min-len (null-or-min min max))
2508 (max-len (null-or-max min max)))
2509 (when (ctypep 0 x-type)
2511 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2513 (defoptimizer (isqrt derive-type) ((x))
2514 (let ((x-type (lvar-type x)))
2515 (when (numeric-type-p x-type)
2516 (let* ((lo (numeric-type-low x-type))
2517 (hi (numeric-type-high x-type))
2518 (lo-res (if lo (isqrt lo) '*))
2519 (hi-res (if hi (isqrt hi) '*)))
2520 (specifier-type `(integer ,lo-res ,hi-res))))))
2522 (defoptimizer (code-char derive-type) ((code))
2523 (let ((type (lvar-type code)))
2524 ;; FIXME: unions of integral ranges? It ought to be easier to do
2525 ;; this, given that CHARACTER-SET is basically an integral range
2526 ;; type. -- CSR, 2004-10-04
2527 (when (numeric-type-p type)
2528 (let* ((lo (numeric-type-low type))
2529 (hi (numeric-type-high type))
2530 (type (specifier-type `(character-set ((,lo . ,hi))))))
2532 ;; KLUDGE: when running on the host, we lose a slight amount
2533 ;; of precision so that we don't have to "unparse" types
2534 ;; that formally we can't, such as (CHARACTER-SET ((0
2535 ;; . 0))). -- CSR, 2004-10-06
2537 ((csubtypep type (specifier-type 'standard-char)) type)
2539 ((csubtypep type (specifier-type 'base-char))
2540 (specifier-type 'base-char))
2542 ((csubtypep type (specifier-type 'extended-char))
2543 (specifier-type 'extended-char))
2544 (t #+sb-xc-host (specifier-type 'character)
2545 #-sb-xc-host type))))))
2547 (defoptimizer (values derive-type) ((&rest values))
2548 (make-values-type :required (mapcar #'lvar-type values)))
2550 (defun signum-derive-type-aux (type)
2551 (if (eq (numeric-type-complexp type) :complex)
2552 (let* ((format (case (numeric-type-class type)
2553 ((integer rational) 'single-float)
2554 (t (numeric-type-format type))))
2555 (bound-format (or format 'float)))
2556 (make-numeric-type :class 'float
2559 :low (coerce -1 bound-format)
2560 :high (coerce 1 bound-format)))
2561 (let* ((interval (numeric-type->interval type))
2562 (range-info (interval-range-info interval))
2563 (contains-0-p (interval-contains-p 0 interval))
2564 (class (numeric-type-class type))
2565 (format (numeric-type-format type))
2566 (one (coerce 1 (or format class 'real)))
2567 (zero (coerce 0 (or format class 'real)))
2568 (minus-one (coerce -1 (or format class 'real)))
2569 (plus (make-numeric-type :class class :format format
2570 :low one :high one))
2571 (minus (make-numeric-type :class class :format format
2572 :low minus-one :high minus-one))
2573 ;; KLUDGE: here we have a fairly horrible hack to deal
2574 ;; with the schizophrenia in the type derivation engine.
2575 ;; The problem is that the type derivers reinterpret
2576 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2577 ;; 0d0) within the derivation mechanism doesn't include
2578 ;; -0d0. Ugh. So force it in here, instead.
2579 (zero (make-numeric-type :class class :format format
2580 :low (- zero) :high zero)))
2582 (+ (if contains-0-p (type-union plus zero) plus))
2583 (- (if contains-0-p (type-union minus zero) minus))
2584 (t (type-union minus zero plus))))))
2586 (defoptimizer (signum derive-type) ((num))
2587 (one-arg-derive-type num #'signum-derive-type-aux nil))
2589 ;;;; byte operations
2591 ;;;; We try to turn byte operations into simple logical operations.
2592 ;;;; First, we convert byte specifiers into separate size and position
2593 ;;;; arguments passed to internal %FOO functions. We then attempt to
2594 ;;;; transform the %FOO functions into boolean operations when the
2595 ;;;; size and position are constant and the operands are fixnums.
2597 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2598 ;; expressions that evaluate to the SIZE and POSITION of
2599 ;; the byte-specifier form SPEC. We may wrap a let around
2600 ;; the result of the body to bind some variables.
2602 ;; If the spec is a BYTE form, then bind the vars to the
2603 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2604 ;; and BYTE-POSITION. The goal of this transformation is to
2605 ;; avoid consing up byte specifiers and then immediately
2606 ;; throwing them away.
2607 (with-byte-specifier ((size-var pos-var spec) &body body)
2608 (once-only ((spec `(macroexpand ,spec))
2610 `(if (and (consp ,spec)
2611 (eq (car ,spec) 'byte)
2612 (= (length ,spec) 3))
2613 (let ((,size-var (second ,spec))
2614 (,pos-var (third ,spec)))
2616 (let ((,size-var `(byte-size ,,temp))
2617 (,pos-var `(byte-position ,,temp)))
2618 `(let ((,,temp ,,spec))
2621 (define-source-transform ldb (spec int)
2622 (with-byte-specifier (size pos spec)
2623 `(%ldb ,size ,pos ,int)))
2625 (define-source-transform dpb (newbyte spec int)
2626 (with-byte-specifier (size pos spec)
2627 `(%dpb ,newbyte ,size ,pos ,int)))
2629 (define-source-transform mask-field (spec int)
2630 (with-byte-specifier (size pos spec)
2631 `(%mask-field ,size ,pos ,int)))
2633 (define-source-transform deposit-field (newbyte spec int)
2634 (with-byte-specifier (size pos spec)
2635 `(%deposit-field ,newbyte ,size ,pos ,int))))
2637 (defoptimizer (%ldb derive-type) ((size posn num))
2638 (let ((size (lvar-type size)))
2639 (if (and (numeric-type-p size)
2640 (csubtypep size (specifier-type 'integer)))
2641 (let ((size-high (numeric-type-high size)))
2642 (if (and size-high (<= size-high sb!vm:n-word-bits))
2643 (specifier-type `(unsigned-byte* ,size-high))
2644 (specifier-type 'unsigned-byte)))
2647 (defoptimizer (%mask-field derive-type) ((size posn num))
2648 (let ((size (lvar-type size))
2649 (posn (lvar-type posn)))
2650 (if (and (numeric-type-p size)
2651 (csubtypep size (specifier-type 'integer))
2652 (numeric-type-p posn)
2653 (csubtypep posn (specifier-type 'integer)))
2654 (let ((size-high (numeric-type-high size))
2655 (posn-high (numeric-type-high posn)))
2656 (if (and size-high posn-high
2657 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2658 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2659 (specifier-type 'unsigned-byte)))
2662 (defun %deposit-field-derive-type-aux (size posn int)
2663 (let ((size (lvar-type size))
2664 (posn (lvar-type posn))
2665 (int (lvar-type int)))
2666 (when (and (numeric-type-p size)
2667 (numeric-type-p posn)
2668 (numeric-type-p int))
2669 (let ((size-high (numeric-type-high size))
2670 (posn-high (numeric-type-high posn))
2671 (high (numeric-type-high int))
2672 (low (numeric-type-low int)))
2673 (when (and size-high posn-high high low
2674 ;; KLUDGE: we need this cutoff here, otherwise we
2675 ;; will merrily derive the type of %DPB as
2676 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2677 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2678 ;; 1073741822))), with hilarious consequences. We
2679 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2680 ;; over a reasonable amount of shifting, even on
2681 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2682 ;; machine integers are 64-bits. -- CSR,
2684 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2685 (let ((raw-bit-count (max (integer-length high)
2686 (integer-length low)
2687 (+ size-high posn-high))))
2690 `(signed-byte ,(1+ raw-bit-count))
2691 `(unsigned-byte* ,raw-bit-count)))))))))
2693 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2694 (%deposit-field-derive-type-aux size posn int))
2696 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2697 (%deposit-field-derive-type-aux size posn int))
2699 (deftransform %ldb ((size posn int)
2700 (fixnum fixnum integer)
2701 (unsigned-byte #.sb!vm:n-word-bits))
2702 "convert to inline logical operations"
2703 `(logand (ash int (- posn))
2704 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2705 (- size ,sb!vm:n-word-bits))))
2707 (deftransform %mask-field ((size posn int)
2708 (fixnum fixnum integer)
2709 (unsigned-byte #.sb!vm:n-word-bits))
2710 "convert to inline logical operations"
2712 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2713 (- size ,sb!vm:n-word-bits))
2716 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2717 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2718 ;;; as the result type, as that would allow result types that cover
2719 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2720 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2722 (deftransform %dpb ((new size posn int)
2724 (unsigned-byte #.sb!vm:n-word-bits))
2725 "convert to inline logical operations"
2726 `(let ((mask (ldb (byte size 0) -1)))
2727 (logior (ash (logand new mask) posn)
2728 (logand int (lognot (ash mask posn))))))
2730 (deftransform %dpb ((new size posn int)
2732 (signed-byte #.sb!vm:n-word-bits))
2733 "convert to inline logical operations"
2734 `(let ((mask (ldb (byte size 0) -1)))
2735 (logior (ash (logand new mask) posn)
2736 (logand int (lognot (ash mask posn))))))
2738 (deftransform %deposit-field ((new size posn int)
2740 (unsigned-byte #.sb!vm:n-word-bits))
2741 "convert to inline logical operations"
2742 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2743 (logior (logand new mask)
2744 (logand int (lognot mask)))))
2746 (deftransform %deposit-field ((new size posn int)
2748 (signed-byte #.sb!vm:n-word-bits))
2749 "convert to inline logical operations"
2750 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2751 (logior (logand new mask)
2752 (logand int (lognot mask)))))
2754 (defoptimizer (mask-signed-field derive-type) ((size x))
2755 (let ((size (lvar-type size)))
2756 (if (numeric-type-p size)
2757 (let ((size-high (numeric-type-high size)))
2758 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2759 (specifier-type `(signed-byte ,size-high))
2764 ;;; Modular functions
2766 ;;; (ldb (byte s 0) (foo x y ...)) =
2767 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2769 ;;; and similar for other arguments.
2771 (defun make-modular-fun-type-deriver (prototype class width)
2773 (binding* ((info (info :function :info prototype) :exit-if-null)
2774 (fun (fun-info-derive-type info) :exit-if-null)
2775 (mask-type (specifier-type
2777 (:unsigned (let ((mask (1- (ash 1 width))))
2778 `(integer ,mask ,mask)))
2779 (:signed `(signed-byte ,width))))))
2781 (let ((res (funcall fun call)))
2783 (if (eq class :unsigned)
2784 (logand-derive-type-aux res mask-type))))))
2787 (binding* ((info (info :function :info prototype) :exit-if-null)
2788 (fun (fun-info-derive-type info) :exit-if-null)
2789 (res (funcall fun call) :exit-if-null)
2790 (mask-type (specifier-type
2792 (:unsigned (let ((mask (1- (ash 1 width))))
2793 `(integer ,mask ,mask)))
2794 (:signed `(signed-byte ,width))))))
2795 (if (eq class :unsigned)
2796 (logand-derive-type-aux res mask-type)))))
2798 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2800 ;;; For good functions, we just recursively cut arguments; their
2801 ;;; "goodness" means that the result will not increase (in the
2802 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2803 ;;; replaced with the version, cutting its result to WIDTH or more
2804 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2805 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2806 ;;; arguments (maybe to a different width) and returning the name of a
2807 ;;; modular version, if it exists, or NIL. If we have changed
2808 ;;; anything, we need to flush old derived types, because they have
2809 ;;; nothing in common with the new code.
2810 (defun cut-to-width (lvar class width)
2811 (declare (type lvar lvar) (type (integer 0) width))
2812 (let ((type (specifier-type (if (zerop width)
2814 `(,(ecase class (:unsigned 'unsigned-byte)
2815 (:signed 'signed-byte))
2817 (labels ((reoptimize-node (node name)
2818 (setf (node-derived-type node)
2820 (info :function :type name)))
2821 (setf (lvar-%derived-type (node-lvar node)) nil)
2822 (setf (node-reoptimize node) t)
2823 (setf (block-reoptimize (node-block node)) t)
2824 (reoptimize-component (node-component node) :maybe))
2825 (cut-node (node &aux did-something)
2826 (when (and (not (block-delete-p (node-block node)))
2827 (combination-p node)
2828 (eq (basic-combination-kind node) :known))
2829 (let* ((fun-ref (lvar-use (combination-fun node)))
2830 (fun-name (leaf-source-name (ref-leaf fun-ref)))
2831 (modular-fun (find-modular-version fun-name class width)))
2832 (when (and modular-fun
2833 (not (and (eq fun-name 'logand)
2835 (single-value-type (node-derived-type node))
2837 (binding* ((name (etypecase modular-fun
2838 ((eql :good) fun-name)
2840 (modular-fun-info-name modular-fun))
2842 (funcall modular-fun node width)))
2844 (unless (eql modular-fun :good)
2845 (setq did-something t)
2848 (find-free-fun name "in a strange place"))
2849 (setf (combination-kind node) :full))
2850 (unless (functionp modular-fun)
2851 (dolist (arg (basic-combination-args node))
2852 (when (cut-lvar arg)
2853 (setq did-something t))))
2855 (reoptimize-node node name))
2857 (cut-lvar (lvar &aux did-something)
2858 (do-uses (node lvar)
2859 (when (cut-node node)
2860 (setq did-something t)))
2864 (defoptimizer (logand optimizer) ((x y) node)
2865 (let ((result-type (single-value-type (node-derived-type node))))
2866 (when (numeric-type-p result-type)
2867 (let ((low (numeric-type-low result-type))
2868 (high (numeric-type-high result-type)))
2869 (when (and (numberp low)
2872 (let ((width (integer-length high)))
2873 (when (some (lambda (x) (<= width x))
2874 (modular-class-widths *unsigned-modular-class*))
2875 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2876 (cut-to-width x :unsigned width)
2877 (cut-to-width y :unsigned width)
2878 nil ; After fixing above, replace with T.
2881 (defoptimizer (mask-signed-field optimizer) ((width x) node)
2882 (let ((result-type (single-value-type (node-derived-type node))))
2883 (when (numeric-type-p result-type)
2884 (let ((low (numeric-type-low result-type))
2885 (high (numeric-type-high result-type)))
2886 (when (and (numberp low) (numberp high))
2887 (let ((width (max (integer-length high) (integer-length low))))
2888 (when (some (lambda (x) (<= width x))
2889 (modular-class-widths *signed-modular-class*))
2890 ;; FIXME: This should be (CUT-TO-WIDTH NODE WIDTH).
2891 (cut-to-width x :signed width)
2892 nil ; After fixing above, replace with T.
2895 ;;; miscellanous numeric transforms
2897 ;;; If a constant appears as the first arg, swap the args.
2898 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
2899 (if (and (constant-lvar-p x)
2900 (not (constant-lvar-p y)))
2901 `(,(lvar-fun-name (basic-combination-fun node))
2904 (give-up-ir1-transform)))
2906 (dolist (x '(= char= + * logior logand logxor))
2907 (%deftransform x '(function * *) #'commutative-arg-swap
2908 "place constant arg last"))
2910 ;;; Handle the case of a constant BOOLE-CODE.
2911 (deftransform boole ((op x y) * *)
2912 "convert to inline logical operations"
2913 (unless (constant-lvar-p op)
2914 (give-up-ir1-transform "BOOLE code is not a constant."))
2915 (let ((control (lvar-value op)))
2917 (#.sb!xc:boole-clr 0)
2918 (#.sb!xc:boole-set -1)
2919 (#.sb!xc:boole-1 'x)
2920 (#.sb!xc:boole-2 'y)
2921 (#.sb!xc:boole-c1 '(lognot x))
2922 (#.sb!xc:boole-c2 '(lognot y))
2923 (#.sb!xc:boole-and '(logand x y))
2924 (#.sb!xc:boole-ior '(logior x y))
2925 (#.sb!xc:boole-xor '(logxor x y))
2926 (#.sb!xc:boole-eqv '(logeqv x y))
2927 (#.sb!xc:boole-nand '(lognand x y))
2928 (#.sb!xc:boole-nor '(lognor x y))
2929 (#.sb!xc:boole-andc1 '(logandc1 x y))
2930 (#.sb!xc:boole-andc2 '(logandc2 x y))
2931 (#.sb!xc:boole-orc1 '(logorc1 x y))
2932 (#.sb!xc:boole-orc2 '(logorc2 x y))
2934 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
2937 ;;;; converting special case multiply/divide to shifts
2939 ;;; If arg is a constant power of two, turn * into a shift.
2940 (deftransform * ((x y) (integer integer) *)
2941 "convert x*2^k to shift"
2942 (unless (constant-lvar-p y)
2943 (give-up-ir1-transform))
2944 (let* ((y (lvar-value y))
2946 (len (1- (integer-length y-abs))))
2947 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2948 (give-up-ir1-transform))
2953 ;;; If arg is a constant power of two, turn FLOOR into a shift and
2954 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
2956 (flet ((frob (y ceil-p)
2957 (unless (constant-lvar-p y)
2958 (give-up-ir1-transform))
2959 (let* ((y (lvar-value y))
2961 (len (1- (integer-length y-abs))))
2962 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2963 (give-up-ir1-transform))
2964 (let ((shift (- len))
2966 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
2967 `(let ((x (+ x ,delta)))
2969 `(values (ash (- x) ,shift)
2970 (- (- (logand (- x) ,mask)) ,delta))
2971 `(values (ash x ,shift)
2972 (- (logand x ,mask) ,delta))))))))
2973 (deftransform floor ((x y) (integer integer) *)
2974 "convert division by 2^k to shift"
2976 (deftransform ceiling ((x y) (integer integer) *)
2977 "convert division by 2^k to shift"
2980 ;;; Do the same for MOD.
2981 (deftransform mod ((x y) (integer integer) *)
2982 "convert remainder mod 2^k to LOGAND"
2983 (unless (constant-lvar-p y)
2984 (give-up-ir1-transform))
2985 (let* ((y (lvar-value y))
2987 (len (1- (integer-length y-abs))))
2988 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
2989 (give-up-ir1-transform))
2990 (let ((mask (1- y-abs)))
2992 `(- (logand (- x) ,mask))
2993 `(logand x ,mask)))))
2995 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
2996 (deftransform truncate ((x y) (integer integer))
2997 "convert division by 2^k to shift"
2998 (unless (constant-lvar-p y)
2999 (give-up-ir1-transform))
3000 (let* ((y (lvar-value y))
3002 (len (1- (integer-length y-abs))))
3003 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3004 (give-up-ir1-transform))
3005 (let* ((shift (- len))
3008 (values ,(if (minusp y)
3010 `(- (ash (- x) ,shift)))
3011 (- (logand (- x) ,mask)))
3012 (values ,(if (minusp y)
3013 `(ash (- ,mask x) ,shift)
3015 (logand x ,mask))))))
3017 ;;; And the same for REM.
3018 (deftransform rem ((x y) (integer integer) *)
3019 "convert remainder mod 2^k to LOGAND"
3020 (unless (constant-lvar-p y)
3021 (give-up-ir1-transform))
3022 (let* ((y (lvar-value y))
3024 (len (1- (integer-length y-abs))))
3025 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3026 (give-up-ir1-transform))
3027 (let ((mask (1- y-abs)))
3029 (- (logand (- x) ,mask))
3030 (logand x ,mask)))))
3032 ;;;; arithmetic and logical identity operation elimination
3034 ;;; Flush calls to various arith functions that convert to the
3035 ;;; identity function or a constant.
3036 (macrolet ((def (name identity result)
3037 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3038 "fold identity operations"
3045 (def logxor -1 (lognot x))
3048 (deftransform logand ((x y) (* (constant-arg t)) *)
3049 "fold identity operation"
3050 (let ((y (lvar-value y)))
3051 (unless (and (plusp y)
3052 (= y (1- (ash 1 (integer-length y)))))
3053 (give-up-ir1-transform))
3054 (unless (csubtypep (lvar-type x)
3055 (specifier-type `(integer 0 ,y)))
3056 (give-up-ir1-transform))
3059 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3060 "fold identity operation"
3061 (let ((size (lvar-value size)))
3062 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3063 (give-up-ir1-transform))
3066 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3067 ;;; (* 0 -4.0) is -0.0.
3068 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3069 "convert (- 0 x) to negate"
3071 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3072 "convert (* x 0) to 0"
3075 ;;; Return T if in an arithmetic op including lvars X and Y, the
3076 ;;; result type is not affected by the type of X. That is, Y is at
3077 ;;; least as contagious as X.
3079 (defun not-more-contagious (x y)
3080 (declare (type continuation x y))
3081 (let ((x (lvar-type x))
3083 (values (type= (numeric-contagion x y)
3084 (numeric-contagion y y)))))
3085 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3086 ;;; XXX needs more work as valid transforms are missed; some cases are
3087 ;;; specific to particular transform functions so the use of this
3088 ;;; function may need a re-think.
3089 (defun not-more-contagious (x y)
3090 (declare (type lvar x y))
3091 (flet ((simple-numeric-type (num)
3092 (and (numeric-type-p num)
3093 ;; Return non-NIL if NUM is integer, rational, or a float
3094 ;; of some type (but not FLOAT)
3095 (case (numeric-type-class num)
3099 (numeric-type-format num))
3102 (let ((x (lvar-type x))
3104 (if (and (simple-numeric-type x)
3105 (simple-numeric-type y))
3106 (values (type= (numeric-contagion x y)
3107 (numeric-contagion y y)))))))
3111 ;;; If y is not constant, not zerop, or is contagious, or a positive
3112 ;;; float +0.0 then give up.
3113 (deftransform + ((x y) (t (constant-arg t)) *)
3115 (let ((val (lvar-value y)))
3116 (unless (and (zerop val)
3117 (not (and (floatp val) (plusp (float-sign val))))
3118 (not-more-contagious y x))
3119 (give-up-ir1-transform)))
3124 ;;; If y is not constant, not zerop, or is contagious, or a negative
3125 ;;; float -0.0 then give up.
3126 (deftransform - ((x y) (t (constant-arg t)) *)
3128 (let ((val (lvar-value y)))
3129 (unless (and (zerop val)
3130 (not (and (floatp val) (minusp (float-sign val))))
3131 (not-more-contagious y x))
3132 (give-up-ir1-transform)))
3135 ;;; Fold (OP x +/-1)
3136 (macrolet ((def (name result minus-result)
3137 `(deftransform ,name ((x y) (t (constant-arg real)) *)
3138 "fold identity operations"
3139 (let ((val (lvar-value y)))
3140 (unless (and (= (abs val) 1)
3141 (not-more-contagious y x))
3142 (give-up-ir1-transform))
3143 (if (minusp val) ',minus-result ',result)))))
3144 (def * x (%negate x))
3145 (def / x (%negate x))
3146 (def expt x (/ 1 x)))
3148 ;;; Fold (expt x n) into multiplications for small integral values of
3149 ;;; N; convert (expt x 1/2) to sqrt.
3150 (deftransform expt ((x y) (t (constant-arg real)) *)
3151 "recode as multiplication or sqrt"
3152 (let ((val (lvar-value y)))
3153 ;; If Y would cause the result to be promoted to the same type as
3154 ;; Y, we give up. If not, then the result will be the same type
3155 ;; as X, so we can replace the exponentiation with simple
3156 ;; multiplication and division for small integral powers.
3157 (unless (not-more-contagious y x)
3158 (give-up-ir1-transform))
3160 (let ((x-type (lvar-type x)))
3161 (cond ((csubtypep x-type (specifier-type '(or rational
3162 (complex rational))))
3164 ((csubtypep x-type (specifier-type 'real))
3168 ((csubtypep x-type (specifier-type 'complex))
3169 ;; both parts are float
3171 (t (give-up-ir1-transform)))))
3172 ((= val 2) '(* x x))
3173 ((= val -2) '(/ (* x x)))
3174 ((= val 3) '(* x x x))
3175 ((= val -3) '(/ (* x x x)))
3176 ((= val 1/2) '(sqrt x))
3177 ((= val -1/2) '(/ (sqrt x)))
3178 (t (give-up-ir1-transform)))))
3180 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3181 ;;; transformations?
3182 ;;; Perhaps we should have to prove that the denominator is nonzero before
3183 ;;; doing them? -- WHN 19990917
3184 (macrolet ((def (name)
3185 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3192 (macrolet ((def (name)
3193 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3202 ;;;; character operations
3204 (deftransform char-equal ((a b) (base-char base-char))
3206 '(let* ((ac (char-code a))
3208 (sum (logxor ac bc)))
3210 (when (eql sum #x20)
3211 (let ((sum (+ ac bc)))
3212 (or (and (> sum 161) (< sum 213))
3213 (and (> sum 415) (< sum 461))
3214 (and (> sum 463) (< sum 477))))))))
3216 (deftransform char-upcase ((x) (base-char))
3218 '(let ((n-code (char-code x)))
3219 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3220 (< n-code #o173)) ; Octal 172 is #\z.
3221 (and (> n-code #o337)
3223 (and (> n-code #o367)
3225 (code-char (logxor #x20 n-code))
3228 (deftransform char-downcase ((x) (base-char))
3230 '(let ((n-code (char-code x)))
3231 (if (or (and (> n-code 64) ; 65 is #\A.
3232 (< n-code 91)) ; 90 is #\Z.
3237 (code-char (logxor #x20 n-code))
3240 ;;;; equality predicate transforms
3242 ;;; Return true if X and Y are lvars whose only use is a
3243 ;;; reference to the same leaf, and the value of the leaf cannot
3245 (defun same-leaf-ref-p (x y)
3246 (declare (type lvar x y))
3247 (let ((x-use (principal-lvar-use x))
3248 (y-use (principal-lvar-use y)))
3251 (eq (ref-leaf x-use) (ref-leaf y-use))
3252 (constant-reference-p x-use))))
3254 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3255 ;;; if there is no intersection between the types of the arguments,
3256 ;;; then the result is definitely false.
3257 (deftransform simple-equality-transform ((x y) * *
3260 ((same-leaf-ref-p x y) t)
3261 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3263 (t (give-up-ir1-transform))))
3266 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3270 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3271 ;;; try to convert to a type-specific predicate or EQ:
3272 ;;; -- If both args are characters, convert to CHAR=. This is better than
3273 ;;; just converting to EQ, since CHAR= may have special compilation
3274 ;;; strategies for non-standard representations, etc.
3275 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3276 ;;; constant and if so, put X second. Doing this results in better
3277 ;;; code from the backend, since the backend assumes that any constant
3278 ;;; argument comes second.
3279 ;;; -- If either arg is definitely not a number or a fixnum, then we
3280 ;;; can compare with EQ.
3281 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3282 ;;; is constant then we put it second. If X is a subtype of Y, we put
3283 ;;; it second. These rules make it easier for the back end to match
3284 ;;; these interesting cases.
3285 (deftransform eql ((x y) * * :node node)
3286 "convert to simpler equality predicate"
3287 (let ((x-type (lvar-type x))
3288 (y-type (lvar-type y))
3289 (char-type (specifier-type 'character)))
3290 (flet ((simple-type-p (type)
3291 (csubtypep type (specifier-type '(or fixnum (not number)))))
3292 (fixnum-type-p (type)
3293 (csubtypep type (specifier-type 'fixnum))))
3295 ((same-leaf-ref-p x y) t)
3296 ((not (types-equal-or-intersect x-type y-type))
3298 ((and (csubtypep x-type char-type)
3299 (csubtypep y-type char-type))
3301 ((or (fixnum-type-p x-type) (fixnum-type-p y-type))
3302 (commutative-arg-swap node))
3303 ((or (simple-type-p x-type) (simple-type-p y-type))
3305 ((and (not (constant-lvar-p y))
3306 (or (constant-lvar-p x)
3307 (and (csubtypep x-type y-type)
3308 (not (csubtypep y-type x-type)))))
3311 (give-up-ir1-transform))))))
3313 ;;; similarly to the EQL transform above, we attempt to constant-fold
3314 ;;; or convert to a simpler predicate: mostly we have to be careful
3315 ;;; with strings and bit-vectors.
3316 (deftransform equal ((x y) * *)
3317 "convert to simpler equality predicate"
3318 (let ((x-type (lvar-type x))
3319 (y-type (lvar-type y))
3320 (string-type (specifier-type 'string))
3321 (bit-vector-type (specifier-type 'bit-vector)))
3323 ((same-leaf-ref-p x y) t)
3324 ((and (csubtypep x-type string-type)
3325 (csubtypep y-type string-type))
3327 ((and (csubtypep x-type bit-vector-type)
3328 (csubtypep y-type bit-vector-type))
3329 '(bit-vector-= x y))
3330 ;; if at least one is not a string, and at least one is not a
3331 ;; bit-vector, then we can reason from types.
3332 ((and (not (and (types-equal-or-intersect x-type string-type)
3333 (types-equal-or-intersect y-type string-type)))
3334 (not (and (types-equal-or-intersect x-type bit-vector-type)
3335 (types-equal-or-intersect y-type bit-vector-type)))
3336 (not (types-equal-or-intersect x-type y-type)))
3338 (t (give-up-ir1-transform)))))
3340 ;;; Convert to EQL if both args are rational and complexp is specified
3341 ;;; and the same for both.
3342 (deftransform = ((x y) * *)
3344 (let ((x-type (lvar-type x))
3345 (y-type (lvar-type y)))
3346 (if (and (csubtypep x-type (specifier-type 'number))
3347 (csubtypep y-type (specifier-type 'number)))
3348 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3349 (csubtypep y-type (specifier-type 'float)))
3350 (and (csubtypep x-type (specifier-type '(complex float)))
3351 (csubtypep y-type (specifier-type '(complex float)))))
3352 ;; They are both floats. Leave as = so that -0.0 is
3353 ;; handled correctly.
3354 (give-up-ir1-transform))
3355 ((or (and (csubtypep x-type (specifier-type 'rational))
3356 (csubtypep y-type (specifier-type 'rational)))
3357 (and (csubtypep x-type
3358 (specifier-type '(complex rational)))
3360 (specifier-type '(complex rational)))))
3361 ;; They are both rationals and complexp is the same.
3365 (give-up-ir1-transform
3366 "The operands might not be the same type.")))
3367 (give-up-ir1-transform
3368 "The operands might not be the same type."))))
3370 ;;; If LVAR's type is a numeric type, then return the type, otherwise
3371 ;;; GIVE-UP-IR1-TRANSFORM.
3372 (defun numeric-type-or-lose (lvar)
3373 (declare (type lvar lvar))
3374 (let ((res (lvar-type lvar)))
3375 (unless (numeric-type-p res) (give-up-ir1-transform))
3378 ;;; See whether we can statically determine (< X Y) using type
3379 ;;; information. If X's high bound is < Y's low, then X < Y.
3380 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3381 ;;; NIL). If not, at least make sure any constant arg is second.
3382 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3383 `(deftransform ,name ((x y))
3384 (if (same-leaf-ref-p x y)
3386 (let ((ix (or (type-approximate-interval (lvar-type x))
3387 (give-up-ir1-transform)))
3388 (iy (or (type-approximate-interval (lvar-type y))
3389 (give-up-ir1-transform))))
3394 ((and (constant-lvar-p x)
3395 (not (constant-lvar-p y)))
3398 (give-up-ir1-transform))))))))
3399 (def < > nil (interval-< ix iy) (interval->= ix iy))
3400 (def > < nil (interval-< iy ix) (interval->= iy ix))
3401 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3402 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3404 (defun ir1-transform-char< (x y first second inverse)
3406 ((same-leaf-ref-p x y) nil)
3407 ;; If we had interval representation of character types, as we
3408 ;; might eventually have to to support 2^21 characters, then here
3409 ;; we could do some compile-time computation as in transforms for
3410 ;; < above. -- CSR, 2003-07-01
3411 ((and (constant-lvar-p first)
3412 (not (constant-lvar-p second)))
3414 (t (give-up-ir1-transform))))
3416 (deftransform char< ((x y) (character character) *)
3417 (ir1-transform-char< x y x y 'char>))
3419 (deftransform char> ((x y) (character character) *)
3420 (ir1-transform-char< y x x y 'char<))
3422 ;;;; converting N-arg comparisons
3424 ;;;; We convert calls to N-arg comparison functions such as < into
3425 ;;;; two-arg calls. This transformation is enabled for all such
3426 ;;;; comparisons in this file. If any of these predicates are not
3427 ;;;; open-coded, then the transformation should be removed at some
3428 ;;;; point to avoid pessimization.
3430 ;;; This function is used for source transformation of N-arg
3431 ;;; comparison functions other than inequality. We deal both with
3432 ;;; converting to two-arg calls and inverting the sense of the test,
3433 ;;; if necessary. If the call has two args, then we pass or return a
3434 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3435 ;;; then we transform to code that returns true. Otherwise, we bind
3436 ;;; all the arguments and expand into a bunch of IFs.
3437 (declaim (ftype (function (symbol list boolean t) *) multi-compare))
3438 (defun multi-compare (predicate args not-p type)
3439 (let ((nargs (length args)))
3440 (cond ((< nargs 1) (values nil t))
3441 ((= nargs 1) `(progn (the ,type ,@args) t))
3444 `(if (,predicate ,(first args) ,(second args)) nil t)
3447 (do* ((i (1- nargs) (1- i))
3449 (current (gensym) (gensym))
3450 (vars (list current) (cons current vars))
3452 `(if (,predicate ,current ,last)
3454 `(if (,predicate ,current ,last)
3457 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3460 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3461 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3462 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3463 (define-source-transform <= (&rest args) (multi-compare '> args t 'real))
3464 (define-source-transform >= (&rest args) (multi-compare '< args t 'real))
3466 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3468 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3470 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3472 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3474 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3477 (define-source-transform char-equal (&rest args)
3478 (multi-compare 'char-equal args nil 'character))
3479 (define-source-transform char-lessp (&rest args)
3480 (multi-compare 'char-lessp args nil 'character))
3481 (define-source-transform char-greaterp (&rest args)
3482 (multi-compare 'char-greaterp args nil 'character))
3483 (define-source-transform char-not-greaterp (&rest args)
3484 (multi-compare 'char-greaterp args t 'character))
3485 (define-source-transform char-not-lessp (&rest args)
3486 (multi-compare 'char-lessp args t 'character))
3488 ;;; This function does source transformation of N-arg inequality
3489 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3490 ;;; arg cases. If there are more than two args, then we expand into
3491 ;;; the appropriate n^2 comparisons only when speed is important.
3492 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3493 (defun multi-not-equal (predicate args type)
3494 (let ((nargs (length args)))
3495 (cond ((< nargs 1) (values nil t))
3496 ((= nargs 1) `(progn (the ,type ,@args) t))
3498 `(if (,predicate ,(first args) ,(second args)) nil t))
3499 ((not (policy *lexenv*
3500 (and (>= speed space)
3501 (>= speed compilation-speed))))
3504 (let ((vars (make-gensym-list nargs)))
3505 (do ((var vars next)
3506 (next (cdr vars) (cdr next))
3509 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3511 (let ((v1 (first var)))
3513 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3515 (define-source-transform /= (&rest args)
3516 (multi-not-equal '= args 'number))
3517 (define-source-transform char/= (&rest args)
3518 (multi-not-equal 'char= args 'character))
3519 (define-source-transform char-not-equal (&rest args)
3520 (multi-not-equal 'char-equal args 'character))
3522 ;;; Expand MAX and MIN into the obvious comparisons.
3523 (define-source-transform max (arg0 &rest rest)
3524 (once-only ((arg0 arg0))
3526 `(values (the real ,arg0))
3527 `(let ((maxrest (max ,@rest)))
3528 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3529 (define-source-transform min (arg0 &rest rest)
3530 (once-only ((arg0 arg0))
3532 `(values (the real ,arg0))
3533 `(let ((minrest (min ,@rest)))
3534 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3536 ;;;; converting N-arg arithmetic functions
3538 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3539 ;;;; versions, and degenerate cases are flushed.
3541 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3542 (declaim (ftype (function (symbol t list) list) associate-args))
3543 (defun associate-args (function first-arg more-args)
3544 (let ((next (rest more-args))
3545 (arg (first more-args)))
3547 `(,function ,first-arg ,arg)
3548 (associate-args function `(,function ,first-arg ,arg) next))))
3550 ;;; Do source transformations for transitive functions such as +.
3551 ;;; One-arg cases are replaced with the arg and zero arg cases with
3552 ;;; the identity. ONE-ARG-RESULT-TYPE is, if non-NIL, the type to
3553 ;;; ensure (with THE) that the argument in one-argument calls is.
3554 (defun source-transform-transitive (fun args identity
3555 &optional one-arg-result-type)
3556 (declare (symbol fun) (list args))
3559 (1 (if one-arg-result-type
3560 `(values (the ,one-arg-result-type ,(first args)))
3561 `(values ,(first args))))
3564 (associate-args fun (first args) (rest args)))))
3566 (define-source-transform + (&rest args)
3567 (source-transform-transitive '+ args 0 'number))
3568 (define-source-transform * (&rest args)
3569 (source-transform-transitive '* args 1 'number))
3570 (define-source-transform logior (&rest args)
3571 (source-transform-transitive 'logior args 0 'integer))
3572 (define-source-transform logxor (&rest args)
3573 (source-transform-transitive 'logxor args 0 'integer))
3574 (define-source-transform logand (&rest args)
3575 (source-transform-transitive 'logand args -1 'integer))
3576 (define-source-transform logeqv (&rest args)
3577 (source-transform-transitive 'logeqv args -1 'integer))
3579 ;;; Note: we can't use SOURCE-TRANSFORM-TRANSITIVE for GCD and LCM
3580 ;;; because when they are given one argument, they return its absolute
3583 (define-source-transform gcd (&rest args)
3586 (1 `(abs (the integer ,(first args))))
3588 (t (associate-args 'gcd (first args) (rest args)))))
3590 (define-source-transform lcm (&rest args)
3593 (1 `(abs (the integer ,(first args))))
3595 (t (associate-args 'lcm (first args) (rest args)))))
3597 ;;; Do source transformations for intransitive n-arg functions such as
3598 ;;; /. With one arg, we form the inverse. With two args we pass.
3599 ;;; Otherwise we associate into two-arg calls.
3600 (declaim (ftype (function (symbol list t)
3601 (values list &optional (member nil t)))
3602 source-transform-intransitive))
3603 (defun source-transform-intransitive (function args inverse)
3605 ((0 2) (values nil t))
3606 (1 `(,@inverse ,(first args)))
3607 (t (associate-args function (first args) (rest args)))))
3609 (define-source-transform - (&rest args)
3610 (source-transform-intransitive '- args '(%negate)))
3611 (define-source-transform / (&rest args)
3612 (source-transform-intransitive '/ args '(/ 1)))
3614 ;;;; transforming APPLY
3616 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
3617 ;;; only needs to understand one kind of variable-argument call. It is
3618 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
3619 (define-source-transform apply (fun arg &rest more-args)
3620 (let ((args (cons arg more-args)))
3621 `(multiple-value-call ,fun
3622 ,@(mapcar (lambda (x)
3625 (values-list ,(car (last args))))))
3627 ;;;; transforming FORMAT
3629 ;;;; If the control string is a compile-time constant, then replace it
3630 ;;;; with a use of the FORMATTER macro so that the control string is
3631 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
3632 ;;;; or T and the control string is a function (i.e. FORMATTER), then
3633 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
3635 ;;; for compile-time argument count checking.
3637 ;;; FIXME II: In some cases, type information could be correlated; for
3638 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
3639 ;;; of a corresponding argument is known and does not intersect the
3640 ;;; list type, a warning could be signalled.
3641 (defun check-format-args (string args fun)
3642 (declare (type string string))
3643 (unless (typep string 'simple-string)
3644 (setq string (coerce string 'simple-string)))
3645 (multiple-value-bind (min max)
3646 (handler-case (sb!format:%compiler-walk-format-string string args)
3647 (sb!format:format-error (c)
3648 (compiler-warn "~A" c)))
3650 (let ((nargs (length args)))
3653 (warn 'format-too-few-args-warning
3655 "Too few arguments (~D) to ~S ~S: requires at least ~D."
3656 :format-arguments (list nargs fun string min)))
3658 (warn 'format-too-many-args-warning
3660 "Too many arguments (~D) to ~S ~S: uses at most ~D."
3661 :format-arguments (list nargs fun string max))))))))
3663 (defoptimizer (format optimizer) ((dest control &rest args))
3664 (when (constant-lvar-p control)
3665 (let ((x (lvar-value control)))
3667 (check-format-args x args 'format)))))
3669 ;;; We disable this transform in the cross-compiler to save memory in
3670 ;;; the target image; most of the uses of FORMAT in the compiler are for
3671 ;;; error messages, and those don't need to be particularly fast.
3673 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
3674 :policy (> speed space))
3675 (unless (constant-lvar-p control)
3676 (give-up-ir1-transform "The control string is not a constant."))
3677 (let ((arg-names (make-gensym-list (length args))))
3678 `(lambda (dest control ,@arg-names)
3679 (declare (ignore control))
3680 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
3682 (deftransform format ((stream control &rest args) (stream function &rest t) *
3683 :policy (> speed space))
3684 (let ((arg-names (make-gensym-list (length args))))
3685 `(lambda (stream control ,@arg-names)
3686 (funcall control stream ,@arg-names)
3689 (deftransform format ((tee control &rest args) ((member t) function &rest t) *
3690 :policy (> speed space))
3691 (let ((arg-names (make-gensym-list (length args))))
3692 `(lambda (tee control ,@arg-names)
3693 (declare (ignore tee))
3694 (funcall control *standard-output* ,@arg-names)
3699 `(defoptimizer (,name optimizer) ((control &rest args))
3700 (when (constant-lvar-p control)
3701 (let ((x (lvar-value control)))
3703 (check-format-args x args ',name)))))))
3706 #+sb-xc-host ; Only we should be using these
3709 (def compiler-abort)
3710 (def compiler-error)
3712 (def compiler-style-warn)
3713 (def compiler-notify)
3714 (def maybe-compiler-notify)
3717 (defoptimizer (cerror optimizer) ((report control &rest args))
3718 (when (and (constant-lvar-p control)
3719 (constant-lvar-p report))
3720 (let ((x (lvar-value control))
3721 (y (lvar-value report)))
3722 (when (and (stringp x) (stringp y))
3723 (multiple-value-bind (min1 max1)
3725 (sb!format:%compiler-walk-format-string x args)
3726 (sb!format:format-error (c)
3727 (compiler-warn "~A" c)))
3729 (multiple-value-bind (min2 max2)
3731 (sb!format:%compiler-walk-format-string y args)
3732 (sb!format:format-error (c)
3733 (compiler-warn "~A" c)))
3735 (let ((nargs (length args)))
3737 ((< nargs (min min1 min2))
3738 (warn 'format-too-few-args-warning
3740 "Too few arguments (~D) to ~S ~S ~S: ~
3741 requires at least ~D."
3743 (list nargs 'cerror y x (min min1 min2))))
3744 ((> nargs (max max1 max2))
3745 (warn 'format-too-many-args-warning
3747 "Too many arguments (~D) to ~S ~S ~S: ~
3750 (list nargs 'cerror y x (max max1 max2))))))))))))))
3752 (defoptimizer (coerce derive-type) ((value type))
3754 ((constant-lvar-p type)
3755 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
3756 ;; but dealing with the niggle that complex canonicalization gets
3757 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
3759 (let* ((specifier (lvar-value type))
3760 (result-typeoid (careful-specifier-type specifier)))
3762 ((null result-typeoid) nil)
3763 ((csubtypep result-typeoid (specifier-type 'number))
3764 ;; the difficult case: we have to cope with ANSI 12.1.5.3
3765 ;; Rule of Canonical Representation for Complex Rationals,
3766 ;; which is a truly nasty delivery to field.
3768 ((csubtypep result-typeoid (specifier-type 'real))
3769 ;; cleverness required here: it would be nice to deduce
3770 ;; that something of type (INTEGER 2 3) coerced to type
3771 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
3772 ;; FLOAT gets its own clause because it's implemented as
3773 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
3776 ((and (numeric-type-p result-typeoid)
3777 (eq (numeric-type-complexp result-typeoid) :real))
3778 ;; FIXME: is this clause (a) necessary or (b) useful?
3780 ((or (csubtypep result-typeoid
3781 (specifier-type '(complex single-float)))
3782 (csubtypep result-typeoid
3783 (specifier-type '(complex double-float)))
3785 (csubtypep result-typeoid
3786 (specifier-type '(complex long-float))))
3787 ;; float complex types are never canonicalized.
3790 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
3791 ;; probably just a COMPLEX or equivalent. So, in that
3792 ;; case, we will return a complex or an object of the
3793 ;; provided type if it's rational:
3794 (type-union result-typeoid
3795 (type-intersection (lvar-type value)
3796 (specifier-type 'rational))))))
3797 (t result-typeoid))))
3799 ;; OK, the result-type argument isn't constant. However, there
3800 ;; are common uses where we can still do better than just
3801 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
3802 ;; where Y is of a known type. See messages on cmucl-imp
3803 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
3804 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
3805 ;; the basis that it's unlikely that other uses are both
3806 ;; time-critical and get to this branch of the COND (non-constant
3807 ;; second argument to COERCE). -- CSR, 2002-12-16
3808 (let ((value-type (lvar-type value))
3809 (type-type (lvar-type type)))
3811 ((good-cons-type-p (cons-type)
3812 ;; Make sure the cons-type we're looking at is something
3813 ;; we're prepared to handle which is basically something
3814 ;; that array-element-type can return.
3815 (or (and (member-type-p cons-type)
3816 (null (rest (member-type-members cons-type)))
3817 (null (first (member-type-members cons-type))))
3818 (let ((car-type (cons-type-car-type cons-type)))
3819 (and (member-type-p car-type)
3820 (null (rest (member-type-members car-type)))
3821 (or (symbolp (first (member-type-members car-type)))
3822 (numberp (first (member-type-members car-type)))
3823 (and (listp (first (member-type-members
3825 (numberp (first (first (member-type-members
3827 (good-cons-type-p (cons-type-cdr-type cons-type))))))
3828 (unconsify-type (good-cons-type)
3829 ;; Convert the "printed" respresentation of a cons
3830 ;; specifier into a type specifier. That is, the
3831 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
3832 ;; NULL)) is converted to (SIGNED-BYTE 16).
3833 (cond ((or (null good-cons-type)
3834 (eq good-cons-type 'null))
3836 ((and (eq (first good-cons-type) 'cons)
3837 (eq (first (second good-cons-type)) 'member))
3838 `(,(second (second good-cons-type))
3839 ,@(unconsify-type (caddr good-cons-type))))))
3840 (coerceable-p (c-type)
3841 ;; Can the value be coerced to the given type? Coerce is
3842 ;; complicated, so we don't handle every possible case
3843 ;; here---just the most common and easiest cases:
3845 ;; * Any REAL can be coerced to a FLOAT type.
3846 ;; * Any NUMBER can be coerced to a (COMPLEX
3847 ;; SINGLE/DOUBLE-FLOAT).
3849 ;; FIXME I: we should also be able to deal with characters
3852 ;; FIXME II: I'm not sure that anything is necessary
3853 ;; here, at least while COMPLEX is not a specialized
3854 ;; array element type in the system. Reasoning: if
3855 ;; something cannot be coerced to the requested type, an
3856 ;; error will be raised (and so any downstream compiled
3857 ;; code on the assumption of the returned type is
3858 ;; unreachable). If something can, then it will be of
3859 ;; the requested type, because (by assumption) COMPLEX
3860 ;; (and other difficult types like (COMPLEX INTEGER)
3861 ;; aren't specialized types.
3862 (let ((coerced-type c-type))
3863 (or (and (subtypep coerced-type 'float)
3864 (csubtypep value-type (specifier-type 'real)))
3865 (and (subtypep coerced-type
3866 '(or (complex single-float)
3867 (complex double-float)))
3868 (csubtypep value-type (specifier-type 'number))))))
3869 (process-types (type)
3870 ;; FIXME: This needs some work because we should be able
3871 ;; to derive the resulting type better than just the
3872 ;; type arg of coerce. That is, if X is (INTEGER 10
3873 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
3874 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
3876 (cond ((member-type-p type)
3877 (let ((members (member-type-members type)))
3878 (if (every #'coerceable-p members)
3879 (specifier-type `(or ,@members))
3881 ((and (cons-type-p type)
3882 (good-cons-type-p type))
3883 (let ((c-type (unconsify-type (type-specifier type))))
3884 (if (coerceable-p c-type)
3885 (specifier-type c-type)
3888 *universal-type*))))
3889 (cond ((union-type-p type-type)
3890 (apply #'type-union (mapcar #'process-types
3891 (union-type-types type-type))))
3892 ((or (member-type-p type-type)
3893 (cons-type-p type-type))
3894 (process-types type-type))
3896 *universal-type*)))))))
3898 (defoptimizer (compile derive-type) ((nameoid function))
3899 (when (csubtypep (lvar-type nameoid)
3900 (specifier-type 'null))
3901 (values-specifier-type '(values function boolean boolean))))
3903 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
3904 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
3905 ;;; optimizer, above).
3906 (defoptimizer (array-element-type derive-type) ((array))
3907 (let ((array-type (lvar-type array)))
3908 (labels ((consify (list)
3911 `(cons (eql ,(car list)) ,(consify (rest list)))))
3912 (get-element-type (a)
3914 (type-specifier (array-type-specialized-element-type a))))
3915 (cond ((eq element-type '*)
3916 (specifier-type 'type-specifier))
3917 ((symbolp element-type)
3918 (make-member-type :members (list element-type)))
3919 ((consp element-type)
3920 (specifier-type (consify element-type)))
3922 (error "can't understand type ~S~%" element-type))))))
3923 (cond ((array-type-p array-type)
3924 (get-element-type array-type))
3925 ((union-type-p array-type)
3927 (mapcar #'get-element-type (union-type-types array-type))))
3929 *universal-type*)))))
3931 ;;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3932 ;;; isn't really related to the CMU CL code, since instead of trying
3933 ;;; to generalize the CMU CL code to allow START and END values, this
3934 ;;; code has been written from scratch following Chapter 7 of
3935 ;;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3936 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
3937 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
3938 ;; isn't really related to the CMU CL code, since instead of trying
3939 ;; to generalize the CMU CL code to allow START and END values, this
3940 ;; code has been written from scratch following Chapter 7 of
3941 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
3942 `(macrolet ((%index (x) `(truly-the index ,x))
3943 (%parent (i) `(ash ,i -1))
3944 (%left (i) `(%index (ash ,i 1)))
3945 (%right (i) `(%index (1+ (ash ,i 1))))
3948 (left (%left i) (%left i)))
3949 ((> left current-heap-size))
3950 (declare (type index i left))
3951 (let* ((i-elt (%elt i))
3952 (i-key (funcall keyfun i-elt))
3953 (left-elt (%elt left))
3954 (left-key (funcall keyfun left-elt)))
3955 (multiple-value-bind (large large-elt large-key)
3956 (if (funcall ,',predicate i-key left-key)
3957 (values left left-elt left-key)
3958 (values i i-elt i-key))
3959 (let ((right (%right i)))
3960 (multiple-value-bind (largest largest-elt)
3961 (if (> right current-heap-size)
3962 (values large large-elt)
3963 (let* ((right-elt (%elt right))
3964 (right-key (funcall keyfun right-elt)))
3965 (if (funcall ,',predicate large-key right-key)
3966 (values right right-elt)
3967 (values large large-elt))))
3968 (cond ((= largest i)
3971 (setf (%elt i) largest-elt
3972 (%elt largest) i-elt
3974 (%sort-vector (keyfun &optional (vtype 'vector))
3975 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
3976 ;; trouble getting type inference to
3977 ;; propagate all the way through this
3978 ;; tangled mess of inlining. The TRULY-THE
3979 ;; here works around that. -- WHN
3981 `(aref (truly-the ,',vtype ,',',vector)
3982 (%index (+ (%index ,i) start-1)))))
3983 (let (;; Heaps prefer 1-based addressing.
3984 (start-1 (1- ,',start))
3985 (current-heap-size (- ,',end ,',start))
3987 (declare (type (integer -1 #.(1- most-positive-fixnum))
3989 (declare (type index current-heap-size))
3990 (declare (type function keyfun))
3991 (loop for i of-type index
3992 from (ash current-heap-size -1) downto 1 do
3995 (when (< current-heap-size 2)
3997 (rotatef (%elt 1) (%elt current-heap-size))
3998 (decf current-heap-size)
4000 (if (typep ,vector 'simple-vector)
4001 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4002 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4004 ;; Special-casing the KEY=NIL case lets us avoid some
4006 (%sort-vector #'identity simple-vector)
4007 (%sort-vector ,key simple-vector))
4008 ;; It's hard to anticipate many speed-critical applications for
4009 ;; sorting vector types other than (VECTOR T), so we just lump
4010 ;; them all together in one slow dynamically typed mess.
4012 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4013 (%sort-vector (or ,key #'identity))))))
4015 ;;;; debuggers' little helpers
4017 ;;; for debugging when transforms are behaving mysteriously,
4018 ;;; e.g. when debugging a problem with an ASH transform
4019 ;;; (defun foo (&optional s)
4020 ;;; (sb-c::/report-lvar s "S outside WHEN")
4021 ;;; (when (and (integerp s) (> s 3))
4022 ;;; (sb-c::/report-lvar s "S inside WHEN")
4023 ;;; (let ((bound (ash 1 (1- s))))
4024 ;;; (sb-c::/report-lvar bound "BOUND")
4025 ;;; (let ((x (- bound))
4027 ;;; (sb-c::/report-lvar x "X")
4028 ;;; (sb-c::/report-lvar x "Y"))
4029 ;;; `(integer ,(- bound) ,(1- bound)))))
4030 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4031 ;;; and the function doesn't do anything at all.)
4034 (defknown /report-lvar (t t) null)
4035 (deftransform /report-lvar ((x message) (t t))
4036 (format t "~%/in /REPORT-LVAR~%")
4037 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4038 (when (constant-lvar-p x)
4039 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4040 (format t "/MESSAGE=~S~%" (lvar-value message))
4041 (give-up-ir1-transform "not a real transform"))
4042 (defun /report-lvar (x message)
4043 (declare (ignore x message))))
4046 ;;;; Transforms for internal compiler utilities
4048 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4049 ;;; checking that it's still valid at run-time.
4050 (deftransform policy-quality ((policy quality-name)
4052 (unless (and (constant-lvar-p quality-name)
4053 (policy-quality-name-p (lvar-value quality-name)))
4054 (give-up-ir1-transform))
4055 `(let* ((acons (assoc quality-name policy))
4056 (result (or (cdr acons) 1)))