1 ;;;; This file contains macro-like source transformations which
2 ;;;; convert uses of certain functions into the canonical form desired
3 ;;;; within the compiler. FIXME: and other IR1 transforms and stuff.
5 ;;;; This software is part of the SBCL system. See the README file for
8 ;;;; This software is derived from the CMU CL system, which was
9 ;;;; written at Carnegie Mellon University and released into the
10 ;;;; public domain. The software is in the public domain and is
11 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
12 ;;;; files for more information.
16 ;;; We turn IDENTITY into PROG1 so that it is obvious that it just
17 ;;; returns the first value of its argument. Ditto for VALUES with one
19 (define-source-transform identity (x) `(prog1 ,x))
20 (define-source-transform values (x) `(prog1 ,x))
22 ;;; CONSTANTLY is pretty much never worth transforming, but it's good to get the type.
23 (defoptimizer (constantly derive-type) ((value))
25 `(function (&rest t) (values ,(type-specifier (lvar-type value)) &optional))))
27 ;;; If the function has a known number of arguments, then return a
28 ;;; lambda with the appropriate fixed number of args. If the
29 ;;; destination is a FUNCALL, then do the &REST APPLY thing, and let
30 ;;; MV optimization figure things out.
31 (deftransform complement ((fun) * * :node node)
33 (multiple-value-bind (min max)
34 (fun-type-nargs (lvar-type fun))
36 ((and min (eql min max))
37 (let ((dums (make-gensym-list min)))
38 `#'(lambda ,dums (not (funcall fun ,@dums)))))
39 ((awhen (node-lvar node)
40 (let ((dest (lvar-dest it)))
41 (and (combination-p dest)
42 (eq (combination-fun dest) it))))
43 '#'(lambda (&rest args)
44 (not (apply fun args))))
46 (give-up-ir1-transform
47 "The function doesn't have a fixed argument count.")))))
50 (defun derive-symbol-value-type (lvar node)
51 (if (constant-lvar-p lvar)
52 (let* ((sym (lvar-value lvar))
53 (var (maybe-find-free-var sym))
55 (let ((*lexenv* (node-lexenv node)))
56 (lexenv-find var type-restrictions))))
57 (global-type (info :variable :type sym)))
59 (type-intersection local-type global-type)
63 (defoptimizer (symbol-value derive-type) ((symbol) node)
64 (derive-symbol-value-type symbol node))
66 (defoptimizer (symbol-global-value derive-type) ((symbol) node)
67 (derive-symbol-value-type symbol node))
71 ;;; Translate CxR into CAR/CDR combos.
72 (defun source-transform-cxr (form)
73 (if (/= (length form) 2)
75 (let* ((name (car form))
79 (leaf (leaf-source-name name))))))
80 (do ((i (- (length string) 2) (1- i))
82 `(,(ecase (char string i)
88 ;;; Make source transforms to turn CxR forms into combinations of CAR
89 ;;; and CDR. ANSI specifies that everything up to 4 A/D operations is
91 ;;; Don't transform CAD*R, they are treated specially for &more args
94 (/show0 "about to set CxR source transforms")
95 (loop for i of-type index from 2 upto 4 do
96 ;; Iterate over BUF = all names CxR where x = an I-element
97 ;; string of #\A or #\D characters.
98 (let ((buf (make-string (+ 2 i))))
99 (setf (aref buf 0) #\C
100 (aref buf (1+ i)) #\R)
101 (dotimes (j (ash 2 i))
102 (declare (type index j))
104 (declare (type index k))
105 (setf (aref buf (1+ k))
106 (if (logbitp k j) #\A #\D)))
107 (unless (member buf '("CADR" "CADDR" "CADDDR")
109 (setf (info :function :source-transform (intern buf))
110 #'source-transform-cxr)))))
111 (/show0 "done setting CxR source transforms")
113 ;;; Turn FIRST..FOURTH and REST into the obvious synonym, assuming
114 ;;; whatever is right for them is right for us. FIFTH..TENTH turn into
115 ;;; Nth, which can be expanded into a CAR/CDR later on if policy
117 (define-source-transform rest (x) `(cdr ,x))
118 (define-source-transform first (x) `(car ,x))
119 (define-source-transform second (x) `(cadr ,x))
120 (define-source-transform third (x) `(caddr ,x))
121 (define-source-transform fourth (x) `(cadddr ,x))
122 (define-source-transform fifth (x) `(nth 4 ,x))
123 (define-source-transform sixth (x) `(nth 5 ,x))
124 (define-source-transform seventh (x) `(nth 6 ,x))
125 (define-source-transform eighth (x) `(nth 7 ,x))
126 (define-source-transform ninth (x) `(nth 8 ,x))
127 (define-source-transform tenth (x) `(nth 9 ,x))
129 ;;; LIST with one arg is an extremely common operation (at least inside
130 ;;; SBCL itself); translate it to CONS to take advantage of common
131 ;;; allocation routines.
132 (define-source-transform list (&rest args)
134 (1 `(cons ,(first args) nil))
137 (defoptimizer (list derive-type) ((&rest args) node)
139 (specifier-type 'cons)
140 (specifier-type 'null)))
142 ;;; And similarly for LIST*.
143 (define-source-transform list* (arg &rest others)
144 (cond ((not others) arg)
145 ((not (cdr others)) `(cons ,arg ,(car others)))
148 (defoptimizer (list* derive-type) ((arg &rest args))
150 (specifier-type 'cons)
155 (define-source-transform nconc (&rest args)
161 ;;; (append nil nil nil fixnum) => fixnum
162 ;;; (append x x cons x x) => cons
163 ;;; (append x x x x list) => list
164 ;;; (append x x x x sequence) => sequence
165 ;;; (append fixnum x ...) => nil
166 (defun derive-append-type (args)
168 (specifier-type 'null))
170 (let ((cons-type (specifier-type 'cons))
171 (null-type (specifier-type 'null))
172 (list-type (specifier-type 'list))
173 (last (lvar-type (car (last args)))))
175 ;; Check that all but the last arguments are lists first
176 (loop for (arg next) on args
179 (let ((lvar-type (lvar-type arg)))
180 (unless (or (csubtypep list-type lvar-type)
181 (csubtypep lvar-type list-type)
182 ;; Check for NIL specifically, because
183 ;; SYMBOL or ATOM won't satisfie the above
184 (csubtypep null-type lvar-type))
185 (assert-lvar-type arg list-type
186 (lexenv-policy *lexenv*))
187 (return *empty-type*))))
188 (loop with all-nil = t
189 for (arg next) on args
190 for lvar-type = (lvar-type arg)
194 ;; Cons in the middle guarantees the result will be a cons
195 ((csubtypep lvar-type cons-type)
197 ;; If all but the last are NIL the type of the last arg
199 ((csubtypep lvar-type null-type))
206 ((csubtypep last cons-type)
208 ((csubtypep last list-type)
210 ;; If the last is SEQUENCE (or similar) it'll
211 ;; be either that sequence or a cons, which is a
213 ((csubtypep list-type last)
216 (defoptimizer (append derive-type) ((&rest args))
217 (derive-append-type args))
219 (defoptimizer (sb!impl::append2 derive-type) ((&rest args))
220 (derive-append-type args))
222 (defoptimizer (nconc derive-type) ((&rest args))
223 (derive-append-type args))
225 ;;; Translate RPLACx to LET and SETF.
226 (define-source-transform rplaca (x y)
231 (define-source-transform rplacd (x y)
237 (deftransform last ((list &optional n) (t &optional t))
238 (let ((c (constant-lvar-p n)))
240 (and c (eql 1 (lvar-value n))))
242 ((and c (eql 0 (lvar-value n)))
245 (let ((type (lvar-type n)))
246 (cond ((csubtypep type (specifier-type 'fixnum))
247 '(%lastn/fixnum list n))
248 ((csubtypep type (specifier-type 'bignum))
249 '(%lastn/bignum list n))
251 (give-up-ir1-transform "second argument type too vague"))))))))
253 (define-source-transform gethash (&rest args)
255 (2 `(sb!impl::gethash3 ,@args nil))
256 (3 `(sb!impl::gethash3 ,@args))
258 (define-source-transform get (&rest args)
260 (2 `(sb!impl::get2 ,@args))
261 (3 `(sb!impl::get3 ,@args))
264 (defvar *default-nthcdr-open-code-limit* 6)
265 (defvar *extreme-nthcdr-open-code-limit* 20)
267 (deftransform nthcdr ((n l) (unsigned-byte t) * :node node)
268 "convert NTHCDR to CAxxR"
269 (unless (constant-lvar-p n)
270 (give-up-ir1-transform))
271 (let ((n (lvar-value n)))
273 (if (policy node (and (= speed 3) (= space 0)))
274 *extreme-nthcdr-open-code-limit*
275 *default-nthcdr-open-code-limit*))
276 (give-up-ir1-transform))
281 `(cdr ,(frob (1- n))))))
284 ;;;; arithmetic and numerology
286 (define-source-transform plusp (x) `(> ,x 0))
287 (define-source-transform minusp (x) `(< ,x 0))
288 (define-source-transform zerop (x) `(= ,x 0))
290 (define-source-transform 1+ (x) `(+ ,x 1))
291 (define-source-transform 1- (x) `(- ,x 1))
293 (define-source-transform oddp (x) `(logtest ,x 1))
294 (define-source-transform evenp (x) `(not (logtest ,x 1)))
296 ;;; Note that all the integer division functions are available for
297 ;;; inline expansion.
299 (macrolet ((deffrob (fun)
300 `(define-source-transform ,fun (x &optional (y nil y-p))
307 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
309 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
312 ;;; This used to be a source transform (hence the lack of restrictions
313 ;;; on the argument types), but we make it a regular transform so that
314 ;;; the VM has a chance to see the bare LOGTEST and potentiall choose
315 ;;; to implement it differently. --njf, 06-02-2006
317 ;;; Other transforms may be useful even with direct LOGTEST VOPs; let
318 ;;; them fire (including the type-directed constant folding below), but
319 ;;; disable the inlining rewrite in such cases. -- PK, 2013-05-20
320 (deftransform logtest ((x y) * * :node node)
321 (let ((type (two-arg-derive-type x y
322 #'logand-derive-type-aux
324 (multiple-value-bind (typep definitely)
326 (cond ((and (not typep) definitely)
328 ((type= type (specifier-type '(eql 0)))
330 ((neq :default (combination-implementation-style node))
331 (give-up-ir1-transform))
333 `(not (zerop (logand x y))))))))
335 (deftransform logbitp
336 ((index integer) (unsigned-byte (or (signed-byte #.sb!vm:n-word-bits)
337 (unsigned-byte #.sb!vm:n-word-bits))))
338 `(if (>= index #.sb!vm:n-word-bits)
340 (not (zerop (logand integer (ash 1 index))))))
342 (define-source-transform byte (size position)
343 `(cons ,size ,position))
344 (define-source-transform byte-size (spec) `(car ,spec))
345 (define-source-transform byte-position (spec) `(cdr ,spec))
346 (define-source-transform ldb-test (bytespec integer)
347 `(not (zerop (mask-field ,bytespec ,integer))))
349 ;;; With the ratio and complex accessors, we pick off the "identity"
350 ;;; case, and use a primitive to handle the cell access case.
351 (define-source-transform numerator (num)
352 (once-only ((n-num `(the rational ,num)))
356 (define-source-transform denominator (num)
357 (once-only ((n-num `(the rational ,num)))
359 (%denominator ,n-num)
362 ;;;; interval arithmetic for computing bounds
364 ;;;; This is a set of routines for operating on intervals. It
365 ;;;; implements a simple interval arithmetic package. Although SBCL
366 ;;;; has an interval type in NUMERIC-TYPE, we choose to use our own
367 ;;;; for two reasons:
369 ;;;; 1. This package is simpler than NUMERIC-TYPE.
371 ;;;; 2. It makes debugging much easier because you can just strip
372 ;;;; out these routines and test them independently of SBCL. (This is a
375 ;;;; One disadvantage is a probable increase in consing because we
376 ;;;; have to create these new interval structures even though
377 ;;;; numeric-type has everything we want to know. Reason 2 wins for
380 ;;; Support operations that mimic real arithmetic comparison
381 ;;; operators, but imposing a total order on the floating points such
382 ;;; that negative zeros are strictly less than positive zeros.
383 (macrolet ((def (name op)
386 (if (and (floatp x) (floatp y) (zerop x) (zerop y))
387 (,op (float-sign x) (float-sign y))
389 (def signed-zero->= >=)
390 (def signed-zero-> >)
391 (def signed-zero-= =)
392 (def signed-zero-< <)
393 (def signed-zero-<= <=))
395 ;;; The basic interval type. It can handle open and closed intervals.
396 ;;; A bound is open if it is a list containing a number, just like
397 ;;; Lisp says. NIL means unbounded.
398 (defstruct (interval (:constructor %make-interval)
402 (defun make-interval (&key low high)
403 (labels ((normalize-bound (val)
406 (float-infinity-p val))
407 ;; Handle infinities.
411 ;; Handle any closed bounds.
414 ;; We have an open bound. Normalize the numeric
415 ;; bound. If the normalized bound is still a number
416 ;; (not nil), keep the bound open. Otherwise, the
417 ;; bound is really unbounded, so drop the openness.
418 (let ((new-val (normalize-bound (first val))))
420 ;; The bound exists, so keep it open still.
423 (error "unknown bound type in MAKE-INTERVAL")))))
424 (%make-interval :low (normalize-bound low)
425 :high (normalize-bound high))))
427 ;;; Given a number X, create a form suitable as a bound for an
428 ;;; interval. Make the bound open if OPEN-P is T. NIL remains NIL.
429 #!-sb-fluid (declaim (inline set-bound))
430 (defun set-bound (x open-p)
431 (if (and x open-p) (list x) x))
433 ;;; Apply the function F to a bound X. If X is an open bound and the
434 ;;; function is declared strictly monotonic, then the result will be
435 ;;; open. IF X is NIL, the result is NIL.
436 (defun bound-func (f x strict)
437 (declare (type function f))
440 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
441 ;; With these traps masked, we might get things like infinity
442 ;; or negative infinity returned. Check for this and return
443 ;; NIL to indicate unbounded.
444 (let ((y (funcall f (type-bound-number x))))
446 (float-infinity-p y))
448 (set-bound y (and strict (consp x))))))
449 ;; Some numerical operations will signal SIMPLE-TYPE-ERROR, e.g.
450 ;; in the course of converting a bignum to a float. Default to
452 (simple-type-error ()))))
454 (defun safe-double-coercion-p (x)
455 (or (typep x 'double-float)
456 (<= most-negative-double-float x most-positive-double-float)))
458 (defun safe-single-coercion-p (x)
459 (or (typep x 'single-float)
461 ;; Fix for bug 420, and related issues: during type derivation we often
462 ;; end up deriving types for both
464 ;; (some-op <int> <single>)
466 ;; (some-op (coerce <int> 'single-float) <single>)
468 ;; or other equivalent transformed forms. The problem with this
469 ;; is that on x86 (+ <int> <single>) is on the machine level
472 ;; (coerce (+ (coerce <int> 'double-float)
473 ;; (coerce <single> 'double-float))
476 ;; so if the result of (coerce <int> 'single-float) is not exact, the
477 ;; derived types for the transformed forms will have an empty
478 ;; intersection -- which in turn means that the compiler will conclude
479 ;; that the call never returns, and all hell breaks lose when it *does*
480 ;; return at runtime. (This affects not just +, but other operators are
483 ;; See also: SAFE-CTYPE-FOR-SINGLE-COERCION-P
485 ;; FIXME: If we ever add SSE-support for x86, this conditional needs to
488 (not (typep x `(or (integer * (,most-negative-exactly-single-float-fixnum))
489 (integer (,most-positive-exactly-single-float-fixnum) *))))
490 (<= most-negative-single-float x most-positive-single-float))))
492 ;;; Apply a binary operator OP to two bounds X and Y. The result is
493 ;;; NIL if either is NIL. Otherwise bound is computed and the result
494 ;;; is open if either X or Y is open.
496 ;;; FIXME: only used in this file, not needed in target runtime
498 ;;; ANSI contaigon specifies coercion to floating point if one of the
499 ;;; arguments is floating point. Here we should check to be sure that
500 ;;; the other argument is within the bounds of that floating point
503 (defmacro safely-binop (op x y)
505 ((typep ,x 'double-float)
506 (when (safe-double-coercion-p ,y)
508 ((typep ,y 'double-float)
509 (when (safe-double-coercion-p ,x)
511 ((typep ,x 'single-float)
512 (when (safe-single-coercion-p ,y)
514 ((typep ,y 'single-float)
515 (when (safe-single-coercion-p ,x)
519 (defmacro bound-binop (op x y)
520 (with-unique-names (xb yb res)
522 (with-float-traps-masked (:underflow :overflow :inexact :divide-by-zero)
523 (let* ((,xb (type-bound-number ,x))
524 (,yb (type-bound-number ,y))
525 (,res (safely-binop ,op ,xb ,yb)))
527 (and (or (consp ,x) (consp ,y))
528 ;; Open bounds can very easily be messed up
529 ;; by FP rounding, so take care here.
532 ;; Multiplying a greater-than-zero with
533 ;; less than one can round to zero.
534 `(or (not (fp-zero-p ,res))
535 (cond ((and (consp ,x) (fp-zero-p ,xb))
537 ((and (consp ,y) (fp-zero-p ,yb))
540 ;; Dividing a greater-than-zero with
541 ;; greater than one can round to zero.
542 `(or (not (fp-zero-p ,res))
543 (cond ((and (consp ,x) (fp-zero-p ,xb))
545 ((and (consp ,y) (fp-zero-p ,yb))
548 ;; Adding or subtracting greater-than-zero
549 ;; can end up with identity.
550 `(and (not (fp-zero-p ,xb))
551 (not (fp-zero-p ,yb))))))))))))
553 (defun coercion-loses-precision-p (val type)
556 (double-float (subtypep type 'single-float))
557 (rational (subtypep type 'float))
558 (t (bug "Unexpected arguments to bounds coercion: ~S ~S" val type))))
560 (defun coerce-for-bound (val type)
562 (let ((xbound (coerce-for-bound (car val) type)))
563 (if (coercion-loses-precision-p (car val) type)
567 ((subtypep type 'double-float)
568 (if (<= most-negative-double-float val most-positive-double-float)
570 ((or (subtypep type 'single-float) (subtypep type 'float))
571 ;; coerce to float returns a single-float
572 (if (<= most-negative-single-float val most-positive-single-float)
574 (t (coerce val type)))))
576 (defun coerce-and-truncate-floats (val type)
579 (let ((xbound (coerce-for-bound (car val) type)))
580 (if (coercion-loses-precision-p (car val) type)
584 ((subtypep type 'double-float)
585 (if (<= most-negative-double-float val most-positive-double-float)
587 (if (< val most-negative-double-float)
588 most-negative-double-float most-positive-double-float)))
589 ((or (subtypep type 'single-float) (subtypep type 'float))
590 ;; coerce to float returns a single-float
591 (if (<= most-negative-single-float val most-positive-single-float)
593 (if (< val most-negative-single-float)
594 most-negative-single-float most-positive-single-float)))
595 (t (coerce val type))))))
597 ;;; Convert a numeric-type object to an interval object.
598 (defun numeric-type->interval (x)
599 (declare (type numeric-type x))
600 (make-interval :low (numeric-type-low x)
601 :high (numeric-type-high x)))
603 (defun type-approximate-interval (type)
604 (declare (type ctype type))
605 (let ((types (prepare-arg-for-derive-type type))
608 (let ((type (if (member-type-p type)
609 (convert-member-type type)
611 (unless (numeric-type-p type)
612 (return-from type-approximate-interval nil))
613 (let ((interval (numeric-type->interval type)))
616 (interval-approximate-union result interval)
620 (defun copy-interval-limit (limit)
625 (defun copy-interval (x)
626 (declare (type interval x))
627 (make-interval :low (copy-interval-limit (interval-low x))
628 :high (copy-interval-limit (interval-high x))))
630 ;;; Given a point P contained in the interval X, split X into two
631 ;;; intervals at the point P. If CLOSE-LOWER is T, then the left
632 ;;; interval contains P. If CLOSE-UPPER is T, the right interval
633 ;;; contains P. You can specify both to be T or NIL.
634 (defun interval-split (p x &optional close-lower close-upper)
635 (declare (type number p)
637 (list (make-interval :low (copy-interval-limit (interval-low x))
638 :high (if close-lower p (list p)))
639 (make-interval :low (if close-upper (list p) p)
640 :high (copy-interval-limit (interval-high x)))))
642 ;;; Return the closure of the interval. That is, convert open bounds
643 ;;; to closed bounds.
644 (defun interval-closure (x)
645 (declare (type interval x))
646 (make-interval :low (type-bound-number (interval-low x))
647 :high (type-bound-number (interval-high x))))
649 ;;; For an interval X, if X >= POINT, return '+. If X <= POINT, return
650 ;;; '-. Otherwise return NIL.
651 (defun interval-range-info (x &optional (point 0))
652 (declare (type interval x))
653 (let ((lo (interval-low x))
654 (hi (interval-high x)))
655 (cond ((and lo (signed-zero->= (type-bound-number lo) point))
657 ((and hi (signed-zero->= point (type-bound-number hi)))
662 ;;; Test to see whether the interval X is bounded. HOW determines the
663 ;;; test, and should be either ABOVE, BELOW, or BOTH.
664 (defun interval-bounded-p (x how)
665 (declare (type interval x))
672 (and (interval-low x) (interval-high x)))))
674 ;;; See whether the interval X contains the number P, taking into
675 ;;; account that the interval might not be closed.
676 (defun interval-contains-p (p x)
677 (declare (type number p)
679 ;; Does the interval X contain the number P? This would be a lot
680 ;; easier if all intervals were closed!
681 (let ((lo (interval-low x))
682 (hi (interval-high x)))
684 ;; The interval is bounded
685 (if (and (signed-zero-<= (type-bound-number lo) p)
686 (signed-zero-<= p (type-bound-number hi)))
687 ;; P is definitely in the closure of the interval.
688 ;; We just need to check the end points now.
689 (cond ((signed-zero-= p (type-bound-number lo))
691 ((signed-zero-= p (type-bound-number hi))
696 ;; Interval with upper bound
697 (if (signed-zero-< p (type-bound-number hi))
699 (and (numberp hi) (signed-zero-= p hi))))
701 ;; Interval with lower bound
702 (if (signed-zero-> p (type-bound-number lo))
704 (and (numberp lo) (signed-zero-= p lo))))
706 ;; Interval with no bounds
709 ;;; Determine whether two intervals X and Y intersect. Return T if so.
710 ;;; If CLOSED-INTERVALS-P is T, the treat the intervals as if they
711 ;;; were closed. Otherwise the intervals are treated as they are.
713 ;;; Thus if X = [0, 1) and Y = (1, 2), then they do not intersect
714 ;;; because no element in X is in Y. However, if CLOSED-INTERVALS-P
715 ;;; is T, then they do intersect because we use the closure of X = [0,
716 ;;; 1] and Y = [1, 2] to determine intersection.
717 (defun interval-intersect-p (x y &optional closed-intervals-p)
718 (declare (type interval x y))
719 (and (interval-intersection/difference (if closed-intervals-p
722 (if closed-intervals-p
727 ;;; Are the two intervals adjacent? That is, is there a number
728 ;;; between the two intervals that is not an element of either
729 ;;; interval? If so, they are not adjacent. For example [0, 1) and
730 ;;; [1, 2] are adjacent but [0, 1) and (1, 2] are not because 1 lies
731 ;;; between both intervals.
732 (defun interval-adjacent-p (x y)
733 (declare (type interval x y))
734 (flet ((adjacent (lo hi)
735 ;; Check to see whether lo and hi are adjacent. If either is
736 ;; nil, they can't be adjacent.
737 (when (and lo hi (= (type-bound-number lo) (type-bound-number hi)))
738 ;; The bounds are equal. They are adjacent if one of
739 ;; them is closed (a number). If both are open (consp),
740 ;; then there is a number that lies between them.
741 (or (numberp lo) (numberp hi)))))
742 (or (adjacent (interval-low y) (interval-high x))
743 (adjacent (interval-low x) (interval-high y)))))
745 ;;; Compute the intersection and difference between two intervals.
746 ;;; Two values are returned: the intersection and the difference.
748 ;;; Let the two intervals be X and Y, and let I and D be the two
749 ;;; values returned by this function. Then I = X intersect Y. If I
750 ;;; is NIL (the empty set), then D is X union Y, represented as the
751 ;;; list of X and Y. If I is not the empty set, then D is (X union Y)
752 ;;; - I, which is a list of two intervals.
754 ;;; For example, let X = [1,5] and Y = [-1,3). Then I = [1,3) and D =
755 ;;; [-1,1) union [3,5], which is returned as a list of two intervals.
756 (defun interval-intersection/difference (x y)
757 (declare (type interval x y))
758 (let ((x-lo (interval-low x))
759 (x-hi (interval-high x))
760 (y-lo (interval-low y))
761 (y-hi (interval-high y)))
764 ;; If p is an open bound, make it closed. If p is a closed
765 ;; bound, make it open.
769 (test-number (p int bound)
770 ;; Test whether P is in the interval.
771 (let ((pn (type-bound-number p)))
772 (when (interval-contains-p pn (interval-closure int))
773 ;; Check for endpoints.
774 (let* ((lo (interval-low int))
775 (hi (interval-high int))
776 (lon (type-bound-number lo))
777 (hin (type-bound-number hi)))
779 ;; Interval may be a point.
780 ((and lon hin (= lon hin pn))
781 (and (numberp p) (numberp lo) (numberp hi)))
782 ;; Point matches the low end.
783 ;; [P] [P,?} => TRUE [P] (P,?} => FALSE
784 ;; (P [P,?} => TRUE P) [P,?} => FALSE
785 ;; (P (P,?} => TRUE P) (P,?} => FALSE
786 ((and lon (= pn lon))
787 (or (and (numberp p) (numberp lo))
788 (and (consp p) (eq :low bound))))
789 ;; [P] {?,P] => TRUE [P] {?,P) => FALSE
790 ;; P) {?,P] => TRUE (P {?,P] => FALSE
791 ;; P) {?,P) => TRUE (P {?,P) => FALSE
792 ((and hin (= pn hin))
793 (or (and (numberp p) (numberp hi))
794 (and (consp p) (eq :high bound))))
795 ;; Not an endpoint, all is well.
798 (test-lower-bound (p int)
799 ;; P is a lower bound of an interval.
801 (test-number p int :low)
802 (not (interval-bounded-p int 'below))))
803 (test-upper-bound (p int)
804 ;; P is an upper bound of an interval.
806 (test-number p int :high)
807 (not (interval-bounded-p int 'above)))))
808 (let ((x-lo-in-y (test-lower-bound x-lo y))
809 (x-hi-in-y (test-upper-bound x-hi y))
810 (y-lo-in-x (test-lower-bound y-lo x))
811 (y-hi-in-x (test-upper-bound y-hi x)))
812 (cond ((or x-lo-in-y x-hi-in-y y-lo-in-x y-hi-in-x)
813 ;; Intervals intersect. Let's compute the intersection
814 ;; and the difference.
815 (multiple-value-bind (lo left-lo left-hi)
816 (cond (x-lo-in-y (values x-lo y-lo (opposite-bound x-lo)))
817 (y-lo-in-x (values y-lo x-lo (opposite-bound y-lo))))
818 (multiple-value-bind (hi right-lo right-hi)
820 (values x-hi (opposite-bound x-hi) y-hi))
822 (values y-hi (opposite-bound y-hi) x-hi)))
823 (values (make-interval :low lo :high hi)
824 (list (make-interval :low left-lo
826 (make-interval :low right-lo
829 (values nil (list x y))))))))
831 ;;; If intervals X and Y intersect, return a new interval that is the
832 ;;; union of the two. If they do not intersect, return NIL.
833 (defun interval-merge-pair (x y)
834 (declare (type interval x y))
835 ;; If x and y intersect or are adjacent, create the union.
836 ;; Otherwise return nil
837 (when (or (interval-intersect-p x y)
838 (interval-adjacent-p x y))
839 (flet ((select-bound (x1 x2 min-op max-op)
840 (let ((x1-val (type-bound-number x1))
841 (x2-val (type-bound-number x2)))
843 ;; Both bounds are finite. Select the right one.
844 (cond ((funcall min-op x1-val x2-val)
845 ;; x1 is definitely better.
847 ((funcall max-op x1-val x2-val)
848 ;; x2 is definitely better.
851 ;; Bounds are equal. Select either
852 ;; value and make it open only if
854 (set-bound x1-val (and (consp x1) (consp x2))))))
856 ;; At least one bound is not finite. The
857 ;; non-finite bound always wins.
859 (let* ((x-lo (copy-interval-limit (interval-low x)))
860 (x-hi (copy-interval-limit (interval-high x)))
861 (y-lo (copy-interval-limit (interval-low y)))
862 (y-hi (copy-interval-limit (interval-high y))))
863 (make-interval :low (select-bound x-lo y-lo #'< #'>)
864 :high (select-bound x-hi y-hi #'> #'<))))))
866 ;;; return the minimal interval, containing X and Y
867 (defun interval-approximate-union (x y)
868 (cond ((interval-merge-pair x y))
870 (make-interval :low (copy-interval-limit (interval-low x))
871 :high (copy-interval-limit (interval-high y))))
873 (make-interval :low (copy-interval-limit (interval-low y))
874 :high (copy-interval-limit (interval-high x))))))
876 ;;; basic arithmetic operations on intervals. We probably should do
877 ;;; true interval arithmetic here, but it's complicated because we
878 ;;; have float and integer types and bounds can be open or closed.
880 ;;; the negative of an interval
881 (defun interval-neg (x)
882 (declare (type interval x))
883 (make-interval :low (bound-func #'- (interval-high x) t)
884 :high (bound-func #'- (interval-low x) t)))
886 ;;; Add two intervals.
887 (defun interval-add (x y)
888 (declare (type interval x y))
889 (make-interval :low (bound-binop + (interval-low x) (interval-low y))
890 :high (bound-binop + (interval-high x) (interval-high y))))
892 ;;; Subtract two intervals.
893 (defun interval-sub (x y)
894 (declare (type interval x y))
895 (make-interval :low (bound-binop - (interval-low x) (interval-high y))
896 :high (bound-binop - (interval-high x) (interval-low y))))
898 ;;; Multiply two intervals.
899 (defun interval-mul (x y)
900 (declare (type interval x y))
901 (flet ((bound-mul (x y)
902 (cond ((or (null x) (null y))
903 ;; Multiply by infinity is infinity
905 ((or (and (numberp x) (zerop x))
906 (and (numberp y) (zerop y)))
907 ;; Multiply by closed zero is special. The result
908 ;; is always a closed bound. But don't replace this
909 ;; with zero; we want the multiplication to produce
910 ;; the correct signed zero, if needed. Use SIGNUM
911 ;; to avoid trying to multiply huge bignums with 0.0.
912 (* (signum (type-bound-number x)) (signum (type-bound-number y))))
913 ((or (and (floatp x) (float-infinity-p x))
914 (and (floatp y) (float-infinity-p y)))
915 ;; Infinity times anything is infinity
918 ;; General multiply. The result is open if either is open.
919 (bound-binop * x y)))))
920 (let ((x-range (interval-range-info x))
921 (y-range (interval-range-info y)))
922 (cond ((null x-range)
923 ;; Split x into two and multiply each separately
924 (destructuring-bind (x- x+) (interval-split 0 x t t)
925 (interval-merge-pair (interval-mul x- y)
926 (interval-mul x+ y))))
928 ;; Split y into two and multiply each separately
929 (destructuring-bind (y- y+) (interval-split 0 y t t)
930 (interval-merge-pair (interval-mul x y-)
931 (interval-mul x y+))))
933 (interval-neg (interval-mul (interval-neg x) y)))
935 (interval-neg (interval-mul x (interval-neg y))))
936 ((and (eq x-range '+) (eq y-range '+))
937 ;; If we are here, X and Y are both positive.
939 :low (bound-mul (interval-low x) (interval-low y))
940 :high (bound-mul (interval-high x) (interval-high y))))
942 (bug "excluded case in INTERVAL-MUL"))))))
944 ;;; Divide two intervals.
945 (defun interval-div (top bot)
946 (declare (type interval top bot))
947 (flet ((bound-div (x y y-low-p)
950 ;; Divide by infinity means result is 0. However,
951 ;; we need to watch out for the sign of the result,
952 ;; to correctly handle signed zeros. We also need
953 ;; to watch out for positive or negative infinity.
954 (if (floatp (type-bound-number x))
956 (- (float-sign (type-bound-number x) 0.0))
957 (float-sign (type-bound-number x) 0.0))
959 ((zerop (type-bound-number y))
960 ;; Divide by zero means result is infinity
963 (bound-binop / x y)))))
964 (let ((top-range (interval-range-info top))
965 (bot-range (interval-range-info bot)))
966 (cond ((null bot-range)
967 ;; The denominator contains zero, so anything goes!
968 (make-interval :low nil :high nil))
970 ;; Denominator is negative so flip the sign, compute the
971 ;; result, and flip it back.
972 (interval-neg (interval-div top (interval-neg bot))))
974 ;; Split top into two positive and negative parts, and
975 ;; divide each separately
976 (destructuring-bind (top- top+) (interval-split 0 top t t)
977 (interval-merge-pair (interval-div top- bot)
978 (interval-div top+ bot))))
980 ;; Top is negative so flip the sign, divide, and flip the
981 ;; sign of the result.
982 (interval-neg (interval-div (interval-neg top) bot)))
983 ((and (eq top-range '+) (eq bot-range '+))
986 :low (bound-div (interval-low top) (interval-high bot) t)
987 :high (bound-div (interval-high top) (interval-low bot) nil)))
989 (bug "excluded case in INTERVAL-DIV"))))))
991 ;;; Apply the function F to the interval X. If X = [a, b], then the
992 ;;; result is [f(a), f(b)]. It is up to the user to make sure the
993 ;;; result makes sense. It will if F is monotonic increasing (or, if
994 ;;; the interval is closed, non-decreasing).
996 ;;; (Actually most uses of INTERVAL-FUNC are coercions to float types,
997 ;;; which are not monotonic increasing, so default to calling
998 ;;; BOUND-FUNC with a non-strict argument).
999 (defun interval-func (f x &optional increasing)
1000 (declare (type function f)
1002 (let ((lo (bound-func f (interval-low x) increasing))
1003 (hi (bound-func f (interval-high x) increasing)))
1004 (make-interval :low lo :high hi)))
1006 ;;; Return T if X < Y. That is every number in the interval X is
1007 ;;; always less than any number in the interval Y.
1008 (defun interval-< (x y)
1009 (declare (type interval x y))
1010 ;; X < Y only if X is bounded above, Y is bounded below, and they
1012 (when (and (interval-bounded-p x 'above)
1013 (interval-bounded-p y 'below))
1014 ;; Intervals are bounded in the appropriate way. Make sure they
1016 (let ((left (interval-high x))
1017 (right (interval-low y)))
1018 (cond ((> (type-bound-number left)
1019 (type-bound-number right))
1020 ;; The intervals definitely overlap, so result is NIL.
1022 ((< (type-bound-number left)
1023 (type-bound-number right))
1024 ;; The intervals definitely don't touch, so result is T.
1027 ;; Limits are equal. Check for open or closed bounds.
1028 ;; Don't overlap if one or the other are open.
1029 (or (consp left) (consp right)))))))
1031 ;;; Return T if X >= Y. That is, every number in the interval X is
1032 ;;; always greater than any number in the interval Y.
1033 (defun interval->= (x y)
1034 (declare (type interval x y))
1035 ;; X >= Y if lower bound of X >= upper bound of Y
1036 (when (and (interval-bounded-p x 'below)
1037 (interval-bounded-p y 'above))
1038 (>= (type-bound-number (interval-low x))
1039 (type-bound-number (interval-high y)))))
1041 ;;; Return T if X = Y.
1042 (defun interval-= (x y)
1043 (declare (type interval x y))
1044 (and (interval-bounded-p x 'both)
1045 (interval-bounded-p y 'both)
1049 ;; Open intervals cannot be =
1050 (return-from interval-= nil))))
1051 ;; Both intervals refer to the same point
1052 (= (bound (interval-high x)) (bound (interval-low x))
1053 (bound (interval-high y)) (bound (interval-low y))))))
1055 ;;; Return T if X /= Y
1056 (defun interval-/= (x y)
1057 (not (interval-intersect-p x y)))
1059 ;;; Return an interval that is the absolute value of X. Thus, if
1060 ;;; X = [-1 10], the result is [0, 10].
1061 (defun interval-abs (x)
1062 (declare (type interval x))
1063 (case (interval-range-info x)
1069 (destructuring-bind (x- x+) (interval-split 0 x t t)
1070 (interval-merge-pair (interval-neg x-) x+)))))
1072 ;;; Compute the square of an interval.
1073 (defun interval-sqr (x)
1074 (declare (type interval x))
1075 (interval-func (lambda (x) (* x x)) (interval-abs x)))
1077 ;;;; numeric DERIVE-TYPE methods
1079 ;;; a utility for defining derive-type methods of integer operations. If
1080 ;;; the types of both X and Y are integer types, then we compute a new
1081 ;;; integer type with bounds determined by FUN when applied to X and Y.
1082 ;;; Otherwise, we use NUMERIC-CONTAGION.
1083 (defun derive-integer-type-aux (x y fun)
1084 (declare (type function fun))
1085 (if (and (numeric-type-p x) (numeric-type-p y)
1086 (eq (numeric-type-class x) 'integer)
1087 (eq (numeric-type-class y) 'integer)
1088 (eq (numeric-type-complexp x) :real)
1089 (eq (numeric-type-complexp y) :real))
1090 (multiple-value-bind (low high) (funcall fun x y)
1091 (make-numeric-type :class 'integer
1095 (numeric-contagion x y)))
1097 (defun derive-integer-type (x y fun)
1098 (declare (type lvar x y) (type function fun))
1099 (let ((x (lvar-type x))
1101 (derive-integer-type-aux x y fun)))
1103 ;;; simple utility to flatten a list
1104 (defun flatten-list (x)
1105 (labels ((flatten-and-append (tree list)
1106 (cond ((null tree) list)
1107 ((atom tree) (cons tree list))
1108 (t (flatten-and-append
1109 (car tree) (flatten-and-append (cdr tree) list))))))
1110 (flatten-and-append x nil)))
1112 ;;; Take some type of lvar and massage it so that we get a list of the
1113 ;;; constituent types. If ARG is *EMPTY-TYPE*, return NIL to indicate
1115 (defun prepare-arg-for-derive-type (arg)
1116 (flet ((listify (arg)
1121 (union-type-types arg))
1124 (unless (eq arg *empty-type*)
1125 ;; Make sure all args are some type of numeric-type. For member
1126 ;; types, convert the list of members into a union of equivalent
1127 ;; single-element member-type's.
1128 (let ((new-args nil))
1129 (dolist (arg (listify arg))
1130 (if (member-type-p arg)
1131 ;; Run down the list of members and convert to a list of
1133 (mapc-member-type-members
1135 (push (if (numberp member)
1136 (make-member-type :members (list member))
1140 (push arg new-args)))
1141 (unless (member *empty-type* new-args)
1144 ;;; Convert from the standard type convention for which -0.0 and 0.0
1145 ;;; are equal to an intermediate convention for which they are
1146 ;;; considered different which is more natural for some of the
1148 (defun convert-numeric-type (type)
1149 (declare (type numeric-type type))
1150 ;;; Only convert real float interval delimiters types.
1151 (if (eq (numeric-type-complexp type) :real)
1152 (let* ((lo (numeric-type-low type))
1153 (lo-val (type-bound-number lo))
1154 (lo-float-zero-p (and lo (floatp lo-val) (= lo-val 0.0)))
1155 (hi (numeric-type-high type))
1156 (hi-val (type-bound-number hi))
1157 (hi-float-zero-p (and hi (floatp hi-val) (= hi-val 0.0))))
1158 (if (or lo-float-zero-p hi-float-zero-p)
1160 :class (numeric-type-class type)
1161 :format (numeric-type-format type)
1163 :low (if lo-float-zero-p
1165 (list (float 0.0 lo-val))
1166 (float (load-time-value (make-unportable-float :single-float-negative-zero)) lo-val))
1168 :high (if hi-float-zero-p
1170 (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val))
1177 ;;; Convert back from the intermediate convention for which -0.0 and
1178 ;;; 0.0 are considered different to the standard type convention for
1179 ;;; which and equal.
1180 (defun convert-back-numeric-type (type)
1181 (declare (type numeric-type type))
1182 ;;; Only convert real float interval delimiters types.
1183 (if (eq (numeric-type-complexp type) :real)
1184 (let* ((lo (numeric-type-low type))
1185 (lo-val (type-bound-number lo))
1187 (and lo (floatp lo-val) (= lo-val 0.0)
1188 (float-sign lo-val)))
1189 (hi (numeric-type-high type))
1190 (hi-val (type-bound-number hi))
1192 (and hi (floatp hi-val) (= hi-val 0.0)
1193 (float-sign hi-val))))
1195 ;; (float +0.0 +0.0) => (member 0.0)
1196 ;; (float -0.0 -0.0) => (member -0.0)
1197 ((and lo-float-zero-p hi-float-zero-p)
1198 ;; shouldn't have exclusive bounds here..
1199 (aver (and (not (consp lo)) (not (consp hi))))
1200 (if (= lo-float-zero-p hi-float-zero-p)
1201 ;; (float +0.0 +0.0) => (member 0.0)
1202 ;; (float -0.0 -0.0) => (member -0.0)
1203 (specifier-type `(member ,lo-val))
1204 ;; (float -0.0 +0.0) => (float 0.0 0.0)
1205 ;; (float +0.0 -0.0) => (float 0.0 0.0)
1206 (make-numeric-type :class (numeric-type-class type)
1207 :format (numeric-type-format type)
1213 ;; (float -0.0 x) => (float 0.0 x)
1214 ((and (not (consp lo)) (minusp lo-float-zero-p))
1215 (make-numeric-type :class (numeric-type-class type)
1216 :format (numeric-type-format type)
1218 :low (float 0.0 lo-val)
1220 ;; (float (+0.0) x) => (float (0.0) x)
1221 ((and (consp lo) (plusp lo-float-zero-p))
1222 (make-numeric-type :class (numeric-type-class type)
1223 :format (numeric-type-format type)
1225 :low (list (float 0.0 lo-val))
1228 ;; (float +0.0 x) => (or (member 0.0) (float (0.0) x))
1229 ;; (float (-0.0) x) => (or (member 0.0) (float (0.0) x))
1230 (list (make-member-type :members (list (float 0.0 lo-val)))
1231 (make-numeric-type :class (numeric-type-class type)
1232 :format (numeric-type-format type)
1234 :low (list (float 0.0 lo-val))
1238 ;; (float x +0.0) => (float x 0.0)
1239 ((and (not (consp hi)) (plusp hi-float-zero-p))
1240 (make-numeric-type :class (numeric-type-class type)
1241 :format (numeric-type-format type)
1244 :high (float 0.0 hi-val)))
1245 ;; (float x (-0.0)) => (float x (0.0))
1246 ((and (consp hi) (minusp hi-float-zero-p))
1247 (make-numeric-type :class (numeric-type-class type)
1248 :format (numeric-type-format type)
1251 :high (list (float 0.0 hi-val))))
1253 ;; (float x (+0.0)) => (or (member -0.0) (float x (0.0)))
1254 ;; (float x -0.0) => (or (member -0.0) (float x (0.0)))
1255 (list (make-member-type :members (list (float (load-time-value (make-unportable-float :single-float-negative-zero)) hi-val)))
1256 (make-numeric-type :class (numeric-type-class type)
1257 :format (numeric-type-format type)
1260 :high (list (float 0.0 hi-val)))))))
1266 ;;; Convert back a possible list of numeric types.
1267 (defun convert-back-numeric-type-list (type-list)
1270 (let ((results '()))
1271 (dolist (type type-list)
1272 (if (numeric-type-p type)
1273 (let ((result (convert-back-numeric-type type)))
1275 (setf results (append results result))
1276 (push result results)))
1277 (push type results)))
1280 (convert-back-numeric-type type-list))
1282 (convert-back-numeric-type-list (union-type-types type-list)))
1286 ;;; Take a list of types and return a canonical type specifier,
1287 ;;; combining any MEMBER types together. If both positive and negative
1288 ;;; MEMBER types are present they are converted to a float type.
1289 ;;; XXX This would be far simpler if the type-union methods could handle
1290 ;;; member/number unions.
1292 ;;; If we're about to generate an overly complex union of numeric types, start
1293 ;;; collapse the ranges together.
1295 ;;; FIXME: The MEMBER canonicalization parts of MAKE-DERIVED-UNION-TYPE and
1296 ;;; entire CONVERT-MEMBER-TYPE probably belong in the kernel's type logic,
1297 ;;; invoked always, instead of in the compiler, invoked only during some type
1299 (defvar *derived-numeric-union-complexity-limit* 6)
1301 (defun make-derived-union-type (type-list)
1302 (let ((xset (alloc-xset))
1305 (numeric-type *empty-type*))
1306 (dolist (type type-list)
1307 (cond ((member-type-p type)
1308 (mapc-member-type-members
1310 (if (fp-zero-p member)
1311 (unless (member member fp-zeroes)
1312 (pushnew member fp-zeroes))
1313 (add-to-xset member xset)))
1315 ((numeric-type-p type)
1316 (let ((*approximate-numeric-unions*
1317 (when (and (union-type-p numeric-type)
1318 (nthcdr *derived-numeric-union-complexity-limit*
1319 (union-type-types numeric-type)))
1321 (setf numeric-type (type-union type numeric-type))))
1323 (push type misc-types))))
1324 (if (and (xset-empty-p xset) (not fp-zeroes))
1325 (apply #'type-union numeric-type misc-types)
1326 (apply #'type-union (make-member-type :xset xset :fp-zeroes fp-zeroes)
1327 numeric-type misc-types))))
1329 ;;; Convert a member type with a single member to a numeric type.
1330 (defun convert-member-type (arg)
1331 (let* ((members (member-type-members arg))
1332 (member (first members))
1333 (member-type (type-of member)))
1334 (aver (not (rest members)))
1335 (specifier-type (cond ((typep member 'integer)
1336 `(integer ,member ,member))
1337 ((memq member-type '(short-float single-float
1338 double-float long-float))
1339 `(,member-type ,member ,member))
1343 ;;; This is used in defoptimizers for computing the resulting type of
1346 ;;; Given the lvar ARG, derive the resulting type using the
1347 ;;; DERIVE-FUN. DERIVE-FUN takes exactly one argument which is some
1348 ;;; "atomic" lvar type like numeric-type or member-type (containing
1349 ;;; just one element). It should return the resulting type, which can
1350 ;;; be a list of types.
1352 ;;; For the case of member types, if a MEMBER-FUN is given it is
1353 ;;; called to compute the result otherwise the member type is first
1354 ;;; converted to a numeric type and the DERIVE-FUN is called.
1355 (defun one-arg-derive-type (arg derive-fun member-fun
1356 &optional (convert-type t))
1357 (declare (type function derive-fun)
1358 (type (or null function) member-fun))
1359 (let ((arg-list (prepare-arg-for-derive-type (lvar-type arg))))
1365 (with-float-traps-masked
1366 (:underflow :overflow :divide-by-zero)
1368 `(eql ,(funcall member-fun
1369 (first (member-type-members x))))))
1370 ;; Otherwise convert to a numeric type.
1371 (let ((result-type-list
1372 (funcall derive-fun (convert-member-type x))))
1374 (convert-back-numeric-type-list result-type-list)
1375 result-type-list))))
1378 (convert-back-numeric-type-list
1379 (funcall derive-fun (convert-numeric-type x)))
1380 (funcall derive-fun x)))
1382 *universal-type*))))
1383 ;; Run down the list of args and derive the type of each one,
1384 ;; saving all of the results in a list.
1385 (let ((results nil))
1386 (dolist (arg arg-list)
1387 (let ((result (deriver arg)))
1389 (setf results (append results result))
1390 (push result results))))
1392 (make-derived-union-type results)
1393 (first results)))))))
1395 ;;; Same as ONE-ARG-DERIVE-TYPE, except we assume the function takes
1396 ;;; two arguments. DERIVE-FUN takes 3 args in this case: the two
1397 ;;; original args and a third which is T to indicate if the two args
1398 ;;; really represent the same lvar. This is useful for deriving the
1399 ;;; type of things like (* x x), which should always be positive. If
1400 ;;; we didn't do this, we wouldn't be able to tell.
1401 (defun two-arg-derive-type (arg1 arg2 derive-fun fun
1402 &optional (convert-type t))
1403 (declare (type function derive-fun fun))
1404 (flet ((deriver (x y same-arg)
1405 (cond ((and (member-type-p x) (member-type-p y))
1406 (let* ((x (first (member-type-members x)))
1407 (y (first (member-type-members y)))
1408 (result (ignore-errors
1409 (with-float-traps-masked
1410 (:underflow :overflow :divide-by-zero
1412 (funcall fun x y)))))
1413 (cond ((null result) *empty-type*)
1414 ((and (floatp result) (float-nan-p result))
1415 (make-numeric-type :class 'float
1416 :format (type-of result)
1419 (specifier-type `(eql ,result))))))
1420 ((and (member-type-p x) (numeric-type-p y))
1421 (let* ((x (convert-member-type x))
1422 (y (if convert-type (convert-numeric-type y) y))
1423 (result (funcall derive-fun x y same-arg)))
1425 (convert-back-numeric-type-list result)
1427 ((and (numeric-type-p x) (member-type-p y))
1428 (let* ((x (if convert-type (convert-numeric-type x) x))
1429 (y (convert-member-type y))
1430 (result (funcall derive-fun x y same-arg)))
1432 (convert-back-numeric-type-list result)
1434 ((and (numeric-type-p x) (numeric-type-p y))
1435 (let* ((x (if convert-type (convert-numeric-type x) x))
1436 (y (if convert-type (convert-numeric-type y) y))
1437 (result (funcall derive-fun x y same-arg)))
1439 (convert-back-numeric-type-list result)
1442 *universal-type*))))
1443 (let ((same-arg (same-leaf-ref-p arg1 arg2))
1444 (a1 (prepare-arg-for-derive-type (lvar-type arg1)))
1445 (a2 (prepare-arg-for-derive-type (lvar-type arg2))))
1447 (let ((results nil))
1449 ;; Since the args are the same LVARs, just run down the
1452 (let ((result (deriver x x same-arg)))
1454 (setf results (append results result))
1455 (push result results))))
1456 ;; Try all pairwise combinations.
1459 (let ((result (or (deriver x y same-arg)
1460 (numeric-contagion x y))))
1462 (setf results (append results result))
1463 (push result results))))))
1465 (make-derived-union-type results)
1466 (first results)))))))
1468 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1470 (defoptimizer (+ derive-type) ((x y))
1471 (derive-integer-type
1478 (values (frob (numeric-type-low x) (numeric-type-low y))
1479 (frob (numeric-type-high x) (numeric-type-high y)))))))
1481 (defoptimizer (- derive-type) ((x y))
1482 (derive-integer-type
1489 (values (frob (numeric-type-low x) (numeric-type-high y))
1490 (frob (numeric-type-high x) (numeric-type-low y)))))))
1492 (defoptimizer (* derive-type) ((x y))
1493 (derive-integer-type
1496 (let ((x-low (numeric-type-low x))
1497 (x-high (numeric-type-high x))
1498 (y-low (numeric-type-low y))
1499 (y-high (numeric-type-high y)))
1500 (cond ((not (and x-low y-low))
1502 ((or (minusp x-low) (minusp y-low))
1503 (if (and x-high y-high)
1504 (let ((max (* (max (abs x-low) (abs x-high))
1505 (max (abs y-low) (abs y-high)))))
1506 (values (- max) max))
1509 (values (* x-low y-low)
1510 (if (and x-high y-high)
1514 (defoptimizer (/ derive-type) ((x y))
1515 (numeric-contagion (lvar-type x) (lvar-type y)))
1519 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1521 (defun +-derive-type-aux (x y same-arg)
1522 (if (and (numeric-type-real-p x)
1523 (numeric-type-real-p y))
1526 (let ((x-int (numeric-type->interval x)))
1527 (interval-add x-int x-int))
1528 (interval-add (numeric-type->interval x)
1529 (numeric-type->interval y))))
1530 (result-type (numeric-contagion x y)))
1531 ;; If the result type is a float, we need to be sure to coerce
1532 ;; the bounds into the correct type.
1533 (when (eq (numeric-type-class result-type) 'float)
1534 (setf result (interval-func
1536 (coerce-for-bound x (or (numeric-type-format result-type)
1540 :class (if (and (eq (numeric-type-class x) 'integer)
1541 (eq (numeric-type-class y) 'integer))
1542 ;; The sum of integers is always an integer.
1544 (numeric-type-class result-type))
1545 :format (numeric-type-format result-type)
1546 :low (interval-low result)
1547 :high (interval-high result)))
1548 ;; general contagion
1549 (numeric-contagion x y)))
1551 (defoptimizer (+ derive-type) ((x y))
1552 (two-arg-derive-type x y #'+-derive-type-aux #'+))
1554 (defun --derive-type-aux (x y same-arg)
1555 (if (and (numeric-type-real-p x)
1556 (numeric-type-real-p y))
1558 ;; (- X X) is always 0.
1560 (make-interval :low 0 :high 0)
1561 (interval-sub (numeric-type->interval x)
1562 (numeric-type->interval y))))
1563 (result-type (numeric-contagion x y)))
1564 ;; If the result type is a float, we need to be sure to coerce
1565 ;; the bounds into the correct type.
1566 (when (eq (numeric-type-class result-type) 'float)
1567 (setf result (interval-func
1569 (coerce-for-bound x (or (numeric-type-format result-type)
1573 :class (if (and (eq (numeric-type-class x) 'integer)
1574 (eq (numeric-type-class y) 'integer))
1575 ;; The difference of integers is always an integer.
1577 (numeric-type-class result-type))
1578 :format (numeric-type-format result-type)
1579 :low (interval-low result)
1580 :high (interval-high result)))
1581 ;; general contagion
1582 (numeric-contagion x y)))
1584 (defoptimizer (- derive-type) ((x y))
1585 (two-arg-derive-type x y #'--derive-type-aux #'-))
1587 (defun *-derive-type-aux (x y same-arg)
1588 (if (and (numeric-type-real-p x)
1589 (numeric-type-real-p y))
1591 ;; (* X X) is always positive, so take care to do it right.
1593 (interval-sqr (numeric-type->interval x))
1594 (interval-mul (numeric-type->interval x)
1595 (numeric-type->interval y))))
1596 (result-type (numeric-contagion x y)))
1597 ;; If the result type is a float, we need to be sure to coerce
1598 ;; the bounds into the correct type.
1599 (when (eq (numeric-type-class result-type) 'float)
1600 (setf result (interval-func
1602 (coerce-for-bound x (or (numeric-type-format result-type)
1606 :class (if (and (eq (numeric-type-class x) 'integer)
1607 (eq (numeric-type-class y) 'integer))
1608 ;; The product of integers is always an integer.
1610 (numeric-type-class result-type))
1611 :format (numeric-type-format result-type)
1612 :low (interval-low result)
1613 :high (interval-high result)))
1614 (numeric-contagion x y)))
1616 (defoptimizer (* derive-type) ((x y))
1617 (two-arg-derive-type x y #'*-derive-type-aux #'*))
1619 (defun /-derive-type-aux (x y same-arg)
1620 (if (and (numeric-type-real-p x)
1621 (numeric-type-real-p y))
1623 ;; (/ X X) is always 1, except if X can contain 0. In
1624 ;; that case, we shouldn't optimize the division away
1625 ;; because we want 0/0 to signal an error.
1627 (not (interval-contains-p
1628 0 (interval-closure (numeric-type->interval y)))))
1629 (make-interval :low 1 :high 1)
1630 (interval-div (numeric-type->interval x)
1631 (numeric-type->interval y))))
1632 (result-type (numeric-contagion x y)))
1633 ;; If the result type is a float, we need to be sure to coerce
1634 ;; the bounds into the correct type.
1635 (when (eq (numeric-type-class result-type) 'float)
1636 (setf result (interval-func
1638 (coerce-for-bound x (or (numeric-type-format result-type)
1641 (make-numeric-type :class (numeric-type-class result-type)
1642 :format (numeric-type-format result-type)
1643 :low (interval-low result)
1644 :high (interval-high result)))
1645 (numeric-contagion x y)))
1647 (defoptimizer (/ derive-type) ((x y))
1648 (two-arg-derive-type x y #'/-derive-type-aux #'/))
1652 (defun ash-derive-type-aux (n-type shift same-arg)
1653 (declare (ignore same-arg))
1654 ;; KLUDGE: All this ASH optimization is suppressed under CMU CL for
1655 ;; some bignum cases because as of version 2.4.6 for Debian and 18d,
1656 ;; CMU CL blows up on (ASH 1000000000 -100000000000) (i.e. ASH of
1657 ;; two bignums yielding zero) and it's hard to avoid that
1658 ;; calculation in here.
1659 #+(and cmu sb-xc-host)
1660 (when (and (or (typep (numeric-type-low n-type) 'bignum)
1661 (typep (numeric-type-high n-type) 'bignum))
1662 (or (typep (numeric-type-low shift) 'bignum)
1663 (typep (numeric-type-high shift) 'bignum)))
1664 (return-from ash-derive-type-aux *universal-type*))
1665 (flet ((ash-outer (n s)
1666 (when (and (fixnump s)
1668 (> s sb!xc:most-negative-fixnum))
1670 ;; KLUDGE: The bare 64's here should be related to
1671 ;; symbolic machine word size values somehow.
1674 (if (and (fixnump s)
1675 (> s sb!xc:most-negative-fixnum))
1677 (if (minusp n) -1 0))))
1678 (or (and (csubtypep n-type (specifier-type 'integer))
1679 (csubtypep shift (specifier-type 'integer))
1680 (let ((n-low (numeric-type-low n-type))
1681 (n-high (numeric-type-high n-type))
1682 (s-low (numeric-type-low shift))
1683 (s-high (numeric-type-high shift)))
1684 (make-numeric-type :class 'integer :complexp :real
1687 (ash-outer n-low s-high)
1688 (ash-inner n-low s-low)))
1691 (ash-inner n-high s-low)
1692 (ash-outer n-high s-high))))))
1695 (defoptimizer (ash derive-type) ((n shift))
1696 (two-arg-derive-type n shift #'ash-derive-type-aux #'ash))
1698 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1699 (macrolet ((frob (fun)
1700 `#'(lambda (type type2)
1701 (declare (ignore type2))
1702 (let ((lo (numeric-type-low type))
1703 (hi (numeric-type-high type)))
1704 (values (if hi (,fun hi) nil) (if lo (,fun lo) nil))))))
1706 (defoptimizer (%negate derive-type) ((num))
1707 (derive-integer-type num num (frob -))))
1709 (defun lognot-derive-type-aux (int)
1710 (derive-integer-type-aux int int
1711 (lambda (type type2)
1712 (declare (ignore type2))
1713 (let ((lo (numeric-type-low type))
1714 (hi (numeric-type-high type)))
1715 (values (if hi (lognot hi) nil)
1716 (if lo (lognot lo) nil)
1717 (numeric-type-class type)
1718 (numeric-type-format type))))))
1720 (defoptimizer (lognot derive-type) ((int))
1721 (lognot-derive-type-aux (lvar-type int)))
1723 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1724 (defoptimizer (%negate derive-type) ((num))
1725 (flet ((negate-bound (b)
1727 (set-bound (- (type-bound-number b))
1729 (one-arg-derive-type num
1731 (modified-numeric-type
1733 :low (negate-bound (numeric-type-high type))
1734 :high (negate-bound (numeric-type-low type))))
1737 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1738 (defoptimizer (abs derive-type) ((num))
1739 (let ((type (lvar-type num)))
1740 (if (and (numeric-type-p type)
1741 (eq (numeric-type-class type) 'integer)
1742 (eq (numeric-type-complexp type) :real))
1743 (let ((lo (numeric-type-low type))
1744 (hi (numeric-type-high type)))
1745 (make-numeric-type :class 'integer :complexp :real
1746 :low (cond ((and hi (minusp hi))
1752 :high (if (and hi lo)
1753 (max (abs hi) (abs lo))
1755 (numeric-contagion type type))))
1757 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1758 (defun abs-derive-type-aux (type)
1759 (cond ((eq (numeric-type-complexp type) :complex)
1760 ;; The absolute value of a complex number is always a
1761 ;; non-negative float.
1762 (let* ((format (case (numeric-type-class type)
1763 ((integer rational) 'single-float)
1764 (t (numeric-type-format type))))
1765 (bound-format (or format 'float)))
1766 (make-numeric-type :class 'float
1769 :low (coerce 0 bound-format)
1772 ;; The absolute value of a real number is a non-negative real
1773 ;; of the same type.
1774 (let* ((abs-bnd (interval-abs (numeric-type->interval type)))
1775 (class (numeric-type-class type))
1776 (format (numeric-type-format type))
1777 (bound-type (or format class 'real)))
1782 :low (coerce-and-truncate-floats (interval-low abs-bnd) bound-type)
1783 :high (coerce-and-truncate-floats
1784 (interval-high abs-bnd) bound-type))))))
1786 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1787 (defoptimizer (abs derive-type) ((num))
1788 (one-arg-derive-type num #'abs-derive-type-aux #'abs))
1790 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1791 (defoptimizer (truncate derive-type) ((number divisor))
1792 (let ((number-type (lvar-type number))
1793 (divisor-type (lvar-type divisor))
1794 (integer-type (specifier-type 'integer)))
1795 (if (and (numeric-type-p number-type)
1796 (csubtypep number-type integer-type)
1797 (numeric-type-p divisor-type)
1798 (csubtypep divisor-type integer-type))
1799 (let ((number-low (numeric-type-low number-type))
1800 (number-high (numeric-type-high number-type))
1801 (divisor-low (numeric-type-low divisor-type))
1802 (divisor-high (numeric-type-high divisor-type)))
1803 (values-specifier-type
1804 `(values ,(integer-truncate-derive-type number-low number-high
1805 divisor-low divisor-high)
1806 ,(integer-rem-derive-type number-low number-high
1807 divisor-low divisor-high))))
1810 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
1813 (defun rem-result-type (number-type divisor-type)
1814 ;; Figure out what the remainder type is. The remainder is an
1815 ;; integer if both args are integers; a rational if both args are
1816 ;; rational; and a float otherwise.
1817 (cond ((and (csubtypep number-type (specifier-type 'integer))
1818 (csubtypep divisor-type (specifier-type 'integer)))
1820 ((and (csubtypep number-type (specifier-type 'rational))
1821 (csubtypep divisor-type (specifier-type 'rational)))
1823 ((and (csubtypep number-type (specifier-type 'float))
1824 (csubtypep divisor-type (specifier-type 'float)))
1825 ;; Both are floats so the result is also a float, of
1826 ;; the largest type.
1827 (or (float-format-max (numeric-type-format number-type)
1828 (numeric-type-format divisor-type))
1830 ((and (csubtypep number-type (specifier-type 'float))
1831 (csubtypep divisor-type (specifier-type 'rational)))
1832 ;; One of the arguments is a float and the other is a
1833 ;; rational. The remainder is a float of the same
1835 (or (numeric-type-format number-type) 'float))
1836 ((and (csubtypep divisor-type (specifier-type 'float))
1837 (csubtypep number-type (specifier-type 'rational)))
1838 ;; One of the arguments is a float and the other is a
1839 ;; rational. The remainder is a float of the same
1841 (or (numeric-type-format divisor-type) 'float))
1843 ;; Some unhandled combination. This usually means both args
1844 ;; are REAL so the result is a REAL.
1847 (defun truncate-derive-type-quot (number-type divisor-type)
1848 (let* ((rem-type (rem-result-type number-type divisor-type))
1849 (number-interval (numeric-type->interval number-type))
1850 (divisor-interval (numeric-type->interval divisor-type)))
1851 ;;(declare (type (member '(integer rational float)) rem-type))
1852 ;; We have real numbers now.
1853 (cond ((eq rem-type 'integer)
1854 ;; Since the remainder type is INTEGER, both args are
1856 (let* ((res (integer-truncate-derive-type
1857 (interval-low number-interval)
1858 (interval-high number-interval)
1859 (interval-low divisor-interval)
1860 (interval-high divisor-interval))))
1861 (specifier-type (if (listp res) res 'integer))))
1863 (let ((quot (truncate-quotient-bound
1864 (interval-div number-interval
1865 divisor-interval))))
1866 (specifier-type `(integer ,(or (interval-low quot) '*)
1867 ,(or (interval-high quot) '*))))))))
1869 (defun truncate-derive-type-rem (number-type divisor-type)
1870 (let* ((rem-type (rem-result-type number-type divisor-type))
1871 (number-interval (numeric-type->interval number-type))
1872 (divisor-interval (numeric-type->interval divisor-type))
1873 (rem (truncate-rem-bound number-interval divisor-interval)))
1874 ;;(declare (type (member '(integer rational float)) rem-type))
1875 ;; We have real numbers now.
1876 (cond ((eq rem-type 'integer)
1877 ;; Since the remainder type is INTEGER, both args are
1879 (specifier-type `(,rem-type ,(or (interval-low rem) '*)
1880 ,(or (interval-high rem) '*))))
1882 (multiple-value-bind (class format)
1885 (values 'integer nil))
1887 (values 'rational nil))
1888 ((or single-float double-float #!+long-float long-float)
1889 (values 'float rem-type))
1891 (values 'float nil))
1894 (when (member rem-type '(float single-float double-float
1895 #!+long-float long-float))
1896 (setf rem (interval-func #'(lambda (x)
1897 (coerce-for-bound x rem-type))
1899 (make-numeric-type :class class
1901 :low (interval-low rem)
1902 :high (interval-high rem)))))))
1904 (defun truncate-derive-type-quot-aux (num div same-arg)
1905 (declare (ignore same-arg))
1906 (if (and (numeric-type-real-p num)
1907 (numeric-type-real-p div))
1908 (truncate-derive-type-quot num div)
1911 (defun truncate-derive-type-rem-aux (num div same-arg)
1912 (declare (ignore same-arg))
1913 (if (and (numeric-type-real-p num)
1914 (numeric-type-real-p div))
1915 (truncate-derive-type-rem num div)
1918 (defoptimizer (truncate derive-type) ((number divisor))
1919 (let ((quot (two-arg-derive-type number divisor
1920 #'truncate-derive-type-quot-aux #'truncate))
1921 (rem (two-arg-derive-type number divisor
1922 #'truncate-derive-type-rem-aux #'rem)))
1923 (when (and quot rem)
1924 (make-values-type :required (list quot rem)))))
1926 (defun ftruncate-derive-type-quot (number-type divisor-type)
1927 ;; The bounds are the same as for truncate. However, the first
1928 ;; result is a float of some type. We need to determine what that
1929 ;; type is. Basically it's the more contagious of the two types.
1930 (let ((q-type (truncate-derive-type-quot number-type divisor-type))
1931 (res-type (numeric-contagion number-type divisor-type)))
1932 (make-numeric-type :class 'float
1933 :format (numeric-type-format res-type)
1934 :low (numeric-type-low q-type)
1935 :high (numeric-type-high q-type))))
1937 (defun ftruncate-derive-type-quot-aux (n d same-arg)
1938 (declare (ignore same-arg))
1939 (if (and (numeric-type-real-p n)
1940 (numeric-type-real-p d))
1941 (ftruncate-derive-type-quot n d)
1944 (defoptimizer (ftruncate derive-type) ((number divisor))
1946 (two-arg-derive-type number divisor
1947 #'ftruncate-derive-type-quot-aux #'ftruncate))
1948 (rem (two-arg-derive-type number divisor
1949 #'truncate-derive-type-rem-aux #'rem)))
1950 (when (and quot rem)
1951 (make-values-type :required (list quot rem)))))
1953 (defun %unary-truncate-derive-type-aux (number)
1954 (truncate-derive-type-quot number (specifier-type '(integer 1 1))))
1956 (defoptimizer (%unary-truncate derive-type) ((number))
1957 (one-arg-derive-type number
1958 #'%unary-truncate-derive-type-aux
1961 (defoptimizer (%unary-truncate/single-float derive-type) ((number))
1962 (one-arg-derive-type number
1963 #'%unary-truncate-derive-type-aux
1966 (defoptimizer (%unary-truncate/double-float derive-type) ((number))
1967 (one-arg-derive-type number
1968 #'%unary-truncate-derive-type-aux
1971 (defoptimizer (%unary-ftruncate derive-type) ((number))
1972 (let ((divisor (specifier-type '(integer 1 1))))
1973 (one-arg-derive-type number
1975 (ftruncate-derive-type-quot-aux n divisor nil))
1976 #'%unary-ftruncate)))
1978 (defoptimizer (%unary-round derive-type) ((number))
1979 (one-arg-derive-type number
1982 (unless (numeric-type-real-p n)
1983 (return *empty-type*))
1984 (let* ((interval (numeric-type->interval n))
1985 (low (interval-low interval))
1986 (high (interval-high interval)))
1988 (setf low (car low)))
1990 (setf high (car high)))
2000 ;;; Define optimizers for FLOOR and CEILING.
2002 ((def (name q-name r-name)
2003 (let ((q-aux (symbolicate q-name "-AUX"))
2004 (r-aux (symbolicate r-name "-AUX")))
2006 ;; Compute type of quotient (first) result.
2007 (defun ,q-aux (number-type divisor-type)
2008 (let* ((number-interval
2009 (numeric-type->interval number-type))
2011 (numeric-type->interval divisor-type))
2012 (quot (,q-name (interval-div number-interval
2013 divisor-interval))))
2014 (specifier-type `(integer ,(or (interval-low quot) '*)
2015 ,(or (interval-high quot) '*)))))
2016 ;; Compute type of remainder.
2017 (defun ,r-aux (number-type divisor-type)
2018 (let* ((divisor-interval
2019 (numeric-type->interval divisor-type))
2020 (rem (,r-name divisor-interval))
2021 (result-type (rem-result-type number-type divisor-type)))
2022 (multiple-value-bind (class format)
2025 (values 'integer nil))
2027 (values 'rational nil))
2028 ((or single-float double-float #!+long-float long-float)
2029 (values 'float result-type))
2031 (values 'float nil))
2034 (when (member result-type '(float single-float double-float
2035 #!+long-float long-float))
2036 ;; Make sure that the limits on the interval have
2038 (setf rem (interval-func (lambda (x)
2039 (coerce-for-bound x result-type))
2041 (make-numeric-type :class class
2043 :low (interval-low rem)
2044 :high (interval-high rem)))))
2045 ;; the optimizer itself
2046 (defoptimizer (,name derive-type) ((number divisor))
2047 (flet ((derive-q (n d same-arg)
2048 (declare (ignore same-arg))
2049 (if (and (numeric-type-real-p n)
2050 (numeric-type-real-p d))
2053 (derive-r (n d same-arg)
2054 (declare (ignore same-arg))
2055 (if (and (numeric-type-real-p n)
2056 (numeric-type-real-p d))
2059 (let ((quot (two-arg-derive-type
2060 number divisor #'derive-q #',name))
2061 (rem (two-arg-derive-type
2062 number divisor #'derive-r #'mod)))
2063 (when (and quot rem)
2064 (make-values-type :required (list quot rem))))))))))
2066 (def floor floor-quotient-bound floor-rem-bound)
2067 (def ceiling ceiling-quotient-bound ceiling-rem-bound))
2069 ;;; Define optimizers for FFLOOR and FCEILING
2070 (macrolet ((def (name q-name r-name)
2071 (let ((q-aux (symbolicate "F" q-name "-AUX"))
2072 (r-aux (symbolicate r-name "-AUX")))
2074 ;; Compute type of quotient (first) result.
2075 (defun ,q-aux (number-type divisor-type)
2076 (let* ((number-interval
2077 (numeric-type->interval number-type))
2079 (numeric-type->interval divisor-type))
2080 (quot (,q-name (interval-div number-interval
2082 (res-type (numeric-contagion number-type
2085 :class (numeric-type-class res-type)
2086 :format (numeric-type-format res-type)
2087 :low (interval-low quot)
2088 :high (interval-high quot))))
2090 (defoptimizer (,name derive-type) ((number divisor))
2091 (flet ((derive-q (n d same-arg)
2092 (declare (ignore same-arg))
2093 (if (and (numeric-type-real-p n)
2094 (numeric-type-real-p d))
2097 (derive-r (n d same-arg)
2098 (declare (ignore same-arg))
2099 (if (and (numeric-type-real-p n)
2100 (numeric-type-real-p d))
2103 (let ((quot (two-arg-derive-type
2104 number divisor #'derive-q #',name))
2105 (rem (two-arg-derive-type
2106 number divisor #'derive-r #'mod)))
2107 (when (and quot rem)
2108 (make-values-type :required (list quot rem))))))))))
2110 (def ffloor floor-quotient-bound floor-rem-bound)
2111 (def fceiling ceiling-quotient-bound ceiling-rem-bound))
2113 ;;; functions to compute the bounds on the quotient and remainder for
2114 ;;; the FLOOR function
2115 (defun floor-quotient-bound (quot)
2116 ;; Take the floor of the quotient and then massage it into what we
2118 (let ((lo (interval-low quot))
2119 (hi (interval-high quot)))
2120 ;; Take the floor of the lower bound. The result is always a
2121 ;; closed lower bound.
2123 (floor (type-bound-number lo))
2125 ;; For the upper bound, we need to be careful.
2128 ;; An open bound. We need to be careful here because
2129 ;; the floor of '(10.0) is 9, but the floor of
2131 (multiple-value-bind (q r) (floor (first hi))
2136 ;; A closed bound, so the answer is obvious.
2140 (make-interval :low lo :high hi)))
2141 (defun floor-rem-bound (div)
2142 ;; The remainder depends only on the divisor. Try to get the
2143 ;; correct sign for the remainder if we can.
2144 (case (interval-range-info div)
2146 ;; The divisor is always positive.
2147 (let ((rem (interval-abs div)))
2148 (setf (interval-low rem) 0)
2149 (when (and (numberp (interval-high rem))
2150 (not (zerop (interval-high rem))))
2151 ;; The remainder never contains the upper bound. However,
2152 ;; watch out for the case where the high limit is zero!
2153 (setf (interval-high rem) (list (interval-high rem))))
2156 ;; The divisor is always negative.
2157 (let ((rem (interval-neg (interval-abs div))))
2158 (setf (interval-high rem) 0)
2159 (when (numberp (interval-low rem))
2160 ;; The remainder never contains the lower bound.
2161 (setf (interval-low rem) (list (interval-low rem))))
2164 ;; The divisor can be positive or negative. All bets off. The
2165 ;; magnitude of remainder is the maximum value of the divisor.
2166 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2167 ;; The bound never reaches the limit, so make the interval open.
2168 (make-interval :low (if limit
2171 :high (list limit))))))
2173 (floor-quotient-bound (make-interval :low 0.3 :high 10.3))
2174 => #S(INTERVAL :LOW 0 :HIGH 10)
2175 (floor-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2176 => #S(INTERVAL :LOW 0 :HIGH 10)
2177 (floor-quotient-bound (make-interval :low 0.3 :high 10))
2178 => #S(INTERVAL :LOW 0 :HIGH 10)
2179 (floor-quotient-bound (make-interval :low 0.3 :high '(10)))
2180 => #S(INTERVAL :LOW 0 :HIGH 9)
2181 (floor-quotient-bound (make-interval :low '(0.3) :high 10.3))
2182 => #S(INTERVAL :LOW 0 :HIGH 10)
2183 (floor-quotient-bound (make-interval :low '(0.0) :high 10.3))
2184 => #S(INTERVAL :LOW 0 :HIGH 10)
2185 (floor-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2186 => #S(INTERVAL :LOW -2 :HIGH 10)
2187 (floor-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2188 => #S(INTERVAL :LOW -1 :HIGH 10)
2189 (floor-quotient-bound (make-interval :low -1.0 :high 10.3))
2190 => #S(INTERVAL :LOW -1 :HIGH 10)
2192 (floor-rem-bound (make-interval :low 0.3 :high 10.3))
2193 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2194 (floor-rem-bound (make-interval :low 0.3 :high '(10.3)))
2195 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2196 (floor-rem-bound (make-interval :low -10 :high -2.3))
2197 #S(INTERVAL :LOW (-10) :HIGH 0)
2198 (floor-rem-bound (make-interval :low 0.3 :high 10))
2199 => #S(INTERVAL :LOW 0 :HIGH '(10))
2200 (floor-rem-bound (make-interval :low '(-1.3) :high 10.3))
2201 => #S(INTERVAL :LOW '(-10.3) :HIGH '(10.3))
2202 (floor-rem-bound (make-interval :low '(-20.3) :high 10.3))
2203 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2206 ;;; same functions for CEILING
2207 (defun ceiling-quotient-bound (quot)
2208 ;; Take the ceiling of the quotient and then massage it into what we
2210 (let ((lo (interval-low quot))
2211 (hi (interval-high quot)))
2212 ;; Take the ceiling of the upper bound. The result is always a
2213 ;; closed upper bound.
2215 (ceiling (type-bound-number hi))
2217 ;; For the lower bound, we need to be careful.
2220 ;; An open bound. We need to be careful here because
2221 ;; the ceiling of '(10.0) is 11, but the ceiling of
2223 (multiple-value-bind (q r) (ceiling (first lo))
2228 ;; A closed bound, so the answer is obvious.
2232 (make-interval :low lo :high hi)))
2233 (defun ceiling-rem-bound (div)
2234 ;; The remainder depends only on the divisor. Try to get the
2235 ;; correct sign for the remainder if we can.
2236 (case (interval-range-info div)
2238 ;; Divisor is always positive. The remainder is negative.
2239 (let ((rem (interval-neg (interval-abs div))))
2240 (setf (interval-high rem) 0)
2241 (when (and (numberp (interval-low rem))
2242 (not (zerop (interval-low rem))))
2243 ;; The remainder never contains the upper bound. However,
2244 ;; watch out for the case when the upper bound is zero!
2245 (setf (interval-low rem) (list (interval-low rem))))
2248 ;; Divisor is always negative. The remainder is positive
2249 (let ((rem (interval-abs div)))
2250 (setf (interval-low rem) 0)
2251 (when (numberp (interval-high rem))
2252 ;; The remainder never contains the lower bound.
2253 (setf (interval-high rem) (list (interval-high rem))))
2256 ;; The divisor can be positive or negative. All bets off. The
2257 ;; magnitude of remainder is the maximum value of the divisor.
2258 (let ((limit (type-bound-number (interval-high (interval-abs div)))))
2259 ;; The bound never reaches the limit, so make the interval open.
2260 (make-interval :low (if limit
2263 :high (list limit))))))
2266 (ceiling-quotient-bound (make-interval :low 0.3 :high 10.3))
2267 => #S(INTERVAL :LOW 1 :HIGH 11)
2268 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10.3)))
2269 => #S(INTERVAL :LOW 1 :HIGH 11)
2270 (ceiling-quotient-bound (make-interval :low 0.3 :high 10))
2271 => #S(INTERVAL :LOW 1 :HIGH 10)
2272 (ceiling-quotient-bound (make-interval :low 0.3 :high '(10)))
2273 => #S(INTERVAL :LOW 1 :HIGH 10)
2274 (ceiling-quotient-bound (make-interval :low '(0.3) :high 10.3))
2275 => #S(INTERVAL :LOW 1 :HIGH 11)
2276 (ceiling-quotient-bound (make-interval :low '(0.0) :high 10.3))
2277 => #S(INTERVAL :LOW 1 :HIGH 11)
2278 (ceiling-quotient-bound (make-interval :low '(-1.3) :high 10.3))
2279 => #S(INTERVAL :LOW -1 :HIGH 11)
2280 (ceiling-quotient-bound (make-interval :low '(-1.0) :high 10.3))
2281 => #S(INTERVAL :LOW 0 :HIGH 11)
2282 (ceiling-quotient-bound (make-interval :low -1.0 :high 10.3))
2283 => #S(INTERVAL :LOW -1 :HIGH 11)
2285 (ceiling-rem-bound (make-interval :low 0.3 :high 10.3))
2286 => #S(INTERVAL :LOW (-10.3) :HIGH 0)
2287 (ceiling-rem-bound (make-interval :low 0.3 :high '(10.3)))
2288 => #S(INTERVAL :LOW 0 :HIGH '(10.3))
2289 (ceiling-rem-bound (make-interval :low -10 :high -2.3))
2290 => #S(INTERVAL :LOW 0 :HIGH (10))
2291 (ceiling-rem-bound (make-interval :low 0.3 :high 10))
2292 => #S(INTERVAL :LOW (-10) :HIGH 0)
2293 (ceiling-rem-bound (make-interval :low '(-1.3) :high 10.3))
2294 => #S(INTERVAL :LOW (-10.3) :HIGH (10.3))
2295 (ceiling-rem-bound (make-interval :low '(-20.3) :high 10.3))
2296 => #S(INTERVAL :LOW (-20.3) :HIGH (20.3))
2299 (defun truncate-quotient-bound (quot)
2300 ;; For positive quotients, truncate is exactly like floor. For
2301 ;; negative quotients, truncate is exactly like ceiling. Otherwise,
2302 ;; it's the union of the two pieces.
2303 (case (interval-range-info quot)
2306 (floor-quotient-bound quot))
2308 ;; just like CEILING
2309 (ceiling-quotient-bound quot))
2311 ;; Split the interval into positive and negative pieces, compute
2312 ;; the result for each piece and put them back together.
2313 (destructuring-bind (neg pos) (interval-split 0 quot t t)
2314 (interval-merge-pair (ceiling-quotient-bound neg)
2315 (floor-quotient-bound pos))))))
2317 (defun truncate-rem-bound (num div)
2318 ;; This is significantly more complicated than FLOOR or CEILING. We
2319 ;; need both the number and the divisor to determine the range. The
2320 ;; basic idea is to split the ranges of NUM and DEN into positive
2321 ;; and negative pieces and deal with each of the four possibilities
2323 (case (interval-range-info num)
2325 (case (interval-range-info div)
2327 (floor-rem-bound div))
2329 (ceiling-rem-bound div))
2331 (destructuring-bind (neg pos) (interval-split 0 div t t)
2332 (interval-merge-pair (truncate-rem-bound num neg)
2333 (truncate-rem-bound num pos))))))
2335 (case (interval-range-info div)
2337 (ceiling-rem-bound div))
2339 (floor-rem-bound div))
2341 (destructuring-bind (neg pos) (interval-split 0 div t t)
2342 (interval-merge-pair (truncate-rem-bound num neg)
2343 (truncate-rem-bound num pos))))))
2345 (destructuring-bind (neg pos) (interval-split 0 num t t)
2346 (interval-merge-pair (truncate-rem-bound neg div)
2347 (truncate-rem-bound pos div))))))
2350 ;;; Derive useful information about the range. Returns three values:
2351 ;;; - '+ if its positive, '- negative, or nil if it overlaps 0.
2352 ;;; - The abs of the minimal value (i.e. closest to 0) in the range.
2353 ;;; - The abs of the maximal value if there is one, or nil if it is
2355 (defun numeric-range-info (low high)
2356 (cond ((and low (not (minusp low)))
2357 (values '+ low high))
2358 ((and high (not (plusp high)))
2359 (values '- (- high) (if low (- low) nil)))
2361 (values nil 0 (and low high (max (- low) high))))))
2363 (defun integer-truncate-derive-type
2364 (number-low number-high divisor-low divisor-high)
2365 ;; The result cannot be larger in magnitude than the number, but the
2366 ;; sign might change. If we can determine the sign of either the
2367 ;; number or the divisor, we can eliminate some of the cases.
2368 (multiple-value-bind (number-sign number-min number-max)
2369 (numeric-range-info number-low number-high)
2370 (multiple-value-bind (divisor-sign divisor-min divisor-max)
2371 (numeric-range-info divisor-low divisor-high)
2372 (when (and divisor-max (zerop divisor-max))
2373 ;; We've got a problem: guaranteed division by zero.
2374 (return-from integer-truncate-derive-type t))
2375 (when (zerop divisor-min)
2376 ;; We'll assume that they aren't going to divide by zero.
2378 (cond ((and number-sign divisor-sign)
2379 ;; We know the sign of both.
2380 (if (eq number-sign divisor-sign)
2381 ;; Same sign, so the result will be positive.
2382 `(integer ,(if divisor-max
2383 (truncate number-min divisor-max)
2386 (truncate number-max divisor-min)
2388 ;; Different signs, the result will be negative.
2389 `(integer ,(if number-max
2390 (- (truncate number-max divisor-min))
2393 (- (truncate number-min divisor-max))
2395 ((eq divisor-sign '+)
2396 ;; The divisor is positive. Therefore, the number will just
2397 ;; become closer to zero.
2398 `(integer ,(if number-low
2399 (truncate number-low divisor-min)
2402 (truncate number-high divisor-min)
2404 ((eq divisor-sign '-)
2405 ;; The divisor is negative. Therefore, the absolute value of
2406 ;; the number will become closer to zero, but the sign will also
2408 `(integer ,(if number-high
2409 (- (truncate number-high divisor-min))
2412 (- (truncate number-low divisor-min))
2414 ;; The divisor could be either positive or negative.
2416 ;; The number we are dividing has a bound. Divide that by the
2417 ;; smallest posible divisor.
2418 (let ((bound (truncate number-max divisor-min)))
2419 `(integer ,(- bound) ,bound)))
2421 ;; The number we are dividing is unbounded, so we can't tell
2422 ;; anything about the result.
2425 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2426 (defun integer-rem-derive-type
2427 (number-low number-high divisor-low divisor-high)
2428 (if (and divisor-low divisor-high)
2429 ;; We know the range of the divisor, and the remainder must be
2430 ;; smaller than the divisor. We can tell the sign of the
2431 ;; remainder if we know the sign of the number.
2432 (let ((divisor-max (1- (max (abs divisor-low) (abs divisor-high)))))
2433 `(integer ,(if (or (null number-low)
2434 (minusp number-low))
2437 ,(if (or (null number-high)
2438 (plusp number-high))
2441 ;; The divisor is potentially either very positive or very
2442 ;; negative. Therefore, the remainder is unbounded, but we might
2443 ;; be able to tell something about the sign from the number.
2444 `(integer ,(if (and number-low (not (minusp number-low)))
2445 ;; The number we are dividing is positive.
2446 ;; Therefore, the remainder must be positive.
2449 ,(if (and number-high (not (plusp number-high)))
2450 ;; The number we are dividing is negative.
2451 ;; Therefore, the remainder must be negative.
2455 #+sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2456 (defoptimizer (random derive-type) ((bound &optional state))
2457 (let ((type (lvar-type bound)))
2458 (when (numeric-type-p type)
2459 (let ((class (numeric-type-class type))
2460 (high (numeric-type-high type))
2461 (format (numeric-type-format type)))
2465 :low (coerce 0 (or format class 'real))
2466 :high (cond ((not high) nil)
2467 ((eq class 'integer) (max (1- high) 0))
2468 ((or (consp high) (zerop high)) high)
2471 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2472 (defun random-derive-type-aux (type)
2473 (let ((class (numeric-type-class type))
2474 (high (numeric-type-high type))
2475 (format (numeric-type-format type)))
2479 :low (coerce 0 (or format class 'real))
2480 :high (cond ((not high) nil)
2481 ((eq class 'integer) (max (1- high) 0))
2482 ((or (consp high) (zerop high)) high)
2485 #-sb-xc-host ; (See CROSS-FLOAT-INFINITY-KLUDGE.)
2486 (defoptimizer (random derive-type) ((bound &optional state))
2487 (one-arg-derive-type bound #'random-derive-type-aux nil))
2489 ;;;; miscellaneous derive-type methods
2491 (defoptimizer (integer-length derive-type) ((x))
2492 (let ((x-type (lvar-type x)))
2493 (when (numeric-type-p x-type)
2494 ;; If the X is of type (INTEGER LO HI), then the INTEGER-LENGTH
2495 ;; of X is (INTEGER (MIN lo hi) (MAX lo hi), basically. Be
2496 ;; careful about LO or HI being NIL, though. Also, if 0 is
2497 ;; contained in X, the lower bound is obviously 0.
2498 (flet ((null-or-min (a b)
2499 (and a b (min (integer-length a)
2500 (integer-length b))))
2502 (and a b (max (integer-length a)
2503 (integer-length b)))))
2504 (let* ((min (numeric-type-low x-type))
2505 (max (numeric-type-high x-type))
2506 (min-len (null-or-min min max))
2507 (max-len (null-or-max min max)))
2508 (when (ctypep 0 x-type)
2510 (specifier-type `(integer ,(or min-len '*) ,(or max-len '*))))))))
2512 (defoptimizer (isqrt derive-type) ((x))
2513 (let ((x-type (lvar-type x)))
2514 (when (numeric-type-p x-type)
2515 (let* ((lo (numeric-type-low x-type))
2516 (hi (numeric-type-high x-type))
2517 (lo-res (if lo (isqrt lo) '*))
2518 (hi-res (if hi (isqrt hi) '*)))
2519 (specifier-type `(integer ,lo-res ,hi-res))))))
2521 (defoptimizer (char-code derive-type) ((char))
2522 (let ((type (type-intersection (lvar-type char) (specifier-type 'character))))
2523 (cond ((member-type-p type)
2526 ,@(loop for member in (member-type-members type)
2527 when (characterp member)
2528 collect (char-code member)))))
2529 ((sb!kernel::character-set-type-p type)
2532 ,@(loop for (low . high)
2533 in (character-set-type-pairs type)
2534 collect `(integer ,low ,high)))))
2535 ((csubtypep type (specifier-type 'base-char))
2537 `(mod ,base-char-code-limit)))
2540 `(mod ,char-code-limit))))))
2542 (defoptimizer (code-char derive-type) ((code))
2543 (let ((type (lvar-type code)))
2544 ;; FIXME: unions of integral ranges? It ought to be easier to do
2545 ;; this, given that CHARACTER-SET is basically an integral range
2546 ;; type. -- CSR, 2004-10-04
2547 (when (numeric-type-p type)
2548 (let* ((lo (numeric-type-low type))
2549 (hi (numeric-type-high type))
2550 (type (specifier-type `(character-set ((,lo . ,hi))))))
2552 ;; KLUDGE: when running on the host, we lose a slight amount
2553 ;; of precision so that we don't have to "unparse" types
2554 ;; that formally we can't, such as (CHARACTER-SET ((0
2555 ;; . 0))). -- CSR, 2004-10-06
2557 ((csubtypep type (specifier-type 'standard-char)) type)
2559 ((csubtypep type (specifier-type 'base-char))
2560 (specifier-type 'base-char))
2562 ((csubtypep type (specifier-type 'extended-char))
2563 (specifier-type 'extended-char))
2564 (t #+sb-xc-host (specifier-type 'character)
2565 #-sb-xc-host type))))))
2567 (defoptimizer (values derive-type) ((&rest values))
2568 (make-values-type :required (mapcar #'lvar-type values)))
2570 (defun signum-derive-type-aux (type)
2571 (if (eq (numeric-type-complexp type) :complex)
2572 (let* ((format (case (numeric-type-class type)
2573 ((integer rational) 'single-float)
2574 (t (numeric-type-format type))))
2575 (bound-format (or format 'float)))
2576 (make-numeric-type :class 'float
2579 :low (coerce -1 bound-format)
2580 :high (coerce 1 bound-format)))
2581 (let* ((interval (numeric-type->interval type))
2582 (range-info (interval-range-info interval))
2583 (contains-0-p (interval-contains-p 0 interval))
2584 (class (numeric-type-class type))
2585 (format (numeric-type-format type))
2586 (one (coerce 1 (or format class 'real)))
2587 (zero (coerce 0 (or format class 'real)))
2588 (minus-one (coerce -1 (or format class 'real)))
2589 (plus (make-numeric-type :class class :format format
2590 :low one :high one))
2591 (minus (make-numeric-type :class class :format format
2592 :low minus-one :high minus-one))
2593 ;; KLUDGE: here we have a fairly horrible hack to deal
2594 ;; with the schizophrenia in the type derivation engine.
2595 ;; The problem is that the type derivers reinterpret
2596 ;; numeric types as being exact; so (DOUBLE-FLOAT 0d0
2597 ;; 0d0) within the derivation mechanism doesn't include
2598 ;; -0d0. Ugh. So force it in here, instead.
2599 (zero (make-numeric-type :class class :format format
2600 :low (- zero) :high zero)))
2602 (+ (if contains-0-p (type-union plus zero) plus))
2603 (- (if contains-0-p (type-union minus zero) minus))
2604 (t (type-union minus zero plus))))))
2606 (defoptimizer (signum derive-type) ((num))
2607 (one-arg-derive-type num #'signum-derive-type-aux nil))
2609 ;;;; byte operations
2611 ;;;; We try to turn byte operations into simple logical operations.
2612 ;;;; First, we convert byte specifiers into separate size and position
2613 ;;;; arguments passed to internal %FOO functions. We then attempt to
2614 ;;;; transform the %FOO functions into boolean operations when the
2615 ;;;; size and position are constant and the operands are fixnums.
2617 (macrolet (;; Evaluate body with SIZE-VAR and POS-VAR bound to
2618 ;; expressions that evaluate to the SIZE and POSITION of
2619 ;; the byte-specifier form SPEC. We may wrap a let around
2620 ;; the result of the body to bind some variables.
2622 ;; If the spec is a BYTE form, then bind the vars to the
2623 ;; subforms. otherwise, evaluate SPEC and use the BYTE-SIZE
2624 ;; and BYTE-POSITION. The goal of this transformation is to
2625 ;; avoid consing up byte specifiers and then immediately
2626 ;; throwing them away.
2627 (with-byte-specifier ((size-var pos-var spec) &body body)
2628 (once-only ((spec `(macroexpand ,spec))
2630 `(if (and (consp ,spec)
2631 (eq (car ,spec) 'byte)
2632 (= (length ,spec) 3))
2633 (let ((,size-var (second ,spec))
2634 (,pos-var (third ,spec)))
2636 (let ((,size-var `(byte-size ,,temp))
2637 (,pos-var `(byte-position ,,temp)))
2638 `(let ((,,temp ,,spec))
2641 (define-source-transform ldb (spec int)
2642 (with-byte-specifier (size pos spec)
2643 `(%ldb ,size ,pos ,int)))
2645 (define-source-transform dpb (newbyte spec int)
2646 (with-byte-specifier (size pos spec)
2647 `(%dpb ,newbyte ,size ,pos ,int)))
2649 (define-source-transform mask-field (spec int)
2650 (with-byte-specifier (size pos spec)
2651 `(%mask-field ,size ,pos ,int)))
2653 (define-source-transform deposit-field (newbyte spec int)
2654 (with-byte-specifier (size pos spec)
2655 `(%deposit-field ,newbyte ,size ,pos ,int))))
2657 (defoptimizer (%ldb derive-type) ((size posn num))
2658 (let ((size (lvar-type size)))
2659 (if (and (numeric-type-p size)
2660 (csubtypep size (specifier-type 'integer)))
2661 (let ((size-high (numeric-type-high size)))
2662 (if (and size-high (<= size-high sb!vm:n-word-bits))
2663 (specifier-type `(unsigned-byte* ,size-high))
2664 (specifier-type 'unsigned-byte)))
2667 (defoptimizer (%mask-field derive-type) ((size posn num))
2668 (let ((size (lvar-type size))
2669 (posn (lvar-type posn)))
2670 (if (and (numeric-type-p size)
2671 (csubtypep size (specifier-type 'integer))
2672 (numeric-type-p posn)
2673 (csubtypep posn (specifier-type 'integer)))
2674 (let ((size-high (numeric-type-high size))
2675 (posn-high (numeric-type-high posn)))
2676 (if (and size-high posn-high
2677 (<= (+ size-high posn-high) sb!vm:n-word-bits))
2678 (specifier-type `(unsigned-byte* ,(+ size-high posn-high)))
2679 (specifier-type 'unsigned-byte)))
2682 (defun %deposit-field-derive-type-aux (size posn int)
2683 (let ((size (lvar-type size))
2684 (posn (lvar-type posn))
2685 (int (lvar-type int)))
2686 (when (and (numeric-type-p size)
2687 (numeric-type-p posn)
2688 (numeric-type-p int))
2689 (let ((size-high (numeric-type-high size))
2690 (posn-high (numeric-type-high posn))
2691 (high (numeric-type-high int))
2692 (low (numeric-type-low int)))
2693 (when (and size-high posn-high high low
2694 ;; KLUDGE: we need this cutoff here, otherwise we
2695 ;; will merrily derive the type of %DPB as
2696 ;; (UNSIGNED-BYTE 1073741822), and then attempt to
2697 ;; canonicalize this type to (INTEGER 0 (1- (ASH 1
2698 ;; 1073741822))), with hilarious consequences. We
2699 ;; cutoff at 4*SB!VM:N-WORD-BITS to allow inference
2700 ;; over a reasonable amount of shifting, even on
2701 ;; the alpha/32 port, where N-WORD-BITS is 32 but
2702 ;; machine integers are 64-bits. -- CSR,
2704 (<= (+ size-high posn-high) (* 4 sb!vm:n-word-bits)))
2705 (let ((raw-bit-count (max (integer-length high)
2706 (integer-length low)
2707 (+ size-high posn-high))))
2710 `(signed-byte ,(1+ raw-bit-count))
2711 `(unsigned-byte* ,raw-bit-count)))))))))
2713 (defoptimizer (%dpb derive-type) ((newbyte size posn int))
2714 (%deposit-field-derive-type-aux size posn int))
2716 (defoptimizer (%deposit-field derive-type) ((newbyte size posn int))
2717 (%deposit-field-derive-type-aux size posn int))
2719 (deftransform %ldb ((size posn int)
2720 (fixnum fixnum integer)
2721 (unsigned-byte #.sb!vm:n-word-bits))
2722 "convert to inline logical operations"
2723 `(logand (ash int (- posn))
2724 (ash ,(1- (ash 1 sb!vm:n-word-bits))
2725 (- size ,sb!vm:n-word-bits))))
2727 (deftransform %mask-field ((size posn int)
2728 (fixnum fixnum integer)
2729 (unsigned-byte #.sb!vm:n-word-bits))
2730 "convert to inline logical operations"
2732 (ash (ash ,(1- (ash 1 sb!vm:n-word-bits))
2733 (- size ,sb!vm:n-word-bits))
2736 ;;; Note: for %DPB and %DEPOSIT-FIELD, we can't use
2737 ;;; (OR (SIGNED-BYTE N) (UNSIGNED-BYTE N))
2738 ;;; as the result type, as that would allow result types that cover
2739 ;;; the range -2^(n-1) .. 1-2^n, instead of allowing result types of
2740 ;;; (UNSIGNED-BYTE N) and result types of (SIGNED-BYTE N).
2742 (deftransform %dpb ((new size posn int)
2744 (unsigned-byte #.sb!vm:n-word-bits))
2745 "convert to inline logical operations"
2746 `(let ((mask (ldb (byte size 0) -1)))
2747 (logior (ash (logand new mask) posn)
2748 (logand int (lognot (ash mask posn))))))
2750 (deftransform %dpb ((new size posn int)
2752 (signed-byte #.sb!vm:n-word-bits))
2753 "convert to inline logical operations"
2754 `(let ((mask (ldb (byte size 0) -1)))
2755 (logior (ash (logand new mask) posn)
2756 (logand int (lognot (ash mask posn))))))
2758 (deftransform %deposit-field ((new size posn int)
2760 (unsigned-byte #.sb!vm:n-word-bits))
2761 "convert to inline logical operations"
2762 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2763 (logior (logand new mask)
2764 (logand int (lognot mask)))))
2766 (deftransform %deposit-field ((new size posn int)
2768 (signed-byte #.sb!vm:n-word-bits))
2769 "convert to inline logical operations"
2770 `(let ((mask (ash (ldb (byte size 0) -1) posn)))
2771 (logior (logand new mask)
2772 (logand int (lognot mask)))))
2774 (defoptimizer (mask-signed-field derive-type) ((size x))
2775 (let ((size (lvar-type size)))
2776 (if (numeric-type-p size)
2777 (let ((size-high (numeric-type-high size)))
2778 (if (and size-high (<= 1 size-high sb!vm:n-word-bits))
2779 (specifier-type `(signed-byte ,size-high))
2786 (defun %ash/right (integer amount)
2787 (ash integer (- amount)))
2789 (deftransform ash ((integer amount) (sb!vm:signed-word (integer * 0)))
2790 "Convert ASH of signed word to %ASH/RIGHT"
2791 (when (constant-lvar-p amount)
2792 (give-up-ir1-transform))
2793 (let ((use (lvar-uses amount)))
2794 (cond ((and (combination-p use)
2795 (eql '%negate (lvar-fun-name (combination-fun use))))
2796 (splice-fun-args amount '%negate 1)
2797 `(lambda (integer amount)
2798 (declare (type unsigned-byte amount))
2799 (%ash/right integer (if (>= amount ,sb!vm:n-word-bits)
2800 ,(1- sb!vm:n-word-bits)
2803 `(%ash/right integer (if (<= amount ,(- sb!vm:n-word-bits))
2804 ,(1- sb!vm:n-word-bits)
2807 (deftransform ash ((integer amount) (word (integer * 0)))
2808 "Convert ASH of word to %ASH/RIGHT"
2809 (when (constant-lvar-p amount)
2810 (give-up-ir1-transform))
2811 (let ((use (lvar-uses amount)))
2812 (cond ((and (combination-p use)
2813 (eql '%negate (lvar-fun-name (combination-fun use))))
2814 (splice-fun-args amount '%negate 1)
2815 `(lambda (integer amount)
2816 (declare (type unsigned-byte amount))
2817 (if (>= amount ,sb!vm:n-word-bits)
2819 (%ash/right integer amount))))
2821 `(if (<= amount ,(- sb!vm:n-word-bits))
2823 (%ash/right integer (- amount)))))))
2825 (deftransform %ash/right ((integer amount) (integer (constant-arg unsigned-byte)))
2826 "Convert %ASH/RIGHT by constant back to ASH"
2827 `(ash integer ,(- (lvar-value amount))))
2829 (deftransform %ash/right ((integer amount) * * :node node)
2830 "strength reduce large variable right shift"
2831 (let ((return-type (single-value-type (node-derived-type node))))
2832 (cond ((type= return-type (specifier-type '(eql 0)))
2834 ((type= return-type (specifier-type '(eql -1)))
2836 ((csubtypep return-type (specifier-type '(member -1 0)))
2837 `(ash integer ,(- sb!vm:n-word-bits)))
2839 (give-up-ir1-transform)))))
2841 (defun %ash/right-derive-type-aux (n-type shift same-arg)
2842 (declare (ignore same-arg))
2843 (or (and (or (csubtypep n-type (specifier-type 'sb!vm:signed-word))
2844 (csubtypep n-type (specifier-type 'word)))
2845 (csubtypep shift (specifier-type `(mod ,sb!vm:n-word-bits)))
2846 (let ((n-low (numeric-type-low n-type))
2847 (n-high (numeric-type-high n-type))
2848 (s-low (numeric-type-low shift))
2849 (s-high (numeric-type-high shift)))
2850 (make-numeric-type :class 'integer :complexp :real
2853 (ash n-low (- s-low))
2854 (ash n-low (- s-high))))
2857 (ash n-high (- s-high))
2858 (ash n-high (- s-low)))))))
2861 (defoptimizer (%ash/right derive-type) ((n shift))
2862 (two-arg-derive-type n shift #'%ash/right-derive-type-aux #'%ash/right))
2865 ;;; Modular functions
2867 ;;; (ldb (byte s 0) (foo x y ...)) =
2868 ;;; (ldb (byte s 0) (foo (ldb (byte s 0) x) y ...))
2870 ;;; and similar for other arguments.
2872 (defun make-modular-fun-type-deriver (prototype kind width signedp)
2873 (declare (ignore kind))
2875 (binding* ((info (info :function :info prototype) :exit-if-null)
2876 (fun (fun-info-derive-type info) :exit-if-null)
2877 (mask-type (specifier-type
2879 ((nil) (let ((mask (1- (ash 1 width))))
2880 `(integer ,mask ,mask)))
2881 ((t) `(signed-byte ,width))))))
2883 (let ((res (funcall fun call)))
2885 (if (eq signedp nil)
2886 (logand-derive-type-aux res mask-type))))))
2889 (binding* ((info (info :function :info prototype) :exit-if-null)
2890 (fun (fun-info-derive-type info) :exit-if-null)
2891 (res (funcall fun call) :exit-if-null)
2892 (mask-type (specifier-type
2894 ((nil) (let ((mask (1- (ash 1 width))))
2895 `(integer ,mask ,mask)))
2896 ((t) `(signed-byte ,width))))))
2897 (if (eq signedp nil)
2898 (logand-derive-type-aux res mask-type)))))
2900 ;;; Try to recursively cut all uses of LVAR to WIDTH bits.
2902 ;;; For good functions, we just recursively cut arguments; their
2903 ;;; "goodness" means that the result will not increase (in the
2904 ;;; (unsigned-byte +infinity) sense). An ordinary modular function is
2905 ;;; replaced with the version, cutting its result to WIDTH or more
2906 ;;; bits. For most functions (e.g. for +) we cut all arguments; for
2907 ;;; others (e.g. for ASH) we have "optimizers", cutting only necessary
2908 ;;; arguments (maybe to a different width) and returning the name of a
2909 ;;; modular version, if it exists, or NIL. If we have changed
2910 ;;; anything, we need to flush old derived types, because they have
2911 ;;; nothing in common with the new code.
2912 (defun cut-to-width (lvar kind width signedp)
2913 (declare (type lvar lvar) (type (integer 0) width))
2914 (let ((type (specifier-type (if (zerop width)
2917 ((nil) 'unsigned-byte)
2920 (labels ((reoptimize-node (node name)
2921 (setf (node-derived-type node)
2923 (info :function :type name)))
2924 (setf (lvar-%derived-type (node-lvar node)) nil)
2925 (setf (node-reoptimize node) t)
2926 (setf (block-reoptimize (node-block node)) t)
2927 (reoptimize-component (node-component node) :maybe))
2928 (cut-node (node &aux did-something)
2929 (when (block-delete-p (node-block node))
2930 (return-from cut-node))
2933 (typecase (ref-leaf node)
2935 (let* ((constant-value (constant-value (ref-leaf node)))
2936 (new-value (if signedp
2937 (mask-signed-field width constant-value)
2938 (ldb (byte width 0) constant-value))))
2939 (unless (= constant-value new-value)
2940 (change-ref-leaf node (make-constant new-value)
2942 (let ((lvar (node-lvar node)))
2943 (setf (lvar-%derived-type lvar)
2944 (and (lvar-has-single-use-p lvar)
2945 (make-values-type :required (list (ctype-of new-value))))))
2946 (setf (block-reoptimize (node-block node)) t)
2947 (reoptimize-component (node-component node) :maybe)
2950 (binding* ((dest (lvar-dest lvar) :exit-if-null)
2951 (nil (combination-p dest) :exit-if-null)
2952 (name (lvar-fun-name (combination-fun dest))))
2953 ;; we're about to insert an m-s-f/logand between a ref to
2954 ;; a variable and another m-s-f/logand. No point in doing
2955 ;; that; the parent m-s-f/logand was already cut to width
2957 (unless (or (cond (signedp
2958 (and (eql name 'mask-signed-field)
2963 (eql name 'logand)))
2964 (csubtypep (lvar-type lvar) type))
2967 `(mask-signed-field ,width 'dummy)
2968 `(logand 'dummy ,(ldb (byte width 0) -1))))
2969 (setf (block-reoptimize (node-block node)) t)
2970 (reoptimize-component (node-component node) :maybe)
2973 (when (eq (basic-combination-kind node) :known)
2974 (let* ((fun-ref (lvar-use (combination-fun node)))
2975 (fun-name (lvar-fun-name (combination-fun node)))
2976 (modular-fun (find-modular-version fun-name kind
2978 (when (and modular-fun
2979 (not (and (eq fun-name 'logand)
2981 (single-value-type (node-derived-type node))
2983 (binding* ((name (etypecase modular-fun
2984 ((eql :good) fun-name)
2986 (modular-fun-info-name modular-fun))
2988 (funcall modular-fun node width)))
2990 (unless (eql modular-fun :good)
2991 (setq did-something t)
2994 (find-free-fun name "in a strange place"))
2995 (setf (combination-kind node) :full))
2996 (unless (functionp modular-fun)
2997 (dolist (arg (basic-combination-args node))
2998 (when (cut-lvar arg)
2999 (setq did-something t))))
3001 (reoptimize-node node name))
3002 did-something)))))))
3003 (cut-lvar (lvar &aux did-something)
3004 (do-uses (node lvar)
3005 (when (cut-node node)
3006 (setq did-something t)))
3010 (defun best-modular-version (width signedp)
3011 ;; 1. exact width-matched :untagged
3012 ;; 2. >/>= width-matched :tagged
3013 ;; 3. >/>= width-matched :untagged
3014 (let* ((uuwidths (modular-class-widths *untagged-unsigned-modular-class*))
3015 (uswidths (modular-class-widths *untagged-signed-modular-class*))
3016 (uwidths (merge 'list uuwidths uswidths #'< :key #'car))
3017 (twidths (modular-class-widths *tagged-modular-class*)))
3018 (let ((exact (find (cons width signedp) uwidths :test #'equal)))
3020 (return-from best-modular-version (values width :untagged signedp))))
3021 (flet ((inexact-match (w)
3023 ((eq signedp (cdr w)) (<= width (car w)))
3024 ((eq signedp nil) (< width (car w))))))
3025 (let ((tgt (find-if #'inexact-match twidths)))
3027 (return-from best-modular-version
3028 (values (car tgt) :tagged (cdr tgt)))))
3029 (let ((ugt (find-if #'inexact-match uwidths)))
3031 (return-from best-modular-version
3032 (values (car ugt) :untagged (cdr ugt))))))))
3034 (defoptimizer (logand optimizer) ((x y) node)
3035 (let ((result-type (single-value-type (node-derived-type node))))
3036 (when (numeric-type-p result-type)
3037 (let ((low (numeric-type-low result-type))
3038 (high (numeric-type-high result-type)))
3039 (when (and (numberp low)
3042 (let ((width (integer-length high)))
3043 (multiple-value-bind (w kind signedp)
3044 (best-modular-version width nil)
3046 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND WIDTH SIGNEDP).
3048 ;; FIXME: I think the FIXME (which is from APD) above
3049 ;; implies that CUT-TO-WIDTH should do /everything/
3050 ;; that's required, including reoptimizing things
3051 ;; itself that it knows are necessary. At the moment,
3052 ;; CUT-TO-WIDTH sets up some new calls with
3053 ;; combination-type :FULL, which later get noticed as
3054 ;; known functions and properly converted.
3056 ;; We cut to W not WIDTH if SIGNEDP is true, because
3057 ;; signed constant replacement needs to know which bit
3058 ;; in the field is the signed bit.
3059 (let ((xact (cut-to-width x kind (if signedp w width) signedp))
3060 (yact (cut-to-width y kind (if signedp w width) signedp)))
3061 (declare (ignore xact yact))
3062 nil) ; After fixing above, replace with T, meaning
3063 ; "don't reoptimize this (LOGAND) node any more".
3066 (defoptimizer (mask-signed-field optimizer) ((width x) node)
3067 (let ((result-type (single-value-type (node-derived-type node))))
3068 (when (numeric-type-p result-type)
3069 (let ((low (numeric-type-low result-type))
3070 (high (numeric-type-high result-type)))
3071 (when (and (numberp low) (numberp high))
3072 (let ((width (max (integer-length high) (integer-length low))))
3073 (multiple-value-bind (w kind)
3074 (best-modular-version (1+ width) t)
3076 ;; FIXME: This should be (CUT-TO-WIDTH NODE KIND W T).
3077 ;; [ see comment above in LOGAND optimizer ]
3078 (cut-to-width x kind w t)
3079 nil ; After fixing above, replace with T.
3082 ;;; miscellanous numeric transforms
3084 ;;; If a constant appears as the first arg, swap the args.
3085 (deftransform commutative-arg-swap ((x y) * * :defun-only t :node node)
3086 (if (and (constant-lvar-p x)
3087 (not (constant-lvar-p y)))
3088 `(,(lvar-fun-name (basic-combination-fun node))
3089 (truly-the ,(lvar-type y) y)
3091 (give-up-ir1-transform)))
3093 (dolist (x '(= char= + * logior logand logxor logtest))
3094 (%deftransform x '(function * *) #'commutative-arg-swap
3095 "place constant arg last"))
3097 ;;; Handle the case of a constant BOOLE-CODE.
3098 (deftransform boole ((op x y) * *)
3099 "convert to inline logical operations"
3100 (unless (constant-lvar-p op)
3101 (give-up-ir1-transform "BOOLE code is not a constant."))
3102 (let ((control (lvar-value op)))
3104 (#.sb!xc:boole-clr 0)
3105 (#.sb!xc:boole-set -1)
3106 (#.sb!xc:boole-1 'x)
3107 (#.sb!xc:boole-2 'y)
3108 (#.sb!xc:boole-c1 '(lognot x))
3109 (#.sb!xc:boole-c2 '(lognot y))
3110 (#.sb!xc:boole-and '(logand x y))
3111 (#.sb!xc:boole-ior '(logior x y))
3112 (#.sb!xc:boole-xor '(logxor x y))
3113 (#.sb!xc:boole-eqv '(logeqv x y))
3114 (#.sb!xc:boole-nand '(lognand x y))
3115 (#.sb!xc:boole-nor '(lognor x y))
3116 (#.sb!xc:boole-andc1 '(logandc1 x y))
3117 (#.sb!xc:boole-andc2 '(logandc2 x y))
3118 (#.sb!xc:boole-orc1 '(logorc1 x y))
3119 (#.sb!xc:boole-orc2 '(logorc2 x y))
3121 (abort-ir1-transform "~S is an illegal control arg to BOOLE."
3124 ;;;; converting special case multiply/divide to shifts
3126 ;;; If arg is a constant power of two, turn * into a shift.
3127 (deftransform * ((x y) (integer integer) *)
3128 "convert x*2^k to shift"
3129 (unless (constant-lvar-p y)
3130 (give-up-ir1-transform))
3131 (let* ((y (lvar-value y))
3133 (len (1- (integer-length y-abs))))
3134 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3135 (give-up-ir1-transform))
3140 ;;; These must come before the ones below, so that they are tried
3141 ;;; first. Since %FLOOR and %CEILING are inlined, this allows
3142 ;;; the general case to be handled by TRUNCATE transforms.
3143 (deftransform floor ((x y))
3146 (deftransform ceiling ((x y))
3149 ;;; If arg is a constant power of two, turn FLOOR into a shift and
3150 ;;; mask. If CEILING, add in (1- (ABS Y)), do FLOOR and correct a
3152 (flet ((frob (y ceil-p)
3153 (unless (constant-lvar-p y)
3154 (give-up-ir1-transform))
3155 (let* ((y (lvar-value y))
3157 (len (1- (integer-length y-abs))))
3158 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3159 (give-up-ir1-transform))
3160 (let ((shift (- len))
3162 (delta (if ceil-p (* (signum y) (1- y-abs)) 0)))
3163 `(let ((x (+ x ,delta)))
3165 `(values (ash (- x) ,shift)
3166 (- (- (logand (- x) ,mask)) ,delta))
3167 `(values (ash x ,shift)
3168 (- (logand x ,mask) ,delta))))))))
3169 (deftransform floor ((x y) (integer integer) *)
3170 "convert division by 2^k to shift"
3172 (deftransform ceiling ((x y) (integer integer) *)
3173 "convert division by 2^k to shift"
3176 ;;; Do the same for MOD.
3177 (deftransform mod ((x y) (integer integer) *)
3178 "convert remainder mod 2^k to LOGAND"
3179 (unless (constant-lvar-p y)
3180 (give-up-ir1-transform))
3181 (let* ((y (lvar-value y))
3183 (len (1- (integer-length y-abs))))
3184 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3185 (give-up-ir1-transform))
3186 (let ((mask (1- y-abs)))
3188 `(- (logand (- x) ,mask))
3189 `(logand x ,mask)))))
3191 ;;; If arg is a constant power of two, turn TRUNCATE into a shift and mask.
3192 (deftransform truncate ((x y) (integer integer))
3193 "convert division by 2^k to shift"
3194 (unless (constant-lvar-p y)
3195 (give-up-ir1-transform))
3196 (let* ((y (lvar-value y))
3198 (len (1- (integer-length y-abs))))
3199 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3200 (give-up-ir1-transform))
3201 (let* ((shift (- len))
3204 (values ,(if (minusp y)
3206 `(- (ash (- x) ,shift)))
3207 (- (logand (- x) ,mask)))
3208 (values ,(if (minusp y)
3209 `(ash (- ,mask x) ,shift)
3211 (logand x ,mask))))))
3213 ;;; And the same for REM.
3214 (deftransform rem ((x y) (integer integer) *)
3215 "convert remainder mod 2^k to LOGAND"
3216 (unless (constant-lvar-p y)
3217 (give-up-ir1-transform))
3218 (let* ((y (lvar-value y))
3220 (len (1- (integer-length y-abs))))
3221 (unless (and (> y-abs 0) (= y-abs (ash 1 len)))
3222 (give-up-ir1-transform))
3223 (let ((mask (1- y-abs)))
3225 (- (logand (- x) ,mask))
3226 (logand x ,mask)))))
3228 ;;; Return an expression to calculate the integer quotient of X and
3229 ;;; constant Y, using multiplication, shift and add/sub instead of
3230 ;;; division. Both arguments must be unsigned, fit in a machine word and
3231 ;;; Y must neither be zero nor a power of two. The quotient is rounded
3233 ;;; The algorithm is taken from the paper "Division by Invariant
3234 ;;; Integers using Multiplication", 1994 by Torbj\"{o}rn Granlund and
3235 ;;; Peter L. Montgomery, Figures 4.2 and 6.2, modified to exclude the
3236 ;;; case of division by powers of two.
3237 ;;; The algorithm includes an adaptive precision argument. Use it, since
3238 ;;; we often have sub-word value ranges. Careful, in this case, we need
3239 ;;; p s.t 2^p > n, not the ceiling of the binary log.
3240 ;;; Also, for some reason, the paper prefers shifting to masking. Mask
3241 ;;; instead. Masking is equivalent to shifting right, then left again;
3242 ;;; all the intermediate values are still words, so we just have to shift
3243 ;;; right a bit more to compensate, at the end.
3245 ;;; The following two examples show an average case and the worst case
3246 ;;; with respect to the complexity of the generated expression, under
3247 ;;; a word size of 64 bits:
3249 ;;; (UNSIGNED-DIV-TRANSFORMER 10 MOST-POSITIVE-WORD) ->
3250 ;;; (ASH (%MULTIPLY (LOGANDC2 X 0) 14757395258967641293) -3)
3252 ;;; (UNSIGNED-DIV-TRANSFORMER 7 MOST-POSITIVE-WORD) ->
3254 ;;; (T1 (%MULTIPLY NUM 2635249153387078803)))
3255 ;;; (ASH (LDB (BYTE 64 0)
3256 ;;; (+ T1 (ASH (LDB (BYTE 64 0)
3261 (defun gen-unsigned-div-by-constant-expr (y max-x)
3262 (declare (type (integer 3 #.most-positive-word) y)
3264 (aver (not (zerop (logand y (1- y)))))
3266 ;; the floor of the binary logarithm of (positive) X
3267 (integer-length (1- x)))
3268 (choose-multiplier (y precision)
3270 (shift l (1- shift))
3271 (expt-2-n+l (expt 2 (+ sb!vm:n-word-bits l)))
3272 (m-low (truncate expt-2-n+l y) (ash m-low -1))
3273 (m-high (truncate (+ expt-2-n+l
3274 (ash expt-2-n+l (- precision)))
3277 ((not (and (< (ash m-low -1) (ash m-high -1))
3279 (values m-high shift)))))
3280 (let ((n (expt 2 sb!vm:n-word-bits))
3281 (precision (integer-length max-x))
3283 (multiple-value-bind (m shift2)
3284 (choose-multiplier y precision)
3285 (when (and (>= m n) (evenp y))
3286 (setq shift1 (ld (logand y (- y))))
3287 (multiple-value-setq (m shift2)
3288 (choose-multiplier (/ y (ash 1 shift1))
3289 (- precision shift1))))
3292 `(truly-the word ,x)))
3294 (t1 (%multiply-high num ,(- m n))))
3295 (ash ,(word `(+ t1 (ash ,(word `(- num t1))
3298 ((and (zerop shift1) (zerop shift2))
3299 (let ((max (truncate max-x y)))
3300 ;; Explicit TRULY-THE needed to get the FIXNUM=>FIXNUM
3302 `(truly-the (integer 0 ,max)
3303 (%multiply-high x ,m))))
3305 `(ash (%multiply-high (logandc2 x ,(1- (ash 1 shift1))) ,m)
3306 ,(- (+ shift1 shift2)))))))))
3308 ;;; If the divisor is constant and both args are positive and fit in a
3309 ;;; machine word, replace the division by a multiplication and possibly
3310 ;;; some shifts and an addition. Calculate the remainder by a second
3311 ;;; multiplication and a subtraction. Dead code elimination will
3312 ;;; suppress the latter part if only the quotient is needed. If the type
3313 ;;; of the dividend allows to derive that the quotient will always have
3314 ;;; the same value, emit much simpler code to handle that. (This case
3315 ;;; may be rare but it's easy to detect and the compiler doesn't find
3316 ;;; this optimization on its own.)
3317 (deftransform truncate ((x y) (word (constant-arg word))
3319 :policy (and (> speed compilation-speed)
3321 "convert integer division to multiplication"
3322 (let* ((y (lvar-value y))
3323 (x-type (lvar-type x))
3324 (max-x (or (and (numeric-type-p x-type)
3325 (numeric-type-high x-type))
3326 most-positive-word)))
3327 ;; Division by zero, one or powers of two is handled elsewhere.
3328 (when (zerop (logand y (1- y)))
3329 (give-up-ir1-transform))
3330 `(let* ((quot ,(gen-unsigned-div-by-constant-expr y max-x))
3331 (rem (ldb (byte #.sb!vm:n-word-bits 0)
3332 (- x (* quot ,y)))))
3333 (values quot rem))))
3335 ;;;; arithmetic and logical identity operation elimination
3337 ;;; Flush calls to various arith functions that convert to the
3338 ;;; identity function or a constant.
3339 (macrolet ((def (name identity result)
3340 `(deftransform ,name ((x y) (* (constant-arg (member ,identity))) *)
3341 "fold identity operations"
3348 (def logxor -1 (lognot x))
3351 (deftransform logand ((x y) (* (constant-arg t)) *)
3352 "fold identity operation"
3353 (let ((y (lvar-value y)))
3354 (unless (and (plusp y)
3355 (= y (1- (ash 1 (integer-length y)))))
3356 (give-up-ir1-transform))
3357 (unless (csubtypep (lvar-type x)
3358 (specifier-type `(integer 0 ,y)))
3359 (give-up-ir1-transform))
3362 (deftransform mask-signed-field ((size x) ((constant-arg t) *) *)
3363 "fold identity operation"
3364 (let ((size (lvar-value size)))
3365 (unless (csubtypep (lvar-type x) (specifier-type `(signed-byte ,size)))
3366 (give-up-ir1-transform))
3369 ;;; Pick off easy association opportunities for constant folding.
3370 ;;; More complicated stuff that also depends on commutativity
3371 ;;; (e.g. (f (f x k1) (f y k2)) => (f (f x y) (f k1 k2))) should
3372 ;;; probably be handled with a more general tree-rewriting pass.
3373 (macrolet ((def (operator &key (type 'integer) (folded operator))
3374 `(deftransform ,operator ((x z) (,type (constant-arg ,type)))
3375 ,(format nil "associate ~A/~A of constants"
3377 (binding* ((node (if (lvar-has-single-use-p x)
3379 (give-up-ir1-transform)))
3380 (nil (or (and (combination-p node)
3382 (combination-fun node))
3384 (give-up-ir1-transform)))
3385 (y (second (combination-args node)))
3386 (nil (or (constant-lvar-p y)
3387 (give-up-ir1-transform)))
3389 (unless (typep y ',type)
3390 (give-up-ir1-transform))
3391 (splice-fun-args x ',folded 2)
3393 (declare (ignore y z))
3394 (,',operator x ',(,folded y (lvar-value z))))))))
3398 (def logtest :folded logand)
3399 (def + :type rational)
3400 (def * :type rational))
3402 (deftransform mask-signed-field ((width x) ((constant-arg unsigned-byte) *))
3403 "Fold mask-signed-field/mask-signed-field of constant width"
3404 (binding* ((node (if (lvar-has-single-use-p x)
3406 (give-up-ir1-transform)))
3407 (nil (or (combination-p node)
3408 (give-up-ir1-transform)))
3409 (nil (or (eq (lvar-fun-name (combination-fun node))
3411 (give-up-ir1-transform)))
3412 (x-width (first (combination-args node)))
3413 (nil (or (constant-lvar-p x-width)
3414 (give-up-ir1-transform)))
3415 (x-width (lvar-value x-width)))
3416 (unless (typep x-width 'unsigned-byte)
3417 (give-up-ir1-transform))
3418 (splice-fun-args x 'mask-signed-field 2)
3419 `(lambda (width x-width x)
3420 (declare (ignore width x-width))
3421 (mask-signed-field ,(min (lvar-value width) x-width) x))))
3423 ;;; These are restricted to rationals, because (- 0 0.0) is 0.0, not -0.0, and
3424 ;;; (* 0 -4.0) is -0.0.
3425 (deftransform - ((x y) ((constant-arg (member 0)) rational) *)
3426 "convert (- 0 x) to negate"
3428 (deftransform * ((x y) (rational (constant-arg (member 0))) *)
3429 "convert (* x 0) to 0"
3432 (deftransform %negate ((x) (rational))
3433 "Eliminate %negate/%negate of rationals"
3434 (splice-fun-args x '%negate 1)
3437 (deftransform %negate ((x) (number))
3439 (let ((use (lvar-uses x))
3441 (unless (and (combination-p use)
3442 (eql '* (lvar-fun-name (combination-fun use)))
3443 (constant-lvar-p (setf arg (second (combination-args use))))
3444 (numberp (setf arg (lvar-value arg))))
3445 (give-up-ir1-transform))
3446 (splice-fun-args x '* 2)
3448 (declare (ignore y))
3451 ;;; Return T if in an arithmetic op including lvars X and Y, the
3452 ;;; result type is not affected by the type of X. That is, Y is at
3453 ;;; least as contagious as X.
3455 (defun not-more-contagious (x y)
3456 (declare (type continuation x y))
3457 (let ((x (lvar-type x))
3459 (values (type= (numeric-contagion x y)
3460 (numeric-contagion y y)))))
3461 ;;; Patched version by Raymond Toy. dtc: Should be safer although it
3462 ;;; XXX needs more work as valid transforms are missed; some cases are
3463 ;;; specific to particular transform functions so the use of this
3464 ;;; function may need a re-think.
3465 (defun not-more-contagious (x y)
3466 (declare (type lvar x y))
3467 (flet ((simple-numeric-type (num)
3468 (and (numeric-type-p num)
3469 ;; Return non-NIL if NUM is integer, rational, or a float
3470 ;; of some type (but not FLOAT)
3471 (case (numeric-type-class num)
3475 (numeric-type-format num))
3478 (let ((x (lvar-type x))
3480 (if (and (simple-numeric-type x)
3481 (simple-numeric-type y))
3482 (values (type= (numeric-contagion x y)
3483 (numeric-contagion y y)))))))
3485 (def!type exact-number ()
3486 '(or rational (complex rational)))
3490 ;;; Only safely applicable for exact numbers. For floating-point
3491 ;;; x, one would have to first show that neither x or y are signed
3492 ;;; 0s, and that x isn't an SNaN.
3493 (deftransform + ((x y) (exact-number (constant-arg (eql 0))) *)
3498 (deftransform - ((x y) (exact-number (constant-arg (eql 0))) *)
3502 ;;; Fold (OP x +/-1)
3504 ;;; %NEGATE might not always signal correctly.
3506 ((def (name result minus-result)
3507 `(deftransform ,name ((x y)
3508 (exact-number (constant-arg (member 1 -1))))
3509 "fold identity operations"
3510 (if (minusp (lvar-value y)) ',minus-result ',result))))
3511 (def * x (%negate x))
3512 (def / x (%negate x))
3513 (def expt x (/ 1 x)))
3515 ;;; Fold (expt x n) into multiplications for small integral values of
3516 ;;; N; convert (expt x 1/2) to sqrt.
3517 (deftransform expt ((x y) (t (constant-arg real)) *)
3518 "recode as multiplication or sqrt"
3519 (let ((val (lvar-value y)))
3520 ;; If Y would cause the result to be promoted to the same type as
3521 ;; Y, we give up. If not, then the result will be the same type
3522 ;; as X, so we can replace the exponentiation with simple
3523 ;; multiplication and division for small integral powers.
3524 (unless (not-more-contagious y x)
3525 (give-up-ir1-transform))
3527 (let ((x-type (lvar-type x)))
3528 (cond ((csubtypep x-type (specifier-type '(or rational
3529 (complex rational))))
3531 ((csubtypep x-type (specifier-type 'real))
3535 ((csubtypep x-type (specifier-type 'complex))
3536 ;; both parts are float
3538 (t (give-up-ir1-transform)))))
3539 ((= val 2) '(* x x))
3540 ((= val -2) '(/ (* x x)))
3541 ((= val 3) '(* x x x))
3542 ((= val -3) '(/ (* x x x)))
3543 ((= val 1/2) '(sqrt x))
3544 ((= val -1/2) '(/ (sqrt x)))
3545 (t (give-up-ir1-transform)))))
3547 (deftransform expt ((x y) ((constant-arg (member -1 -1.0 -1.0d0)) integer) *)
3548 "recode as an ODDP check"
3549 (let ((val (lvar-value x)))
3551 '(- 1 (* 2 (logand 1 y)))
3556 ;;; KLUDGE: Shouldn't (/ 0.0 0.0), etc. cause exceptions in these
3557 ;;; transformations?
3558 ;;; Perhaps we should have to prove that the denominator is nonzero before
3559 ;;; doing them? -- WHN 19990917
3560 (macrolet ((def (name)
3561 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3568 (macrolet ((def (name)
3569 `(deftransform ,name ((x y) ((constant-arg (integer 0 0)) integer)
3578 (macrolet ((def (name &optional float)
3579 (let ((x (if float '(float x) 'x)))
3580 `(deftransform ,name ((x y) (integer (constant-arg (member 1 -1)))
3582 "fold division by 1"
3583 `(values ,(if (minusp (lvar-value y))
3596 ;;;; character operations
3598 (deftransform char-equal ((a b) (base-char base-char))
3600 '(let* ((ac (char-code a))
3602 (sum (logxor ac bc)))
3604 (when (eql sum #x20)
3605 (let ((sum (+ ac bc)))
3606 (or (and (> sum 161) (< sum 213))
3607 (and (> sum 415) (< sum 461))
3608 (and (> sum 463) (< sum 477))))))))
3610 (deftransform char-upcase ((x) (base-char))
3612 '(let ((n-code (char-code x)))
3613 (if (or (and (> n-code #o140) ; Octal 141 is #\a.
3614 (< n-code #o173)) ; Octal 172 is #\z.
3615 (and (> n-code #o337)
3617 (and (> n-code #o367)
3619 (code-char (logxor #x20 n-code))
3622 (deftransform char-downcase ((x) (base-char))
3624 '(let ((n-code (char-code x)))
3625 (if (or (and (> n-code 64) ; 65 is #\A.
3626 (< n-code 91)) ; 90 is #\Z.
3631 (code-char (logxor #x20 n-code))
3634 ;;;; equality predicate transforms
3636 ;;; Return true if X and Y are lvars whose only use is a
3637 ;;; reference to the same leaf, and the value of the leaf cannot
3639 (defun same-leaf-ref-p (x y)
3640 (declare (type lvar x y))
3641 (let ((x-use (principal-lvar-use x))
3642 (y-use (principal-lvar-use y)))
3645 (eq (ref-leaf x-use) (ref-leaf y-use))
3646 (constant-reference-p x-use))))
3648 ;;; If X and Y are the same leaf, then the result is true. Otherwise,
3649 ;;; if there is no intersection between the types of the arguments,
3650 ;;; then the result is definitely false.
3651 (deftransform simple-equality-transform ((x y) * *
3654 ((same-leaf-ref-p x y) t)
3655 ((not (types-equal-or-intersect (lvar-type x) (lvar-type y)))
3657 (t (give-up-ir1-transform))))
3660 `(%deftransform ',x '(function * *) #'simple-equality-transform)))
3664 ;;; This is similar to SIMPLE-EQUALITY-TRANSFORM, except that we also
3665 ;;; try to convert to a type-specific predicate or EQ:
3666 ;;; -- If both args are characters, convert to CHAR=. This is better than
3667 ;;; just converting to EQ, since CHAR= may have special compilation
3668 ;;; strategies for non-standard representations, etc.
3669 ;;; -- If either arg is definitely a fixnum, we check to see if X is
3670 ;;; constant and if so, put X second. Doing this results in better
3671 ;;; code from the backend, since the backend assumes that any constant
3672 ;;; argument comes second.
3673 ;;; -- If either arg is definitely not a number or a fixnum, then we
3674 ;;; can compare with EQ.
3675 ;;; -- Otherwise, we try to put the arg we know more about second. If X
3676 ;;; is constant then we put it second. If X is a subtype of Y, we put
3677 ;;; it second. These rules make it easier for the back end to match
3678 ;;; these interesting cases.
3679 (deftransform eql ((x y) * * :node node)
3680 "convert to simpler equality predicate"
3681 (let ((x-type (lvar-type x))
3682 (y-type (lvar-type y))
3683 (char-type (specifier-type 'character)))
3684 (flet ((fixnum-type-p (type)
3685 (csubtypep type (specifier-type 'fixnum))))
3687 ((same-leaf-ref-p x y) t)
3688 ((not (types-equal-or-intersect x-type y-type))
3690 ((and (csubtypep x-type char-type)
3691 (csubtypep y-type char-type))
3693 ((or (eq-comparable-type-p x-type) (eq-comparable-type-p y-type))
3694 (if (and (constant-lvar-p x) (not (constant-lvar-p y)))
3697 ((and (not (constant-lvar-p y))
3698 (or (constant-lvar-p x)
3699 (and (csubtypep x-type y-type)
3700 (not (csubtypep y-type x-type)))))
3703 (give-up-ir1-transform))))))
3705 ;;; similarly to the EQL transform above, we attempt to constant-fold
3706 ;;; or convert to a simpler predicate: mostly we have to be careful
3707 ;;; with strings and bit-vectors.
3708 (deftransform equal ((x y) * *)
3709 "convert to simpler equality predicate"
3710 (let ((x-type (lvar-type x))
3711 (y-type (lvar-type y))
3712 (string-type (specifier-type 'string))
3713 (bit-vector-type (specifier-type 'bit-vector)))
3715 ((same-leaf-ref-p x y) t)
3716 ((and (csubtypep x-type string-type)
3717 (csubtypep y-type string-type))
3719 ((and (csubtypep x-type bit-vector-type)
3720 (csubtypep y-type bit-vector-type))
3721 '(bit-vector-= x y))
3722 ;; if at least one is not a string, and at least one is not a
3723 ;; bit-vector, then we can reason from types.
3724 ((and (not (and (types-equal-or-intersect x-type string-type)
3725 (types-equal-or-intersect y-type string-type)))
3726 (not (and (types-equal-or-intersect x-type bit-vector-type)
3727 (types-equal-or-intersect y-type bit-vector-type)))
3728 (not (types-equal-or-intersect x-type y-type)))
3730 (t (give-up-ir1-transform)))))
3732 ;;; Convert to EQL if both args are rational and complexp is specified
3733 ;;; and the same for both.
3734 (deftransform = ((x y) (number number) *)
3736 (let ((x-type (lvar-type x))
3737 (y-type (lvar-type y)))
3738 (cond ((or (and (csubtypep x-type (specifier-type 'float))
3739 (csubtypep y-type (specifier-type 'float)))
3740 (and (csubtypep x-type (specifier-type '(complex float)))
3741 (csubtypep y-type (specifier-type '(complex float))))
3742 #!+complex-float-vops
3743 (and (csubtypep x-type (specifier-type '(or single-float (complex single-float))))
3744 (csubtypep y-type (specifier-type '(or single-float (complex single-float)))))
3745 #!+complex-float-vops
3746 (and (csubtypep x-type (specifier-type '(or double-float (complex double-float))))
3747 (csubtypep y-type (specifier-type '(or double-float (complex double-float))))))
3748 ;; They are both floats. Leave as = so that -0.0 is
3749 ;; handled correctly.
3750 (give-up-ir1-transform))
3751 ((or (and (csubtypep x-type (specifier-type 'rational))
3752 (csubtypep y-type (specifier-type 'rational)))
3753 (and (csubtypep x-type
3754 (specifier-type '(complex rational)))
3756 (specifier-type '(complex rational)))))
3757 ;; They are both rationals and complexp is the same.
3761 (give-up-ir1-transform
3762 "The operands might not be the same type.")))))
3764 (defun maybe-float-lvar-p (lvar)
3765 (neq *empty-type* (type-intersection (specifier-type 'float)
3768 (flet ((maybe-invert (node op inverted x y)
3769 ;; Don't invert if either argument can be a float (NaNs)
3771 ((or (maybe-float-lvar-p x) (maybe-float-lvar-p y))
3772 (delay-ir1-transform node :constraint)
3773 `(or (,op x y) (= x y)))
3775 `(if (,inverted x y) nil t)))))
3776 (deftransform >= ((x y) (number number) * :node node)
3777 "invert or open code"
3778 (maybe-invert node '> '< x y))
3779 (deftransform <= ((x y) (number number) * :node node)
3780 "invert or open code"
3781 (maybe-invert node '< '> x y)))
3783 ;;; See whether we can statically determine (< X Y) using type
3784 ;;; information. If X's high bound is < Y's low, then X < Y.
3785 ;;; Similarly, if X's low is >= to Y's high, the X >= Y (so return
3786 ;;; NIL). If not, at least make sure any constant arg is second.
3787 (macrolet ((def (name inverse reflexive-p surely-true surely-false)
3788 `(deftransform ,name ((x y))
3789 "optimize using intervals"
3790 (if (and (same-leaf-ref-p x y)
3791 ;; For non-reflexive functions we don't need
3792 ;; to worry about NaNs: (non-ref-op NaN NaN) => false,
3793 ;; but with reflexive ones we don't know...
3795 '((and (not (maybe-float-lvar-p x))
3796 (not (maybe-float-lvar-p y))))))
3798 (let ((ix (or (type-approximate-interval (lvar-type x))
3799 (give-up-ir1-transform)))
3800 (iy (or (type-approximate-interval (lvar-type y))
3801 (give-up-ir1-transform))))
3806 ((and (constant-lvar-p x)
3807 (not (constant-lvar-p y)))
3810 (give-up-ir1-transform))))))))
3811 (def = = t (interval-= ix iy) (interval-/= ix iy))
3812 (def /= /= nil (interval-/= ix iy) (interval-= ix iy))
3813 (def < > nil (interval-< ix iy) (interval->= ix iy))
3814 (def > < nil (interval-< iy ix) (interval->= iy ix))
3815 (def <= >= t (interval->= iy ix) (interval-< iy ix))
3816 (def >= <= t (interval->= ix iy) (interval-< ix iy)))
3818 (defun ir1-transform-char< (x y first second inverse)
3820 ((same-leaf-ref-p x y) nil)
3821 ;; If we had interval representation of character types, as we
3822 ;; might eventually have to to support 2^21 characters, then here
3823 ;; we could do some compile-time computation as in transforms for
3824 ;; < above. -- CSR, 2003-07-01
3825 ((and (constant-lvar-p first)
3826 (not (constant-lvar-p second)))
3828 (t (give-up-ir1-transform))))
3830 (deftransform char< ((x y) (character character) *)
3831 (ir1-transform-char< x y x y 'char>))
3833 (deftransform char> ((x y) (character character) *)
3834 (ir1-transform-char< y x x y 'char<))
3836 ;;;; converting N-arg comparisons
3838 ;;;; We convert calls to N-arg comparison functions such as < into
3839 ;;;; two-arg calls. This transformation is enabled for all such
3840 ;;;; comparisons in this file. If any of these predicates are not
3841 ;;;; open-coded, then the transformation should be removed at some
3842 ;;;; point to avoid pessimization.
3844 ;;; This function is used for source transformation of N-arg
3845 ;;; comparison functions other than inequality. We deal both with
3846 ;;; converting to two-arg calls and inverting the sense of the test,
3847 ;;; if necessary. If the call has two args, then we pass or return a
3848 ;;; negated test as appropriate. If it is a degenerate one-arg call,
3849 ;;; then we transform to code that returns true. Otherwise, we bind
3850 ;;; all the arguments and expand into a bunch of IFs.
3851 (defun multi-compare (predicate args not-p type &optional force-two-arg-p)
3852 (let ((nargs (length args)))
3853 (cond ((< nargs 1) (values nil t))
3854 ((= nargs 1) `(progn (the ,type ,@args) t))
3857 `(if (,predicate ,(first args) ,(second args)) nil t)
3859 `(,predicate ,(first args) ,(second args))
3862 (do* ((i (1- nargs) (1- i))
3864 (current (gensym) (gensym))
3865 (vars (list current) (cons current vars))
3867 `(if (,predicate ,current ,last)
3869 `(if (,predicate ,current ,last)
3872 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3875 (define-source-transform = (&rest args) (multi-compare '= args nil 'number))
3876 (define-source-transform < (&rest args) (multi-compare '< args nil 'real))
3877 (define-source-transform > (&rest args) (multi-compare '> args nil 'real))
3878 ;;; We cannot do the inversion for >= and <= here, since both
3879 ;;; (< NaN X) and (> NaN X)
3880 ;;; are false, and we don't have type-information available yet. The
3881 ;;; deftransforms for two-argument versions of >= and <= takes care of
3882 ;;; the inversion to > and < when possible.
3883 (define-source-transform <= (&rest args) (multi-compare '<= args nil 'real))
3884 (define-source-transform >= (&rest args) (multi-compare '>= args nil 'real))
3886 (define-source-transform char= (&rest args) (multi-compare 'char= args nil
3888 (define-source-transform char< (&rest args) (multi-compare 'char< args nil
3890 (define-source-transform char> (&rest args) (multi-compare 'char> args nil
3892 (define-source-transform char<= (&rest args) (multi-compare 'char> args t
3894 (define-source-transform char>= (&rest args) (multi-compare 'char< args t
3897 (define-source-transform char-equal (&rest args)
3898 (multi-compare 'sb!impl::two-arg-char-equal args nil 'character t))
3899 (define-source-transform char-lessp (&rest args)
3900 (multi-compare 'sb!impl::two-arg-char-lessp args nil 'character t))
3901 (define-source-transform char-greaterp (&rest args)
3902 (multi-compare 'sb!impl::two-arg-char-greaterp args nil 'character t))
3903 (define-source-transform char-not-greaterp (&rest args)
3904 (multi-compare 'sb!impl::two-arg-char-greaterp args t 'character t))
3905 (define-source-transform char-not-lessp (&rest args)
3906 (multi-compare 'sb!impl::two-arg-char-lessp args t 'character t))
3908 ;;; This function does source transformation of N-arg inequality
3909 ;;; functions such as /=. This is similar to MULTI-COMPARE in the <3
3910 ;;; arg cases. If there are more than two args, then we expand into
3911 ;;; the appropriate n^2 comparisons only when speed is important.
3912 (declaim (ftype (function (symbol list t) *) multi-not-equal))
3913 (defun multi-not-equal (predicate args type)
3914 (let ((nargs (length args)))
3915 (cond ((< nargs 1) (values nil t))
3916 ((= nargs 1) `(progn (the ,type ,@args) t))
3918 `(if (,predicate ,(first args) ,(second args)) nil t))
3919 ((not (policy *lexenv*
3920 (and (>= speed space)
3921 (>= speed compilation-speed))))
3924 (let ((vars (make-gensym-list nargs)))
3925 (do ((var vars next)
3926 (next (cdr vars) (cdr next))
3929 `((lambda ,vars (declare (type ,type ,@vars)) ,result)
3931 (let ((v1 (first var)))
3933 (setq result `(if (,predicate ,v1 ,v2) nil ,result))))))))))
3935 (define-source-transform /= (&rest args)
3936 (multi-not-equal '= args 'number))
3937 (define-source-transform char/= (&rest args)
3938 (multi-not-equal 'char= args 'character))
3939 (define-source-transform char-not-equal (&rest args)
3940 (multi-not-equal 'char-equal args 'character))
3942 ;;; Expand MAX and MIN into the obvious comparisons.
3943 (define-source-transform max (arg0 &rest rest)
3944 (once-only ((arg0 arg0))
3946 `(values (the real ,arg0))
3947 `(let ((maxrest (max ,@rest)))
3948 (if (>= ,arg0 maxrest) ,arg0 maxrest)))))
3949 (define-source-transform min (arg0 &rest rest)
3950 (once-only ((arg0 arg0))
3952 `(values (the real ,arg0))
3953 `(let ((minrest (min ,@rest)))
3954 (if (<= ,arg0 minrest) ,arg0 minrest)))))
3956 ;;;; converting N-arg arithmetic functions
3958 ;;;; N-arg arithmetic and logic functions are associated into two-arg
3959 ;;;; versions, and degenerate cases are flushed.
3961 ;;; Left-associate FIRST-ARG and MORE-ARGS using FUNCTION.
3962 (declaim (ftype (sfunction (symbol t list t) list) associate-args))
3963 (defun associate-args (fun first-arg more-args identity)
3964 (let ((next (rest more-args))
3965 (arg (first more-args)))
3967 `(,fun ,first-arg ,(if arg arg identity))
3968 (associate-args fun `(,fun ,first-arg ,arg) next identity))))
3970 ;;; Reduce constants in ARGS list.
3971 (declaim (ftype (sfunction (symbol list t symbol) list) reduce-constants))
3972 (defun reduce-constants (fun args identity one-arg-result-type)
3973 (let ((one-arg-constant-p (ecase one-arg-result-type
3975 (integer #'integerp)))
3976 (reduced-value identity)
3978 (collect ((not-constants))
3980 (if (funcall one-arg-constant-p arg)
3981 (setf reduced-value (funcall fun reduced-value arg)
3983 (not-constants arg)))
3984 ;; It is tempting to drop constants reduced to identity here,
3985 ;; but if X is SNaN in (* X 1), we cannot drop the 1.
3988 `(,reduced-value ,@(not-constants))
3990 `(,reduced-value)))))
3992 ;;; Do source transformations for transitive functions such as +.
3993 ;;; One-arg cases are replaced with the arg and zero arg cases with
3994 ;;; the identity. ONE-ARG-RESULT-TYPE is the type to ensure (with THE)
3995 ;;; that the argument in one-argument calls is.
3996 (declaim (ftype (function (symbol list t &optional symbol list)
3997 (values t &optional (member nil t)))
3998 source-transform-transitive))
3999 (defun source-transform-transitive (fun args identity
4000 &optional (one-arg-result-type 'number)
4001 (one-arg-prefixes '(values)))
4004 (1 `(,@one-arg-prefixes (the ,one-arg-result-type ,(first args))))
4006 (t (let ((reduced-args (reduce-constants fun args identity one-arg-result-type)))
4007 (associate-args fun (first reduced-args) (rest reduced-args) identity)))))
4009 (define-source-transform + (&rest args)
4010 (source-transform-transitive '+ args 0))
4011 (define-source-transform * (&rest args)
4012 (source-transform-transitive '* args 1))
4013 (define-source-transform logior (&rest args)
4014 (source-transform-transitive 'logior args 0 'integer))
4015 (define-source-transform logxor (&rest args)
4016 (source-transform-transitive 'logxor args 0 'integer))
4017 (define-source-transform logand (&rest args)
4018 (source-transform-transitive 'logand args -1 'integer))
4019 (define-source-transform logeqv (&rest args)
4020 (source-transform-transitive 'logeqv args -1 'integer))
4021 (define-source-transform gcd (&rest args)
4022 (source-transform-transitive 'gcd args 0 'integer '(abs)))
4023 (define-source-transform lcm (&rest args)
4024 (source-transform-transitive 'lcm args 1 'integer '(abs)))
4026 ;;; Do source transformations for intransitive n-arg functions such as
4027 ;;; /. With one arg, we form the inverse. With two args we pass.
4028 ;;; Otherwise we associate into two-arg calls.
4029 (declaim (ftype (function (symbol symbol list t list &optional symbol)
4030 (values list &optional (member nil t)))
4031 source-transform-intransitive))
4032 (defun source-transform-intransitive (fun fun* args identity one-arg-prefixes
4033 &optional (one-arg-result-type 'number))
4035 ((0 2) (values nil t))
4036 (1 `(,@one-arg-prefixes (the ,one-arg-result-type ,(first args))))
4037 (t (let ((reduced-args
4038 (reduce-constants fun* (rest args) identity one-arg-result-type)))
4039 (associate-args fun (first args) reduced-args identity)))))
4041 (define-source-transform - (&rest args)
4042 (source-transform-intransitive '- '+ args 0 '(%negate)))
4043 (define-source-transform / (&rest args)
4044 (source-transform-intransitive '/ '* args 1 '(/ 1)))
4046 ;;;; transforming APPLY
4048 ;;; We convert APPLY into MULTIPLE-VALUE-CALL so that the compiler
4049 ;;; only needs to understand one kind of variable-argument call. It is
4050 ;;; more efficient to convert APPLY to MV-CALL than MV-CALL to APPLY.
4051 (define-source-transform apply (fun arg &rest more-args)
4052 (let ((args (cons arg more-args)))
4053 `(multiple-value-call ,fun
4054 ,@(mapcar (lambda (x) `(values ,x)) (butlast args))
4055 (values-list ,(car (last args))))))
4057 ;;;; transforming references to &REST argument
4059 ;;; We add magical &MORE arguments to all functions with &REST. If ARG names
4060 ;;; the &REST argument, this returns the lambda-vars for the context and
4062 (defun possible-rest-arg-context (arg)
4064 (let* ((var (lexenv-find arg vars))
4065 (info (when (lambda-var-p var)
4066 (lambda-var-arg-info var))))
4068 (eq :rest (arg-info-kind info))
4069 (consp (arg-info-default info)))
4070 (values-list (arg-info-default info))))))
4072 (defun mark-more-context-used (rest-var)
4073 (let ((info (lambda-var-arg-info rest-var)))
4074 (aver (eq :rest (arg-info-kind info)))
4075 (destructuring-bind (context count &optional used) (arg-info-default info)
4077 (setf (arg-info-default info) (list context count t))))))
4079 (defun mark-more-context-invalid (rest-var)
4080 (let ((info (lambda-var-arg-info rest-var)))
4081 (aver (eq :rest (arg-info-kind info)))
4082 (setf (arg-info-default info) t)))
4084 ;;; This determines of we the REF to a &REST variable is headed towards
4085 ;;; parts unknown, or if we can really use the context.
4086 (defun rest-var-more-context-ok (lvar)
4087 (let* ((use (lvar-use lvar))
4088 (var (when (ref-p use) (ref-leaf use)))
4089 (home (when (lambda-var-p var) (lambda-var-home var)))
4090 (info (when (lambda-var-p var) (lambda-var-arg-info var)))
4091 (restp (when info (eq :rest (arg-info-kind info)))))
4092 (flet ((ref-good-for-more-context-p (ref)
4093 (let ((dest (principal-lvar-end (node-lvar ref))))
4094 (and (combination-p dest)
4095 ;; If the destination is to anything but these, we're going to
4096 ;; actually need the rest list -- and since other operations
4097 ;; might modify the list destructively, the using the context
4098 ;; isn't good anywhere else either.
4099 (lvar-fun-is (combination-fun dest)
4100 '(%rest-values %rest-ref %rest-length
4101 %rest-null %rest-true))
4102 ;; If the home lambda is different and isn't DX, it might
4103 ;; escape -- in which case using the more context isn't safe.
4104 (let ((clambda (node-home-lambda dest)))
4105 (or (eq home clambda)
4106 (leaf-dynamic-extent clambda)))))))
4107 (let ((ok (and restp
4108 (consp (arg-info-default info))
4109 (not (lambda-var-specvar var))
4110 (not (lambda-var-sets var))
4111 (every #'ref-good-for-more-context-p (lambda-var-refs var)))))
4113 (mark-more-context-used var)
4115 (mark-more-context-invalid var)))
4118 ;;; VALUES-LIST -> %REST-VALUES
4119 (define-source-transform values-list (list)
4120 (multiple-value-bind (context count) (possible-rest-arg-context list)
4122 `(%rest-values ,list ,context ,count)
4125 ;;; NTH -> %REST-REF
4126 (define-source-transform nth (n list)
4127 (multiple-value-bind (context count) (possible-rest-arg-context list)
4129 `(%rest-ref ,n ,list ,context ,count)
4130 `(car (nthcdr ,n ,list)))))
4132 (define-source-transform elt (seq n)
4133 (if (policy *lexenv* (= safety 3))
4135 (multiple-value-bind (context count) (possible-rest-arg-context seq)
4137 `(%rest-ref ,n ,seq ,context ,count)
4140 ;;; CAxR -> %REST-REF
4141 (defun source-transform-car (list nth)
4142 (multiple-value-bind (context count) (possible-rest-arg-context list)
4144 `(%rest-ref ,nth ,list ,context ,count)
4147 (define-source-transform car (list)
4148 (source-transform-car list 0))
4150 (define-source-transform cadr (list)
4151 (or (source-transform-car list 1)
4152 `(car (cdr ,list))))
4154 (define-source-transform caddr (list)
4155 (or (source-transform-car list 2)
4156 `(car (cdr (cdr ,list)))))
4158 (define-source-transform cadddr (list)
4159 (or (source-transform-car list 3)
4160 `(car (cdr (cdr (cdr ,list))))))
4162 ;;; LENGTH -> %REST-LENGTH
4163 (defun source-transform-length (list)
4164 (multiple-value-bind (context count) (possible-rest-arg-context list)
4166 `(%rest-length ,list ,context ,count)
4168 (define-source-transform length (list) (source-transform-length list))
4169 (define-source-transform list-length (list) (source-transform-length list))
4171 ;;; ENDP, NULL and NOT -> %REST-NULL
4173 ;;; Outside &REST convert into an IF so that IF optimizations will eliminate
4174 ;;; redundant negations.
4175 (defun source-transform-null (x op)
4176 (multiple-value-bind (context count) (possible-rest-arg-context x)
4178 `(%rest-null ',op ,x ,context ,count))
4180 `(if (the list ,x) nil t))
4183 (define-source-transform not (x) (source-transform-null x 'not))
4184 (define-source-transform null (x) (source-transform-null x 'null))
4185 (define-source-transform endp (x) (source-transform-null x 'endp))
4187 (deftransform %rest-values ((list context count))
4188 (if (rest-var-more-context-ok list)
4189 `(%more-arg-values context 0 count)
4190 `(values-list list)))
4192 (deftransform %rest-ref ((n list context count))
4193 (cond ((rest-var-more-context-ok list)
4194 `(and (< (the index n) count)
4195 (%more-arg context n)))
4196 ((and (constant-lvar-p n) (zerop (lvar-value n)))
4201 (deftransform %rest-length ((list context count))
4202 (if (rest-var-more-context-ok list)
4206 (deftransform %rest-null ((op list context count))
4207 (aver (constant-lvar-p op))
4208 (if (rest-var-more-context-ok list)
4210 `(,(lvar-value op) list)))
4212 (deftransform %rest-true ((list context count))
4213 (if (rest-var-more-context-ok list)
4214 `(not (eql 0 count))
4217 ;;;; transforming FORMAT
4219 ;;;; If the control string is a compile-time constant, then replace it
4220 ;;;; with a use of the FORMATTER macro so that the control string is
4221 ;;;; ``compiled.'' Furthermore, if the destination is either a stream
4222 ;;;; or T and the control string is a function (i.e. FORMATTER), then
4223 ;;;; convert the call to FORMAT to just a FUNCALL of that function.
4225 ;;; for compile-time argument count checking.
4227 ;;; FIXME II: In some cases, type information could be correlated; for
4228 ;;; instance, ~{ ... ~} requires a list argument, so if the lvar-type
4229 ;;; of a corresponding argument is known and does not intersect the
4230 ;;; list type, a warning could be signalled.
4231 (defun check-format-args (string args fun)
4232 (declare (type string string))
4233 (unless (typep string 'simple-string)
4234 (setq string (coerce string 'simple-string)))
4235 (multiple-value-bind (min max)
4236 (handler-case (sb!format:%compiler-walk-format-string string args)
4237 (sb!format:format-error (c)
4238 (compiler-warn "~A" c)))
4240 (let ((nargs (length args)))
4243 (warn 'format-too-few-args-warning
4245 "Too few arguments (~D) to ~S ~S: requires at least ~D."
4246 :format-arguments (list nargs fun string min)))
4248 (warn 'format-too-many-args-warning
4250 "Too many arguments (~D) to ~S ~S: uses at most ~D."
4251 :format-arguments (list nargs fun string max))))))))
4253 (defoptimizer (format optimizer) ((dest control &rest args))
4254 (when (constant-lvar-p control)
4255 (let ((x (lvar-value control)))
4257 (check-format-args x args 'format)))))
4259 ;;; We disable this transform in the cross-compiler to save memory in
4260 ;;; the target image; most of the uses of FORMAT in the compiler are for
4261 ;;; error messages, and those don't need to be particularly fast.
4263 (deftransform format ((dest control &rest args) (t simple-string &rest t) *
4264 :policy (>= speed space))
4265 (unless (constant-lvar-p control)
4266 (give-up-ir1-transform "The control string is not a constant."))
4267 (let ((arg-names (make-gensym-list (length args))))
4268 `(lambda (dest control ,@arg-names)
4269 (declare (ignore control))
4270 (format dest (formatter ,(lvar-value control)) ,@arg-names))))
4272 (deftransform format ((stream control &rest args) (stream function &rest t))
4273 (let ((arg-names (make-gensym-list (length args))))
4274 `(lambda (stream control ,@arg-names)
4275 (funcall control stream ,@arg-names)
4278 (deftransform format ((tee control &rest args) ((member t) function &rest t))
4279 (let ((arg-names (make-gensym-list (length args))))
4280 `(lambda (tee control ,@arg-names)
4281 (declare (ignore tee))
4282 (funcall control *standard-output* ,@arg-names)
4285 (deftransform pathname ((pathspec) (pathname) *)
4288 (deftransform pathname ((pathspec) (string) *)
4289 '(values (parse-namestring pathspec)))
4293 `(defoptimizer (,name optimizer) ((control &rest args))
4294 (when (constant-lvar-p control)
4295 (let ((x (lvar-value control)))
4297 (check-format-args x args ',name)))))))
4300 #+sb-xc-host ; Only we should be using these
4303 (def compiler-error)
4305 (def compiler-style-warn)
4306 (def compiler-notify)
4307 (def maybe-compiler-notify)
4310 (defoptimizer (cerror optimizer) ((report control &rest args))
4311 (when (and (constant-lvar-p control)
4312 (constant-lvar-p report))
4313 (let ((x (lvar-value control))
4314 (y (lvar-value report)))
4315 (when (and (stringp x) (stringp y))
4316 (multiple-value-bind (min1 max1)
4318 (sb!format:%compiler-walk-format-string x args)
4319 (sb!format:format-error (c)
4320 (compiler-warn "~A" c)))
4322 (multiple-value-bind (min2 max2)
4324 (sb!format:%compiler-walk-format-string y args)
4325 (sb!format:format-error (c)
4326 (compiler-warn "~A" c)))
4328 (let ((nargs (length args)))
4330 ((< nargs (min min1 min2))
4331 (warn 'format-too-few-args-warning
4333 "Too few arguments (~D) to ~S ~S ~S: ~
4334 requires at least ~D."
4336 (list nargs 'cerror y x (min min1 min2))))
4337 ((> nargs (max max1 max2))
4338 (warn 'format-too-many-args-warning
4340 "Too many arguments (~D) to ~S ~S ~S: ~
4343 (list nargs 'cerror y x (max max1 max2))))))))))))))
4345 (defoptimizer (coerce derive-type) ((value type) node)
4347 ((constant-lvar-p type)
4348 ;; This branch is essentially (RESULT-TYPE-SPECIFIER-NTH-ARG 2),
4349 ;; but dealing with the niggle that complex canonicalization gets
4350 ;; in the way: (COERCE 1 'COMPLEX) returns 1, which is not of
4352 (let* ((specifier (lvar-value type))
4353 (result-typeoid (careful-specifier-type specifier)))
4355 ((null result-typeoid) nil)
4356 ((csubtypep result-typeoid (specifier-type 'number))
4357 ;; the difficult case: we have to cope with ANSI 12.1.5.3
4358 ;; Rule of Canonical Representation for Complex Rationals,
4359 ;; which is a truly nasty delivery to field.
4361 ((csubtypep result-typeoid (specifier-type 'real))
4362 ;; cleverness required here: it would be nice to deduce
4363 ;; that something of type (INTEGER 2 3) coerced to type
4364 ;; DOUBLE-FLOAT should return (DOUBLE-FLOAT 2.0d0 3.0d0).
4365 ;; FLOAT gets its own clause because it's implemented as
4366 ;; a UNION-TYPE, so we don't catch it in the NUMERIC-TYPE
4369 ((and (numeric-type-p result-typeoid)
4370 (eq (numeric-type-complexp result-typeoid) :real))
4371 ;; FIXME: is this clause (a) necessary or (b) useful?
4373 ((or (csubtypep result-typeoid
4374 (specifier-type '(complex single-float)))
4375 (csubtypep result-typeoid
4376 (specifier-type '(complex double-float)))
4378 (csubtypep result-typeoid
4379 (specifier-type '(complex long-float))))
4380 ;; float complex types are never canonicalized.
4383 ;; if it's not a REAL, or a COMPLEX FLOAToid, it's
4384 ;; probably just a COMPLEX or equivalent. So, in that
4385 ;; case, we will return a complex or an object of the
4386 ;; provided type if it's rational:
4387 (type-union result-typeoid
4388 (type-intersection (lvar-type value)
4389 (specifier-type 'rational))))))
4390 ((and (policy node (zerop safety))
4391 (csubtypep result-typeoid (specifier-type '(array * (*)))))
4392 ;; At zero safety the deftransform for COERCE can elide dimension
4393 ;; checks for the things like (COERCE X '(SIMPLE-VECTOR 5)) -- so we
4394 ;; need to simplify the type to drop the dimension information.
4395 (let ((vtype (simplify-vector-type result-typeoid)))
4397 (specifier-type vtype)
4402 ;; OK, the result-type argument isn't constant. However, there
4403 ;; are common uses where we can still do better than just
4404 ;; *UNIVERSAL-TYPE*: e.g. (COERCE X (ARRAY-ELEMENT-TYPE Y)),
4405 ;; where Y is of a known type. See messages on cmucl-imp
4406 ;; 2001-02-14 and sbcl-devel 2002-12-12. We only worry here
4407 ;; about types that can be returned by (ARRAY-ELEMENT-TYPE Y), on
4408 ;; the basis that it's unlikely that other uses are both
4409 ;; time-critical and get to this branch of the COND (non-constant
4410 ;; second argument to COERCE). -- CSR, 2002-12-16
4411 (let ((value-type (lvar-type value))
4412 (type-type (lvar-type type)))
4414 ((good-cons-type-p (cons-type)
4415 ;; Make sure the cons-type we're looking at is something
4416 ;; we're prepared to handle which is basically something
4417 ;; that array-element-type can return.
4418 (or (and (member-type-p cons-type)
4419 (eql 1 (member-type-size cons-type))
4420 (null (first (member-type-members cons-type))))
4421 (let ((car-type (cons-type-car-type cons-type)))
4422 (and (member-type-p car-type)
4423 (eql 1 (member-type-members car-type))
4424 (let ((elt (first (member-type-members car-type))))
4428 (numberp (first elt)))))
4429 (good-cons-type-p (cons-type-cdr-type cons-type))))))
4430 (unconsify-type (good-cons-type)
4431 ;; Convert the "printed" respresentation of a cons
4432 ;; specifier into a type specifier. That is, the
4433 ;; specifier (CONS (EQL SIGNED-BYTE) (CONS (EQL 16)
4434 ;; NULL)) is converted to (SIGNED-BYTE 16).
4435 (cond ((or (null good-cons-type)
4436 (eq good-cons-type 'null))
4438 ((and (eq (first good-cons-type) 'cons)
4439 (eq (first (second good-cons-type)) 'member))
4440 `(,(second (second good-cons-type))
4441 ,@(unconsify-type (caddr good-cons-type))))))
4442 (coerceable-p (part)
4443 ;; Can the value be coerced to the given type? Coerce is
4444 ;; complicated, so we don't handle every possible case
4445 ;; here---just the most common and easiest cases:
4447 ;; * Any REAL can be coerced to a FLOAT type.
4448 ;; * Any NUMBER can be coerced to a (COMPLEX
4449 ;; SINGLE/DOUBLE-FLOAT).
4451 ;; FIXME I: we should also be able to deal with characters
4454 ;; FIXME II: I'm not sure that anything is necessary
4455 ;; here, at least while COMPLEX is not a specialized
4456 ;; array element type in the system. Reasoning: if
4457 ;; something cannot be coerced to the requested type, an
4458 ;; error will be raised (and so any downstream compiled
4459 ;; code on the assumption of the returned type is
4460 ;; unreachable). If something can, then it will be of
4461 ;; the requested type, because (by assumption) COMPLEX
4462 ;; (and other difficult types like (COMPLEX INTEGER)
4463 ;; aren't specialized types.
4464 (let ((coerced-type (careful-specifier-type part)))
4466 (or (and (csubtypep coerced-type (specifier-type 'float))
4467 (csubtypep value-type (specifier-type 'real)))
4468 (and (csubtypep coerced-type
4469 (specifier-type `(or (complex single-float)
4470 (complex double-float))))
4471 (csubtypep value-type (specifier-type 'number)))))))
4472 (process-types (type)
4473 ;; FIXME: This needs some work because we should be able
4474 ;; to derive the resulting type better than just the
4475 ;; type arg of coerce. That is, if X is (INTEGER 10
4476 ;; 20), then (COERCE X 'DOUBLE-FLOAT) should say
4477 ;; (DOUBLE-FLOAT 10d0 20d0) instead of just
4479 (cond ((member-type-p type)
4482 (mapc-member-type-members
4484 (if (coerceable-p member)
4485 (push member members)
4486 (return-from punt *universal-type*)))
4488 (specifier-type `(or ,@members)))))
4489 ((and (cons-type-p type)
4490 (good-cons-type-p type))
4491 (let ((c-type (unconsify-type (type-specifier type))))
4492 (if (coerceable-p c-type)
4493 (specifier-type c-type)
4496 *universal-type*))))
4497 (cond ((union-type-p type-type)
4498 (apply #'type-union (mapcar #'process-types
4499 (union-type-types type-type))))
4500 ((or (member-type-p type-type)
4501 (cons-type-p type-type))
4502 (process-types type-type))
4504 *universal-type*)))))))
4506 (defoptimizer (compile derive-type) ((nameoid function))
4507 (when (csubtypep (lvar-type nameoid)
4508 (specifier-type 'null))
4509 (values-specifier-type '(values function boolean boolean))))
4511 ;;; FIXME: Maybe also STREAM-ELEMENT-TYPE should be given some loving
4512 ;;; treatment along these lines? (See discussion in COERCE DERIVE-TYPE
4513 ;;; optimizer, above).
4514 (defoptimizer (array-element-type derive-type) ((array))
4515 (let ((array-type (lvar-type array)))
4516 (labels ((consify (list)
4519 `(cons (eql ,(car list)) ,(consify (rest list)))))
4520 (get-element-type (a)
4522 (type-specifier (array-type-specialized-element-type a))))
4523 (cond ((eq element-type '*)
4524 (specifier-type 'type-specifier))
4525 ((symbolp element-type)
4526 (make-member-type :members (list element-type)))
4527 ((consp element-type)
4528 (specifier-type (consify element-type)))
4530 (error "can't understand type ~S~%" element-type))))))
4531 (labels ((recurse (type)
4532 (cond ((array-type-p type)
4533 (get-element-type type))
4534 ((union-type-p type)
4536 (mapcar #'recurse (union-type-types type))))
4538 *universal-type*))))
4539 (recurse array-type)))))
4541 (define-source-transform sb!impl::sort-vector (vector start end predicate key)
4542 ;; Like CMU CL, we use HEAPSORT. However, other than that, this code
4543 ;; isn't really related to the CMU CL code, since instead of trying
4544 ;; to generalize the CMU CL code to allow START and END values, this
4545 ;; code has been written from scratch following Chapter 7 of
4546 ;; _Introduction to Algorithms_ by Corman, Rivest, and Shamir.
4547 `(macrolet ((%index (x) `(truly-the index ,x))
4548 (%parent (i) `(ash ,i -1))
4549 (%left (i) `(%index (ash ,i 1)))
4550 (%right (i) `(%index (1+ (ash ,i 1))))
4553 (left (%left i) (%left i)))
4554 ((> left current-heap-size))
4555 (declare (type index i left))
4556 (let* ((i-elt (%elt i))
4557 (i-key (funcall keyfun i-elt))
4558 (left-elt (%elt left))
4559 (left-key (funcall keyfun left-elt)))
4560 (multiple-value-bind (large large-elt large-key)
4561 (if (funcall ,',predicate i-key left-key)
4562 (values left left-elt left-key)
4563 (values i i-elt i-key))
4564 (let ((right (%right i)))
4565 (multiple-value-bind (largest largest-elt)
4566 (if (> right current-heap-size)
4567 (values large large-elt)
4568 (let* ((right-elt (%elt right))
4569 (right-key (funcall keyfun right-elt)))
4570 (if (funcall ,',predicate large-key right-key)
4571 (values right right-elt)
4572 (values large large-elt))))
4573 (cond ((= largest i)
4576 (setf (%elt i) largest-elt
4577 (%elt largest) i-elt
4579 (%sort-vector (keyfun &optional (vtype 'vector))
4580 `(macrolet (;; KLUDGE: In SBCL ca. 0.6.10, I had
4581 ;; trouble getting type inference to
4582 ;; propagate all the way through this
4583 ;; tangled mess of inlining. The TRULY-THE
4584 ;; here works around that. -- WHN
4586 `(aref (truly-the ,',vtype ,',',vector)
4587 (%index (+ (%index ,i) start-1)))))
4588 (let (;; Heaps prefer 1-based addressing.
4589 (start-1 (1- ,',start))
4590 (current-heap-size (- ,',end ,',start))
4592 (declare (type (integer -1 #.(1- sb!xc:most-positive-fixnum))
4594 (declare (type index current-heap-size))
4595 (declare (type function keyfun))
4596 (loop for i of-type index
4597 from (ash current-heap-size -1) downto 1 do
4600 (when (< current-heap-size 2)
4602 (rotatef (%elt 1) (%elt current-heap-size))
4603 (decf current-heap-size)
4605 (if (typep ,vector 'simple-vector)
4606 ;; (VECTOR T) is worth optimizing for, and SIMPLE-VECTOR is
4607 ;; what we get from (VECTOR T) inside WITH-ARRAY-DATA.
4609 ;; Special-casing the KEY=NIL case lets us avoid some
4611 (%sort-vector #'identity simple-vector)
4612 (%sort-vector ,key simple-vector))
4613 ;; It's hard to anticipate many speed-critical applications for
4614 ;; sorting vector types other than (VECTOR T), so we just lump
4615 ;; them all together in one slow dynamically typed mess.
4617 (declare (optimize (speed 2) (space 2) (inhibit-warnings 3)))
4618 (%sort-vector (or ,key #'identity))))))
4620 ;;;; debuggers' little helpers
4622 ;;; for debugging when transforms are behaving mysteriously,
4623 ;;; e.g. when debugging a problem with an ASH transform
4624 ;;; (defun foo (&optional s)
4625 ;;; (sb-c::/report-lvar s "S outside WHEN")
4626 ;;; (when (and (integerp s) (> s 3))
4627 ;;; (sb-c::/report-lvar s "S inside WHEN")
4628 ;;; (let ((bound (ash 1 (1- s))))
4629 ;;; (sb-c::/report-lvar bound "BOUND")
4630 ;;; (let ((x (- bound))
4632 ;;; (sb-c::/report-lvar x "X")
4633 ;;; (sb-c::/report-lvar x "Y"))
4634 ;;; `(integer ,(- bound) ,(1- bound)))))
4635 ;;; (The DEFTRANSFORM doesn't do anything but report at compile time,
4636 ;;; and the function doesn't do anything at all.)
4639 (defknown /report-lvar (t t) null)
4640 (deftransform /report-lvar ((x message) (t t))
4641 (format t "~%/in /REPORT-LVAR~%")
4642 (format t "/(LVAR-TYPE X)=~S~%" (lvar-type x))
4643 (when (constant-lvar-p x)
4644 (format t "/(LVAR-VALUE X)=~S~%" (lvar-value x)))
4645 (format t "/MESSAGE=~S~%" (lvar-value message))
4646 (give-up-ir1-transform "not a real transform"))
4647 (defun /report-lvar (x message)
4648 (declare (ignore x message))))
4651 ;;;; Transforms for internal compiler utilities
4653 ;;; If QUALITY-NAME is constant and a valid name, don't bother
4654 ;;; checking that it's still valid at run-time.
4655 (deftransform policy-quality ((policy quality-name)
4657 (unless (and (constant-lvar-p quality-name)
4658 (policy-quality-name-p (lvar-value quality-name)))
4659 (give-up-ir1-transform))
4660 '(%policy-quality policy quality-name))
4662 (deftransform encode-universal-time
4663 ((second minute hour date month year &optional time-zone)
4664 ((constant-arg (mod 60)) (constant-arg (mod 60))
4665 (constant-arg (mod 24))
4666 (constant-arg (integer 1 31))
4667 (constant-arg (integer 1 12))
4668 (constant-arg (integer 1899))
4669 (constant-arg (rational -24 24))))
4670 (let ((second (lvar-value second))
4671 (minute (lvar-value minute))
4672 (hour (lvar-value hour))
4673 (date (lvar-value date))
4674 (month (lvar-value month))
4675 (year (lvar-value year))
4676 (time-zone (lvar-value time-zone)))
4677 (if (zerop (rem time-zone 1/3600))
4678 (encode-universal-time second minute hour date month year time-zone)
4679 (give-up-ir1-transform))))
4681 #!-(and win32 (not sb-thread))
4682 (deftransform sleep ((seconds) ((integer 0 #.(expt 10 8))))
4683 `(sb!unix:nanosleep seconds 0))
4685 #!-(and win32 (not sb-thread))
4686 (deftransform sleep ((seconds) ((constant-arg (real 0))))
4687 (let ((seconds-value (lvar-value seconds)))
4688 (multiple-value-bind (seconds nano)
4689 (sb!impl::split-seconds-for-sleep seconds-value)
4690 (if (> seconds (expt 10 8))
4691 (give-up-ir1-transform)
4692 `(sb!unix:nanosleep ,seconds ,nano)))))