2 * GENerational Conservative Garbage Collector for SBCL
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
37 #include "interrupt.h"
42 #include "gc-internal.h"
44 #include "pseudo-atomic.h"
46 #include "genesis/vector.h"
47 #include "genesis/weak-pointer.h"
48 #include "genesis/fdefn.h"
49 #include "genesis/simple-fun.h"
51 #include "genesis/hash-table.h"
52 #include "genesis/instance.h"
53 #include "genesis/layout.h"
55 #if defined(LUTEX_WIDETAG)
56 #include "pthread-lutex.h"
59 /* forward declarations */
60 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
68 /* Generations 0-5 are normal collected generations, 6 is only used as
69 * scratch space by the collector, and should never get collected.
72 HIGHEST_NORMAL_GENERATION = 5,
73 PSEUDO_STATIC_GENERATION,
78 /* Should we use page protection to help avoid the scavenging of pages
79 * that don't have pointers to younger generations? */
80 boolean enable_page_protection = 1;
82 /* the minimum size (in bytes) for a large object*/
83 long large_object_size = 4 * PAGE_BYTES;
90 /* the verbosity level. All non-error messages are disabled at level 0;
91 * and only a few rare messages are printed at level 1. */
93 boolean gencgc_verbose = 1;
95 boolean gencgc_verbose = 0;
98 /* FIXME: At some point enable the various error-checking things below
99 * and see what they say. */
101 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
102 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
104 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
106 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
107 boolean pre_verify_gen_0 = 0;
109 /* Should we check for bad pointers after gc_free_heap is called
110 * from Lisp PURIFY? */
111 boolean verify_after_free_heap = 0;
113 /* Should we print a note when code objects are found in the dynamic space
114 * during a heap verify? */
115 boolean verify_dynamic_code_check = 0;
117 /* Should we check code objects for fixup errors after they are transported? */
118 boolean check_code_fixups = 0;
120 /* Should we check that newly allocated regions are zero filled? */
121 boolean gencgc_zero_check = 0;
123 /* Should we check that the free space is zero filled? */
124 boolean gencgc_enable_verify_zero_fill = 0;
126 /* Should we check that free pages are zero filled during gc_free_heap
127 * called after Lisp PURIFY? */
128 boolean gencgc_zero_check_during_free_heap = 0;
130 /* When loading a core, don't do a full scan of the memory for the
131 * memory region boundaries. (Set to true by coreparse.c if the core
132 * contained a pagetable entry).
134 boolean gencgc_partial_pickup = 0;
136 /* If defined, free pages are read-protected to ensure that nothing
140 /* #define READ_PROTECT_FREE_PAGES */
144 * GC structures and variables
147 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
148 unsigned long bytes_allocated = 0;
149 unsigned long auto_gc_trigger = 0;
151 /* the source and destination generations. These are set before a GC starts
153 generation_index_t from_space;
154 generation_index_t new_space;
156 /* Set to 1 when in GC */
157 boolean gc_active_p = 0;
159 /* should the GC be conservative on stack. If false (only right before
160 * saving a core), don't scan the stack / mark pages dont_move. */
161 static boolean conservative_stack = 1;
163 /* An array of page structures is allocated on gc initialization.
164 * This helps quickly map between an address its page structure.
165 * page_table_pages is set from the size of the dynamic space. */
166 page_index_t page_table_pages;
167 struct page *page_table;
169 static inline boolean page_allocated_p(page_index_t page) {
170 return (page_table[page].allocated != FREE_PAGE_FLAG);
173 static inline boolean page_no_region_p(page_index_t page) {
174 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
177 static inline boolean page_allocated_no_region_p(page_index_t page) {
178 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
179 && page_no_region_p(page));
182 static inline boolean page_free_p(page_index_t page) {
183 return (page_table[page].allocated == FREE_PAGE_FLAG);
186 static inline boolean page_boxed_p(page_index_t page) {
187 return (page_table[page].allocated & BOXED_PAGE_FLAG);
190 static inline boolean code_page_p(page_index_t page) {
191 return (page_table[page].allocated & CODE_PAGE_FLAG);
194 static inline boolean page_boxed_no_region_p(page_index_t page) {
195 return page_boxed_p(page) && page_no_region_p(page);
198 static inline boolean page_unboxed_p(page_index_t page) {
199 /* Both flags set == boxed code page */
200 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
201 && !page_boxed_p(page));
204 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
205 return (page_boxed_no_region_p(page)
206 && (page_table[page].bytes_used != 0)
207 && !page_table[page].dont_move
208 && (page_table[page].gen == generation));
211 /* To map addresses to page structures the address of the first page
213 static void *heap_base = NULL;
215 /* Calculate the start address for the given page number. */
217 page_address(page_index_t page_num)
219 return (heap_base + (page_num * PAGE_BYTES));
222 /* Calculate the address where the allocation region associated with
223 * the page starts. */
225 page_region_start(page_index_t page_index)
227 return page_address(page_index)-page_table[page_index].region_start_offset;
230 /* Find the page index within the page_table for the given
231 * address. Return -1 on failure. */
233 find_page_index(void *addr)
235 if (addr >= heap_base) {
236 page_index_t index = ((pointer_sized_uint_t)addr -
237 (pointer_sized_uint_t)heap_base) / PAGE_BYTES;
238 if (index < page_table_pages)
245 npage_bytes(long npages)
247 gc_assert(npages>=0);
248 return ((unsigned long)npages)*PAGE_BYTES;
251 /* Check that X is a higher address than Y and return offset from Y to
254 size_t void_diff(void *x, void *y)
257 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
260 /* a structure to hold the state of a generation */
263 /* the first page that gc_alloc() checks on its next call */
264 page_index_t alloc_start_page;
266 /* the first page that gc_alloc_unboxed() checks on its next call */
267 page_index_t alloc_unboxed_start_page;
269 /* the first page that gc_alloc_large (boxed) considers on its next
270 * call. (Although it always allocates after the boxed_region.) */
271 page_index_t alloc_large_start_page;
273 /* the first page that gc_alloc_large (unboxed) considers on its
274 * next call. (Although it always allocates after the
275 * current_unboxed_region.) */
276 page_index_t alloc_large_unboxed_start_page;
278 /* the bytes allocated to this generation */
279 unsigned long bytes_allocated;
281 /* the number of bytes at which to trigger a GC */
282 unsigned long gc_trigger;
284 /* to calculate a new level for gc_trigger */
285 unsigned long bytes_consed_between_gc;
287 /* the number of GCs since the last raise */
290 /* the average age after which a GC will raise objects to the
294 /* the cumulative sum of the bytes allocated to this generation. It is
295 * cleared after a GC on this generations, and update before new
296 * objects are added from a GC of a younger generation. Dividing by
297 * the bytes_allocated will give the average age of the memory in
298 * this generation since its last GC. */
299 unsigned long cum_sum_bytes_allocated;
301 /* a minimum average memory age before a GC will occur helps
302 * prevent a GC when a large number of new live objects have been
303 * added, in which case a GC could be a waste of time */
304 double min_av_mem_age;
306 /* A linked list of lutex structures in this generation, used for
307 * implementing lutex finalization. */
309 struct lutex *lutexes;
315 /* an array of generation structures. There needs to be one more
316 * generation structure than actual generations as the oldest
317 * generation is temporarily raised then lowered. */
318 struct generation generations[NUM_GENERATIONS];
320 /* the oldest generation that is will currently be GCed by default.
321 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
323 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
325 * Setting this to 0 effectively disables the generational nature of
326 * the GC. In some applications generational GC may not be useful
327 * because there are no long-lived objects.
329 * An intermediate value could be handy after moving long-lived data
330 * into an older generation so an unnecessary GC of this long-lived
331 * data can be avoided. */
332 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
334 /* The maximum free page in the heap is maintained and used to update
335 * ALLOCATION_POINTER which is used by the room function to limit its
336 * search of the heap. XX Gencgc obviously needs to be better
337 * integrated with the Lisp code. */
338 page_index_t last_free_page;
340 #ifdef LISP_FEATURE_SB_THREAD
341 /* This lock is to prevent multiple threads from simultaneously
342 * allocating new regions which overlap each other. Note that the
343 * majority of GC is single-threaded, but alloc() may be called from
344 * >1 thread at a time and must be thread-safe. This lock must be
345 * seized before all accesses to generations[] or to parts of
346 * page_table[] that other threads may want to see */
347 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
348 /* This lock is used to protect non-thread-local allocation. */
349 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
354 * miscellaneous heap functions
357 /* Count the number of pages which are write-protected within the
358 * given generation. */
360 count_write_protect_generation_pages(generation_index_t generation)
363 unsigned long count = 0;
365 for (i = 0; i < last_free_page; i++)
366 if (page_allocated_p(i)
367 && (page_table[i].gen == generation)
368 && (page_table[i].write_protected == 1))
373 /* Count the number of pages within the given generation. */
375 count_generation_pages(generation_index_t generation)
380 for (i = 0; i < last_free_page; i++)
381 if (page_allocated_p(i)
382 && (page_table[i].gen == generation))
389 count_dont_move_pages(void)
393 for (i = 0; i < last_free_page; i++) {
394 if (page_allocated_p(i)
395 && (page_table[i].dont_move != 0)) {
403 /* Work through the pages and add up the number of bytes used for the
404 * given generation. */
406 count_generation_bytes_allocated (generation_index_t gen)
409 unsigned long result = 0;
410 for (i = 0; i < last_free_page; i++) {
411 if (page_allocated_p(i)
412 && (page_table[i].gen == gen))
413 result += page_table[i].bytes_used;
418 /* Return the average age of the memory in a generation. */
420 gen_av_mem_age(generation_index_t gen)
422 if (generations[gen].bytes_allocated == 0)
426 ((double)generations[gen].cum_sum_bytes_allocated)
427 / ((double)generations[gen].bytes_allocated);
430 /* The verbose argument controls how much to print: 0 for normal
431 * level of detail; 1 for debugging. */
433 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
435 generation_index_t i, gens;
437 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
438 #define FPU_STATE_SIZE 27
439 int fpu_state[FPU_STATE_SIZE];
440 #elif defined(LISP_FEATURE_PPC)
441 #define FPU_STATE_SIZE 32
442 long long fpu_state[FPU_STATE_SIZE];
445 /* This code uses the FP instructions which may be set up for Lisp
446 * so they need to be saved and reset for C. */
449 /* highest generation to print */
451 gens = SCRATCH_GENERATION;
453 gens = PSEUDO_STATIC_GENERATION;
455 /* Print the heap stats. */
457 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
459 for (i = 0; i < gens; i++) {
462 long unboxed_cnt = 0;
463 long large_boxed_cnt = 0;
464 long large_unboxed_cnt = 0;
467 for (j = 0; j < last_free_page; j++)
468 if (page_table[j].gen == i) {
470 /* Count the number of boxed pages within the given
472 if (page_boxed_p(j)) {
473 if (page_table[j].large_object)
478 if(page_table[j].dont_move) pinned_cnt++;
479 /* Count the number of unboxed pages within the given
481 if (page_unboxed_p(j)) {
482 if (page_table[j].large_object)
489 gc_assert(generations[i].bytes_allocated
490 == count_generation_bytes_allocated(i));
492 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
494 generations[i].alloc_start_page,
495 generations[i].alloc_unboxed_start_page,
496 generations[i].alloc_large_start_page,
497 generations[i].alloc_large_unboxed_start_page,
503 generations[i].bytes_allocated,
504 (npage_bytes(count_generation_pages(i))
505 - generations[i].bytes_allocated),
506 generations[i].gc_trigger,
507 count_write_protect_generation_pages(i),
508 generations[i].num_gc,
511 fprintf(stderr," Total bytes allocated = %lu\n", bytes_allocated);
512 fprintf(stderr," Dynamic-space-size bytes = %u\n", dynamic_space_size);
514 fpu_restore(fpu_state);
518 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
519 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
522 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
523 * if zeroing it ourselves, i.e. in practice give the memory back to the
524 * OS. Generally done after a large GC.
526 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
528 void *addr = page_address(start), *new_addr;
529 size_t length = npage_bytes(1+end-start);
534 os_invalidate(addr, length);
535 new_addr = os_validate(addr, length);
536 if (new_addr == NULL || new_addr != addr) {
537 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
541 for (i = start; i <= end; i++) {
542 page_table[i].need_to_zero = 0;
546 /* Zero the pages from START to END (inclusive). Generally done just after
547 * a new region has been allocated.
550 zero_pages(page_index_t start, page_index_t end) {
554 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
555 fast_bzero(page_address(start), npage_bytes(1+end-start));
557 bzero(page_address(start), npage_bytes(1+end-start));
562 /* Zero the pages from START to END (inclusive), except for those
563 * pages that are known to already zeroed. Mark all pages in the
564 * ranges as non-zeroed.
567 zero_dirty_pages(page_index_t start, page_index_t end) {
570 for (i = start; i <= end; i++) {
571 if (page_table[i].need_to_zero == 1) {
572 zero_pages(start, end);
577 for (i = start; i <= end; i++) {
578 page_table[i].need_to_zero = 1;
584 * To support quick and inline allocation, regions of memory can be
585 * allocated and then allocated from with just a free pointer and a
586 * check against an end address.
588 * Since objects can be allocated to spaces with different properties
589 * e.g. boxed/unboxed, generation, ages; there may need to be many
590 * allocation regions.
592 * Each allocation region may start within a partly used page. Many
593 * features of memory use are noted on a page wise basis, e.g. the
594 * generation; so if a region starts within an existing allocated page
595 * it must be consistent with this page.
597 * During the scavenging of the newspace, objects will be transported
598 * into an allocation region, and pointers updated to point to this
599 * allocation region. It is possible that these pointers will be
600 * scavenged again before the allocation region is closed, e.g. due to
601 * trans_list which jumps all over the place to cleanup the list. It
602 * is important to be able to determine properties of all objects
603 * pointed to when scavenging, e.g to detect pointers to the oldspace.
604 * Thus it's important that the allocation regions have the correct
605 * properties set when allocated, and not just set when closed. The
606 * region allocation routines return regions with the specified
607 * properties, and grab all the pages, setting their properties
608 * appropriately, except that the amount used is not known.
610 * These regions are used to support quicker allocation using just a
611 * free pointer. The actual space used by the region is not reflected
612 * in the pages tables until it is closed. It can't be scavenged until
615 * When finished with the region it should be closed, which will
616 * update the page tables for the actual space used returning unused
617 * space. Further it may be noted in the new regions which is
618 * necessary when scavenging the newspace.
620 * Large objects may be allocated directly without an allocation
621 * region, the page tables are updated immediately.
623 * Unboxed objects don't contain pointers to other objects and so
624 * don't need scavenging. Further they can't contain pointers to
625 * younger generations so WP is not needed. By allocating pages to
626 * unboxed objects the whole page never needs scavenging or
627 * write-protecting. */
629 /* We are only using two regions at present. Both are for the current
630 * newspace generation. */
631 struct alloc_region boxed_region;
632 struct alloc_region unboxed_region;
634 /* The generation currently being allocated to. */
635 static generation_index_t gc_alloc_generation;
637 static inline page_index_t
638 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
641 if (UNBOXED_PAGE_FLAG == page_type_flag) {
642 return generations[generation].alloc_large_unboxed_start_page;
643 } else if (BOXED_PAGE_FLAG & page_type_flag) {
644 /* Both code and data. */
645 return generations[generation].alloc_large_start_page;
647 lose("bad page type flag: %d", page_type_flag);
650 if (UNBOXED_PAGE_FLAG == page_type_flag) {
651 return generations[generation].alloc_unboxed_start_page;
652 } else if (BOXED_PAGE_FLAG & page_type_flag) {
653 /* Both code and data. */
654 return generations[generation].alloc_start_page;
656 lose("bad page_type_flag: %d", page_type_flag);
662 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
666 if (UNBOXED_PAGE_FLAG == page_type_flag) {
667 generations[generation].alloc_large_unboxed_start_page = page;
668 } else if (BOXED_PAGE_FLAG & page_type_flag) {
669 /* Both code and data. */
670 generations[generation].alloc_large_start_page = page;
672 lose("bad page type flag: %d", page_type_flag);
675 if (UNBOXED_PAGE_FLAG == page_type_flag) {
676 generations[generation].alloc_unboxed_start_page = page;
677 } else if (BOXED_PAGE_FLAG & page_type_flag) {
678 /* Both code and data. */
679 generations[generation].alloc_start_page = page;
681 lose("bad page type flag: %d", page_type_flag);
686 /* Find a new region with room for at least the given number of bytes.
688 * It starts looking at the current generation's alloc_start_page. So
689 * may pick up from the previous region if there is enough space. This
690 * keeps the allocation contiguous when scavenging the newspace.
692 * The alloc_region should have been closed by a call to
693 * gc_alloc_update_page_tables(), and will thus be in an empty state.
695 * To assist the scavenging functions write-protected pages are not
696 * used. Free pages should not be write-protected.
698 * It is critical to the conservative GC that the start of regions be
699 * known. To help achieve this only small regions are allocated at a
702 * During scavenging, pointers may be found to within the current
703 * region and the page generation must be set so that pointers to the
704 * from space can be recognized. Therefore the generation of pages in
705 * the region are set to gc_alloc_generation. To prevent another
706 * allocation call using the same pages, all the pages in the region
707 * are allocated, although they will initially be empty.
710 gc_alloc_new_region(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
712 page_index_t first_page;
713 page_index_t last_page;
714 unsigned long bytes_found;
720 "/alloc_new_region for %d bytes from gen %d\n",
721 nbytes, gc_alloc_generation));
724 /* Check that the region is in a reset state. */
725 gc_assert((alloc_region->first_page == 0)
726 && (alloc_region->last_page == -1)
727 && (alloc_region->free_pointer == alloc_region->end_addr));
728 ret = thread_mutex_lock(&free_pages_lock);
730 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
731 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
732 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
733 + npage_bytes(last_page-first_page);
735 /* Set up the alloc_region. */
736 alloc_region->first_page = first_page;
737 alloc_region->last_page = last_page;
738 alloc_region->start_addr = page_table[first_page].bytes_used
739 + page_address(first_page);
740 alloc_region->free_pointer = alloc_region->start_addr;
741 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
743 /* Set up the pages. */
745 /* The first page may have already been in use. */
746 if (page_table[first_page].bytes_used == 0) {
747 page_table[first_page].allocated = page_type_flag;
748 page_table[first_page].gen = gc_alloc_generation;
749 page_table[first_page].large_object = 0;
750 page_table[first_page].region_start_offset = 0;
753 gc_assert(page_table[first_page].allocated == page_type_flag);
754 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
756 gc_assert(page_table[first_page].gen == gc_alloc_generation);
757 gc_assert(page_table[first_page].large_object == 0);
759 for (i = first_page+1; i <= last_page; i++) {
760 page_table[i].allocated = page_type_flag;
761 page_table[i].gen = gc_alloc_generation;
762 page_table[i].large_object = 0;
763 /* This may not be necessary for unboxed regions (think it was
765 page_table[i].region_start_offset =
766 void_diff(page_address(i),alloc_region->start_addr);
767 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
769 /* Bump up last_free_page. */
770 if (last_page+1 > last_free_page) {
771 last_free_page = last_page+1;
772 /* do we only want to call this on special occasions? like for
774 set_alloc_pointer((lispobj)page_address(last_free_page));
776 ret = thread_mutex_unlock(&free_pages_lock);
779 #ifdef READ_PROTECT_FREE_PAGES
780 os_protect(page_address(first_page),
781 npage_bytes(1+last_page-first_page),
785 /* If the first page was only partial, don't check whether it's
786 * zeroed (it won't be) and don't zero it (since the parts that
787 * we're interested in are guaranteed to be zeroed).
789 if (page_table[first_page].bytes_used) {
793 zero_dirty_pages(first_page, last_page);
795 /* we can do this after releasing free_pages_lock */
796 if (gencgc_zero_check) {
798 for (p = (long *)alloc_region->start_addr;
799 p < (long *)alloc_region->end_addr; p++) {
801 /* KLUDGE: It would be nice to use %lx and explicit casts
802 * (long) in code like this, so that it is less likely to
803 * break randomly when running on a machine with different
804 * word sizes. -- WHN 19991129 */
805 lose("The new region at %x is not zero (start=%p, end=%p).\n",
806 p, alloc_region->start_addr, alloc_region->end_addr);
812 /* If the record_new_objects flag is 2 then all new regions created
815 * If it's 1 then then it is only recorded if the first page of the
816 * current region is <= new_areas_ignore_page. This helps avoid
817 * unnecessary recording when doing full scavenge pass.
819 * The new_object structure holds the page, byte offset, and size of
820 * new regions of objects. Each new area is placed in the array of
821 * these structures pointer to by new_areas. new_areas_index holds the
822 * offset into new_areas.
824 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
825 * later code must detect this and handle it, probably by doing a full
826 * scavenge of a generation. */
827 #define NUM_NEW_AREAS 512
828 static int record_new_objects = 0;
829 static page_index_t new_areas_ignore_page;
835 static struct new_area (*new_areas)[];
836 static long new_areas_index;
839 /* Add a new area to new_areas. */
841 add_new_area(page_index_t first_page, size_t offset, size_t size)
843 unsigned long new_area_start,c;
846 /* Ignore if full. */
847 if (new_areas_index >= NUM_NEW_AREAS)
850 switch (record_new_objects) {
854 if (first_page > new_areas_ignore_page)
863 new_area_start = npage_bytes(first_page) + offset;
865 /* Search backwards for a prior area that this follows from. If
866 found this will save adding a new area. */
867 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
868 unsigned long area_end =
869 npage_bytes((*new_areas)[i].page)
870 + (*new_areas)[i].offset
871 + (*new_areas)[i].size;
873 "/add_new_area S1 %d %d %d %d\n",
874 i, c, new_area_start, area_end));*/
875 if (new_area_start == area_end) {
877 "/adding to [%d] %d %d %d with %d %d %d:\n",
879 (*new_areas)[i].page,
880 (*new_areas)[i].offset,
881 (*new_areas)[i].size,
885 (*new_areas)[i].size += size;
890 (*new_areas)[new_areas_index].page = first_page;
891 (*new_areas)[new_areas_index].offset = offset;
892 (*new_areas)[new_areas_index].size = size;
894 "/new_area %d page %d offset %d size %d\n",
895 new_areas_index, first_page, offset, size));*/
898 /* Note the max new_areas used. */
899 if (new_areas_index > max_new_areas)
900 max_new_areas = new_areas_index;
903 /* Update the tables for the alloc_region. The region may be added to
906 * When done the alloc_region is set up so that the next quick alloc
907 * will fail safely and thus a new region will be allocated. Further
908 * it is safe to try to re-update the page table of this reset
911 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
914 page_index_t first_page;
915 page_index_t next_page;
916 unsigned long bytes_used;
917 unsigned long orig_first_page_bytes_used;
918 unsigned long region_size;
919 unsigned long byte_cnt;
923 first_page = alloc_region->first_page;
925 /* Catch an unused alloc_region. */
926 if ((first_page == 0) && (alloc_region->last_page == -1))
929 next_page = first_page+1;
931 ret = thread_mutex_lock(&free_pages_lock);
933 if (alloc_region->free_pointer != alloc_region->start_addr) {
934 /* some bytes were allocated in the region */
935 orig_first_page_bytes_used = page_table[first_page].bytes_used;
937 gc_assert(alloc_region->start_addr ==
938 (page_address(first_page)
939 + page_table[first_page].bytes_used));
941 /* All the pages used need to be updated */
943 /* Update the first page. */
945 /* If the page was free then set up the gen, and
946 * region_start_offset. */
947 if (page_table[first_page].bytes_used == 0)
948 gc_assert(page_table[first_page].region_start_offset == 0);
949 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
951 gc_assert(page_table[first_page].allocated & page_type_flag);
952 gc_assert(page_table[first_page].gen == gc_alloc_generation);
953 gc_assert(page_table[first_page].large_object == 0);
957 /* Calculate the number of bytes used in this page. This is not
958 * always the number of new bytes, unless it was free. */
960 if ((bytes_used = void_diff(alloc_region->free_pointer,
961 page_address(first_page)))
963 bytes_used = PAGE_BYTES;
966 page_table[first_page].bytes_used = bytes_used;
967 byte_cnt += bytes_used;
970 /* All the rest of the pages should be free. We need to set
971 * their region_start_offset pointer to the start of the
972 * region, and set the bytes_used. */
974 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
975 gc_assert(page_table[next_page].allocated & page_type_flag);
976 gc_assert(page_table[next_page].bytes_used == 0);
977 gc_assert(page_table[next_page].gen == gc_alloc_generation);
978 gc_assert(page_table[next_page].large_object == 0);
980 gc_assert(page_table[next_page].region_start_offset ==
981 void_diff(page_address(next_page),
982 alloc_region->start_addr));
984 /* Calculate the number of bytes used in this page. */
986 if ((bytes_used = void_diff(alloc_region->free_pointer,
987 page_address(next_page)))>PAGE_BYTES) {
988 bytes_used = PAGE_BYTES;
991 page_table[next_page].bytes_used = bytes_used;
992 byte_cnt += bytes_used;
997 region_size = void_diff(alloc_region->free_pointer,
998 alloc_region->start_addr);
999 bytes_allocated += region_size;
1000 generations[gc_alloc_generation].bytes_allocated += region_size;
1002 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1004 /* Set the generations alloc restart page to the last page of
1006 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1008 /* Add the region to the new_areas if requested. */
1009 if (BOXED_PAGE_FLAG & page_type_flag)
1010 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1014 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1016 gc_alloc_generation));
1019 /* There are no bytes allocated. Unallocate the first_page if
1020 * there are 0 bytes_used. */
1021 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1022 if (page_table[first_page].bytes_used == 0)
1023 page_table[first_page].allocated = FREE_PAGE_FLAG;
1026 /* Unallocate any unused pages. */
1027 while (next_page <= alloc_region->last_page) {
1028 gc_assert(page_table[next_page].bytes_used == 0);
1029 page_table[next_page].allocated = FREE_PAGE_FLAG;
1032 ret = thread_mutex_unlock(&free_pages_lock);
1033 gc_assert(ret == 0);
1035 /* alloc_region is per-thread, we're ok to do this unlocked */
1036 gc_set_region_empty(alloc_region);
1039 static inline void *gc_quick_alloc(long nbytes);
1041 /* Allocate a possibly large object. */
1043 gc_alloc_large(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
1045 page_index_t first_page;
1046 page_index_t last_page;
1047 int orig_first_page_bytes_used;
1050 unsigned long bytes_used;
1051 page_index_t next_page;
1054 ret = thread_mutex_lock(&free_pages_lock);
1055 gc_assert(ret == 0);
1057 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1058 if (first_page <= alloc_region->last_page) {
1059 first_page = alloc_region->last_page+1;
1062 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1064 gc_assert(first_page > alloc_region->last_page);
1066 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1068 /* Set up the pages. */
1069 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1071 /* If the first page was free then set up the gen, and
1072 * region_start_offset. */
1073 if (page_table[first_page].bytes_used == 0) {
1074 page_table[first_page].allocated = page_type_flag;
1075 page_table[first_page].gen = gc_alloc_generation;
1076 page_table[first_page].region_start_offset = 0;
1077 page_table[first_page].large_object = 1;
1080 gc_assert(page_table[first_page].allocated == page_type_flag);
1081 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1082 gc_assert(page_table[first_page].large_object == 1);
1086 /* Calc. the number of bytes used in this page. This is not
1087 * always the number of new bytes, unless it was free. */
1089 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1090 bytes_used = PAGE_BYTES;
1093 page_table[first_page].bytes_used = bytes_used;
1094 byte_cnt += bytes_used;
1096 next_page = first_page+1;
1098 /* All the rest of the pages should be free. We need to set their
1099 * region_start_offset pointer to the start of the region, and set
1100 * the bytes_used. */
1102 gc_assert(page_free_p(next_page));
1103 gc_assert(page_table[next_page].bytes_used == 0);
1104 page_table[next_page].allocated = page_type_flag;
1105 page_table[next_page].gen = gc_alloc_generation;
1106 page_table[next_page].large_object = 1;
1108 page_table[next_page].region_start_offset =
1109 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1111 /* Calculate the number of bytes used in this page. */
1113 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1114 if (bytes_used > PAGE_BYTES) {
1115 bytes_used = PAGE_BYTES;
1118 page_table[next_page].bytes_used = bytes_used;
1119 page_table[next_page].write_protected=0;
1120 page_table[next_page].dont_move=0;
1121 byte_cnt += bytes_used;
1125 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1127 bytes_allocated += nbytes;
1128 generations[gc_alloc_generation].bytes_allocated += nbytes;
1130 /* Add the region to the new_areas if requested. */
1131 if (BOXED_PAGE_FLAG & page_type_flag)
1132 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1134 /* Bump up last_free_page */
1135 if (last_page+1 > last_free_page) {
1136 last_free_page = last_page+1;
1137 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1139 ret = thread_mutex_unlock(&free_pages_lock);
1140 gc_assert(ret == 0);
1142 #ifdef READ_PROTECT_FREE_PAGES
1143 os_protect(page_address(first_page),
1144 npage_bytes(1+last_page-first_page),
1148 zero_dirty_pages(first_page, last_page);
1150 return page_address(first_page);
1153 static page_index_t gencgc_alloc_start_page = -1;
1156 gc_heap_exhausted_error_or_lose (long available, long requested)
1158 struct thread *thread = arch_os_get_current_thread();
1159 /* Write basic information before doing anything else: if we don't
1160 * call to lisp this is a must, and even if we do there is always
1161 * the danger that we bounce back here before the error has been
1162 * handled, or indeed even printed.
1164 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1165 gc_active_p ? "garbage collection" : "allocation",
1166 available, requested);
1167 if (gc_active_p || (available == 0)) {
1168 /* If we are in GC, or totally out of memory there is no way
1169 * to sanely transfer control to the lisp-side of things.
1171 print_generation_stats(1);
1172 fprintf(stderr, "GC control variables:\n");
1173 fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
1174 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
1175 (SymbolValue(GC_PENDING, thread) == T) ?
1176 "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
1177 "false" : "in progress"));
1178 #ifdef LISP_FEATURE_SB_THREAD
1179 fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
1180 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
1182 lose("Heap exhausted, game over.");
1185 /* FIXME: assert free_pages_lock held */
1186 (void)thread_mutex_unlock(&free_pages_lock);
1187 gc_assert(get_pseudo_atomic_atomic(thread));
1188 clear_pseudo_atomic_atomic(thread);
1189 if (get_pseudo_atomic_interrupted(thread))
1190 do_pending_interrupt();
1191 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1192 * to running user code at arbitrary places, even in a
1193 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1194 * running out of the heap. So at this point all bets are
1196 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1197 corruption_warning_and_maybe_lose
1198 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1199 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1200 alloc_number(available), alloc_number(requested));
1201 lose("HEAP-EXHAUSTED-ERROR fell through");
1206 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes,
1209 page_index_t first_page, last_page;
1210 page_index_t restart_page = *restart_page_ptr;
1211 long bytes_found = 0;
1212 long most_bytes_found = 0;
1213 /* FIXME: assert(free_pages_lock is held); */
1215 /* Toggled by gc_and_save for heap compaction, normally -1. */
1216 if (gencgc_alloc_start_page != -1) {
1217 restart_page = gencgc_alloc_start_page;
1220 gc_assert(nbytes>=0);
1221 if (((unsigned long)nbytes)>=PAGE_BYTES) {
1222 /* Search for a contiguous free space of at least nbytes,
1223 * aligned on a page boundary. The page-alignment is strictly
1224 * speaking needed only for objects at least large_object_size
1227 first_page = restart_page;
1228 while ((first_page < page_table_pages) &&
1229 page_allocated_p(first_page))
1232 last_page = first_page;
1233 bytes_found = PAGE_BYTES;
1234 while ((bytes_found < nbytes) &&
1235 (last_page < (page_table_pages-1)) &&
1236 page_free_p(last_page+1)) {
1238 bytes_found += PAGE_BYTES;
1239 gc_assert(0 == page_table[last_page].bytes_used);
1240 gc_assert(0 == page_table[last_page].write_protected);
1242 if (bytes_found > most_bytes_found)
1243 most_bytes_found = bytes_found;
1244 restart_page = last_page + 1;
1245 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1248 /* Search for a page with at least nbytes of space. We prefer
1249 * not to split small objects on multiple pages, to reduce the
1250 * number of contiguous allocation regions spaning multiple
1251 * pages: this helps avoid excessive conservativism. */
1252 first_page = restart_page;
1253 while (first_page < page_table_pages) {
1254 if (page_free_p(first_page))
1256 gc_assert(0 == page_table[first_page].bytes_used);
1257 bytes_found = PAGE_BYTES;
1260 else if ((page_table[first_page].allocated == page_type_flag) &&
1261 (page_table[first_page].large_object == 0) &&
1262 (page_table[first_page].gen == gc_alloc_generation) &&
1263 (page_table[first_page].write_protected == 0) &&
1264 (page_table[first_page].dont_move == 0))
1266 bytes_found = PAGE_BYTES
1267 - page_table[first_page].bytes_used;
1268 if (bytes_found > most_bytes_found)
1269 most_bytes_found = bytes_found;
1270 if (bytes_found >= nbytes)
1275 last_page = first_page;
1276 restart_page = first_page + 1;
1279 /* Check for a failure */
1280 if (bytes_found < nbytes) {
1281 gc_assert(restart_page >= page_table_pages);
1282 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1285 gc_assert(page_table[first_page].write_protected == 0);
1287 *restart_page_ptr = first_page;
1291 /* Allocate bytes. All the rest of the special-purpose allocation
1292 * functions will eventually call this */
1295 gc_alloc_with_region(long nbytes,int page_type_flag, struct alloc_region *my_region,
1298 void *new_free_pointer;
1300 if (nbytes>=large_object_size)
1301 return gc_alloc_large(nbytes, page_type_flag, my_region);
1303 /* Check whether there is room in the current alloc region. */
1304 new_free_pointer = my_region->free_pointer + nbytes;
1306 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1307 my_region->free_pointer, new_free_pointer); */
1309 if (new_free_pointer <= my_region->end_addr) {
1310 /* If so then allocate from the current alloc region. */
1311 void *new_obj = my_region->free_pointer;
1312 my_region->free_pointer = new_free_pointer;
1314 /* Unless a `quick' alloc was requested, check whether the
1315 alloc region is almost empty. */
1317 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1318 /* If so, finished with the current region. */
1319 gc_alloc_update_page_tables(page_type_flag, my_region);
1320 /* Set up a new region. */
1321 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1324 return((void *)new_obj);
1327 /* Else not enough free space in the current region: retry with a
1330 gc_alloc_update_page_tables(page_type_flag, my_region);
1331 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1332 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1335 /* these are only used during GC: all allocation from the mutator calls
1336 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1339 static inline void *
1340 gc_quick_alloc(long nbytes)
1342 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1345 static inline void *
1346 gc_quick_alloc_large(long nbytes)
1348 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG ,ALLOC_QUICK);
1351 static inline void *
1352 gc_alloc_unboxed(long nbytes)
1354 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1357 static inline void *
1358 gc_quick_alloc_unboxed(long nbytes)
1360 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1363 static inline void *
1364 gc_quick_alloc_large_unboxed(long nbytes)
1366 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1370 /* Copy a large boxed object. If the object is in a large object
1371 * region then it is simply promoted, else it is copied. If it's large
1372 * enough then it's copied to a large object region.
1374 * Vectors may have shrunk. If the object is not copied the space
1375 * needs to be reclaimed, and the page_tables corrected. */
1377 copy_large_object(lispobj object, long nwords)
1381 page_index_t first_page;
1383 gc_assert(is_lisp_pointer(object));
1384 gc_assert(from_space_p(object));
1385 gc_assert((nwords & 0x01) == 0);
1388 /* Check whether it's in a large object region. */
1389 first_page = find_page_index((void *)object);
1390 gc_assert(first_page >= 0);
1392 if (page_table[first_page].large_object) {
1394 /* Promote the object. */
1396 unsigned long remaining_bytes;
1397 page_index_t next_page;
1398 unsigned long bytes_freed;
1399 unsigned long old_bytes_used;
1401 /* Note: Any page write-protection must be removed, else a
1402 * later scavenge_newspace may incorrectly not scavenge these
1403 * pages. This would not be necessary if they are added to the
1404 * new areas, but let's do it for them all (they'll probably
1405 * be written anyway?). */
1407 gc_assert(page_table[first_page].region_start_offset == 0);
1409 next_page = first_page;
1410 remaining_bytes = nwords*N_WORD_BYTES;
1411 while (remaining_bytes > PAGE_BYTES) {
1412 gc_assert(page_table[next_page].gen == from_space);
1413 gc_assert(page_boxed_p(next_page));
1414 gc_assert(page_table[next_page].large_object);
1415 gc_assert(page_table[next_page].region_start_offset ==
1416 npage_bytes(next_page-first_page));
1417 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1419 page_table[next_page].gen = new_space;
1421 /* Remove any write-protection. We should be able to rely
1422 * on the write-protect flag to avoid redundant calls. */
1423 if (page_table[next_page].write_protected) {
1424 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1425 page_table[next_page].write_protected = 0;
1427 remaining_bytes -= PAGE_BYTES;
1431 /* Now only one page remains, but the object may have shrunk
1432 * so there may be more unused pages which will be freed. */
1434 /* The object may have shrunk but shouldn't have grown. */
1435 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1437 page_table[next_page].gen = new_space;
1438 gc_assert(page_boxed_p(next_page));
1440 /* Adjust the bytes_used. */
1441 old_bytes_used = page_table[next_page].bytes_used;
1442 page_table[next_page].bytes_used = remaining_bytes;
1444 bytes_freed = old_bytes_used - remaining_bytes;
1446 /* Free any remaining pages; needs care. */
1448 while ((old_bytes_used == PAGE_BYTES) &&
1449 (page_table[next_page].gen == from_space) &&
1450 page_boxed_p(next_page) &&
1451 page_table[next_page].large_object &&
1452 (page_table[next_page].region_start_offset ==
1453 npage_bytes(next_page - first_page))) {
1454 /* Checks out OK, free the page. Don't need to bother zeroing
1455 * pages as this should have been done before shrinking the
1456 * object. These pages shouldn't be write-protected as they
1457 * should be zero filled. */
1458 gc_assert(page_table[next_page].write_protected == 0);
1460 old_bytes_used = page_table[next_page].bytes_used;
1461 page_table[next_page].allocated = FREE_PAGE_FLAG;
1462 page_table[next_page].bytes_used = 0;
1463 bytes_freed += old_bytes_used;
1467 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords
1469 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1470 bytes_allocated -= bytes_freed;
1472 /* Add the region to the new_areas if requested. */
1473 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1477 /* Get tag of object. */
1478 tag = lowtag_of(object);
1480 /* Allocate space. */
1481 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1483 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1485 /* Return Lisp pointer of new object. */
1486 return ((lispobj) new) | tag;
1490 /* to copy unboxed objects */
1492 copy_unboxed_object(lispobj object, long nwords)
1497 gc_assert(is_lisp_pointer(object));
1498 gc_assert(from_space_p(object));
1499 gc_assert((nwords & 0x01) == 0);
1501 /* Get tag of object. */
1502 tag = lowtag_of(object);
1504 /* Allocate space. */
1505 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1507 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1509 /* Return Lisp pointer of new object. */
1510 return ((lispobj) new) | tag;
1513 /* to copy large unboxed objects
1515 * If the object is in a large object region then it is simply
1516 * promoted, else it is copied. If it's large enough then it's copied
1517 * to a large object region.
1519 * Bignums and vectors may have shrunk. If the object is not copied
1520 * the space needs to be reclaimed, and the page_tables corrected.
1522 * KLUDGE: There's a lot of cut-and-paste duplication between this
1523 * function and copy_large_object(..). -- WHN 20000619 */
1525 copy_large_unboxed_object(lispobj object, long nwords)
1529 page_index_t first_page;
1531 gc_assert(is_lisp_pointer(object));
1532 gc_assert(from_space_p(object));
1533 gc_assert((nwords & 0x01) == 0);
1535 if ((nwords > 1024*1024) && gencgc_verbose) {
1536 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n",
1537 nwords*N_WORD_BYTES));
1540 /* Check whether it's a large object. */
1541 first_page = find_page_index((void *)object);
1542 gc_assert(first_page >= 0);
1544 if (page_table[first_page].large_object) {
1545 /* Promote the object. Note: Unboxed objects may have been
1546 * allocated to a BOXED region so it may be necessary to
1547 * change the region to UNBOXED. */
1548 unsigned long remaining_bytes;
1549 page_index_t next_page;
1550 unsigned long bytes_freed;
1551 unsigned long old_bytes_used;
1553 gc_assert(page_table[first_page].region_start_offset == 0);
1555 next_page = first_page;
1556 remaining_bytes = nwords*N_WORD_BYTES;
1557 while (remaining_bytes > PAGE_BYTES) {
1558 gc_assert(page_table[next_page].gen == from_space);
1559 gc_assert(page_allocated_no_region_p(next_page));
1560 gc_assert(page_table[next_page].large_object);
1561 gc_assert(page_table[next_page].region_start_offset ==
1562 npage_bytes(next_page-first_page));
1563 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1565 page_table[next_page].gen = new_space;
1566 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1567 remaining_bytes -= PAGE_BYTES;
1571 /* Now only one page remains, but the object may have shrunk so
1572 * there may be more unused pages which will be freed. */
1574 /* Object may have shrunk but shouldn't have grown - check. */
1575 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1577 page_table[next_page].gen = new_space;
1578 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1580 /* Adjust the bytes_used. */
1581 old_bytes_used = page_table[next_page].bytes_used;
1582 page_table[next_page].bytes_used = remaining_bytes;
1584 bytes_freed = old_bytes_used - remaining_bytes;
1586 /* Free any remaining pages; needs care. */
1588 while ((old_bytes_used == PAGE_BYTES) &&
1589 (page_table[next_page].gen == from_space) &&
1590 page_allocated_no_region_p(next_page) &&
1591 page_table[next_page].large_object &&
1592 (page_table[next_page].region_start_offset ==
1593 npage_bytes(next_page - first_page))) {
1594 /* Checks out OK, free the page. Don't need to both zeroing
1595 * pages as this should have been done before shrinking the
1596 * object. These pages shouldn't be write-protected, even if
1597 * boxed they should be zero filled. */
1598 gc_assert(page_table[next_page].write_protected == 0);
1600 old_bytes_used = page_table[next_page].bytes_used;
1601 page_table[next_page].allocated = FREE_PAGE_FLAG;
1602 page_table[next_page].bytes_used = 0;
1603 bytes_freed += old_bytes_used;
1607 if ((bytes_freed > 0) && gencgc_verbose) {
1609 "/copy_large_unboxed bytes_freed=%d\n",
1613 generations[from_space].bytes_allocated -=
1614 nwords*N_WORD_BYTES + bytes_freed;
1615 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1616 bytes_allocated -= bytes_freed;
1621 /* Get tag of object. */
1622 tag = lowtag_of(object);
1624 /* Allocate space. */
1625 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1627 /* Copy the object. */
1628 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1630 /* Return Lisp pointer of new object. */
1631 return ((lispobj) new) | tag;
1640 * code and code-related objects
1643 static lispobj trans_fun_header(lispobj object);
1644 static lispobj trans_boxed(lispobj object);
1647 /* Scan a x86 compiled code object, looking for possible fixups that
1648 * have been missed after a move.
1650 * Two types of fixups are needed:
1651 * 1. Absolute fixups to within the code object.
1652 * 2. Relative fixups to outside the code object.
1654 * Currently only absolute fixups to the constant vector, or to the
1655 * code area are checked. */
1657 sniff_code_object(struct code *code, unsigned long displacement)
1659 #ifdef LISP_FEATURE_X86
1660 long nheader_words, ncode_words, nwords;
1662 void *constants_start_addr = NULL, *constants_end_addr;
1663 void *code_start_addr, *code_end_addr;
1664 int fixup_found = 0;
1666 if (!check_code_fixups)
1669 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1671 ncode_words = fixnum_value(code->code_size);
1672 nheader_words = HeaderValue(*(lispobj *)code);
1673 nwords = ncode_words + nheader_words;
1675 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1676 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1677 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1678 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1680 /* Work through the unboxed code. */
1681 for (p = code_start_addr; p < code_end_addr; p++) {
1682 void *data = *(void **)p;
1683 unsigned d1 = *((unsigned char *)p - 1);
1684 unsigned d2 = *((unsigned char *)p - 2);
1685 unsigned d3 = *((unsigned char *)p - 3);
1686 unsigned d4 = *((unsigned char *)p - 4);
1688 unsigned d5 = *((unsigned char *)p - 5);
1689 unsigned d6 = *((unsigned char *)p - 6);
1692 /* Check for code references. */
1693 /* Check for a 32 bit word that looks like an absolute
1694 reference to within the code adea of the code object. */
1695 if ((data >= (code_start_addr-displacement))
1696 && (data < (code_end_addr-displacement))) {
1697 /* function header */
1699 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1701 /* Skip the function header */
1705 /* the case of PUSH imm32 */
1709 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1710 p, d6, d5, d4, d3, d2, d1, data));
1711 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1713 /* the case of MOV [reg-8],imm32 */
1715 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1716 || d2==0x45 || d2==0x46 || d2==0x47)
1720 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1721 p, d6, d5, d4, d3, d2, d1, data));
1722 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1724 /* the case of LEA reg,[disp32] */
1725 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1728 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1729 p, d6, d5, d4, d3, d2, d1, data));
1730 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1734 /* Check for constant references. */
1735 /* Check for a 32 bit word that looks like an absolute
1736 reference to within the constant vector. Constant references
1738 if ((data >= (constants_start_addr-displacement))
1739 && (data < (constants_end_addr-displacement))
1740 && (((unsigned)data & 0x3) == 0)) {
1745 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1746 p, d6, d5, d4, d3, d2, d1, data));
1747 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1750 /* the case of MOV m32,EAX */
1754 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1755 p, d6, d5, d4, d3, d2, d1, data));
1756 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1759 /* the case of CMP m32,imm32 */
1760 if ((d1 == 0x3d) && (d2 == 0x81)) {
1763 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1764 p, d6, d5, d4, d3, d2, d1, data));
1766 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1769 /* Check for a mod=00, r/m=101 byte. */
1770 if ((d1 & 0xc7) == 5) {
1775 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1776 p, d6, d5, d4, d3, d2, d1, data));
1777 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1779 /* the case of CMP reg32,m32 */
1783 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1784 p, d6, d5, d4, d3, d2, d1, data));
1785 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1787 /* the case of MOV m32,reg32 */
1791 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1792 p, d6, d5, d4, d3, d2, d1, data));
1793 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1795 /* the case of MOV reg32,m32 */
1799 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1800 p, d6, d5, d4, d3, d2, d1, data));
1801 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1803 /* the case of LEA reg32,m32 */
1807 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1808 p, d6, d5, d4, d3, d2, d1, data));
1809 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1815 /* If anything was found, print some information on the code
1819 "/compiled code object at %x: header words = %d, code words = %d\n",
1820 code, nheader_words, ncode_words));
1822 "/const start = %x, end = %x\n",
1823 constants_start_addr, constants_end_addr));
1825 "/code start = %x, end = %x\n",
1826 code_start_addr, code_end_addr));
1832 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1834 /* x86-64 uses pc-relative addressing instead of this kludge */
1835 #ifndef LISP_FEATURE_X86_64
1836 long nheader_words, ncode_words, nwords;
1837 void *constants_start_addr, *constants_end_addr;
1838 void *code_start_addr, *code_end_addr;
1839 lispobj fixups = NIL;
1840 unsigned long displacement =
1841 (unsigned long)new_code - (unsigned long)old_code;
1842 struct vector *fixups_vector;
1844 ncode_words = fixnum_value(new_code->code_size);
1845 nheader_words = HeaderValue(*(lispobj *)new_code);
1846 nwords = ncode_words + nheader_words;
1848 "/compiled code object at %x: header words = %d, code words = %d\n",
1849 new_code, nheader_words, ncode_words)); */
1850 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1851 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1852 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1853 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1856 "/const start = %x, end = %x\n",
1857 constants_start_addr,constants_end_addr));
1859 "/code start = %x; end = %x\n",
1860 code_start_addr,code_end_addr));
1863 /* The first constant should be a pointer to the fixups for this
1864 code objects. Check. */
1865 fixups = new_code->constants[0];
1867 /* It will be 0 or the unbound-marker if there are no fixups (as
1868 * will be the case if the code object has been purified, for
1869 * example) and will be an other pointer if it is valid. */
1870 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1871 !is_lisp_pointer(fixups)) {
1872 /* Check for possible errors. */
1873 if (check_code_fixups)
1874 sniff_code_object(new_code, displacement);
1879 fixups_vector = (struct vector *)native_pointer(fixups);
1881 /* Could be pointing to a forwarding pointer. */
1882 /* FIXME is this always in from_space? if so, could replace this code with
1883 * forwarding_pointer_p/forwarding_pointer_value */
1884 if (is_lisp_pointer(fixups) &&
1885 (find_page_index((void*)fixups_vector) != -1) &&
1886 (fixups_vector->header == 0x01)) {
1887 /* If so, then follow it. */
1888 /*SHOW("following pointer to a forwarding pointer");*/
1890 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1893 /*SHOW("got fixups");*/
1895 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1896 /* Got the fixups for the code block. Now work through the vector,
1897 and apply a fixup at each address. */
1898 long length = fixnum_value(fixups_vector->length);
1900 for (i = 0; i < length; i++) {
1901 unsigned long offset = fixups_vector->data[i];
1902 /* Now check the current value of offset. */
1903 unsigned long old_value =
1904 *(unsigned long *)((unsigned long)code_start_addr + offset);
1906 /* If it's within the old_code object then it must be an
1907 * absolute fixup (relative ones are not saved) */
1908 if ((old_value >= (unsigned long)old_code)
1909 && (old_value < ((unsigned long)old_code
1910 + nwords*N_WORD_BYTES)))
1911 /* So add the dispacement. */
1912 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1913 old_value + displacement;
1915 /* It is outside the old code object so it must be a
1916 * relative fixup (absolute fixups are not saved). So
1917 * subtract the displacement. */
1918 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1919 old_value - displacement;
1922 /* This used to just print a note to stderr, but a bogus fixup seems to
1923 * indicate real heap corruption, so a hard hailure is in order. */
1924 lose("fixup vector %p has a bad widetag: %d\n",
1925 fixups_vector, widetag_of(fixups_vector->header));
1928 /* Check for possible errors. */
1929 if (check_code_fixups) {
1930 sniff_code_object(new_code,displacement);
1937 trans_boxed_large(lispobj object)
1940 unsigned long length;
1942 gc_assert(is_lisp_pointer(object));
1944 header = *((lispobj *) native_pointer(object));
1945 length = HeaderValue(header) + 1;
1946 length = CEILING(length, 2);
1948 return copy_large_object(object, length);
1951 /* Doesn't seem to be used, delete it after the grace period. */
1954 trans_unboxed_large(lispobj object)
1957 unsigned long length;
1959 gc_assert(is_lisp_pointer(object));
1961 header = *((lispobj *) native_pointer(object));
1962 length = HeaderValue(header) + 1;
1963 length = CEILING(length, 2);
1965 return copy_large_unboxed_object(object, length);
1971 * Lutexes. Using the normal finalization machinery for finalizing
1972 * lutexes is tricky, since the finalization depends on working lutexes.
1973 * So we track the lutexes in the GC and finalize them manually.
1976 #if defined(LUTEX_WIDETAG)
1979 * Start tracking LUTEX in the GC, by adding it to the linked list of
1980 * lutexes in the nursery generation. The caller is responsible for
1981 * locking, and GCs must be inhibited until the registration is
1985 gencgc_register_lutex (struct lutex *lutex) {
1986 int index = find_page_index(lutex);
1987 generation_index_t gen;
1990 /* This lutex is in static space, so we don't need to worry about
1996 gen = page_table[index].gen;
1998 gc_assert(gen >= 0);
1999 gc_assert(gen < NUM_GENERATIONS);
2001 head = generations[gen].lutexes;
2008 generations[gen].lutexes = lutex;
2012 * Stop tracking LUTEX in the GC by removing it from the appropriate
2013 * linked lists. This will only be called during GC, so no locking is
2017 gencgc_unregister_lutex (struct lutex *lutex) {
2019 lutex->prev->next = lutex->next;
2021 generations[lutex->gen].lutexes = lutex->next;
2025 lutex->next->prev = lutex->prev;
2034 * Mark all lutexes in generation GEN as not live.
2037 unmark_lutexes (generation_index_t gen) {
2038 struct lutex *lutex = generations[gen].lutexes;
2042 lutex = lutex->next;
2047 * Finalize all lutexes in generation GEN that have not been marked live.
2050 reap_lutexes (generation_index_t gen) {
2051 struct lutex *lutex = generations[gen].lutexes;
2054 struct lutex *next = lutex->next;
2056 lutex_destroy((tagged_lutex_t) lutex);
2057 gencgc_unregister_lutex(lutex);
2064 * Mark LUTEX as live.
2067 mark_lutex (lispobj tagged_lutex) {
2068 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
2074 * Move all lutexes in generation FROM to generation TO.
2077 move_lutexes (generation_index_t from, generation_index_t to) {
2078 struct lutex *tail = generations[from].lutexes;
2080 /* Nothing to move */
2084 /* Change the generation of the lutexes in FROM. */
2085 while (tail->next) {
2091 /* Link the last lutex in the FROM list to the start of the TO list */
2092 tail->next = generations[to].lutexes;
2094 /* And vice versa */
2095 if (generations[to].lutexes) {
2096 generations[to].lutexes->prev = tail;
2099 /* And update the generations structures to match this */
2100 generations[to].lutexes = generations[from].lutexes;
2101 generations[from].lutexes = NULL;
2105 scav_lutex(lispobj *where, lispobj object)
2107 mark_lutex((lispobj) where);
2109 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2113 trans_lutex(lispobj object)
2115 struct lutex *lutex = (struct lutex *) native_pointer(object);
2117 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2118 gc_assert(is_lisp_pointer(object));
2119 copied = copy_object(object, words);
2121 /* Update the links, since the lutex moved in memory. */
2123 lutex->next->prev = (struct lutex *) native_pointer(copied);
2127 lutex->prev->next = (struct lutex *) native_pointer(copied);
2129 generations[lutex->gen].lutexes =
2130 (struct lutex *) native_pointer(copied);
2137 size_lutex(lispobj *where)
2139 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2141 #endif /* LUTEX_WIDETAG */
2148 /* XX This is a hack adapted from cgc.c. These don't work too
2149 * efficiently with the gencgc as a list of the weak pointers is
2150 * maintained within the objects which causes writes to the pages. A
2151 * limited attempt is made to avoid unnecessary writes, but this needs
2153 #define WEAK_POINTER_NWORDS \
2154 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2157 scav_weak_pointer(lispobj *where, lispobj object)
2159 /* Since we overwrite the 'next' field, we have to make
2160 * sure not to do so for pointers already in the list.
2161 * Instead of searching the list of weak_pointers each
2162 * time, we ensure that next is always NULL when the weak
2163 * pointer isn't in the list, and not NULL otherwise.
2164 * Since we can't use NULL to denote end of list, we
2165 * use a pointer back to the same weak_pointer.
2167 struct weak_pointer * wp = (struct weak_pointer*)where;
2169 if (NULL == wp->next) {
2170 wp->next = weak_pointers;
2172 if (NULL == wp->next)
2176 /* Do not let GC scavenge the value slot of the weak pointer.
2177 * (That is why it is a weak pointer.) */
2179 return WEAK_POINTER_NWORDS;
2184 search_read_only_space(void *pointer)
2186 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2187 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2188 if ((pointer < (void *)start) || (pointer >= (void *)end))
2190 return (gc_search_space(start,
2191 (((lispobj *)pointer)+2)-start,
2192 (lispobj *) pointer));
2196 search_static_space(void *pointer)
2198 lispobj *start = (lispobj *)STATIC_SPACE_START;
2199 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2200 if ((pointer < (void *)start) || (pointer >= (void *)end))
2202 return (gc_search_space(start,
2203 (((lispobj *)pointer)+2)-start,
2204 (lispobj *) pointer));
2207 /* a faster version for searching the dynamic space. This will work even
2208 * if the object is in a current allocation region. */
2210 search_dynamic_space(void *pointer)
2212 page_index_t page_index = find_page_index(pointer);
2215 /* The address may be invalid, so do some checks. */
2216 if ((page_index == -1) || page_free_p(page_index))
2218 start = (lispobj *)page_region_start(page_index);
2219 return (gc_search_space(start,
2220 (((lispobj *)pointer)+2)-start,
2221 (lispobj *)pointer));
2224 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2226 /* Helper for valid_lisp_pointer_p and
2227 * possibly_valid_dynamic_space_pointer.
2229 * pointer is the pointer to validate, and start_addr is the address
2230 * of the enclosing object.
2233 looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
2235 if (!is_lisp_pointer((lispobj)pointer)) {
2239 /* Check that the object pointed to is consistent with the pointer
2241 switch (lowtag_of((lispobj)pointer)) {
2242 case FUN_POINTER_LOWTAG:
2243 /* Start_addr should be the enclosing code object, or a closure
2245 switch (widetag_of(*start_addr)) {
2246 case CODE_HEADER_WIDETAG:
2247 /* This case is probably caught above. */
2249 case CLOSURE_HEADER_WIDETAG:
2250 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2251 if ((unsigned long)pointer !=
2252 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2253 if (gencgc_verbose) {
2256 pointer, start_addr, *start_addr));
2262 if (gencgc_verbose) {
2265 pointer, start_addr, *start_addr));
2270 case LIST_POINTER_LOWTAG:
2271 if ((unsigned long)pointer !=
2272 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2273 if (gencgc_verbose) {
2276 pointer, start_addr, *start_addr));
2280 /* Is it plausible cons? */
2281 if ((is_lisp_pointer(start_addr[0]) ||
2282 is_lisp_immediate(start_addr[0])) &&
2283 (is_lisp_pointer(start_addr[1]) ||
2284 is_lisp_immediate(start_addr[1])))
2287 if (gencgc_verbose) {
2290 pointer, start_addr, *start_addr));
2294 case INSTANCE_POINTER_LOWTAG:
2295 if ((unsigned long)pointer !=
2296 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2297 if (gencgc_verbose) {
2300 pointer, start_addr, *start_addr));
2304 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2305 if (gencgc_verbose) {
2308 pointer, start_addr, *start_addr));
2313 case OTHER_POINTER_LOWTAG:
2314 if ((unsigned long)pointer !=
2315 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2316 if (gencgc_verbose) {
2319 pointer, start_addr, *start_addr));
2323 /* Is it plausible? Not a cons. XXX should check the headers. */
2324 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2325 if (gencgc_verbose) {
2328 pointer, start_addr, *start_addr));
2332 switch (widetag_of(start_addr[0])) {
2333 case UNBOUND_MARKER_WIDETAG:
2334 case NO_TLS_VALUE_MARKER_WIDETAG:
2335 case CHARACTER_WIDETAG:
2336 #if N_WORD_BITS == 64
2337 case SINGLE_FLOAT_WIDETAG:
2339 if (gencgc_verbose) {
2342 pointer, start_addr, *start_addr));
2346 /* only pointed to by function pointers? */
2347 case CLOSURE_HEADER_WIDETAG:
2348 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2349 if (gencgc_verbose) {
2352 pointer, start_addr, *start_addr));
2356 case INSTANCE_HEADER_WIDETAG:
2357 if (gencgc_verbose) {
2360 pointer, start_addr, *start_addr));
2364 /* the valid other immediate pointer objects */
2365 case SIMPLE_VECTOR_WIDETAG:
2367 case COMPLEX_WIDETAG:
2368 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2369 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2371 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2372 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2374 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2375 case COMPLEX_LONG_FLOAT_WIDETAG:
2377 case SIMPLE_ARRAY_WIDETAG:
2378 case COMPLEX_BASE_STRING_WIDETAG:
2379 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2380 case COMPLEX_CHARACTER_STRING_WIDETAG:
2382 case COMPLEX_VECTOR_NIL_WIDETAG:
2383 case COMPLEX_BIT_VECTOR_WIDETAG:
2384 case COMPLEX_VECTOR_WIDETAG:
2385 case COMPLEX_ARRAY_WIDETAG:
2386 case VALUE_CELL_HEADER_WIDETAG:
2387 case SYMBOL_HEADER_WIDETAG:
2389 case CODE_HEADER_WIDETAG:
2390 case BIGNUM_WIDETAG:
2391 #if N_WORD_BITS != 64
2392 case SINGLE_FLOAT_WIDETAG:
2394 case DOUBLE_FLOAT_WIDETAG:
2395 #ifdef LONG_FLOAT_WIDETAG
2396 case LONG_FLOAT_WIDETAG:
2398 case SIMPLE_BASE_STRING_WIDETAG:
2399 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2400 case SIMPLE_CHARACTER_STRING_WIDETAG:
2402 case SIMPLE_BIT_VECTOR_WIDETAG:
2403 case SIMPLE_ARRAY_NIL_WIDETAG:
2404 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2405 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2406 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2407 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2408 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2409 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2410 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2411 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2413 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2414 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2415 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2416 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2418 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2419 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2421 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2422 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2424 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2425 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2427 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2428 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2430 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2431 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2433 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2434 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2436 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2437 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2439 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2440 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2442 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2443 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2444 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2445 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2447 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2448 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2450 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2451 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2453 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2454 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2457 case WEAK_POINTER_WIDETAG:
2458 #ifdef LUTEX_WIDETAG
2464 if (gencgc_verbose) {
2467 pointer, start_addr, *start_addr));
2473 if (gencgc_verbose) {
2476 pointer, start_addr, *start_addr));
2485 /* Used by the debugger to validate possibly bogus pointers before
2486 * calling MAKE-LISP-OBJ on them.
2488 * FIXME: We would like to make this perfect, because if the debugger
2489 * constructs a reference to a bugs lisp object, and it ends up in a
2490 * location scavenged by the GC all hell breaks loose.
2492 * Whereas possibly_valid_dynamic_space_pointer has to be conservative
2493 * and return true for all valid pointers, this could actually be eager
2494 * and lie about a few pointers without bad results... but that should
2495 * be reflected in the name.
2498 valid_lisp_pointer_p(lispobj *pointer)
2501 if (((start=search_dynamic_space(pointer))!=NULL) ||
2502 ((start=search_static_space(pointer))!=NULL) ||
2503 ((start=search_read_only_space(pointer))!=NULL))
2504 return looks_like_valid_lisp_pointer_p(pointer, start);
2509 /* Is there any possibility that pointer is a valid Lisp object
2510 * reference, and/or something else (e.g. subroutine call return
2511 * address) which should prevent us from moving the referred-to thing?
2512 * This is called from preserve_pointers() */
2514 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2516 lispobj *start_addr;
2518 /* Find the object start address. */
2519 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2523 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2526 /* Adjust large bignum and vector objects. This will adjust the
2527 * allocated region if the size has shrunk, and move unboxed objects
2528 * into unboxed pages. The pages are not promoted here, and the
2529 * promoted region is not added to the new_regions; this is really
2530 * only designed to be called from preserve_pointer(). Shouldn't fail
2531 * if this is missed, just may delay the moving of objects to unboxed
2532 * pages, and the freeing of pages. */
2534 maybe_adjust_large_object(lispobj *where)
2536 page_index_t first_page;
2537 page_index_t next_page;
2540 unsigned long remaining_bytes;
2541 unsigned long bytes_freed;
2542 unsigned long old_bytes_used;
2546 /* Check whether it's a vector or bignum object. */
2547 switch (widetag_of(where[0])) {
2548 case SIMPLE_VECTOR_WIDETAG:
2549 boxed = BOXED_PAGE_FLAG;
2551 case BIGNUM_WIDETAG:
2552 case SIMPLE_BASE_STRING_WIDETAG:
2553 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2554 case SIMPLE_CHARACTER_STRING_WIDETAG:
2556 case SIMPLE_BIT_VECTOR_WIDETAG:
2557 case SIMPLE_ARRAY_NIL_WIDETAG:
2558 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2559 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2560 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2561 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2562 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2563 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2565 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2567 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2568 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2569 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2570 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2572 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2573 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2575 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2576 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2578 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2579 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2581 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2582 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2584 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2585 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2587 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2588 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2590 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2591 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2593 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2594 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2596 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2597 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2598 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2599 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2601 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2602 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2604 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2605 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2607 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2608 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2610 boxed = UNBOXED_PAGE_FLAG;
2616 /* Find its current size. */
2617 nwords = (sizetab[widetag_of(where[0])])(where);
2619 first_page = find_page_index((void *)where);
2620 gc_assert(first_page >= 0);
2622 /* Note: Any page write-protection must be removed, else a later
2623 * scavenge_newspace may incorrectly not scavenge these pages.
2624 * This would not be necessary if they are added to the new areas,
2625 * but lets do it for them all (they'll probably be written
2628 gc_assert(page_table[first_page].region_start_offset == 0);
2630 next_page = first_page;
2631 remaining_bytes = nwords*N_WORD_BYTES;
2632 while (remaining_bytes > PAGE_BYTES) {
2633 gc_assert(page_table[next_page].gen == from_space);
2634 gc_assert(page_allocated_no_region_p(next_page));
2635 gc_assert(page_table[next_page].large_object);
2636 gc_assert(page_table[next_page].region_start_offset ==
2637 npage_bytes(next_page-first_page));
2638 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2640 page_table[next_page].allocated = boxed;
2642 /* Shouldn't be write-protected at this stage. Essential that the
2644 gc_assert(!page_table[next_page].write_protected);
2645 remaining_bytes -= PAGE_BYTES;
2649 /* Now only one page remains, but the object may have shrunk so
2650 * there may be more unused pages which will be freed. */
2652 /* Object may have shrunk but shouldn't have grown - check. */
2653 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2655 page_table[next_page].allocated = boxed;
2656 gc_assert(page_table[next_page].allocated ==
2657 page_table[first_page].allocated);
2659 /* Adjust the bytes_used. */
2660 old_bytes_used = page_table[next_page].bytes_used;
2661 page_table[next_page].bytes_used = remaining_bytes;
2663 bytes_freed = old_bytes_used - remaining_bytes;
2665 /* Free any remaining pages; needs care. */
2667 while ((old_bytes_used == PAGE_BYTES) &&
2668 (page_table[next_page].gen == from_space) &&
2669 page_allocated_no_region_p(next_page) &&
2670 page_table[next_page].large_object &&
2671 (page_table[next_page].region_start_offset ==
2672 npage_bytes(next_page - first_page))) {
2673 /* It checks out OK, free the page. We don't need to both zeroing
2674 * pages as this should have been done before shrinking the
2675 * object. These pages shouldn't be write protected as they
2676 * should be zero filled. */
2677 gc_assert(page_table[next_page].write_protected == 0);
2679 old_bytes_used = page_table[next_page].bytes_used;
2680 page_table[next_page].allocated = FREE_PAGE_FLAG;
2681 page_table[next_page].bytes_used = 0;
2682 bytes_freed += old_bytes_used;
2686 if ((bytes_freed > 0) && gencgc_verbose) {
2688 "/maybe_adjust_large_object() freed %d\n",
2692 generations[from_space].bytes_allocated -= bytes_freed;
2693 bytes_allocated -= bytes_freed;
2698 /* Take a possible pointer to a Lisp object and mark its page in the
2699 * page_table so that it will not be relocated during a GC.
2701 * This involves locating the page it points to, then backing up to
2702 * the start of its region, then marking all pages dont_move from there
2703 * up to the first page that's not full or has a different generation
2705 * It is assumed that all the page static flags have been cleared at
2706 * the start of a GC.
2708 * It is also assumed that the current gc_alloc() region has been
2709 * flushed and the tables updated. */
2712 preserve_pointer(void *addr)
2714 page_index_t addr_page_index = find_page_index(addr);
2715 page_index_t first_page;
2717 unsigned int region_allocation;
2719 /* quick check 1: Address is quite likely to have been invalid. */
2720 if ((addr_page_index == -1)
2721 || page_free_p(addr_page_index)
2722 || (page_table[addr_page_index].bytes_used == 0)
2723 || (page_table[addr_page_index].gen != from_space)
2724 /* Skip if already marked dont_move. */
2725 || (page_table[addr_page_index].dont_move != 0))
2727 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2728 /* (Now that we know that addr_page_index is in range, it's
2729 * safe to index into page_table[] with it.) */
2730 region_allocation = page_table[addr_page_index].allocated;
2732 /* quick check 2: Check the offset within the page.
2735 if (((unsigned long)addr & (PAGE_BYTES - 1)) >
2736 page_table[addr_page_index].bytes_used)
2739 /* Filter out anything which can't be a pointer to a Lisp object
2740 * (or, as a special case which also requires dont_move, a return
2741 * address referring to something in a CodeObject). This is
2742 * expensive but important, since it vastly reduces the
2743 * probability that random garbage will be bogusly interpreted as
2744 * a pointer which prevents a page from moving. */
2745 if (!(code_page_p(addr_page_index)
2746 || (is_lisp_pointer((lispobj)addr) &&
2747 possibly_valid_dynamic_space_pointer(addr))))
2750 /* Find the beginning of the region. Note that there may be
2751 * objects in the region preceding the one that we were passed a
2752 * pointer to: if this is the case, we will write-protect all the
2753 * previous objects' pages too. */
2756 /* I think this'd work just as well, but without the assertions.
2757 * -dan 2004.01.01 */
2758 first_page = find_page_index(page_region_start(addr_page_index))
2760 first_page = addr_page_index;
2761 while (page_table[first_page].region_start_offset != 0) {
2763 /* Do some checks. */
2764 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2765 gc_assert(page_table[first_page].gen == from_space);
2766 gc_assert(page_table[first_page].allocated == region_allocation);
2770 /* Adjust any large objects before promotion as they won't be
2771 * copied after promotion. */
2772 if (page_table[first_page].large_object) {
2773 maybe_adjust_large_object(page_address(first_page));
2774 /* If a large object has shrunk then addr may now point to a
2775 * free area in which case it's ignored here. Note it gets
2776 * through the valid pointer test above because the tail looks
2778 if (page_free_p(addr_page_index)
2779 || (page_table[addr_page_index].bytes_used == 0)
2780 /* Check the offset within the page. */
2781 || (((unsigned long)addr & (PAGE_BYTES - 1))
2782 > page_table[addr_page_index].bytes_used)) {
2784 "weird? ignore ptr 0x%x to freed area of large object\n",
2788 /* It may have moved to unboxed pages. */
2789 region_allocation = page_table[first_page].allocated;
2792 /* Now work forward until the end of this contiguous area is found,
2793 * marking all pages as dont_move. */
2794 for (i = first_page; ;i++) {
2795 gc_assert(page_table[i].allocated == region_allocation);
2797 /* Mark the page static. */
2798 page_table[i].dont_move = 1;
2800 /* Move the page to the new_space. XX I'd rather not do this
2801 * but the GC logic is not quite able to copy with the static
2802 * pages remaining in the from space. This also requires the
2803 * generation bytes_allocated counters be updated. */
2804 page_table[i].gen = new_space;
2805 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2806 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2808 /* It is essential that the pages are not write protected as
2809 * they may have pointers into the old-space which need
2810 * scavenging. They shouldn't be write protected at this
2812 gc_assert(!page_table[i].write_protected);
2814 /* Check whether this is the last page in this contiguous block.. */
2815 if ((page_table[i].bytes_used < PAGE_BYTES)
2816 /* ..or it is PAGE_BYTES and is the last in the block */
2818 || (page_table[i+1].bytes_used == 0) /* next page free */
2819 || (page_table[i+1].gen != from_space) /* diff. gen */
2820 || (page_table[i+1].region_start_offset == 0))
2824 /* Check that the page is now static. */
2825 gc_assert(page_table[addr_page_index].dont_move != 0);
2828 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2831 /* If the given page is not write-protected, then scan it for pointers
2832 * to younger generations or the top temp. generation, if no
2833 * suspicious pointers are found then the page is write-protected.
2835 * Care is taken to check for pointers to the current gc_alloc()
2836 * region if it is a younger generation or the temp. generation. This
2837 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2838 * the gc_alloc_generation does not need to be checked as this is only
2839 * called from scavenge_generation() when the gc_alloc generation is
2840 * younger, so it just checks if there is a pointer to the current
2843 * We return 1 if the page was write-protected, else 0. */
2845 update_page_write_prot(page_index_t page)
2847 generation_index_t gen = page_table[page].gen;
2850 void **page_addr = (void **)page_address(page);
2851 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2853 /* Shouldn't be a free page. */
2854 gc_assert(page_allocated_p(page));
2855 gc_assert(page_table[page].bytes_used != 0);
2857 /* Skip if it's already write-protected, pinned, or unboxed */
2858 if (page_table[page].write_protected
2859 /* FIXME: What's the reason for not write-protecting pinned pages? */
2860 || page_table[page].dont_move
2861 || page_unboxed_p(page))
2864 /* Scan the page for pointers to younger generations or the
2865 * top temp. generation. */
2867 for (j = 0; j < num_words; j++) {
2868 void *ptr = *(page_addr+j);
2869 page_index_t index = find_page_index(ptr);
2871 /* Check that it's in the dynamic space */
2873 if (/* Does it point to a younger or the temp. generation? */
2874 (page_allocated_p(index)
2875 && (page_table[index].bytes_used != 0)
2876 && ((page_table[index].gen < gen)
2877 || (page_table[index].gen == SCRATCH_GENERATION)))
2879 /* Or does it point within a current gc_alloc() region? */
2880 || ((boxed_region.start_addr <= ptr)
2881 && (ptr <= boxed_region.free_pointer))
2882 || ((unboxed_region.start_addr <= ptr)
2883 && (ptr <= unboxed_region.free_pointer))) {
2890 /* Write-protect the page. */
2891 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2893 os_protect((void *)page_addr,
2895 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2897 /* Note the page as protected in the page tables. */
2898 page_table[page].write_protected = 1;
2904 /* Scavenge all generations from FROM to TO, inclusive, except for
2905 * new_space which needs special handling, as new objects may be
2906 * added which are not checked here - use scavenge_newspace generation.
2908 * Write-protected pages should not have any pointers to the
2909 * from_space so do need scavenging; thus write-protected pages are
2910 * not always scavenged. There is some code to check that these pages
2911 * are not written; but to check fully the write-protected pages need
2912 * to be scavenged by disabling the code to skip them.
2914 * Under the current scheme when a generation is GCed the younger
2915 * generations will be empty. So, when a generation is being GCed it
2916 * is only necessary to scavenge the older generations for pointers
2917 * not the younger. So a page that does not have pointers to younger
2918 * generations does not need to be scavenged.
2920 * The write-protection can be used to note pages that don't have
2921 * pointers to younger pages. But pages can be written without having
2922 * pointers to younger generations. After the pages are scavenged here
2923 * they can be scanned for pointers to younger generations and if
2924 * there are none the page can be write-protected.
2926 * One complication is when the newspace is the top temp. generation.
2928 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2929 * that none were written, which they shouldn't be as they should have
2930 * no pointers to younger generations. This breaks down for weak
2931 * pointers as the objects contain a link to the next and are written
2932 * if a weak pointer is scavenged. Still it's a useful check. */
2934 scavenge_generations(generation_index_t from, generation_index_t to)
2941 /* Clear the write_protected_cleared flags on all pages. */
2942 for (i = 0; i < page_table_pages; i++)
2943 page_table[i].write_protected_cleared = 0;
2946 for (i = 0; i < last_free_page; i++) {
2947 generation_index_t generation = page_table[i].gen;
2949 && (page_table[i].bytes_used != 0)
2950 && (generation != new_space)
2951 && (generation >= from)
2952 && (generation <= to)) {
2953 page_index_t last_page,j;
2954 int write_protected=1;
2956 /* This should be the start of a region */
2957 gc_assert(page_table[i].region_start_offset == 0);
2959 /* Now work forward until the end of the region */
2960 for (last_page = i; ; last_page++) {
2962 write_protected && page_table[last_page].write_protected;
2963 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2964 /* Or it is PAGE_BYTES and is the last in the block */
2965 || (!page_boxed_p(last_page+1))
2966 || (page_table[last_page+1].bytes_used == 0)
2967 || (page_table[last_page+1].gen != generation)
2968 || (page_table[last_page+1].region_start_offset == 0))
2971 if (!write_protected) {
2972 scavenge(page_address(i),
2973 ((unsigned long)(page_table[last_page].bytes_used
2974 + npage_bytes(last_page-i)))
2977 /* Now scan the pages and write protect those that
2978 * don't have pointers to younger generations. */
2979 if (enable_page_protection) {
2980 for (j = i; j <= last_page; j++) {
2981 num_wp += update_page_write_prot(j);
2984 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2986 "/write protected %d pages within generation %d\n",
2987 num_wp, generation));
2995 /* Check that none of the write_protected pages in this generation
2996 * have been written to. */
2997 for (i = 0; i < page_table_pages; i++) {
2998 if (page_allocated_p(i)
2999 && (page_table[i].bytes_used != 0)
3000 && (page_table[i].gen == generation)
3001 && (page_table[i].write_protected_cleared != 0)) {
3002 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
3004 "/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
3005 page_table[i].bytes_used,
3006 page_table[i].region_start_offset,
3007 page_table[i].dont_move));
3008 lose("write to protected page %d in scavenge_generation()\n", i);
3015 /* Scavenge a newspace generation. As it is scavenged new objects may
3016 * be allocated to it; these will also need to be scavenged. This
3017 * repeats until there are no more objects unscavenged in the
3018 * newspace generation.
3020 * To help improve the efficiency, areas written are recorded by
3021 * gc_alloc() and only these scavenged. Sometimes a little more will be
3022 * scavenged, but this causes no harm. An easy check is done that the
3023 * scavenged bytes equals the number allocated in the previous
3026 * Write-protected pages are not scanned except if they are marked
3027 * dont_move in which case they may have been promoted and still have
3028 * pointers to the from space.
3030 * Write-protected pages could potentially be written by alloc however
3031 * to avoid having to handle re-scavenging of write-protected pages
3032 * gc_alloc() does not write to write-protected pages.
3034 * New areas of objects allocated are recorded alternatively in the two
3035 * new_areas arrays below. */
3036 static struct new_area new_areas_1[NUM_NEW_AREAS];
3037 static struct new_area new_areas_2[NUM_NEW_AREAS];
3039 /* Do one full scan of the new space generation. This is not enough to
3040 * complete the job as new objects may be added to the generation in
3041 * the process which are not scavenged. */
3043 scavenge_newspace_generation_one_scan(generation_index_t generation)
3048 "/starting one full scan of newspace generation %d\n",
3050 for (i = 0; i < last_free_page; i++) {
3051 /* Note that this skips over open regions when it encounters them. */
3053 && (page_table[i].bytes_used != 0)
3054 && (page_table[i].gen == generation)
3055 && ((page_table[i].write_protected == 0)
3056 /* (This may be redundant as write_protected is now
3057 * cleared before promotion.) */
3058 || (page_table[i].dont_move == 1))) {
3059 page_index_t last_page;
3062 /* The scavenge will start at the region_start_offset of
3065 * We need to find the full extent of this contiguous
3066 * block in case objects span pages.
3068 * Now work forward until the end of this contiguous area
3069 * is found. A small area is preferred as there is a
3070 * better chance of its pages being write-protected. */
3071 for (last_page = i; ;last_page++) {
3072 /* If all pages are write-protected and movable,
3073 * then no need to scavenge */
3074 all_wp=all_wp && page_table[last_page].write_protected &&
3075 !page_table[last_page].dont_move;
3077 /* Check whether this is the last page in this
3078 * contiguous block */
3079 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3080 /* Or it is PAGE_BYTES and is the last in the block */
3081 || (!page_boxed_p(last_page+1))
3082 || (page_table[last_page+1].bytes_used == 0)
3083 || (page_table[last_page+1].gen != generation)
3084 || (page_table[last_page+1].region_start_offset == 0))
3088 /* Do a limited check for write-protected pages. */
3090 long nwords = (((unsigned long)
3091 (page_table[last_page].bytes_used
3092 + npage_bytes(last_page-i)
3093 + page_table[i].region_start_offset))
3095 new_areas_ignore_page = last_page;
3097 scavenge(page_region_start(i), nwords);
3104 "/done with one full scan of newspace generation %d\n",
3108 /* Do a complete scavenge of the newspace generation. */
3110 scavenge_newspace_generation(generation_index_t generation)
3114 /* the new_areas array currently being written to by gc_alloc() */
3115 struct new_area (*current_new_areas)[] = &new_areas_1;
3116 long current_new_areas_index;
3118 /* the new_areas created by the previous scavenge cycle */
3119 struct new_area (*previous_new_areas)[] = NULL;
3120 long previous_new_areas_index;
3122 /* Flush the current regions updating the tables. */
3123 gc_alloc_update_all_page_tables();
3125 /* Turn on the recording of new areas by gc_alloc(). */
3126 new_areas = current_new_areas;
3127 new_areas_index = 0;
3129 /* Don't need to record new areas that get scavenged anyway during
3130 * scavenge_newspace_generation_one_scan. */
3131 record_new_objects = 1;
3133 /* Start with a full scavenge. */
3134 scavenge_newspace_generation_one_scan(generation);
3136 /* Record all new areas now. */
3137 record_new_objects = 2;
3139 /* Give a chance to weak hash tables to make other objects live.
3140 * FIXME: The algorithm implemented here for weak hash table gcing
3141 * is O(W^2+N) as Bruno Haible warns in
3142 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3143 * see "Implementation 2". */
3144 scav_weak_hash_tables();
3146 /* Flush the current regions updating the tables. */
3147 gc_alloc_update_all_page_tables();
3149 /* Grab new_areas_index. */
3150 current_new_areas_index = new_areas_index;
3153 "The first scan is finished; current_new_areas_index=%d.\n",
3154 current_new_areas_index));*/
3156 while (current_new_areas_index > 0) {
3157 /* Move the current to the previous new areas */
3158 previous_new_areas = current_new_areas;
3159 previous_new_areas_index = current_new_areas_index;
3161 /* Scavenge all the areas in previous new areas. Any new areas
3162 * allocated are saved in current_new_areas. */
3164 /* Allocate an array for current_new_areas; alternating between
3165 * new_areas_1 and 2 */
3166 if (previous_new_areas == &new_areas_1)
3167 current_new_areas = &new_areas_2;
3169 current_new_areas = &new_areas_1;
3171 /* Set up for gc_alloc(). */
3172 new_areas = current_new_areas;
3173 new_areas_index = 0;
3175 /* Check whether previous_new_areas had overflowed. */
3176 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3178 /* New areas of objects allocated have been lost so need to do a
3179 * full scan to be sure! If this becomes a problem try
3180 * increasing NUM_NEW_AREAS. */
3181 if (gencgc_verbose) {
3182 SHOW("new_areas overflow, doing full scavenge");
3185 /* Don't need to record new areas that get scavenged
3186 * anyway during scavenge_newspace_generation_one_scan. */
3187 record_new_objects = 1;
3189 scavenge_newspace_generation_one_scan(generation);
3191 /* Record all new areas now. */
3192 record_new_objects = 2;
3194 scav_weak_hash_tables();
3196 /* Flush the current regions updating the tables. */
3197 gc_alloc_update_all_page_tables();
3201 /* Work through previous_new_areas. */
3202 for (i = 0; i < previous_new_areas_index; i++) {
3203 page_index_t page = (*previous_new_areas)[i].page;
3204 size_t offset = (*previous_new_areas)[i].offset;
3205 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3206 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3207 scavenge(page_address(page)+offset, size);
3210 scav_weak_hash_tables();
3212 /* Flush the current regions updating the tables. */
3213 gc_alloc_update_all_page_tables();
3216 current_new_areas_index = new_areas_index;
3219 "The re-scan has finished; current_new_areas_index=%d.\n",
3220 current_new_areas_index));*/
3223 /* Turn off recording of areas allocated by gc_alloc(). */
3224 record_new_objects = 0;
3227 /* Check that none of the write_protected pages in this generation
3228 * have been written to. */
3229 for (i = 0; i < page_table_pages; i++) {
3230 if (page_allocated_p(i)
3231 && (page_table[i].bytes_used != 0)
3232 && (page_table[i].gen == generation)
3233 && (page_table[i].write_protected_cleared != 0)
3234 && (page_table[i].dont_move == 0)) {
3235 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3236 i, generation, page_table[i].dont_move);
3242 /* Un-write-protect all the pages in from_space. This is done at the
3243 * start of a GC else there may be many page faults while scavenging
3244 * the newspace (I've seen drive the system time to 99%). These pages
3245 * would need to be unprotected anyway before unmapping in
3246 * free_oldspace; not sure what effect this has on paging.. */
3248 unprotect_oldspace(void)
3252 for (i = 0; i < last_free_page; i++) {
3253 if (page_allocated_p(i)
3254 && (page_table[i].bytes_used != 0)
3255 && (page_table[i].gen == from_space)) {
3258 page_start = (void *)page_address(i);
3260 /* Remove any write-protection. We should be able to rely
3261 * on the write-protect flag to avoid redundant calls. */
3262 if (page_table[i].write_protected) {
3263 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3264 page_table[i].write_protected = 0;
3270 /* Work through all the pages and free any in from_space. This
3271 * assumes that all objects have been copied or promoted to an older
3272 * generation. Bytes_allocated and the generation bytes_allocated
3273 * counter are updated. The number of bytes freed is returned. */
3274 static unsigned long
3277 unsigned long bytes_freed = 0;
3278 page_index_t first_page, last_page;
3283 /* Find a first page for the next region of pages. */
3284 while ((first_page < last_free_page)
3285 && (page_free_p(first_page)
3286 || (page_table[first_page].bytes_used == 0)
3287 || (page_table[first_page].gen != from_space)))
3290 if (first_page >= last_free_page)
3293 /* Find the last page of this region. */
3294 last_page = first_page;
3297 /* Free the page. */
3298 bytes_freed += page_table[last_page].bytes_used;
3299 generations[page_table[last_page].gen].bytes_allocated -=
3300 page_table[last_page].bytes_used;
3301 page_table[last_page].allocated = FREE_PAGE_FLAG;
3302 page_table[last_page].bytes_used = 0;
3304 /* Remove any write-protection. We should be able to rely
3305 * on the write-protect flag to avoid redundant calls. */
3307 void *page_start = (void *)page_address(last_page);
3309 if (page_table[last_page].write_protected) {
3310 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3311 page_table[last_page].write_protected = 0;
3316 while ((last_page < last_free_page)
3317 && page_allocated_p(last_page)
3318 && (page_table[last_page].bytes_used != 0)
3319 && (page_table[last_page].gen == from_space));
3321 #ifdef READ_PROTECT_FREE_PAGES
3322 os_protect(page_address(first_page),
3323 npage_bytes(last_page-first_page),
3326 first_page = last_page;
3327 } while (first_page < last_free_page);
3329 bytes_allocated -= bytes_freed;
3334 /* Print some information about a pointer at the given address. */
3336 print_ptr(lispobj *addr)
3338 /* If addr is in the dynamic space then out the page information. */
3339 page_index_t pi1 = find_page_index((void*)addr);
3342 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
3343 (unsigned long) addr,
3345 page_table[pi1].allocated,
3346 page_table[pi1].gen,
3347 page_table[pi1].bytes_used,
3348 page_table[pi1].region_start_offset,
3349 page_table[pi1].dont_move);
3350 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3364 verify_space(lispobj *start, size_t words)
3366 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3367 int is_in_readonly_space =
3368 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3369 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3373 lispobj thing = *(lispobj*)start;
3375 if (is_lisp_pointer(thing)) {
3376 page_index_t page_index = find_page_index((void*)thing);
3377 long to_readonly_space =
3378 (READ_ONLY_SPACE_START <= thing &&
3379 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3380 long to_static_space =
3381 (STATIC_SPACE_START <= thing &&
3382 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3384 /* Does it point to the dynamic space? */
3385 if (page_index != -1) {
3386 /* If it's within the dynamic space it should point to a used
3387 * page. XX Could check the offset too. */
3388 if (page_allocated_p(page_index)
3389 && (page_table[page_index].bytes_used == 0))
3390 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3391 /* Check that it doesn't point to a forwarding pointer! */
3392 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3393 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3395 /* Check that its not in the RO space as it would then be a
3396 * pointer from the RO to the dynamic space. */
3397 if (is_in_readonly_space) {
3398 lose("ptr to dynamic space %x from RO space %x\n",
3401 /* Does it point to a plausible object? This check slows
3402 * it down a lot (so it's commented out).
3404 * "a lot" is serious: it ate 50 minutes cpu time on
3405 * my duron 950 before I came back from lunch and
3408 * FIXME: Add a variable to enable this
3411 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3412 lose("ptr %x to invalid object %x\n", thing, start);
3416 /* Verify that it points to another valid space. */
3417 if (!to_readonly_space && !to_static_space) {
3418 lose("Ptr %x @ %x sees junk.\n", thing, start);
3422 if (!(fixnump(thing))) {
3424 switch(widetag_of(*start)) {
3427 case SIMPLE_VECTOR_WIDETAG:
3429 case COMPLEX_WIDETAG:
3430 case SIMPLE_ARRAY_WIDETAG:
3431 case COMPLEX_BASE_STRING_WIDETAG:
3432 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3433 case COMPLEX_CHARACTER_STRING_WIDETAG:
3435 case COMPLEX_VECTOR_NIL_WIDETAG:
3436 case COMPLEX_BIT_VECTOR_WIDETAG:
3437 case COMPLEX_VECTOR_WIDETAG:
3438 case COMPLEX_ARRAY_WIDETAG:
3439 case CLOSURE_HEADER_WIDETAG:
3440 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3441 case VALUE_CELL_HEADER_WIDETAG:
3442 case SYMBOL_HEADER_WIDETAG:
3443 case CHARACTER_WIDETAG:
3444 #if N_WORD_BITS == 64
3445 case SINGLE_FLOAT_WIDETAG:
3447 case UNBOUND_MARKER_WIDETAG:
3452 case INSTANCE_HEADER_WIDETAG:
3455 long ntotal = HeaderValue(thing);
3456 lispobj layout = ((struct instance *)start)->slots[0];
3461 nuntagged = ((struct layout *)
3462 native_pointer(layout))->n_untagged_slots;
3463 verify_space(start + 1,
3464 ntotal - fixnum_value(nuntagged));
3468 case CODE_HEADER_WIDETAG:
3470 lispobj object = *start;
3472 long nheader_words, ncode_words, nwords;
3474 struct simple_fun *fheaderp;
3476 code = (struct code *) start;
3478 /* Check that it's not in the dynamic space.
3479 * FIXME: Isn't is supposed to be OK for code
3480 * objects to be in the dynamic space these days? */
3481 if (is_in_dynamic_space
3482 /* It's ok if it's byte compiled code. The trace
3483 * table offset will be a fixnum if it's x86
3484 * compiled code - check.
3486 * FIXME: #^#@@! lack of abstraction here..
3487 * This line can probably go away now that
3488 * there's no byte compiler, but I've got
3489 * too much to worry about right now to try
3490 * to make sure. -- WHN 2001-10-06 */
3491 && fixnump(code->trace_table_offset)
3492 /* Only when enabled */
3493 && verify_dynamic_code_check) {
3495 "/code object at %x in the dynamic space\n",
3499 ncode_words = fixnum_value(code->code_size);
3500 nheader_words = HeaderValue(object);
3501 nwords = ncode_words + nheader_words;
3502 nwords = CEILING(nwords, 2);
3503 /* Scavenge the boxed section of the code data block */
3504 verify_space(start + 1, nheader_words - 1);
3506 /* Scavenge the boxed section of each function
3507 * object in the code data block. */
3508 fheaderl = code->entry_points;
3509 while (fheaderl != NIL) {
3511 (struct simple_fun *) native_pointer(fheaderl);
3512 gc_assert(widetag_of(fheaderp->header) ==
3513 SIMPLE_FUN_HEADER_WIDETAG);
3514 verify_space(&fheaderp->name, 1);
3515 verify_space(&fheaderp->arglist, 1);
3516 verify_space(&fheaderp->type, 1);
3517 fheaderl = fheaderp->next;
3523 /* unboxed objects */
3524 case BIGNUM_WIDETAG:
3525 #if N_WORD_BITS != 64
3526 case SINGLE_FLOAT_WIDETAG:
3528 case DOUBLE_FLOAT_WIDETAG:
3529 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3530 case LONG_FLOAT_WIDETAG:
3532 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3533 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3535 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3536 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3538 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3539 case COMPLEX_LONG_FLOAT_WIDETAG:
3541 case SIMPLE_BASE_STRING_WIDETAG:
3542 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3543 case SIMPLE_CHARACTER_STRING_WIDETAG:
3545 case SIMPLE_BIT_VECTOR_WIDETAG:
3546 case SIMPLE_ARRAY_NIL_WIDETAG:
3547 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3548 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3549 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3550 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3551 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3552 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3553 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3554 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3556 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3557 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3558 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3559 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3561 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3562 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3564 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3565 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3567 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3568 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3570 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3571 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3573 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3574 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3576 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3577 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3579 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3580 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3582 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3583 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3585 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3586 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3587 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3588 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3590 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3591 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3593 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3594 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3596 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3597 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3600 case WEAK_POINTER_WIDETAG:
3601 #ifdef LUTEX_WIDETAG
3604 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3605 case NO_TLS_VALUE_MARKER_WIDETAG:
3607 count = (sizetab[widetag_of(*start)])(start);
3611 lose("Unhandled widetag 0x%x at 0x%x\n",
3612 widetag_of(*start), start);
3624 /* FIXME: It would be nice to make names consistent so that
3625 * foo_size meant size *in* *bytes* instead of size in some
3626 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3627 * Some counts of lispobjs are called foo_count; it might be good
3628 * to grep for all foo_size and rename the appropriate ones to
3630 long read_only_space_size =
3631 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3632 - (lispobj*)READ_ONLY_SPACE_START;
3633 long static_space_size =
3634 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3635 - (lispobj*)STATIC_SPACE_START;
3637 for_each_thread(th) {
3638 long binding_stack_size =
3639 (lispobj*)get_binding_stack_pointer(th)
3640 - (lispobj*)th->binding_stack_start;
3641 verify_space(th->binding_stack_start, binding_stack_size);
3643 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3644 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3648 verify_generation(generation_index_t generation)
3652 for (i = 0; i < last_free_page; i++) {
3653 if (page_allocated_p(i)
3654 && (page_table[i].bytes_used != 0)
3655 && (page_table[i].gen == generation)) {
3656 page_index_t last_page;
3657 int region_allocation = page_table[i].allocated;
3659 /* This should be the start of a contiguous block */
3660 gc_assert(page_table[i].region_start_offset == 0);
3662 /* Need to find the full extent of this contiguous block in case
3663 objects span pages. */
3665 /* Now work forward until the end of this contiguous area is
3667 for (last_page = i; ;last_page++)
3668 /* Check whether this is the last page in this contiguous
3670 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3671 /* Or it is PAGE_BYTES and is the last in the block */
3672 || (page_table[last_page+1].allocated != region_allocation)
3673 || (page_table[last_page+1].bytes_used == 0)
3674 || (page_table[last_page+1].gen != generation)
3675 || (page_table[last_page+1].region_start_offset == 0))
3678 verify_space(page_address(i),
3680 (page_table[last_page].bytes_used
3681 + npage_bytes(last_page-i)))
3688 /* Check that all the free space is zero filled. */
3690 verify_zero_fill(void)
3694 for (page = 0; page < last_free_page; page++) {
3695 if (page_free_p(page)) {
3696 /* The whole page should be zero filled. */
3697 long *start_addr = (long *)page_address(page);
3700 for (i = 0; i < size; i++) {
3701 if (start_addr[i] != 0) {
3702 lose("free page not zero at %x\n", start_addr + i);
3706 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3707 if (free_bytes > 0) {
3708 long *start_addr = (long *)((unsigned long)page_address(page)
3709 + page_table[page].bytes_used);
3710 long size = free_bytes / N_WORD_BYTES;
3712 for (i = 0; i < size; i++) {
3713 if (start_addr[i] != 0) {
3714 lose("free region not zero at %x\n", start_addr + i);
3722 /* External entry point for verify_zero_fill */
3724 gencgc_verify_zero_fill(void)
3726 /* Flush the alloc regions updating the tables. */
3727 gc_alloc_update_all_page_tables();
3728 SHOW("verifying zero fill");
3733 verify_dynamic_space(void)
3735 generation_index_t i;
3737 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3738 verify_generation(i);
3740 if (gencgc_enable_verify_zero_fill)
3744 /* Write-protect all the dynamic boxed pages in the given generation. */
3746 write_protect_generation_pages(generation_index_t generation)
3750 gc_assert(generation < SCRATCH_GENERATION);
3752 for (start = 0; start < last_free_page; start++) {
3753 if (protect_page_p(start, generation)) {
3757 /* Note the page as protected in the page tables. */
3758 page_table[start].write_protected = 1;
3760 for (last = start + 1; last < last_free_page; last++) {
3761 if (!protect_page_p(last, generation))
3763 page_table[last].write_protected = 1;
3766 page_start = (void *)page_address(start);
3768 os_protect(page_start,
3769 npage_bytes(last - start),
3770 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3776 if (gencgc_verbose > 1) {
3778 "/write protected %d of %d pages in generation %d\n",
3779 count_write_protect_generation_pages(generation),
3780 count_generation_pages(generation),
3785 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3788 scavenge_control_stack()
3790 unsigned long control_stack_size;
3792 /* This is going to be a big problem when we try to port threads
3794 struct thread *th = arch_os_get_current_thread();
3795 lispobj *control_stack =
3796 (lispobj *)(th->control_stack_start);
3798 control_stack_size = current_control_stack_pointer - control_stack;
3799 scavenge(control_stack, control_stack_size);
3802 /* Scavenging Interrupt Contexts */
3804 static int boxed_registers[] = BOXED_REGISTERS;
3807 scavenge_interrupt_context(os_context_t * context)
3813 unsigned long lip_offset;
3814 int lip_register_pair;
3816 unsigned long pc_code_offset;
3818 #ifdef ARCH_HAS_LINK_REGISTER
3819 unsigned long lr_code_offset;
3821 #ifdef ARCH_HAS_NPC_REGISTER
3822 unsigned long npc_code_offset;
3826 /* Find the LIP's register pair and calculate it's offset */
3827 /* before we scavenge the context. */
3830 * I (RLT) think this is trying to find the boxed register that is
3831 * closest to the LIP address, without going past it. Usually, it's
3832 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3834 lip = *os_context_register_addr(context, reg_LIP);
3835 lip_offset = 0x7FFFFFFF;
3836 lip_register_pair = -1;
3837 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3842 index = boxed_registers[i];
3843 reg = *os_context_register_addr(context, index);
3844 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3846 if (offset < lip_offset) {
3847 lip_offset = offset;
3848 lip_register_pair = index;
3852 #endif /* reg_LIP */
3854 /* Compute the PC's offset from the start of the CODE */
3856 pc_code_offset = *os_context_pc_addr(context)
3857 - *os_context_register_addr(context, reg_CODE);
3858 #ifdef ARCH_HAS_NPC_REGISTER
3859 npc_code_offset = *os_context_npc_addr(context)
3860 - *os_context_register_addr(context, reg_CODE);
3861 #endif /* ARCH_HAS_NPC_REGISTER */
3863 #ifdef ARCH_HAS_LINK_REGISTER
3865 *os_context_lr_addr(context) -
3866 *os_context_register_addr(context, reg_CODE);
3869 /* Scanvenge all boxed registers in the context. */
3870 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3874 index = boxed_registers[i];
3875 foo = *os_context_register_addr(context, index);
3877 *os_context_register_addr(context, index) = foo;
3879 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3886 * But what happens if lip_register_pair is -1?
3887 * *os_context_register_addr on Solaris (see
3888 * solaris_register_address in solaris-os.c) will return
3889 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3890 * that what we really want? My guess is that that is not what we
3891 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3892 * all. But maybe it doesn't really matter if LIP is trashed?
3894 if (lip_register_pair >= 0) {
3895 *os_context_register_addr(context, reg_LIP) =
3896 *os_context_register_addr(context, lip_register_pair)
3899 #endif /* reg_LIP */
3901 /* Fix the PC if it was in from space */
3902 if (from_space_p(*os_context_pc_addr(context)))
3903 *os_context_pc_addr(context) =
3904 *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3906 #ifdef ARCH_HAS_LINK_REGISTER
3907 /* Fix the LR ditto; important if we're being called from
3908 * an assembly routine that expects to return using blr, otherwise
3910 if (from_space_p(*os_context_lr_addr(context)))
3911 *os_context_lr_addr(context) =
3912 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3915 #ifdef ARCH_HAS_NPC_REGISTER
3916 if (from_space_p(*os_context_npc_addr(context)))
3917 *os_context_npc_addr(context) =
3918 *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3919 #endif /* ARCH_HAS_NPC_REGISTER */
3923 scavenge_interrupt_contexts(void)
3926 os_context_t *context;
3928 struct thread *th=arch_os_get_current_thread();
3930 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3932 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3933 printf("Number of active contexts: %d\n", index);
3936 for (i = 0; i < index; i++) {
3937 context = th->interrupt_contexts[i];
3938 scavenge_interrupt_context(context);
3944 #if defined(LISP_FEATURE_SB_THREAD)
3946 preserve_context_registers (os_context_t *c)
3949 /* On Darwin the signal context isn't a contiguous block of memory,
3950 * so just preserve_pointering its contents won't be sufficient.
3952 #if defined(LISP_FEATURE_DARWIN)
3953 #if defined LISP_FEATURE_X86
3954 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3955 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3956 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3957 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3958 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3959 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3960 preserve_pointer((void*)*os_context_pc_addr(c));
3961 #elif defined LISP_FEATURE_X86_64
3962 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3963 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3964 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3965 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3966 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3967 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3968 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3969 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3970 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3971 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3972 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3973 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3974 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3975 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3976 preserve_pointer((void*)*os_context_pc_addr(c));
3978 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3981 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3982 preserve_pointer(*ptr);
3987 /* Garbage collect a generation. If raise is 0 then the remains of the
3988 * generation are not raised to the next generation. */
3990 garbage_collect_generation(generation_index_t generation, int raise)
3992 unsigned long bytes_freed;
3994 unsigned long static_space_size;
3995 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3998 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
4000 /* The oldest generation can't be raised. */
4001 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
4003 /* Check if weak hash tables were processed in the previous GC. */
4004 gc_assert(weak_hash_tables == NULL);
4006 /* Initialize the weak pointer list. */
4007 weak_pointers = NULL;
4009 #ifdef LUTEX_WIDETAG
4010 unmark_lutexes(generation);
4013 /* When a generation is not being raised it is transported to a
4014 * temporary generation (NUM_GENERATIONS), and lowered when
4015 * done. Set up this new generation. There should be no pages
4016 * allocated to it yet. */
4018 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
4021 /* Set the global src and dest. generations */
4022 from_space = generation;
4024 new_space = generation+1;
4026 new_space = SCRATCH_GENERATION;
4028 /* Change to a new space for allocation, resetting the alloc_start_page */
4029 gc_alloc_generation = new_space;
4030 generations[new_space].alloc_start_page = 0;
4031 generations[new_space].alloc_unboxed_start_page = 0;
4032 generations[new_space].alloc_large_start_page = 0;
4033 generations[new_space].alloc_large_unboxed_start_page = 0;
4035 /* Before any pointers are preserved, the dont_move flags on the
4036 * pages need to be cleared. */
4037 for (i = 0; i < last_free_page; i++)
4038 if(page_table[i].gen==from_space)
4039 page_table[i].dont_move = 0;
4041 /* Un-write-protect the old-space pages. This is essential for the
4042 * promoted pages as they may contain pointers into the old-space
4043 * which need to be scavenged. It also helps avoid unnecessary page
4044 * faults as forwarding pointers are written into them. They need to
4045 * be un-protected anyway before unmapping later. */
4046 unprotect_oldspace();
4048 /* Scavenge the stacks' conservative roots. */
4050 /* there are potentially two stacks for each thread: the main
4051 * stack, which may contain Lisp pointers, and the alternate stack.
4052 * We don't ever run Lisp code on the altstack, but it may
4053 * host a sigcontext with lisp objects in it */
4055 /* what we need to do: (1) find the stack pointer for the main
4056 * stack; scavenge it (2) find the interrupt context on the
4057 * alternate stack that might contain lisp values, and scavenge
4060 /* we assume that none of the preceding applies to the thread that
4061 * initiates GC. If you ever call GC from inside an altstack
4062 * handler, you will lose. */
4064 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
4065 /* And if we're saving a core, there's no point in being conservative. */
4066 if (conservative_stack) {
4067 for_each_thread(th) {
4069 void **esp=(void **)-1;
4070 #ifdef LISP_FEATURE_SB_THREAD
4072 if(th==arch_os_get_current_thread()) {
4073 /* Somebody is going to burn in hell for this, but casting
4074 * it in two steps shuts gcc up about strict aliasing. */
4075 esp = (void **)((void *)&raise);
4078 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
4079 for(i=free-1;i>=0;i--) {
4080 os_context_t *c=th->interrupt_contexts[i];
4081 esp1 = (void **) *os_context_register_addr(c,reg_SP);
4082 if (esp1>=(void **)th->control_stack_start &&
4083 esp1<(void **)th->control_stack_end) {
4084 if(esp1<esp) esp=esp1;
4085 preserve_context_registers(c);
4090 esp = (void **)((void *)&raise);
4092 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
4093 preserve_pointer(*ptr);
4100 if (gencgc_verbose > 1) {
4101 long num_dont_move_pages = count_dont_move_pages();
4103 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
4104 num_dont_move_pages,
4105 npage_bytes(num_dont_move_pages));
4109 /* Scavenge all the rest of the roots. */
4111 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
4113 * If not x86, we need to scavenge the interrupt context(s) and the
4116 scavenge_interrupt_contexts();
4117 scavenge_control_stack();
4120 /* Scavenge the Lisp functions of the interrupt handlers, taking
4121 * care to avoid SIG_DFL and SIG_IGN. */
4122 for (i = 0; i < NSIG; i++) {
4123 union interrupt_handler handler = interrupt_handlers[i];
4124 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
4125 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
4126 scavenge((lispobj *)(interrupt_handlers + i), 1);
4129 /* Scavenge the binding stacks. */
4132 for_each_thread(th) {
4133 long len= (lispobj *)get_binding_stack_pointer(th) -
4134 th->binding_stack_start;
4135 scavenge((lispobj *) th->binding_stack_start,len);
4136 #ifdef LISP_FEATURE_SB_THREAD
4137 /* do the tls as well */
4138 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4139 (sizeof (struct thread))/(sizeof (lispobj));
4140 scavenge((lispobj *) (th+1),len);
4145 /* The original CMU CL code had scavenge-read-only-space code
4146 * controlled by the Lisp-level variable
4147 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4148 * wasn't documented under what circumstances it was useful or
4149 * safe to turn it on, so it's been turned off in SBCL. If you
4150 * want/need this functionality, and can test and document it,
4151 * please submit a patch. */
4153 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4154 unsigned long read_only_space_size =
4155 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4156 (lispobj*)READ_ONLY_SPACE_START;
4158 "/scavenge read only space: %d bytes\n",
4159 read_only_space_size * sizeof(lispobj)));
4160 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4164 /* Scavenge static space. */
4166 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4167 (lispobj *)STATIC_SPACE_START;
4168 if (gencgc_verbose > 1) {
4170 "/scavenge static space: %d bytes\n",
4171 static_space_size * sizeof(lispobj)));
4173 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4175 /* All generations but the generation being GCed need to be
4176 * scavenged. The new_space generation needs special handling as
4177 * objects may be moved in - it is handled separately below. */
4178 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4180 /* Finally scavenge the new_space generation. Keep going until no
4181 * more objects are moved into the new generation */
4182 scavenge_newspace_generation(new_space);
4184 /* FIXME: I tried reenabling this check when debugging unrelated
4185 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4186 * Since the current GC code seems to work well, I'm guessing that
4187 * this debugging code is just stale, but I haven't tried to
4188 * figure it out. It should be figured out and then either made to
4189 * work or just deleted. */
4190 #define RESCAN_CHECK 0
4192 /* As a check re-scavenge the newspace once; no new objects should
4195 long old_bytes_allocated = bytes_allocated;
4196 long bytes_allocated;
4198 /* Start with a full scavenge. */
4199 scavenge_newspace_generation_one_scan(new_space);
4201 /* Flush the current regions, updating the tables. */
4202 gc_alloc_update_all_page_tables();
4204 bytes_allocated = bytes_allocated - old_bytes_allocated;
4206 if (bytes_allocated != 0) {
4207 lose("Rescan of new_space allocated %d more bytes.\n",
4213 scan_weak_hash_tables();
4214 scan_weak_pointers();
4216 /* Flush the current regions, updating the tables. */
4217 gc_alloc_update_all_page_tables();
4219 /* Free the pages in oldspace, but not those marked dont_move. */
4220 bytes_freed = free_oldspace();
4222 /* If the GC is not raising the age then lower the generation back
4223 * to its normal generation number */
4225 for (i = 0; i < last_free_page; i++)
4226 if ((page_table[i].bytes_used != 0)
4227 && (page_table[i].gen == SCRATCH_GENERATION))
4228 page_table[i].gen = generation;
4229 gc_assert(generations[generation].bytes_allocated == 0);
4230 generations[generation].bytes_allocated =
4231 generations[SCRATCH_GENERATION].bytes_allocated;
4232 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4235 /* Reset the alloc_start_page for generation. */
4236 generations[generation].alloc_start_page = 0;
4237 generations[generation].alloc_unboxed_start_page = 0;
4238 generations[generation].alloc_large_start_page = 0;
4239 generations[generation].alloc_large_unboxed_start_page = 0;
4241 if (generation >= verify_gens) {
4242 if (gencgc_verbose) {
4246 verify_dynamic_space();
4249 /* Set the new gc trigger for the GCed generation. */
4250 generations[generation].gc_trigger =
4251 generations[generation].bytes_allocated
4252 + generations[generation].bytes_consed_between_gc;
4255 generations[generation].num_gc = 0;
4257 ++generations[generation].num_gc;
4259 #ifdef LUTEX_WIDETAG
4260 reap_lutexes(generation);
4262 move_lutexes(generation, generation+1);
4266 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4268 update_dynamic_space_free_pointer(void)
4270 page_index_t last_page = -1, i;
4272 for (i = 0; i < last_free_page; i++)
4273 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
4276 last_free_page = last_page+1;
4278 set_alloc_pointer((lispobj)(page_address(last_free_page)));
4279 return 0; /* dummy value: return something ... */
4283 remap_free_pages (page_index_t from, page_index_t to)
4285 page_index_t first_page, last_page;
4287 for (first_page = from; first_page <= to; first_page++) {
4288 if (page_allocated_p(first_page) ||
4289 (page_table[first_page].need_to_zero == 0)) {
4293 last_page = first_page + 1;
4294 while (page_free_p(last_page) &&
4296 (page_table[last_page].need_to_zero == 1)) {
4300 /* There's a mysterious Solaris/x86 problem with using mmap
4301 * tricks for memory zeroing. See sbcl-devel thread
4302 * "Re: patch: standalone executable redux".
4304 #if defined(LISP_FEATURE_SUNOS)
4305 zero_pages(first_page, last_page-1);
4307 zero_pages_with_mmap(first_page, last_page-1);
4310 first_page = last_page;
4314 generation_index_t small_generation_limit = 1;
4316 /* GC all generations newer than last_gen, raising the objects in each
4317 * to the next older generation - we finish when all generations below
4318 * last_gen are empty. Then if last_gen is due for a GC, or if
4319 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4320 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4322 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4323 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4325 collect_garbage(generation_index_t last_gen)
4327 generation_index_t gen = 0, i;
4330 /* The largest value of last_free_page seen since the time
4331 * remap_free_pages was called. */
4332 static page_index_t high_water_mark = 0;
4334 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4338 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4340 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4345 /* Flush the alloc regions updating the tables. */
4346 gc_alloc_update_all_page_tables();
4348 /* Verify the new objects created by Lisp code. */
4349 if (pre_verify_gen_0) {
4350 FSHOW((stderr, "pre-checking generation 0\n"));
4351 verify_generation(0);
4354 if (gencgc_verbose > 1)
4355 print_generation_stats(0);
4358 /* Collect the generation. */
4360 if (gen >= gencgc_oldest_gen_to_gc) {
4361 /* Never raise the oldest generation. */
4366 || (generations[gen].num_gc >= generations[gen].trigger_age);
4369 if (gencgc_verbose > 1) {
4371 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4374 generations[gen].bytes_allocated,
4375 generations[gen].gc_trigger,
4376 generations[gen].num_gc));
4379 /* If an older generation is being filled, then update its
4382 generations[gen+1].cum_sum_bytes_allocated +=
4383 generations[gen+1].bytes_allocated;
4386 garbage_collect_generation(gen, raise);
4388 /* Reset the memory age cum_sum. */
4389 generations[gen].cum_sum_bytes_allocated = 0;
4391 if (gencgc_verbose > 1) {
4392 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4393 print_generation_stats(0);
4397 } while ((gen <= gencgc_oldest_gen_to_gc)
4398 && ((gen < last_gen)
4399 || ((gen <= gencgc_oldest_gen_to_gc)
4401 && (generations[gen].bytes_allocated
4402 > generations[gen].gc_trigger)
4403 && (gen_av_mem_age(gen)
4404 > generations[gen].min_av_mem_age))));
4406 /* Now if gen-1 was raised all generations before gen are empty.
4407 * If it wasn't raised then all generations before gen-1 are empty.
4409 * Now objects within this gen's pages cannot point to younger
4410 * generations unless they are written to. This can be exploited
4411 * by write-protecting the pages of gen; then when younger
4412 * generations are GCed only the pages which have been written
4417 gen_to_wp = gen - 1;
4419 /* There's not much point in WPing pages in generation 0 as it is
4420 * never scavenged (except promoted pages). */
4421 if ((gen_to_wp > 0) && enable_page_protection) {
4422 /* Check that they are all empty. */
4423 for (i = 0; i < gen_to_wp; i++) {
4424 if (generations[i].bytes_allocated)
4425 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4428 write_protect_generation_pages(gen_to_wp);
4431 /* Set gc_alloc() back to generation 0. The current regions should
4432 * be flushed after the above GCs. */
4433 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4434 gc_alloc_generation = 0;
4436 /* Save the high-water mark before updating last_free_page */
4437 if (last_free_page > high_water_mark)
4438 high_water_mark = last_free_page;
4440 update_dynamic_space_free_pointer();
4442 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4444 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4447 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4450 if (gen > small_generation_limit) {
4451 if (last_free_page > high_water_mark)
4452 high_water_mark = last_free_page;
4453 remap_free_pages(0, high_water_mark);
4454 high_water_mark = 0;
4459 SHOW("returning from collect_garbage");
4462 /* This is called by Lisp PURIFY when it is finished. All live objects
4463 * will have been moved to the RO and Static heaps. The dynamic space
4464 * will need a full re-initialization. We don't bother having Lisp
4465 * PURIFY flush the current gc_alloc() region, as the page_tables are
4466 * re-initialized, and every page is zeroed to be sure. */
4472 if (gencgc_verbose > 1) {
4473 SHOW("entering gc_free_heap");
4476 for (page = 0; page < page_table_pages; page++) {
4477 /* Skip free pages which should already be zero filled. */
4478 if (page_allocated_p(page)) {
4479 void *page_start, *addr;
4481 /* Mark the page free. The other slots are assumed invalid
4482 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4483 * should not be write-protected -- except that the
4484 * generation is used for the current region but it sets
4486 page_table[page].allocated = FREE_PAGE_FLAG;
4487 page_table[page].bytes_used = 0;
4489 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
4490 * about this change. */
4491 /* Zero the page. */
4492 page_start = (void *)page_address(page);
4494 /* First, remove any write-protection. */
4495 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4496 page_table[page].write_protected = 0;
4498 os_invalidate(page_start,PAGE_BYTES);
4499 addr = os_validate(page_start,PAGE_BYTES);
4500 if (addr == NULL || addr != page_start) {
4501 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4506 page_table[page].write_protected = 0;
4508 } else if (gencgc_zero_check_during_free_heap) {
4509 /* Double-check that the page is zero filled. */
4512 gc_assert(page_free_p(page));
4513 gc_assert(page_table[page].bytes_used == 0);
4514 page_start = (long *)page_address(page);
4515 for (i=0; i<1024; i++) {
4516 if (page_start[i] != 0) {
4517 lose("free region not zero at %x\n", page_start + i);
4523 bytes_allocated = 0;
4525 /* Initialize the generations. */
4526 for (page = 0; page < NUM_GENERATIONS; page++) {
4527 generations[page].alloc_start_page = 0;
4528 generations[page].alloc_unboxed_start_page = 0;
4529 generations[page].alloc_large_start_page = 0;
4530 generations[page].alloc_large_unboxed_start_page = 0;
4531 generations[page].bytes_allocated = 0;
4532 generations[page].gc_trigger = 2000000;
4533 generations[page].num_gc = 0;
4534 generations[page].cum_sum_bytes_allocated = 0;
4535 generations[page].lutexes = NULL;
4538 if (gencgc_verbose > 1)
4539 print_generation_stats(0);
4541 /* Initialize gc_alloc(). */
4542 gc_alloc_generation = 0;
4544 gc_set_region_empty(&boxed_region);
4545 gc_set_region_empty(&unboxed_region);
4548 set_alloc_pointer((lispobj)((char *)heap_base));
4550 if (verify_after_free_heap) {
4551 /* Check whether purify has left any bad pointers. */
4552 FSHOW((stderr, "checking after free_heap\n"));
4562 /* Compute the number of pages needed for the dynamic space.
4563 * Dynamic space size should be aligned on page size. */
4564 page_table_pages = dynamic_space_size/PAGE_BYTES;
4565 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4567 page_table = calloc(page_table_pages, sizeof(struct page));
4568 gc_assert(page_table);
4571 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4572 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4574 #ifdef LUTEX_WIDETAG
4575 scavtab[LUTEX_WIDETAG] = scav_lutex;
4576 transother[LUTEX_WIDETAG] = trans_lutex;
4577 sizetab[LUTEX_WIDETAG] = size_lutex;
4580 heap_base = (void*)DYNAMIC_SPACE_START;
4582 /* Initialize each page structure. */
4583 for (i = 0; i < page_table_pages; i++) {
4584 /* Initialize all pages as free. */
4585 page_table[i].allocated = FREE_PAGE_FLAG;
4586 page_table[i].bytes_used = 0;
4588 /* Pages are not write-protected at startup. */
4589 page_table[i].write_protected = 0;
4592 bytes_allocated = 0;
4594 /* Initialize the generations.
4596 * FIXME: very similar to code in gc_free_heap(), should be shared */
4597 for (i = 0; i < NUM_GENERATIONS; i++) {
4598 generations[i].alloc_start_page = 0;
4599 generations[i].alloc_unboxed_start_page = 0;
4600 generations[i].alloc_large_start_page = 0;
4601 generations[i].alloc_large_unboxed_start_page = 0;
4602 generations[i].bytes_allocated = 0;
4603 generations[i].gc_trigger = 2000000;
4604 generations[i].num_gc = 0;
4605 generations[i].cum_sum_bytes_allocated = 0;
4606 /* the tune-able parameters */
4607 generations[i].bytes_consed_between_gc = 2000000;
4608 generations[i].trigger_age = 1;
4609 generations[i].min_av_mem_age = 0.75;
4610 generations[i].lutexes = NULL;
4613 /* Initialize gc_alloc. */
4614 gc_alloc_generation = 0;
4615 gc_set_region_empty(&boxed_region);
4616 gc_set_region_empty(&unboxed_region);
4621 /* Pick up the dynamic space from after a core load.
4623 * The ALLOCATION_POINTER points to the end of the dynamic space.
4627 gencgc_pickup_dynamic(void)
4629 page_index_t page = 0;
4630 void *alloc_ptr = (void *)get_alloc_pointer();
4631 lispobj *prev=(lispobj *)page_address(page);
4632 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4634 lispobj *first,*ptr= (lispobj *)page_address(page);
4635 page_table[page].allocated = BOXED_PAGE_FLAG;
4636 page_table[page].gen = gen;
4637 page_table[page].bytes_used = PAGE_BYTES;
4638 page_table[page].large_object = 0;
4639 page_table[page].write_protected = 0;
4640 page_table[page].write_protected_cleared = 0;
4641 page_table[page].dont_move = 0;
4642 page_table[page].need_to_zero = 1;
4644 if (!gencgc_partial_pickup) {
4645 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4646 if(ptr == first) prev=ptr;
4647 page_table[page].region_start_offset =
4648 page_address(page) - (void *)prev;
4651 } while (page_address(page) < alloc_ptr);
4653 #ifdef LUTEX_WIDETAG
4654 /* Lutexes have been registered in generation 0 by coreparse, and
4655 * need to be moved to the right one manually.
4657 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4660 last_free_page = page;
4662 generations[gen].bytes_allocated = npage_bytes(page);
4663 bytes_allocated = npage_bytes(page);
4665 gc_alloc_update_all_page_tables();
4666 write_protect_generation_pages(gen);
4670 gc_initialize_pointers(void)
4672 gencgc_pickup_dynamic();
4676 /* alloc(..) is the external interface for memory allocation. It
4677 * allocates to generation 0. It is not called from within the garbage
4678 * collector as it is only external uses that need the check for heap
4679 * size (GC trigger) and to disable the interrupts (interrupts are
4680 * always disabled during a GC).
4682 * The vops that call alloc(..) assume that the returned space is zero-filled.
4683 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4685 * The check for a GC trigger is only performed when the current
4686 * region is full, so in most cases it's not needed. */
4688 static inline lispobj *
4689 general_alloc_internal(long nbytes, int page_type_flag, struct alloc_region *region,
4690 struct thread *thread)
4692 #ifndef LISP_FEATURE_WIN32
4693 lispobj alloc_signal;
4696 void *new_free_pointer;
4698 gc_assert(nbytes>0);
4700 /* Check for alignment allocation problems. */
4701 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4702 && ((nbytes & LOWTAG_MASK) == 0));
4704 /* Must be inside a PA section. */
4705 gc_assert(get_pseudo_atomic_atomic(thread));
4707 /* maybe we can do this quickly ... */
4708 new_free_pointer = region->free_pointer + nbytes;
4709 if (new_free_pointer <= region->end_addr) {
4710 new_obj = (void*)(region->free_pointer);
4711 region->free_pointer = new_free_pointer;
4712 return(new_obj); /* yup */
4715 /* we have to go the long way around, it seems. Check whether we
4716 * should GC in the near future
4718 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4719 /* Don't flood the system with interrupts if the need to gc is
4720 * already noted. This can happen for example when SUB-GC
4721 * allocates or after a gc triggered in a WITHOUT-GCING. */
4722 if (SymbolValue(GC_PENDING,thread) == NIL) {
4723 /* set things up so that GC happens when we finish the PA
4725 SetSymbolValue(GC_PENDING,T,thread);
4726 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4727 set_pseudo_atomic_interrupted(thread);
4728 #ifdef LISP_FEATURE_PPC
4729 /* PPC calls alloc() from a trap, look up the most
4730 * recent one and frob that. */
4731 maybe_save_gc_mask_and_block_deferrables
4732 (get_interrupt_context_for_thread(thread));
4734 maybe_save_gc_mask_and_block_deferrables(NULL);
4739 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4741 #ifndef LISP_FEATURE_WIN32
4742 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4743 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4744 if ((signed long) alloc_signal <= 0) {
4745 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4748 SetSymbolValue(ALLOC_SIGNAL,
4749 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4759 general_alloc(long nbytes, int page_type_flag)
4761 struct thread *thread = arch_os_get_current_thread();
4762 /* Select correct region, and call general_alloc_internal with it.
4763 * For other then boxed allocation we must lock first, since the
4764 * region is shared. */
4765 if (BOXED_PAGE_FLAG & page_type_flag) {
4766 #ifdef LISP_FEATURE_SB_THREAD
4767 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4769 struct alloc_region *region = &boxed_region;
4771 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4772 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4774 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4775 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4776 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4779 lose("bad page type flag: %d", page_type_flag);
4786 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4787 return general_alloc(nbytes, BOXED_PAGE_FLAG);
4791 * shared support for the OS-dependent signal handlers which
4792 * catch GENCGC-related write-protect violations
4794 void unhandled_sigmemoryfault(void* addr);
4796 /* Depending on which OS we're running under, different signals might
4797 * be raised for a violation of write protection in the heap. This
4798 * function factors out the common generational GC magic which needs
4799 * to invoked in this case, and should be called from whatever signal
4800 * handler is appropriate for the OS we're running under.
4802 * Return true if this signal is a normal generational GC thing that
4803 * we were able to handle, or false if it was abnormal and control
4804 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4807 gencgc_handle_wp_violation(void* fault_addr)
4809 page_index_t page_index = find_page_index(fault_addr);
4811 #ifdef QSHOW_SIGNALS
4812 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4813 fault_addr, page_index));
4816 /* Check whether the fault is within the dynamic space. */
4817 if (page_index == (-1)) {
4819 /* It can be helpful to be able to put a breakpoint on this
4820 * case to help diagnose low-level problems. */
4821 unhandled_sigmemoryfault(fault_addr);
4823 /* not within the dynamic space -- not our responsibility */
4828 ret = thread_mutex_lock(&free_pages_lock);
4829 gc_assert(ret == 0);
4830 if (page_table[page_index].write_protected) {
4831 /* Unprotect the page. */
4832 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4833 page_table[page_index].write_protected_cleared = 1;
4834 page_table[page_index].write_protected = 0;
4836 /* The only acceptable reason for this signal on a heap
4837 * access is that GENCGC write-protected the page.
4838 * However, if two CPUs hit a wp page near-simultaneously,
4839 * we had better not have the second one lose here if it
4840 * does this test after the first one has already set wp=0
4842 if(page_table[page_index].write_protected_cleared != 1)
4843 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4844 page_index, boxed_region.first_page,
4845 boxed_region.last_page);
4847 ret = thread_mutex_unlock(&free_pages_lock);
4848 gc_assert(ret == 0);
4849 /* Don't worry, we can handle it. */
4853 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4854 * it's not just a case of the program hitting the write barrier, and
4855 * are about to let Lisp deal with it. It's basically just a
4856 * convenient place to set a gdb breakpoint. */
4858 unhandled_sigmemoryfault(void *addr)
4861 void gc_alloc_update_all_page_tables(void)
4863 /* Flush the alloc regions updating the tables. */
4866 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4867 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4868 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4872 gc_set_region_empty(struct alloc_region *region)
4874 region->first_page = 0;
4875 region->last_page = -1;
4876 region->start_addr = page_address(0);
4877 region->free_pointer = page_address(0);
4878 region->end_addr = page_address(0);
4882 zero_all_free_pages()
4886 for (i = 0; i < last_free_page; i++) {
4887 if (page_free_p(i)) {
4888 #ifdef READ_PROTECT_FREE_PAGES
4889 os_protect(page_address(i),
4898 /* Things to do before doing a final GC before saving a core (without
4901 * + Pages in large_object pages aren't moved by the GC, so we need to
4902 * unset that flag from all pages.
4903 * + The pseudo-static generation isn't normally collected, but it seems
4904 * reasonable to collect it at least when saving a core. So move the
4905 * pages to a normal generation.
4908 prepare_for_final_gc ()
4911 for (i = 0; i < last_free_page; i++) {
4912 page_table[i].large_object = 0;
4913 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4914 int used = page_table[i].bytes_used;
4915 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4916 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4917 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4923 /* Do a non-conservative GC, and then save a core with the initial
4924 * function being set to the value of the static symbol
4925 * SB!VM:RESTART-LISP-FUNCTION */
4927 gc_and_save(char *filename, boolean prepend_runtime,
4928 boolean save_runtime_options)
4931 void *runtime_bytes = NULL;
4932 size_t runtime_size;
4934 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4939 conservative_stack = 0;
4941 /* The filename might come from Lisp, and be moved by the now
4942 * non-conservative GC. */
4943 filename = strdup(filename);
4945 /* Collect twice: once into relatively high memory, and then back
4946 * into low memory. This compacts the retained data into the lower
4947 * pages, minimizing the size of the core file.
4949 prepare_for_final_gc();
4950 gencgc_alloc_start_page = last_free_page;
4951 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4953 prepare_for_final_gc();
4954 gencgc_alloc_start_page = -1;
4955 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4957 if (prepend_runtime)
4958 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4960 /* The dumper doesn't know that pages need to be zeroed before use. */
4961 zero_all_free_pages();
4962 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4963 prepend_runtime, save_runtime_options);
4964 /* Oops. Save still managed to fail. Since we've mangled the stack
4965 * beyond hope, there's not much we can do.
4966 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4967 * going to be rather unsatisfactory too... */
4968 lose("Attempt to save core after non-conservative GC failed.\n");