2 * GENerational Conservative Garbage Collector for SBCL
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
37 #include "interrupt.h"
43 #include "gc-internal.h"
45 #include "genesis/vector.h"
46 #include "genesis/weak-pointer.h"
47 #include "genesis/fdefn.h"
48 #include "genesis/simple-fun.h"
50 #include "genesis/hash-table.h"
51 #include "genesis/instance.h"
52 #include "genesis/layout.h"
55 #include "genesis/lutex.h"
58 /* forward declarations */
59 page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
67 /* Generations 0-5 are normal collected generations, 6 is only used as
68 * scratch space by the collector, and should never get collected.
71 HIGHEST_NORMAL_GENERATION = 5,
72 PSEUDO_STATIC_GENERATION,
77 /* Should we use page protection to help avoid the scavenging of pages
78 * that don't have pointers to younger generations? */
79 boolean enable_page_protection = 1;
81 /* the minimum size (in bytes) for a large object*/
82 unsigned long large_object_size = 4 * PAGE_BYTES;
89 /* the verbosity level. All non-error messages are disabled at level 0;
90 * and only a few rare messages are printed at level 1. */
92 boolean gencgc_verbose = 1;
94 boolean gencgc_verbose = 0;
97 /* FIXME: At some point enable the various error-checking things below
98 * and see what they say. */
100 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
101 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
103 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
105 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
106 boolean pre_verify_gen_0 = 0;
108 /* Should we check for bad pointers after gc_free_heap is called
109 * from Lisp PURIFY? */
110 boolean verify_after_free_heap = 0;
112 /* Should we print a note when code objects are found in the dynamic space
113 * during a heap verify? */
114 boolean verify_dynamic_code_check = 0;
116 /* Should we check code objects for fixup errors after they are transported? */
117 boolean check_code_fixups = 0;
119 /* Should we check that newly allocated regions are zero filled? */
120 boolean gencgc_zero_check = 0;
122 /* Should we check that the free space is zero filled? */
123 boolean gencgc_enable_verify_zero_fill = 0;
125 /* Should we check that free pages are zero filled during gc_free_heap
126 * called after Lisp PURIFY? */
127 boolean gencgc_zero_check_during_free_heap = 0;
129 /* When loading a core, don't do a full scan of the memory for the
130 * memory region boundaries. (Set to true by coreparse.c if the core
131 * contained a pagetable entry).
133 boolean gencgc_partial_pickup = 0;
135 /* If defined, free pages are read-protected to ensure that nothing
139 /* #define READ_PROTECT_FREE_PAGES */
143 * GC structures and variables
146 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
147 unsigned long bytes_allocated = 0;
148 unsigned long auto_gc_trigger = 0;
150 /* the source and destination generations. These are set before a GC starts
152 generation_index_t from_space;
153 generation_index_t new_space;
155 /* Set to 1 when in GC */
156 boolean gc_active_p = 0;
158 /* should the GC be conservative on stack. If false (only right before
159 * saving a core), don't scan the stack / mark pages dont_move. */
160 static boolean conservative_stack = 1;
162 /* An array of page structures is allocated on gc initialization.
163 * This helps quickly map between an address its page structure.
164 * page_table_pages is set from the size of the dynamic space. */
165 unsigned page_table_pages;
166 struct page *page_table;
168 /* To map addresses to page structures the address of the first page
170 static void *heap_base = NULL;
172 /* Calculate the start address for the given page number. */
174 page_address(page_index_t page_num)
176 return (heap_base + (page_num * PAGE_BYTES));
179 /* Find the page index within the page_table for the given
180 * address. Return -1 on failure. */
182 find_page_index(void *addr)
184 page_index_t index = addr-heap_base;
187 index = ((unsigned long)index)/PAGE_BYTES;
188 if (index < page_table_pages)
195 /* a structure to hold the state of a generation */
198 /* the first page that gc_alloc() checks on its next call */
199 page_index_t alloc_start_page;
201 /* the first page that gc_alloc_unboxed() checks on its next call */
202 page_index_t alloc_unboxed_start_page;
204 /* the first page that gc_alloc_large (boxed) considers on its next
205 * call. (Although it always allocates after the boxed_region.) */
206 page_index_t alloc_large_start_page;
208 /* the first page that gc_alloc_large (unboxed) considers on its
209 * next call. (Although it always allocates after the
210 * current_unboxed_region.) */
211 page_index_t alloc_large_unboxed_start_page;
213 /* the bytes allocated to this generation */
214 long bytes_allocated;
216 /* the number of bytes at which to trigger a GC */
219 /* to calculate a new level for gc_trigger */
220 long bytes_consed_between_gc;
222 /* the number of GCs since the last raise */
225 /* the average age after which a GC will raise objects to the
229 /* the cumulative sum of the bytes allocated to this generation. It is
230 * cleared after a GC on this generations, and update before new
231 * objects are added from a GC of a younger generation. Dividing by
232 * the bytes_allocated will give the average age of the memory in
233 * this generation since its last GC. */
234 long cum_sum_bytes_allocated;
236 /* a minimum average memory age before a GC will occur helps
237 * prevent a GC when a large number of new live objects have been
238 * added, in which case a GC could be a waste of time */
239 double min_av_mem_age;
241 /* A linked list of lutex structures in this generation, used for
242 * implementing lutex finalization. */
244 struct lutex *lutexes;
250 /* an array of generation structures. There needs to be one more
251 * generation structure than actual generations as the oldest
252 * generation is temporarily raised then lowered. */
253 struct generation generations[NUM_GENERATIONS];
255 /* the oldest generation that is will currently be GCed by default.
256 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
258 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
260 * Setting this to 0 effectively disables the generational nature of
261 * the GC. In some applications generational GC may not be useful
262 * because there are no long-lived objects.
264 * An intermediate value could be handy after moving long-lived data
265 * into an older generation so an unnecessary GC of this long-lived
266 * data can be avoided. */
267 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
269 /* The maximum free page in the heap is maintained and used to update
270 * ALLOCATION_POINTER which is used by the room function to limit its
271 * search of the heap. XX Gencgc obviously needs to be better
272 * integrated with the Lisp code. */
273 page_index_t last_free_page;
275 /* This lock is to prevent multiple threads from simultaneously
276 * allocating new regions which overlap each other. Note that the
277 * majority of GC is single-threaded, but alloc() may be called from
278 * >1 thread at a time and must be thread-safe. This lock must be
279 * seized before all accesses to generations[] or to parts of
280 * page_table[] that other threads may want to see */
282 #ifdef LISP_FEATURE_SB_THREAD
283 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
288 * miscellaneous heap functions
291 /* Count the number of pages which are write-protected within the
292 * given generation. */
294 count_write_protect_generation_pages(generation_index_t generation)
299 for (i = 0; i < last_free_page; i++)
300 if ((page_table[i].allocated != FREE_PAGE_FLAG)
301 && (page_table[i].gen == generation)
302 && (page_table[i].write_protected == 1))
307 /* Count the number of pages within the given generation. */
309 count_generation_pages(generation_index_t generation)
314 for (i = 0; i < last_free_page; i++)
315 if ((page_table[i].allocated != FREE_PAGE_FLAG)
316 && (page_table[i].gen == generation))
323 count_dont_move_pages(void)
327 for (i = 0; i < last_free_page; i++) {
328 if ((page_table[i].allocated != FREE_PAGE_FLAG)
329 && (page_table[i].dont_move != 0)) {
337 /* Work through the pages and add up the number of bytes used for the
338 * given generation. */
340 count_generation_bytes_allocated (generation_index_t gen)
344 for (i = 0; i < last_free_page; i++) {
345 if ((page_table[i].allocated != FREE_PAGE_FLAG)
346 && (page_table[i].gen == gen))
347 result += page_table[i].bytes_used;
352 /* Return the average age of the memory in a generation. */
354 gen_av_mem_age(generation_index_t gen)
356 if (generations[gen].bytes_allocated == 0)
360 ((double)generations[gen].cum_sum_bytes_allocated)
361 / ((double)generations[gen].bytes_allocated);
364 /* The verbose argument controls how much to print: 0 for normal
365 * level of detail; 1 for debugging. */
367 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
369 generation_index_t i, gens;
371 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
372 #define FPU_STATE_SIZE 27
373 int fpu_state[FPU_STATE_SIZE];
374 #elif defined(LISP_FEATURE_PPC)
375 #define FPU_STATE_SIZE 32
376 long long fpu_state[FPU_STATE_SIZE];
379 /* This code uses the FP instructions which may be set up for Lisp
380 * so they need to be saved and reset for C. */
383 /* highest generation to print */
385 gens = SCRATCH_GENERATION;
387 gens = PSEUDO_STATIC_GENERATION;
389 /* Print the heap stats. */
391 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
393 for (i = 0; i < gens; i++) {
396 long unboxed_cnt = 0;
397 long large_boxed_cnt = 0;
398 long large_unboxed_cnt = 0;
401 for (j = 0; j < last_free_page; j++)
402 if (page_table[j].gen == i) {
404 /* Count the number of boxed pages within the given
406 if (page_table[j].allocated & BOXED_PAGE_FLAG) {
407 if (page_table[j].large_object)
412 if(page_table[j].dont_move) pinned_cnt++;
413 /* Count the number of unboxed pages within the given
415 if (page_table[j].allocated & UNBOXED_PAGE_FLAG) {
416 if (page_table[j].large_object)
423 gc_assert(generations[i].bytes_allocated
424 == count_generation_bytes_allocated(i));
426 " %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
428 generations[i].alloc_start_page,
429 generations[i].alloc_unboxed_start_page,
430 generations[i].alloc_large_start_page,
431 generations[i].alloc_large_unboxed_start_page,
437 generations[i].bytes_allocated,
438 (count_generation_pages(i)*PAGE_BYTES - generations[i].bytes_allocated),
439 generations[i].gc_trigger,
440 count_write_protect_generation_pages(i),
441 generations[i].num_gc,
444 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
446 fpu_restore(fpu_state);
450 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
451 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
454 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
455 * if zeroing it ourselves, i.e. in practice give the memory back to the
456 * OS. Generally done after a large GC.
458 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
460 void *addr = (void *) page_address(start), *new_addr;
461 size_t length = PAGE_BYTES*(1+end-start);
466 os_invalidate(addr, length);
467 new_addr = os_validate(addr, length);
468 if (new_addr == NULL || new_addr != addr) {
469 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x", start, new_addr);
472 for (i = start; i <= end; i++) {
473 page_table[i].need_to_zero = 0;
477 /* Zero the pages from START to END (inclusive). Generally done just after
478 * a new region has been allocated.
481 zero_pages(page_index_t start, page_index_t end) {
485 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
486 fast_bzero(page_address(start), PAGE_BYTES*(1+end-start));
488 bzero(page_address(start), PAGE_BYTES*(1+end-start));
493 /* Zero the pages from START to END (inclusive), except for those
494 * pages that are known to already zeroed. Mark all pages in the
495 * ranges as non-zeroed.
498 zero_dirty_pages(page_index_t start, page_index_t end) {
501 for (i = start; i <= end; i++) {
502 if (page_table[i].need_to_zero == 1) {
503 zero_pages(start, end);
508 for (i = start; i <= end; i++) {
509 page_table[i].need_to_zero = 1;
515 * To support quick and inline allocation, regions of memory can be
516 * allocated and then allocated from with just a free pointer and a
517 * check against an end address.
519 * Since objects can be allocated to spaces with different properties
520 * e.g. boxed/unboxed, generation, ages; there may need to be many
521 * allocation regions.
523 * Each allocation region may start within a partly used page. Many
524 * features of memory use are noted on a page wise basis, e.g. the
525 * generation; so if a region starts within an existing allocated page
526 * it must be consistent with this page.
528 * During the scavenging of the newspace, objects will be transported
529 * into an allocation region, and pointers updated to point to this
530 * allocation region. It is possible that these pointers will be
531 * scavenged again before the allocation region is closed, e.g. due to
532 * trans_list which jumps all over the place to cleanup the list. It
533 * is important to be able to determine properties of all objects
534 * pointed to when scavenging, e.g to detect pointers to the oldspace.
535 * Thus it's important that the allocation regions have the correct
536 * properties set when allocated, and not just set when closed. The
537 * region allocation routines return regions with the specified
538 * properties, and grab all the pages, setting their properties
539 * appropriately, except that the amount used is not known.
541 * These regions are used to support quicker allocation using just a
542 * free pointer. The actual space used by the region is not reflected
543 * in the pages tables until it is closed. It can't be scavenged until
546 * When finished with the region it should be closed, which will
547 * update the page tables for the actual space used returning unused
548 * space. Further it may be noted in the new regions which is
549 * necessary when scavenging the newspace.
551 * Large objects may be allocated directly without an allocation
552 * region, the page tables are updated immediately.
554 * Unboxed objects don't contain pointers to other objects and so
555 * don't need scavenging. Further they can't contain pointers to
556 * younger generations so WP is not needed. By allocating pages to
557 * unboxed objects the whole page never needs scavenging or
558 * write-protecting. */
560 /* We are only using two regions at present. Both are for the current
561 * newspace generation. */
562 struct alloc_region boxed_region;
563 struct alloc_region unboxed_region;
565 /* The generation currently being allocated to. */
566 static generation_index_t gc_alloc_generation;
568 /* Find a new region with room for at least the given number of bytes.
570 * It starts looking at the current generation's alloc_start_page. So
571 * may pick up from the previous region if there is enough space. This
572 * keeps the allocation contiguous when scavenging the newspace.
574 * The alloc_region should have been closed by a call to
575 * gc_alloc_update_page_tables(), and will thus be in an empty state.
577 * To assist the scavenging functions write-protected pages are not
578 * used. Free pages should not be write-protected.
580 * It is critical to the conservative GC that the start of regions be
581 * known. To help achieve this only small regions are allocated at a
584 * During scavenging, pointers may be found to within the current
585 * region and the page generation must be set so that pointers to the
586 * from space can be recognized. Therefore the generation of pages in
587 * the region are set to gc_alloc_generation. To prevent another
588 * allocation call using the same pages, all the pages in the region
589 * are allocated, although they will initially be empty.
592 gc_alloc_new_region(long nbytes, int unboxed, struct alloc_region *alloc_region)
594 page_index_t first_page;
595 page_index_t last_page;
602 "/alloc_new_region for %d bytes from gen %d\n",
603 nbytes, gc_alloc_generation));
606 /* Check that the region is in a reset state. */
607 gc_assert((alloc_region->first_page == 0)
608 && (alloc_region->last_page == -1)
609 && (alloc_region->free_pointer == alloc_region->end_addr));
610 ret = thread_mutex_lock(&free_pages_lock);
614 generations[gc_alloc_generation].alloc_unboxed_start_page;
617 generations[gc_alloc_generation].alloc_start_page;
619 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
620 bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
621 + PAGE_BYTES*(last_page-first_page);
623 /* Set up the alloc_region. */
624 alloc_region->first_page = first_page;
625 alloc_region->last_page = last_page;
626 alloc_region->start_addr = page_table[first_page].bytes_used
627 + page_address(first_page);
628 alloc_region->free_pointer = alloc_region->start_addr;
629 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
631 /* Set up the pages. */
633 /* The first page may have already been in use. */
634 if (page_table[first_page].bytes_used == 0) {
636 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
638 page_table[first_page].allocated = BOXED_PAGE_FLAG;
639 page_table[first_page].gen = gc_alloc_generation;
640 page_table[first_page].large_object = 0;
641 page_table[first_page].first_object_offset = 0;
645 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
647 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
648 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
650 gc_assert(page_table[first_page].gen == gc_alloc_generation);
651 gc_assert(page_table[first_page].large_object == 0);
653 for (i = first_page+1; i <= last_page; i++) {
655 page_table[i].allocated = UNBOXED_PAGE_FLAG;
657 page_table[i].allocated = BOXED_PAGE_FLAG;
658 page_table[i].gen = gc_alloc_generation;
659 page_table[i].large_object = 0;
660 /* This may not be necessary for unboxed regions (think it was
662 page_table[i].first_object_offset =
663 alloc_region->start_addr - page_address(i);
664 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
666 /* Bump up last_free_page. */
667 if (last_page+1 > last_free_page) {
668 last_free_page = last_page+1;
669 /* do we only want to call this on special occasions? like for boxed_region? */
670 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
672 ret = thread_mutex_unlock(&free_pages_lock);
675 /* we can do this after releasing free_pages_lock */
676 if (gencgc_zero_check) {
678 for (p = (long *)alloc_region->start_addr;
679 p < (long *)alloc_region->end_addr; p++) {
681 /* KLUDGE: It would be nice to use %lx and explicit casts
682 * (long) in code like this, so that it is less likely to
683 * break randomly when running on a machine with different
684 * word sizes. -- WHN 19991129 */
685 lose("The new region at %x is not zero.\n", p);
690 #ifdef READ_PROTECT_FREE_PAGES
691 os_protect(page_address(first_page),
692 PAGE_BYTES*(1+last_page-first_page),
696 /* If the first page was only partial, don't check whether it's
697 * zeroed (it won't be) and don't zero it (since the parts that
698 * we're interested in are guaranteed to be zeroed).
700 if (page_table[first_page].bytes_used) {
704 zero_dirty_pages(first_page, last_page);
707 /* If the record_new_objects flag is 2 then all new regions created
710 * If it's 1 then then it is only recorded if the first page of the
711 * current region is <= new_areas_ignore_page. This helps avoid
712 * unnecessary recording when doing full scavenge pass.
714 * The new_object structure holds the page, byte offset, and size of
715 * new regions of objects. Each new area is placed in the array of
716 * these structures pointer to by new_areas. new_areas_index holds the
717 * offset into new_areas.
719 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
720 * later code must detect this and handle it, probably by doing a full
721 * scavenge of a generation. */
722 #define NUM_NEW_AREAS 512
723 static int record_new_objects = 0;
724 static page_index_t new_areas_ignore_page;
730 static struct new_area (*new_areas)[];
731 static long new_areas_index;
734 /* Add a new area to new_areas. */
736 add_new_area(page_index_t first_page, long offset, long size)
738 unsigned long new_area_start,c;
741 /* Ignore if full. */
742 if (new_areas_index >= NUM_NEW_AREAS)
745 switch (record_new_objects) {
749 if (first_page > new_areas_ignore_page)
758 new_area_start = PAGE_BYTES*first_page + offset;
760 /* Search backwards for a prior area that this follows from. If
761 found this will save adding a new area. */
762 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
763 unsigned long area_end =
764 PAGE_BYTES*((*new_areas)[i].page)
765 + (*new_areas)[i].offset
766 + (*new_areas)[i].size;
768 "/add_new_area S1 %d %d %d %d\n",
769 i, c, new_area_start, area_end));*/
770 if (new_area_start == area_end) {
772 "/adding to [%d] %d %d %d with %d %d %d:\n",
774 (*new_areas)[i].page,
775 (*new_areas)[i].offset,
776 (*new_areas)[i].size,
780 (*new_areas)[i].size += size;
785 (*new_areas)[new_areas_index].page = first_page;
786 (*new_areas)[new_areas_index].offset = offset;
787 (*new_areas)[new_areas_index].size = size;
789 "/new_area %d page %d offset %d size %d\n",
790 new_areas_index, first_page, offset, size));*/
793 /* Note the max new_areas used. */
794 if (new_areas_index > max_new_areas)
795 max_new_areas = new_areas_index;
798 /* Update the tables for the alloc_region. The region may be added to
801 * When done the alloc_region is set up so that the next quick alloc
802 * will fail safely and thus a new region will be allocated. Further
803 * it is safe to try to re-update the page table of this reset
806 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
809 page_index_t first_page;
810 page_index_t next_page;
812 long orig_first_page_bytes_used;
818 first_page = alloc_region->first_page;
820 /* Catch an unused alloc_region. */
821 if ((first_page == 0) && (alloc_region->last_page == -1))
824 next_page = first_page+1;
826 ret = thread_mutex_lock(&free_pages_lock);
828 if (alloc_region->free_pointer != alloc_region->start_addr) {
829 /* some bytes were allocated in the region */
830 orig_first_page_bytes_used = page_table[first_page].bytes_used;
832 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
834 /* All the pages used need to be updated */
836 /* Update the first page. */
838 /* If the page was free then set up the gen, and
839 * first_object_offset. */
840 if (page_table[first_page].bytes_used == 0)
841 gc_assert(page_table[first_page].first_object_offset == 0);
842 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
845 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
847 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
848 gc_assert(page_table[first_page].gen == gc_alloc_generation);
849 gc_assert(page_table[first_page].large_object == 0);
853 /* Calculate the number of bytes used in this page. This is not
854 * always the number of new bytes, unless it was free. */
856 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>PAGE_BYTES) {
857 bytes_used = PAGE_BYTES;
860 page_table[first_page].bytes_used = bytes_used;
861 byte_cnt += bytes_used;
864 /* All the rest of the pages should be free. We need to set their
865 * first_object_offset pointer to the start of the region, and set
868 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
870 gc_assert(page_table[next_page].allocated==UNBOXED_PAGE_FLAG);
872 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
873 gc_assert(page_table[next_page].bytes_used == 0);
874 gc_assert(page_table[next_page].gen == gc_alloc_generation);
875 gc_assert(page_table[next_page].large_object == 0);
877 gc_assert(page_table[next_page].first_object_offset ==
878 alloc_region->start_addr - page_address(next_page));
880 /* Calculate the number of bytes used in this page. */
882 if ((bytes_used = (alloc_region->free_pointer
883 - page_address(next_page)))>PAGE_BYTES) {
884 bytes_used = PAGE_BYTES;
887 page_table[next_page].bytes_used = bytes_used;
888 byte_cnt += bytes_used;
893 region_size = alloc_region->free_pointer - alloc_region->start_addr;
894 bytes_allocated += region_size;
895 generations[gc_alloc_generation].bytes_allocated += region_size;
897 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
899 /* Set the generations alloc restart page to the last page of
902 generations[gc_alloc_generation].alloc_unboxed_start_page =
905 generations[gc_alloc_generation].alloc_start_page = next_page-1;
907 /* Add the region to the new_areas if requested. */
909 add_new_area(first_page,orig_first_page_bytes_used, region_size);
913 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
915 gc_alloc_generation));
918 /* There are no bytes allocated. Unallocate the first_page if
919 * there are 0 bytes_used. */
920 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
921 if (page_table[first_page].bytes_used == 0)
922 page_table[first_page].allocated = FREE_PAGE_FLAG;
925 /* Unallocate any unused pages. */
926 while (next_page <= alloc_region->last_page) {
927 gc_assert(page_table[next_page].bytes_used == 0);
928 page_table[next_page].allocated = FREE_PAGE_FLAG;
931 ret = thread_mutex_unlock(&free_pages_lock);
934 /* alloc_region is per-thread, we're ok to do this unlocked */
935 gc_set_region_empty(alloc_region);
938 static inline void *gc_quick_alloc(long nbytes);
940 /* Allocate a possibly large object. */
942 gc_alloc_large(long nbytes, int unboxed, struct alloc_region *alloc_region)
944 page_index_t first_page;
945 page_index_t last_page;
946 int orig_first_page_bytes_used;
950 page_index_t next_page;
953 ret = thread_mutex_lock(&free_pages_lock);
958 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
960 first_page = generations[gc_alloc_generation].alloc_large_start_page;
962 if (first_page <= alloc_region->last_page) {
963 first_page = alloc_region->last_page+1;
966 last_page=gc_find_freeish_pages(&first_page,nbytes,unboxed);
968 gc_assert(first_page > alloc_region->last_page);
970 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
973 generations[gc_alloc_generation].alloc_large_start_page = last_page;
975 /* Set up the pages. */
976 orig_first_page_bytes_used = page_table[first_page].bytes_used;
978 /* If the first page was free then set up the gen, and
979 * first_object_offset. */
980 if (page_table[first_page].bytes_used == 0) {
982 page_table[first_page].allocated = UNBOXED_PAGE_FLAG;
984 page_table[first_page].allocated = BOXED_PAGE_FLAG;
985 page_table[first_page].gen = gc_alloc_generation;
986 page_table[first_page].first_object_offset = 0;
987 page_table[first_page].large_object = 1;
991 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE_FLAG);
993 gc_assert(page_table[first_page].allocated == BOXED_PAGE_FLAG);
994 gc_assert(page_table[first_page].gen == gc_alloc_generation);
995 gc_assert(page_table[first_page].large_object == 1);
999 /* Calc. the number of bytes used in this page. This is not
1000 * always the number of new bytes, unless it was free. */
1002 if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
1003 bytes_used = PAGE_BYTES;
1006 page_table[first_page].bytes_used = bytes_used;
1007 byte_cnt += bytes_used;
1009 next_page = first_page+1;
1011 /* All the rest of the pages should be free. We need to set their
1012 * first_object_offset pointer to the start of the region, and
1013 * set the bytes_used. */
1015 gc_assert(page_table[next_page].allocated == FREE_PAGE_FLAG);
1016 gc_assert(page_table[next_page].bytes_used == 0);
1018 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1020 page_table[next_page].allocated = BOXED_PAGE_FLAG;
1021 page_table[next_page].gen = gc_alloc_generation;
1022 page_table[next_page].large_object = 1;
1024 page_table[next_page].first_object_offset =
1025 orig_first_page_bytes_used - PAGE_BYTES*(next_page-first_page);
1027 /* Calculate the number of bytes used in this page. */
1029 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > PAGE_BYTES) {
1030 bytes_used = PAGE_BYTES;
1033 page_table[next_page].bytes_used = bytes_used;
1034 page_table[next_page].write_protected=0;
1035 page_table[next_page].dont_move=0;
1036 byte_cnt += bytes_used;
1040 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1042 bytes_allocated += nbytes;
1043 generations[gc_alloc_generation].bytes_allocated += nbytes;
1045 /* Add the region to the new_areas if requested. */
1047 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1049 /* Bump up last_free_page */
1050 if (last_page+1 > last_free_page) {
1051 last_free_page = last_page+1;
1052 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
1054 ret = thread_mutex_unlock(&free_pages_lock);
1055 gc_assert(ret == 0);
1057 #ifdef READ_PROTECT_FREE_PAGES
1058 os_protect(page_address(first_page),
1059 PAGE_BYTES*(1+last_page-first_page),
1063 zero_dirty_pages(first_page, last_page);
1065 return page_address(first_page);
1068 static page_index_t gencgc_alloc_start_page = -1;
1071 gc_heap_exhausted_error_or_lose (long available, long requested)
1073 /* Write basic information before doing anything else: if we don't
1074 * call to lisp this is a must, and even if we do there is always the
1075 * danger that we bounce back here before the error has been handled,
1076 * or indeed even printed.
1078 fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
1079 gc_active_p ? "garbage collection" : "allocation", available, requested);
1080 if (gc_active_p || (available == 0)) {
1081 /* If we are in GC, or totally out of memory there is no way
1082 * to sanely transfer control to the lisp-side of things.
1084 print_generation_stats(1);
1085 lose("Heap exhausted, game over.");
1088 /* FIXME: assert free_pages_lock held */
1089 thread_mutex_unlock(&free_pages_lock);
1090 funcall2(SymbolFunction(HEAP_EXHAUSTED_ERROR),
1091 make_fixnum(available), make_fixnum(requested));
1092 lose("HEAP-EXHAUSTED-ERROR fell through");
1097 gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes, int unboxed)
1099 page_index_t first_page;
1100 page_index_t last_page;
1102 page_index_t restart_page=*restart_page_ptr;
1105 int large_p=(nbytes>=large_object_size);
1106 /* FIXME: assert(free_pages_lock is held); */
1108 /* Search for a contiguous free space of at least nbytes. If it's
1109 * a large object then align it on a page boundary by searching
1110 * for a free page. */
1112 if (gencgc_alloc_start_page != -1) {
1113 restart_page = gencgc_alloc_start_page;
1117 first_page = restart_page;
1119 while ((first_page < page_table_pages)
1120 && (page_table[first_page].allocated != FREE_PAGE_FLAG))
1123 while (first_page < page_table_pages) {
1124 if(page_table[first_page].allocated == FREE_PAGE_FLAG)
1126 if((page_table[first_page].allocated ==
1127 (unboxed ? UNBOXED_PAGE_FLAG : BOXED_PAGE_FLAG)) &&
1128 (page_table[first_page].large_object == 0) &&
1129 (page_table[first_page].gen == gc_alloc_generation) &&
1130 (page_table[first_page].bytes_used < (PAGE_BYTES-32)) &&
1131 (page_table[first_page].write_protected == 0) &&
1132 (page_table[first_page].dont_move == 0)) {
1138 if (first_page >= page_table_pages)
1139 gc_heap_exhausted_error_or_lose(0, nbytes);
1141 gc_assert(page_table[first_page].write_protected == 0);
1143 last_page = first_page;
1144 bytes_found = PAGE_BYTES - page_table[first_page].bytes_used;
1146 while (((bytes_found < nbytes)
1147 || (!large_p && (num_pages < 2)))
1148 && (last_page < (page_table_pages-1))
1149 && (page_table[last_page+1].allocated == FREE_PAGE_FLAG)) {
1152 bytes_found += PAGE_BYTES;
1153 gc_assert(page_table[last_page].write_protected == 0);
1156 region_size = (PAGE_BYTES - page_table[first_page].bytes_used)
1157 + PAGE_BYTES*(last_page-first_page);
1159 gc_assert(bytes_found == region_size);
1160 restart_page = last_page + 1;
1161 } while ((restart_page < page_table_pages) && (bytes_found < nbytes));
1163 /* Check for a failure */
1164 if ((restart_page >= page_table_pages) && (bytes_found < nbytes))
1165 gc_heap_exhausted_error_or_lose(bytes_found, nbytes);
1167 *restart_page_ptr=first_page;
1172 /* Allocate bytes. All the rest of the special-purpose allocation
1173 * functions will eventually call this */
1176 gc_alloc_with_region(long nbytes,int unboxed_p, struct alloc_region *my_region,
1179 void *new_free_pointer;
1181 if(nbytes>=large_object_size)
1182 return gc_alloc_large(nbytes,unboxed_p,my_region);
1184 /* Check whether there is room in the current alloc region. */
1185 new_free_pointer = my_region->free_pointer + nbytes;
1187 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1188 my_region->free_pointer, new_free_pointer); */
1190 if (new_free_pointer <= my_region->end_addr) {
1191 /* If so then allocate from the current alloc region. */
1192 void *new_obj = my_region->free_pointer;
1193 my_region->free_pointer = new_free_pointer;
1195 /* Unless a `quick' alloc was requested, check whether the
1196 alloc region is almost empty. */
1198 (my_region->end_addr - my_region->free_pointer) <= 32) {
1199 /* If so, finished with the current region. */
1200 gc_alloc_update_page_tables(unboxed_p, my_region);
1201 /* Set up a new region. */
1202 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1205 return((void *)new_obj);
1208 /* Else not enough free space in the current region: retry with a
1211 gc_alloc_update_page_tables(unboxed_p, my_region);
1212 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1213 return gc_alloc_with_region(nbytes,unboxed_p,my_region,0);
1216 /* these are only used during GC: all allocation from the mutator calls
1217 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1221 gc_general_alloc(long nbytes,int unboxed_p,int quick_p)
1223 struct alloc_region *my_region =
1224 unboxed_p ? &unboxed_region : &boxed_region;
1225 return gc_alloc_with_region(nbytes,unboxed_p, my_region,quick_p);
1228 static inline void *
1229 gc_quick_alloc(long nbytes)
1231 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1234 static inline void *
1235 gc_quick_alloc_large(long nbytes)
1237 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1240 static inline void *
1241 gc_alloc_unboxed(long nbytes)
1243 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1246 static inline void *
1247 gc_quick_alloc_unboxed(long nbytes)
1249 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1252 static inline void *
1253 gc_quick_alloc_large_unboxed(long nbytes)
1255 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1259 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1262 extern long (*scavtab[256])(lispobj *where, lispobj object);
1263 extern lispobj (*transother[256])(lispobj object);
1264 extern long (*sizetab[256])(lispobj *where);
1266 /* Copy a large boxed object. If the object is in a large object
1267 * region then it is simply promoted, else it is copied. If it's large
1268 * enough then it's copied to a large object region.
1270 * Vectors may have shrunk. If the object is not copied the space
1271 * needs to be reclaimed, and the page_tables corrected. */
1273 copy_large_object(lispobj object, long nwords)
1277 page_index_t first_page;
1279 gc_assert(is_lisp_pointer(object));
1280 gc_assert(from_space_p(object));
1281 gc_assert((nwords & 0x01) == 0);
1284 /* Check whether it's in a large object region. */
1285 first_page = find_page_index((void *)object);
1286 gc_assert(first_page >= 0);
1288 if (page_table[first_page].large_object) {
1290 /* Promote the object. */
1292 long remaining_bytes;
1293 page_index_t next_page;
1295 long old_bytes_used;
1297 /* Note: Any page write-protection must be removed, else a
1298 * later scavenge_newspace may incorrectly not scavenge these
1299 * pages. This would not be necessary if they are added to the
1300 * new areas, but let's do it for them all (they'll probably
1301 * be written anyway?). */
1303 gc_assert(page_table[first_page].first_object_offset == 0);
1305 next_page = first_page;
1306 remaining_bytes = nwords*N_WORD_BYTES;
1307 while (remaining_bytes > PAGE_BYTES) {
1308 gc_assert(page_table[next_page].gen == from_space);
1309 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1310 gc_assert(page_table[next_page].large_object);
1311 gc_assert(page_table[next_page].first_object_offset==
1312 -PAGE_BYTES*(next_page-first_page));
1313 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1315 page_table[next_page].gen = new_space;
1317 /* Remove any write-protection. We should be able to rely
1318 * on the write-protect flag to avoid redundant calls. */
1319 if (page_table[next_page].write_protected) {
1320 os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
1321 page_table[next_page].write_protected = 0;
1323 remaining_bytes -= PAGE_BYTES;
1327 /* Now only one page remains, but the object may have shrunk
1328 * so there may be more unused pages which will be freed. */
1330 /* The object may have shrunk but shouldn't have grown. */
1331 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1333 page_table[next_page].gen = new_space;
1334 gc_assert(page_table[next_page].allocated == BOXED_PAGE_FLAG);
1336 /* Adjust the bytes_used. */
1337 old_bytes_used = page_table[next_page].bytes_used;
1338 page_table[next_page].bytes_used = remaining_bytes;
1340 bytes_freed = old_bytes_used - remaining_bytes;
1342 /* Free any remaining pages; needs care. */
1344 while ((old_bytes_used == PAGE_BYTES) &&
1345 (page_table[next_page].gen == from_space) &&
1346 (page_table[next_page].allocated == BOXED_PAGE_FLAG) &&
1347 page_table[next_page].large_object &&
1348 (page_table[next_page].first_object_offset ==
1349 -(next_page - first_page)*PAGE_BYTES)) {
1350 /* Checks out OK, free the page. Don't need to bother zeroing
1351 * pages as this should have been done before shrinking the
1352 * object. These pages shouldn't be write-protected as they
1353 * should be zero filled. */
1354 gc_assert(page_table[next_page].write_protected == 0);
1356 old_bytes_used = page_table[next_page].bytes_used;
1357 page_table[next_page].allocated = FREE_PAGE_FLAG;
1358 page_table[next_page].bytes_used = 0;
1359 bytes_freed += old_bytes_used;
1363 generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords +
1365 generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
1366 bytes_allocated -= bytes_freed;
1368 /* Add the region to the new_areas if requested. */
1369 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1373 /* Get tag of object. */
1374 tag = lowtag_of(object);
1376 /* Allocate space. */
1377 new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
1379 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1381 /* Return Lisp pointer of new object. */
1382 return ((lispobj) new) | tag;
1386 /* to copy unboxed objects */
1388 copy_unboxed_object(lispobj object, long nwords)
1393 gc_assert(is_lisp_pointer(object));
1394 gc_assert(from_space_p(object));
1395 gc_assert((nwords & 0x01) == 0);
1397 /* Get tag of object. */
1398 tag = lowtag_of(object);
1400 /* Allocate space. */
1401 new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
1403 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1405 /* Return Lisp pointer of new object. */
1406 return ((lispobj) new) | tag;
1409 /* to copy large unboxed objects
1411 * If the object is in a large object region then it is simply
1412 * promoted, else it is copied. If it's large enough then it's copied
1413 * to a large object region.
1415 * Bignums and vectors may have shrunk. If the object is not copied
1416 * the space needs to be reclaimed, and the page_tables corrected.
1418 * KLUDGE: There's a lot of cut-and-paste duplication between this
1419 * function and copy_large_object(..). -- WHN 20000619 */
1421 copy_large_unboxed_object(lispobj object, long nwords)
1425 page_index_t first_page;
1427 gc_assert(is_lisp_pointer(object));
1428 gc_assert(from_space_p(object));
1429 gc_assert((nwords & 0x01) == 0);
1431 if ((nwords > 1024*1024) && gencgc_verbose)
1432 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*N_WORD_BYTES));
1434 /* Check whether it's a large object. */
1435 first_page = find_page_index((void *)object);
1436 gc_assert(first_page >= 0);
1438 if (page_table[first_page].large_object) {
1439 /* Promote the object. Note: Unboxed objects may have been
1440 * allocated to a BOXED region so it may be necessary to
1441 * change the region to UNBOXED. */
1442 long remaining_bytes;
1443 page_index_t next_page;
1445 long old_bytes_used;
1447 gc_assert(page_table[first_page].first_object_offset == 0);
1449 next_page = first_page;
1450 remaining_bytes = nwords*N_WORD_BYTES;
1451 while (remaining_bytes > PAGE_BYTES) {
1452 gc_assert(page_table[next_page].gen == from_space);
1453 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1454 || (page_table[next_page].allocated == BOXED_PAGE_FLAG));
1455 gc_assert(page_table[next_page].large_object);
1456 gc_assert(page_table[next_page].first_object_offset==
1457 -PAGE_BYTES*(next_page-first_page));
1458 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
1460 page_table[next_page].gen = new_space;
1461 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1462 remaining_bytes -= PAGE_BYTES;
1466 /* Now only one page remains, but the object may have shrunk so
1467 * there may be more unused pages which will be freed. */
1469 /* Object may have shrunk but shouldn't have grown - check. */
1470 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1472 page_table[next_page].gen = new_space;
1473 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1475 /* Adjust the bytes_used. */
1476 old_bytes_used = page_table[next_page].bytes_used;
1477 page_table[next_page].bytes_used = remaining_bytes;
1479 bytes_freed = old_bytes_used - remaining_bytes;
1481 /* Free any remaining pages; needs care. */
1483 while ((old_bytes_used == PAGE_BYTES) &&
1484 (page_table[next_page].gen == from_space) &&
1485 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
1486 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
1487 page_table[next_page].large_object &&
1488 (page_table[next_page].first_object_offset ==
1489 -(next_page - first_page)*PAGE_BYTES)) {
1490 /* Checks out OK, free the page. Don't need to both zeroing
1491 * pages as this should have been done before shrinking the
1492 * object. These pages shouldn't be write-protected, even if
1493 * boxed they should be zero filled. */
1494 gc_assert(page_table[next_page].write_protected == 0);
1496 old_bytes_used = page_table[next_page].bytes_used;
1497 page_table[next_page].allocated = FREE_PAGE_FLAG;
1498 page_table[next_page].bytes_used = 0;
1499 bytes_freed += old_bytes_used;
1503 if ((bytes_freed > 0) && gencgc_verbose)
1505 "/copy_large_unboxed bytes_freed=%d\n",
1508 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES + bytes_freed;
1509 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1510 bytes_allocated -= bytes_freed;
1515 /* Get tag of object. */
1516 tag = lowtag_of(object);
1518 /* Allocate space. */
1519 new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
1521 /* Copy the object. */
1522 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1524 /* Return Lisp pointer of new object. */
1525 return ((lispobj) new) | tag;
1534 * code and code-related objects
1537 static lispobj trans_fun_header(lispobj object);
1538 static lispobj trans_boxed(lispobj object);
1541 /* Scan a x86 compiled code object, looking for possible fixups that
1542 * have been missed after a move.
1544 * Two types of fixups are needed:
1545 * 1. Absolute fixups to within the code object.
1546 * 2. Relative fixups to outside the code object.
1548 * Currently only absolute fixups to the constant vector, or to the
1549 * code area are checked. */
1551 sniff_code_object(struct code *code, unsigned long displacement)
1553 #ifdef LISP_FEATURE_X86
1554 long nheader_words, ncode_words, nwords;
1556 void *constants_start_addr = NULL, *constants_end_addr;
1557 void *code_start_addr, *code_end_addr;
1558 int fixup_found = 0;
1560 if (!check_code_fixups)
1563 ncode_words = fixnum_value(code->code_size);
1564 nheader_words = HeaderValue(*(lispobj *)code);
1565 nwords = ncode_words + nheader_words;
1567 constants_start_addr = (void *)code + 5*N_WORD_BYTES;
1568 constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
1569 code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
1570 code_end_addr = (void *)code + nwords*N_WORD_BYTES;
1572 /* Work through the unboxed code. */
1573 for (p = code_start_addr; p < code_end_addr; p++) {
1574 void *data = *(void **)p;
1575 unsigned d1 = *((unsigned char *)p - 1);
1576 unsigned d2 = *((unsigned char *)p - 2);
1577 unsigned d3 = *((unsigned char *)p - 3);
1578 unsigned d4 = *((unsigned char *)p - 4);
1580 unsigned d5 = *((unsigned char *)p - 5);
1581 unsigned d6 = *((unsigned char *)p - 6);
1584 /* Check for code references. */
1585 /* Check for a 32 bit word that looks like an absolute
1586 reference to within the code adea of the code object. */
1587 if ((data >= (code_start_addr-displacement))
1588 && (data < (code_end_addr-displacement))) {
1589 /* function header */
1591 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1592 /* Skip the function header */
1596 /* the case of PUSH imm32 */
1600 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1601 p, d6, d5, d4, d3, d2, d1, data));
1602 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1604 /* the case of MOV [reg-8],imm32 */
1606 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1607 || d2==0x45 || d2==0x46 || d2==0x47)
1611 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1612 p, d6, d5, d4, d3, d2, d1, data));
1613 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1615 /* the case of LEA reg,[disp32] */
1616 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1619 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1620 p, d6, d5, d4, d3, d2, d1, data));
1621 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1625 /* Check for constant references. */
1626 /* Check for a 32 bit word that looks like an absolute
1627 reference to within the constant vector. Constant references
1629 if ((data >= (constants_start_addr-displacement))
1630 && (data < (constants_end_addr-displacement))
1631 && (((unsigned)data & 0x3) == 0)) {
1636 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1637 p, d6, d5, d4, d3, d2, d1, data));
1638 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1641 /* the case of MOV m32,EAX */
1645 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1646 p, d6, d5, d4, d3, d2, d1, data));
1647 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1650 /* the case of CMP m32,imm32 */
1651 if ((d1 == 0x3d) && (d2 == 0x81)) {
1654 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1655 p, d6, d5, d4, d3, d2, d1, data));
1657 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1660 /* Check for a mod=00, r/m=101 byte. */
1661 if ((d1 & 0xc7) == 5) {
1666 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1667 p, d6, d5, d4, d3, d2, d1, data));
1668 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1670 /* the case of CMP reg32,m32 */
1674 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1675 p, d6, d5, d4, d3, d2, d1, data));
1676 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1678 /* the case of MOV m32,reg32 */
1682 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1683 p, d6, d5, d4, d3, d2, d1, data));
1684 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1686 /* the case of MOV reg32,m32 */
1690 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1691 p, d6, d5, d4, d3, d2, d1, data));
1692 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1694 /* the case of LEA reg32,m32 */
1698 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1699 p, d6, d5, d4, d3, d2, d1, data));
1700 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1706 /* If anything was found, print some information on the code
1710 "/compiled code object at %x: header words = %d, code words = %d\n",
1711 code, nheader_words, ncode_words));
1713 "/const start = %x, end = %x\n",
1714 constants_start_addr, constants_end_addr));
1716 "/code start = %x, end = %x\n",
1717 code_start_addr, code_end_addr));
1723 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1725 /* x86-64 uses pc-relative addressing instead of this kludge */
1726 #ifndef LISP_FEATURE_X86_64
1727 long nheader_words, ncode_words, nwords;
1728 void *constants_start_addr, *constants_end_addr;
1729 void *code_start_addr, *code_end_addr;
1730 lispobj fixups = NIL;
1731 unsigned long displacement = (unsigned long)new_code - (unsigned long)old_code;
1732 struct vector *fixups_vector;
1734 ncode_words = fixnum_value(new_code->code_size);
1735 nheader_words = HeaderValue(*(lispobj *)new_code);
1736 nwords = ncode_words + nheader_words;
1738 "/compiled code object at %x: header words = %d, code words = %d\n",
1739 new_code, nheader_words, ncode_words)); */
1740 constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
1741 constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1742 code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
1743 code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
1746 "/const start = %x, end = %x\n",
1747 constants_start_addr,constants_end_addr));
1749 "/code start = %x; end = %x\n",
1750 code_start_addr,code_end_addr));
1753 /* The first constant should be a pointer to the fixups for this
1754 code objects. Check. */
1755 fixups = new_code->constants[0];
1757 /* It will be 0 or the unbound-marker if there are no fixups (as
1758 * will be the case if the code object has been purified, for
1759 * example) and will be an other pointer if it is valid. */
1760 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1761 !is_lisp_pointer(fixups)) {
1762 /* Check for possible errors. */
1763 if (check_code_fixups)
1764 sniff_code_object(new_code, displacement);
1769 fixups_vector = (struct vector *)native_pointer(fixups);
1771 /* Could be pointing to a forwarding pointer. */
1772 /* FIXME is this always in from_space? if so, could replace this code with
1773 * forwarding_pointer_p/forwarding_pointer_value */
1774 if (is_lisp_pointer(fixups) &&
1775 (find_page_index((void*)fixups_vector) != -1) &&
1776 (fixups_vector->header == 0x01)) {
1777 /* If so, then follow it. */
1778 /*SHOW("following pointer to a forwarding pointer");*/
1779 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1782 /*SHOW("got fixups");*/
1784 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1785 /* Got the fixups for the code block. Now work through the vector,
1786 and apply a fixup at each address. */
1787 long length = fixnum_value(fixups_vector->length);
1789 for (i = 0; i < length; i++) {
1790 unsigned long offset = fixups_vector->data[i];
1791 /* Now check the current value of offset. */
1792 unsigned long old_value =
1793 *(unsigned long *)((unsigned long)code_start_addr + offset);
1795 /* If it's within the old_code object then it must be an
1796 * absolute fixup (relative ones are not saved) */
1797 if ((old_value >= (unsigned long)old_code)
1798 && (old_value < ((unsigned long)old_code + nwords*N_WORD_BYTES)))
1799 /* So add the dispacement. */
1800 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1801 old_value + displacement;
1803 /* It is outside the old code object so it must be a
1804 * relative fixup (absolute fixups are not saved). So
1805 * subtract the displacement. */
1806 *(unsigned long *)((unsigned long)code_start_addr + offset) =
1807 old_value - displacement;
1810 fprintf(stderr, "widetag of fixup vector is %d\n", widetag_of(fixups_vector->header));
1813 /* Check for possible errors. */
1814 if (check_code_fixups) {
1815 sniff_code_object(new_code,displacement);
1822 trans_boxed_large(lispobj object)
1825 unsigned long length;
1827 gc_assert(is_lisp_pointer(object));
1829 header = *((lispobj *) native_pointer(object));
1830 length = HeaderValue(header) + 1;
1831 length = CEILING(length, 2);
1833 return copy_large_object(object, length);
1836 /* Doesn't seem to be used, delete it after the grace period. */
1839 trans_unboxed_large(lispobj object)
1842 unsigned long length;
1844 gc_assert(is_lisp_pointer(object));
1846 header = *((lispobj *) native_pointer(object));
1847 length = HeaderValue(header) + 1;
1848 length = CEILING(length, 2);
1850 return copy_large_unboxed_object(object, length);
1856 * Lutexes. Using the normal finalization machinery for finalizing
1857 * lutexes is tricky, since the finalization depends on working lutexes.
1858 * So we track the lutexes in the GC and finalize them manually.
1861 #if defined(LUTEX_WIDETAG)
1864 * Start tracking LUTEX in the GC, by adding it to the linked list of
1865 * lutexes in the nursery generation. The caller is responsible for
1866 * locking, and GCs must be inhibited until the registration is
1870 gencgc_register_lutex (struct lutex *lutex) {
1871 int index = find_page_index(lutex);
1872 generation_index_t gen;
1875 /* This lutex is in static space, so we don't need to worry about
1881 gen = page_table[index].gen;
1883 gc_assert(gen >= 0);
1884 gc_assert(gen < NUM_GENERATIONS);
1886 head = generations[gen].lutexes;
1893 generations[gen].lutexes = lutex;
1897 * Stop tracking LUTEX in the GC by removing it from the appropriate
1898 * linked lists. This will only be called during GC, so no locking is
1902 gencgc_unregister_lutex (struct lutex *lutex) {
1904 lutex->prev->next = lutex->next;
1906 generations[lutex->gen].lutexes = lutex->next;
1910 lutex->next->prev = lutex->prev;
1919 * Mark all lutexes in generation GEN as not live.
1922 unmark_lutexes (generation_index_t gen) {
1923 struct lutex *lutex = generations[gen].lutexes;
1927 lutex = lutex->next;
1932 * Finalize all lutexes in generation GEN that have not been marked live.
1935 reap_lutexes (generation_index_t gen) {
1936 struct lutex *lutex = generations[gen].lutexes;
1939 struct lutex *next = lutex->next;
1941 lutex_destroy(lutex);
1942 gencgc_unregister_lutex(lutex);
1949 * Mark LUTEX as live.
1952 mark_lutex (lispobj tagged_lutex) {
1953 struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
1959 * Move all lutexes in generation FROM to generation TO.
1962 move_lutexes (generation_index_t from, generation_index_t to) {
1963 struct lutex *tail = generations[from].lutexes;
1965 /* Nothing to move */
1969 /* Change the generation of the lutexes in FROM. */
1970 while (tail->next) {
1976 /* Link the last lutex in the FROM list to the start of the TO list */
1977 tail->next = generations[to].lutexes;
1979 /* And vice versa */
1980 if (generations[to].lutexes) {
1981 generations[to].lutexes->prev = tail;
1984 /* And update the generations structures to match this */
1985 generations[to].lutexes = generations[from].lutexes;
1986 generations[from].lutexes = NULL;
1990 scav_lutex(lispobj *where, lispobj object)
1992 mark_lutex((lispobj) where);
1994 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
1998 trans_lutex(lispobj object)
2000 struct lutex *lutex = native_pointer(object);
2002 size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2003 gc_assert(is_lisp_pointer(object));
2004 copied = copy_object(object, words);
2006 /* Update the links, since the lutex moved in memory. */
2008 lutex->next->prev = native_pointer(copied);
2012 lutex->prev->next = native_pointer(copied);
2014 generations[lutex->gen].lutexes = native_pointer(copied);
2021 size_lutex(lispobj *where)
2023 return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
2025 #endif /* LUTEX_WIDETAG */
2032 /* XX This is a hack adapted from cgc.c. These don't work too
2033 * efficiently with the gencgc as a list of the weak pointers is
2034 * maintained within the objects which causes writes to the pages. A
2035 * limited attempt is made to avoid unnecessary writes, but this needs
2037 #define WEAK_POINTER_NWORDS \
2038 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2041 scav_weak_pointer(lispobj *where, lispobj object)
2043 struct weak_pointer *wp = weak_pointers;
2044 /* Push the weak pointer onto the list of weak pointers.
2045 * Do I have to watch for duplicates? Originally this was
2046 * part of trans_weak_pointer but that didn't work in the
2047 * case where the WP was in a promoted region.
2050 /* Check whether it's already in the list. */
2051 while (wp != NULL) {
2052 if (wp == (struct weak_pointer*)where) {
2058 /* Add it to the start of the list. */
2059 wp = (struct weak_pointer*)where;
2060 if (wp->next != weak_pointers) {
2061 wp->next = weak_pointers;
2063 /*SHOW("avoided write to weak pointer");*/
2068 /* Do not let GC scavenge the value slot of the weak pointer.
2069 * (That is why it is a weak pointer.) */
2071 return WEAK_POINTER_NWORDS;
2076 search_read_only_space(void *pointer)
2078 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2079 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2080 if ((pointer < (void *)start) || (pointer >= (void *)end))
2082 return (gc_search_space(start,
2083 (((lispobj *)pointer)+2)-start,
2084 (lispobj *) pointer));
2088 search_static_space(void *pointer)
2090 lispobj *start = (lispobj *)STATIC_SPACE_START;
2091 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2092 if ((pointer < (void *)start) || (pointer >= (void *)end))
2094 return (gc_search_space(start,
2095 (((lispobj *)pointer)+2)-start,
2096 (lispobj *) pointer));
2099 /* a faster version for searching the dynamic space. This will work even
2100 * if the object is in a current allocation region. */
2102 search_dynamic_space(void *pointer)
2104 page_index_t page_index = find_page_index(pointer);
2107 /* The address may be invalid, so do some checks. */
2108 if ((page_index == -1) ||
2109 (page_table[page_index].allocated == FREE_PAGE_FLAG))
2111 start = (lispobj *)((void *)page_address(page_index)
2112 + page_table[page_index].first_object_offset);
2113 return (gc_search_space(start,
2114 (((lispobj *)pointer)+2)-start,
2115 (lispobj *)pointer));
2118 /* Is there any possibility that pointer is a valid Lisp object
2119 * reference, and/or something else (e.g. subroutine call return
2120 * address) which should prevent us from moving the referred-to thing?
2121 * This is called from preserve_pointers() */
2123 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2125 lispobj *start_addr;
2127 /* Find the object start address. */
2128 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2132 /* We need to allow raw pointers into Code objects for return
2133 * addresses. This will also pick up pointers to functions in code
2135 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
2136 /* XXX could do some further checks here */
2140 /* If it's not a return address then it needs to be a valid Lisp
2142 if (!is_lisp_pointer((lispobj)pointer)) {
2146 /* Check that the object pointed to is consistent with the pointer
2149 switch (lowtag_of((lispobj)pointer)) {
2150 case FUN_POINTER_LOWTAG:
2151 /* Start_addr should be the enclosing code object, or a closure
2153 switch (widetag_of(*start_addr)) {
2154 case CODE_HEADER_WIDETAG:
2155 /* This case is probably caught above. */
2157 case CLOSURE_HEADER_WIDETAG:
2158 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2159 if ((unsigned long)pointer !=
2160 ((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
2164 pointer, start_addr, *start_addr));
2172 pointer, start_addr, *start_addr));
2176 case LIST_POINTER_LOWTAG:
2177 if ((unsigned long)pointer !=
2178 ((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
2182 pointer, start_addr, *start_addr));
2185 /* Is it plausible cons? */
2186 if ((is_lisp_pointer(start_addr[0])
2187 || (fixnump(start_addr[0]))
2188 || (widetag_of(start_addr[0]) == CHARACTER_WIDETAG)
2189 #if N_WORD_BITS == 64
2190 || (widetag_of(start_addr[0]) == SINGLE_FLOAT_WIDETAG)
2192 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2193 && (is_lisp_pointer(start_addr[1])
2194 || (fixnump(start_addr[1]))
2195 || (widetag_of(start_addr[1]) == CHARACTER_WIDETAG)
2196 #if N_WORD_BITS == 64
2197 || (widetag_of(start_addr[1]) == SINGLE_FLOAT_WIDETAG)
2199 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2205 pointer, start_addr, *start_addr));
2208 case INSTANCE_POINTER_LOWTAG:
2209 if ((unsigned long)pointer !=
2210 ((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
2214 pointer, start_addr, *start_addr));
2217 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2221 pointer, start_addr, *start_addr));
2225 case OTHER_POINTER_LOWTAG:
2226 if ((unsigned long)pointer !=
2227 ((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
2231 pointer, start_addr, *start_addr));
2234 /* Is it plausible? Not a cons. XXX should check the headers. */
2235 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2239 pointer, start_addr, *start_addr));
2242 switch (widetag_of(start_addr[0])) {
2243 case UNBOUND_MARKER_WIDETAG:
2244 case NO_TLS_VALUE_MARKER_WIDETAG:
2245 case CHARACTER_WIDETAG:
2246 #if N_WORD_BITS == 64
2247 case SINGLE_FLOAT_WIDETAG:
2252 pointer, start_addr, *start_addr));
2255 /* only pointed to by function pointers? */
2256 case CLOSURE_HEADER_WIDETAG:
2257 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2261 pointer, start_addr, *start_addr));
2264 case INSTANCE_HEADER_WIDETAG:
2268 pointer, start_addr, *start_addr));
2271 /* the valid other immediate pointer objects */
2272 case SIMPLE_VECTOR_WIDETAG:
2274 case COMPLEX_WIDETAG:
2275 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2276 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2278 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2279 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2281 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2282 case COMPLEX_LONG_FLOAT_WIDETAG:
2284 case SIMPLE_ARRAY_WIDETAG:
2285 case COMPLEX_BASE_STRING_WIDETAG:
2286 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2287 case COMPLEX_CHARACTER_STRING_WIDETAG:
2289 case COMPLEX_VECTOR_NIL_WIDETAG:
2290 case COMPLEX_BIT_VECTOR_WIDETAG:
2291 case COMPLEX_VECTOR_WIDETAG:
2292 case COMPLEX_ARRAY_WIDETAG:
2293 case VALUE_CELL_HEADER_WIDETAG:
2294 case SYMBOL_HEADER_WIDETAG:
2296 case CODE_HEADER_WIDETAG:
2297 case BIGNUM_WIDETAG:
2298 #if N_WORD_BITS != 64
2299 case SINGLE_FLOAT_WIDETAG:
2301 case DOUBLE_FLOAT_WIDETAG:
2302 #ifdef LONG_FLOAT_WIDETAG
2303 case LONG_FLOAT_WIDETAG:
2305 case SIMPLE_BASE_STRING_WIDETAG:
2306 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2307 case SIMPLE_CHARACTER_STRING_WIDETAG:
2309 case SIMPLE_BIT_VECTOR_WIDETAG:
2310 case SIMPLE_ARRAY_NIL_WIDETAG:
2311 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2312 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2313 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2314 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2315 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2316 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2317 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2318 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2320 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2321 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2322 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2323 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2325 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2326 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2328 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2329 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2331 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2332 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2334 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2335 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2337 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2338 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2340 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2341 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2343 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2344 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2346 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2347 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2349 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2350 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2351 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2352 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2354 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2355 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2357 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2358 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2360 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2361 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2364 case WEAK_POINTER_WIDETAG:
2365 #ifdef LUTEX_WIDETAG
2374 pointer, start_addr, *start_addr));
2382 pointer, start_addr, *start_addr));
2390 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2392 /* Adjust large bignum and vector objects. This will adjust the
2393 * allocated region if the size has shrunk, and move unboxed objects
2394 * into unboxed pages. The pages are not promoted here, and the
2395 * promoted region is not added to the new_regions; this is really
2396 * only designed to be called from preserve_pointer(). Shouldn't fail
2397 * if this is missed, just may delay the moving of objects to unboxed
2398 * pages, and the freeing of pages. */
2400 maybe_adjust_large_object(lispobj *where)
2402 page_index_t first_page;
2403 page_index_t next_page;
2406 long remaining_bytes;
2408 long old_bytes_used;
2412 /* Check whether it's a vector or bignum object. */
2413 switch (widetag_of(where[0])) {
2414 case SIMPLE_VECTOR_WIDETAG:
2415 boxed = BOXED_PAGE_FLAG;
2417 case BIGNUM_WIDETAG:
2418 case SIMPLE_BASE_STRING_WIDETAG:
2419 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2420 case SIMPLE_CHARACTER_STRING_WIDETAG:
2422 case SIMPLE_BIT_VECTOR_WIDETAG:
2423 case SIMPLE_ARRAY_NIL_WIDETAG:
2424 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2425 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2426 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2427 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2428 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2429 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2430 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
2431 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
2433 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2434 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2435 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
2436 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
2438 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2439 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2441 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2442 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2444 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2445 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2447 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2448 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2450 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2451 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2453 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2454 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2456 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
2457 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
2459 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2460 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2462 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2463 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2464 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2465 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2467 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2468 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2470 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2471 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2473 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2474 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2476 boxed = UNBOXED_PAGE_FLAG;
2482 /* Find its current size. */
2483 nwords = (sizetab[widetag_of(where[0])])(where);
2485 first_page = find_page_index((void *)where);
2486 gc_assert(first_page >= 0);
2488 /* Note: Any page write-protection must be removed, else a later
2489 * scavenge_newspace may incorrectly not scavenge these pages.
2490 * This would not be necessary if they are added to the new areas,
2491 * but lets do it for them all (they'll probably be written
2494 gc_assert(page_table[first_page].first_object_offset == 0);
2496 next_page = first_page;
2497 remaining_bytes = nwords*N_WORD_BYTES;
2498 while (remaining_bytes > PAGE_BYTES) {
2499 gc_assert(page_table[next_page].gen == from_space);
2500 gc_assert((page_table[next_page].allocated == BOXED_PAGE_FLAG)
2501 || (page_table[next_page].allocated == UNBOXED_PAGE_FLAG));
2502 gc_assert(page_table[next_page].large_object);
2503 gc_assert(page_table[next_page].first_object_offset ==
2504 -PAGE_BYTES*(next_page-first_page));
2505 gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
2507 page_table[next_page].allocated = boxed;
2509 /* Shouldn't be write-protected at this stage. Essential that the
2511 gc_assert(!page_table[next_page].write_protected);
2512 remaining_bytes -= PAGE_BYTES;
2516 /* Now only one page remains, but the object may have shrunk so
2517 * there may be more unused pages which will be freed. */
2519 /* Object may have shrunk but shouldn't have grown - check. */
2520 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2522 page_table[next_page].allocated = boxed;
2523 gc_assert(page_table[next_page].allocated ==
2524 page_table[first_page].allocated);
2526 /* Adjust the bytes_used. */
2527 old_bytes_used = page_table[next_page].bytes_used;
2528 page_table[next_page].bytes_used = remaining_bytes;
2530 bytes_freed = old_bytes_used - remaining_bytes;
2532 /* Free any remaining pages; needs care. */
2534 while ((old_bytes_used == PAGE_BYTES) &&
2535 (page_table[next_page].gen == from_space) &&
2536 ((page_table[next_page].allocated == UNBOXED_PAGE_FLAG)
2537 || (page_table[next_page].allocated == BOXED_PAGE_FLAG)) &&
2538 page_table[next_page].large_object &&
2539 (page_table[next_page].first_object_offset ==
2540 -(next_page - first_page)*PAGE_BYTES)) {
2541 /* It checks out OK, free the page. We don't need to both zeroing
2542 * pages as this should have been done before shrinking the
2543 * object. These pages shouldn't be write protected as they
2544 * should be zero filled. */
2545 gc_assert(page_table[next_page].write_protected == 0);
2547 old_bytes_used = page_table[next_page].bytes_used;
2548 page_table[next_page].allocated = FREE_PAGE_FLAG;
2549 page_table[next_page].bytes_used = 0;
2550 bytes_freed += old_bytes_used;
2554 if ((bytes_freed > 0) && gencgc_verbose) {
2556 "/maybe_adjust_large_object() freed %d\n",
2560 generations[from_space].bytes_allocated -= bytes_freed;
2561 bytes_allocated -= bytes_freed;
2568 /* Take a possible pointer to a Lisp object and mark its page in the
2569 * page_table so that it will not be relocated during a GC.
2571 * This involves locating the page it points to, then backing up to
2572 * the start of its region, then marking all pages dont_move from there
2573 * up to the first page that's not full or has a different generation
2575 * It is assumed that all the page static flags have been cleared at
2576 * the start of a GC.
2578 * It is also assumed that the current gc_alloc() region has been
2579 * flushed and the tables updated. */
2581 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2584 preserve_pointer(void *addr)
2586 page_index_t addr_page_index = find_page_index(addr);
2587 page_index_t first_page;
2589 unsigned int region_allocation;
2591 /* quick check 1: Address is quite likely to have been invalid. */
2592 if ((addr_page_index == -1)
2593 || (page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2594 || (page_table[addr_page_index].bytes_used == 0)
2595 || (page_table[addr_page_index].gen != from_space)
2596 /* Skip if already marked dont_move. */
2597 || (page_table[addr_page_index].dont_move != 0))
2599 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2600 /* (Now that we know that addr_page_index is in range, it's
2601 * safe to index into page_table[] with it.) */
2602 region_allocation = page_table[addr_page_index].allocated;
2604 /* quick check 2: Check the offset within the page.
2607 if (((unsigned long)addr & (PAGE_BYTES - 1)) > page_table[addr_page_index].bytes_used)
2610 /* Filter out anything which can't be a pointer to a Lisp object
2611 * (or, as a special case which also requires dont_move, a return
2612 * address referring to something in a CodeObject). This is
2613 * expensive but important, since it vastly reduces the
2614 * probability that random garbage will be bogusly interpreted as
2615 * a pointer which prevents a page from moving. */
2616 if (!(possibly_valid_dynamic_space_pointer(addr)))
2619 /* Find the beginning of the region. Note that there may be
2620 * objects in the region preceding the one that we were passed a
2621 * pointer to: if this is the case, we will write-protect all the
2622 * previous objects' pages too. */
2625 /* I think this'd work just as well, but without the assertions.
2626 * -dan 2004.01.01 */
2628 find_page_index(page_address(addr_page_index)+
2629 page_table[addr_page_index].first_object_offset);
2631 first_page = addr_page_index;
2632 while (page_table[first_page].first_object_offset != 0) {
2634 /* Do some checks. */
2635 gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
2636 gc_assert(page_table[first_page].gen == from_space);
2637 gc_assert(page_table[first_page].allocated == region_allocation);
2641 /* Adjust any large objects before promotion as they won't be
2642 * copied after promotion. */
2643 if (page_table[first_page].large_object) {
2644 maybe_adjust_large_object(page_address(first_page));
2645 /* If a large object has shrunk then addr may now point to a
2646 * free area in which case it's ignored here. Note it gets
2647 * through the valid pointer test above because the tail looks
2649 if ((page_table[addr_page_index].allocated == FREE_PAGE_FLAG)
2650 || (page_table[addr_page_index].bytes_used == 0)
2651 /* Check the offset within the page. */
2652 || (((unsigned long)addr & (PAGE_BYTES - 1))
2653 > page_table[addr_page_index].bytes_used)) {
2655 "weird? ignore ptr 0x%x to freed area of large object\n",
2659 /* It may have moved to unboxed pages. */
2660 region_allocation = page_table[first_page].allocated;
2663 /* Now work forward until the end of this contiguous area is found,
2664 * marking all pages as dont_move. */
2665 for (i = first_page; ;i++) {
2666 gc_assert(page_table[i].allocated == region_allocation);
2668 /* Mark the page static. */
2669 page_table[i].dont_move = 1;
2671 /* Move the page to the new_space. XX I'd rather not do this
2672 * but the GC logic is not quite able to copy with the static
2673 * pages remaining in the from space. This also requires the
2674 * generation bytes_allocated counters be updated. */
2675 page_table[i].gen = new_space;
2676 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2677 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2679 /* It is essential that the pages are not write protected as
2680 * they may have pointers into the old-space which need
2681 * scavenging. They shouldn't be write protected at this
2683 gc_assert(!page_table[i].write_protected);
2685 /* Check whether this is the last page in this contiguous block.. */
2686 if ((page_table[i].bytes_used < PAGE_BYTES)
2687 /* ..or it is PAGE_BYTES and is the last in the block */
2688 || (page_table[i+1].allocated == FREE_PAGE_FLAG)
2689 || (page_table[i+1].bytes_used == 0) /* next page free */
2690 || (page_table[i+1].gen != from_space) /* diff. gen */
2691 || (page_table[i+1].first_object_offset == 0))
2695 /* Check that the page is now static. */
2696 gc_assert(page_table[addr_page_index].dont_move != 0);
2702 /* If the given page is not write-protected, then scan it for pointers
2703 * to younger generations or the top temp. generation, if no
2704 * suspicious pointers are found then the page is write-protected.
2706 * Care is taken to check for pointers to the current gc_alloc()
2707 * region if it is a younger generation or the temp. generation. This
2708 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2709 * the gc_alloc_generation does not need to be checked as this is only
2710 * called from scavenge_generation() when the gc_alloc generation is
2711 * younger, so it just checks if there is a pointer to the current
2714 * We return 1 if the page was write-protected, else 0. */
2716 update_page_write_prot(page_index_t page)
2718 generation_index_t gen = page_table[page].gen;
2721 void **page_addr = (void **)page_address(page);
2722 long num_words = page_table[page].bytes_used / N_WORD_BYTES;
2724 /* Shouldn't be a free page. */
2725 gc_assert(page_table[page].allocated != FREE_PAGE_FLAG);
2726 gc_assert(page_table[page].bytes_used != 0);
2728 /* Skip if it's already write-protected, pinned, or unboxed */
2729 if (page_table[page].write_protected
2730 /* FIXME: What's the reason for not write-protecting pinned pages? */
2731 || page_table[page].dont_move
2732 || (page_table[page].allocated & UNBOXED_PAGE_FLAG))
2735 /* Scan the page for pointers to younger generations or the
2736 * top temp. generation. */
2738 for (j = 0; j < num_words; j++) {
2739 void *ptr = *(page_addr+j);
2740 page_index_t index = find_page_index(ptr);
2742 /* Check that it's in the dynamic space */
2744 if (/* Does it point to a younger or the temp. generation? */
2745 ((page_table[index].allocated != FREE_PAGE_FLAG)
2746 && (page_table[index].bytes_used != 0)
2747 && ((page_table[index].gen < gen)
2748 || (page_table[index].gen == SCRATCH_GENERATION)))
2750 /* Or does it point within a current gc_alloc() region? */
2751 || ((boxed_region.start_addr <= ptr)
2752 && (ptr <= boxed_region.free_pointer))
2753 || ((unboxed_region.start_addr <= ptr)
2754 && (ptr <= unboxed_region.free_pointer))) {
2761 /* Write-protect the page. */
2762 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2764 os_protect((void *)page_addr,
2766 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2768 /* Note the page as protected in the page tables. */
2769 page_table[page].write_protected = 1;
2775 /* Scavenge all generations from FROM to TO, inclusive, except for
2776 * new_space which needs special handling, as new objects may be
2777 * added which are not checked here - use scavenge_newspace generation.
2779 * Write-protected pages should not have any pointers to the
2780 * from_space so do need scavenging; thus write-protected pages are
2781 * not always scavenged. There is some code to check that these pages
2782 * are not written; but to check fully the write-protected pages need
2783 * to be scavenged by disabling the code to skip them.
2785 * Under the current scheme when a generation is GCed the younger
2786 * generations will be empty. So, when a generation is being GCed it
2787 * is only necessary to scavenge the older generations for pointers
2788 * not the younger. So a page that does not have pointers to younger
2789 * generations does not need to be scavenged.
2791 * The write-protection can be used to note pages that don't have
2792 * pointers to younger pages. But pages can be written without having
2793 * pointers to younger generations. After the pages are scavenged here
2794 * they can be scanned for pointers to younger generations and if
2795 * there are none the page can be write-protected.
2797 * One complication is when the newspace is the top temp. generation.
2799 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2800 * that none were written, which they shouldn't be as they should have
2801 * no pointers to younger generations. This breaks down for weak
2802 * pointers as the objects contain a link to the next and are written
2803 * if a weak pointer is scavenged. Still it's a useful check. */
2805 scavenge_generations(generation_index_t from, generation_index_t to)
2812 /* Clear the write_protected_cleared flags on all pages. */
2813 for (i = 0; i < page_table_pages; i++)
2814 page_table[i].write_protected_cleared = 0;
2817 for (i = 0; i < last_free_page; i++) {
2818 generation_index_t generation = page_table[i].gen;
2819 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2820 && (page_table[i].bytes_used != 0)
2821 && (generation != new_space)
2822 && (generation >= from)
2823 && (generation <= to)) {
2824 page_index_t last_page,j;
2825 int write_protected=1;
2827 /* This should be the start of a region */
2828 gc_assert(page_table[i].first_object_offset == 0);
2830 /* Now work forward until the end of the region */
2831 for (last_page = i; ; last_page++) {
2833 write_protected && page_table[last_page].write_protected;
2834 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2835 /* Or it is PAGE_BYTES and is the last in the block */
2836 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2837 || (page_table[last_page+1].bytes_used == 0)
2838 || (page_table[last_page+1].gen != generation)
2839 || (page_table[last_page+1].first_object_offset == 0))
2842 if (!write_protected) {
2843 scavenge(page_address(i),
2844 (page_table[last_page].bytes_used +
2845 (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
2847 /* Now scan the pages and write protect those that
2848 * don't have pointers to younger generations. */
2849 if (enable_page_protection) {
2850 for (j = i; j <= last_page; j++) {
2851 num_wp += update_page_write_prot(j);
2854 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2856 "/write protected %d pages within generation %d\n",
2857 num_wp, generation));
2865 /* Check that none of the write_protected pages in this generation
2866 * have been written to. */
2867 for (i = 0; i < page_table_pages; i++) {
2868 if ((page_table[i].allocation != FREE_PAGE_FLAG)
2869 && (page_table[i].bytes_used != 0)
2870 && (page_table[i].gen == generation)
2871 && (page_table[i].write_protected_cleared != 0)) {
2872 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2874 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2875 page_table[i].bytes_used,
2876 page_table[i].first_object_offset,
2877 page_table[i].dont_move));
2878 lose("write to protected page %d in scavenge_generation()\n", i);
2885 /* Scavenge a newspace generation. As it is scavenged new objects may
2886 * be allocated to it; these will also need to be scavenged. This
2887 * repeats until there are no more objects unscavenged in the
2888 * newspace generation.
2890 * To help improve the efficiency, areas written are recorded by
2891 * gc_alloc() and only these scavenged. Sometimes a little more will be
2892 * scavenged, but this causes no harm. An easy check is done that the
2893 * scavenged bytes equals the number allocated in the previous
2896 * Write-protected pages are not scanned except if they are marked
2897 * dont_move in which case they may have been promoted and still have
2898 * pointers to the from space.
2900 * Write-protected pages could potentially be written by alloc however
2901 * to avoid having to handle re-scavenging of write-protected pages
2902 * gc_alloc() does not write to write-protected pages.
2904 * New areas of objects allocated are recorded alternatively in the two
2905 * new_areas arrays below. */
2906 static struct new_area new_areas_1[NUM_NEW_AREAS];
2907 static struct new_area new_areas_2[NUM_NEW_AREAS];
2909 /* Do one full scan of the new space generation. This is not enough to
2910 * complete the job as new objects may be added to the generation in
2911 * the process which are not scavenged. */
2913 scavenge_newspace_generation_one_scan(generation_index_t generation)
2918 "/starting one full scan of newspace generation %d\n",
2920 for (i = 0; i < last_free_page; i++) {
2921 /* Note that this skips over open regions when it encounters them. */
2922 if ((page_table[i].allocated & BOXED_PAGE_FLAG)
2923 && (page_table[i].bytes_used != 0)
2924 && (page_table[i].gen == generation)
2925 && ((page_table[i].write_protected == 0)
2926 /* (This may be redundant as write_protected is now
2927 * cleared before promotion.) */
2928 || (page_table[i].dont_move == 1))) {
2929 page_index_t last_page;
2932 /* The scavenge will start at the first_object_offset of page i.
2934 * We need to find the full extent of this contiguous
2935 * block in case objects span pages.
2937 * Now work forward until the end of this contiguous area
2938 * is found. A small area is preferred as there is a
2939 * better chance of its pages being write-protected. */
2940 for (last_page = i; ;last_page++) {
2941 /* If all pages are write-protected and movable,
2942 * then no need to scavenge */
2943 all_wp=all_wp && page_table[last_page].write_protected &&
2944 !page_table[last_page].dont_move;
2946 /* Check whether this is the last page in this
2947 * contiguous block */
2948 if ((page_table[last_page].bytes_used < PAGE_BYTES)
2949 /* Or it is PAGE_BYTES and is the last in the block */
2950 || (!(page_table[last_page+1].allocated & BOXED_PAGE_FLAG))
2951 || (page_table[last_page+1].bytes_used == 0)
2952 || (page_table[last_page+1].gen != generation)
2953 || (page_table[last_page+1].first_object_offset == 0))
2957 /* Do a limited check for write-protected pages. */
2961 size = (page_table[last_page].bytes_used
2962 + (last_page-i)*PAGE_BYTES
2963 - page_table[i].first_object_offset)/N_WORD_BYTES;
2964 new_areas_ignore_page = last_page;
2966 scavenge(page_address(i) +
2967 page_table[i].first_object_offset,
2975 "/done with one full scan of newspace generation %d\n",
2979 /* Do a complete scavenge of the newspace generation. */
2981 scavenge_newspace_generation(generation_index_t generation)
2985 /* the new_areas array currently being written to by gc_alloc() */
2986 struct new_area (*current_new_areas)[] = &new_areas_1;
2987 long current_new_areas_index;
2989 /* the new_areas created by the previous scavenge cycle */
2990 struct new_area (*previous_new_areas)[] = NULL;
2991 long previous_new_areas_index;
2993 /* Flush the current regions updating the tables. */
2994 gc_alloc_update_all_page_tables();
2996 /* Turn on the recording of new areas by gc_alloc(). */
2997 new_areas = current_new_areas;
2998 new_areas_index = 0;
3000 /* Don't need to record new areas that get scavenged anyway during
3001 * scavenge_newspace_generation_one_scan. */
3002 record_new_objects = 1;
3004 /* Start with a full scavenge. */
3005 scavenge_newspace_generation_one_scan(generation);
3007 /* Record all new areas now. */
3008 record_new_objects = 2;
3010 /* Give a chance to weak hash tables to make other objects live.
3011 * FIXME: The algorithm implemented here for weak hash table gcing
3012 * is O(W^2+N) as Bruno Haible warns in
3013 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
3014 * see "Implementation 2". */
3015 scav_weak_hash_tables();
3017 /* Flush the current regions updating the tables. */
3018 gc_alloc_update_all_page_tables();
3020 /* Grab new_areas_index. */
3021 current_new_areas_index = new_areas_index;
3024 "The first scan is finished; current_new_areas_index=%d.\n",
3025 current_new_areas_index));*/
3027 while (current_new_areas_index > 0) {
3028 /* Move the current to the previous new areas */
3029 previous_new_areas = current_new_areas;
3030 previous_new_areas_index = current_new_areas_index;
3032 /* Scavenge all the areas in previous new areas. Any new areas
3033 * allocated are saved in current_new_areas. */
3035 /* Allocate an array for current_new_areas; alternating between
3036 * new_areas_1 and 2 */
3037 if (previous_new_areas == &new_areas_1)
3038 current_new_areas = &new_areas_2;
3040 current_new_areas = &new_areas_1;
3042 /* Set up for gc_alloc(). */
3043 new_areas = current_new_areas;
3044 new_areas_index = 0;
3046 /* Check whether previous_new_areas had overflowed. */
3047 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3049 /* New areas of objects allocated have been lost so need to do a
3050 * full scan to be sure! If this becomes a problem try
3051 * increasing NUM_NEW_AREAS. */
3053 SHOW("new_areas overflow, doing full scavenge");
3055 /* Don't need to record new areas that get scavenged
3056 * anyway during scavenge_newspace_generation_one_scan. */
3057 record_new_objects = 1;
3059 scavenge_newspace_generation_one_scan(generation);
3061 /* Record all new areas now. */
3062 record_new_objects = 2;
3064 scav_weak_hash_tables();
3066 /* Flush the current regions updating the tables. */
3067 gc_alloc_update_all_page_tables();
3071 /* Work through previous_new_areas. */
3072 for (i = 0; i < previous_new_areas_index; i++) {
3073 long page = (*previous_new_areas)[i].page;
3074 long offset = (*previous_new_areas)[i].offset;
3075 long size = (*previous_new_areas)[i].size / N_WORD_BYTES;
3076 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
3077 scavenge(page_address(page)+offset, size);
3080 scav_weak_hash_tables();
3082 /* Flush the current regions updating the tables. */
3083 gc_alloc_update_all_page_tables();
3086 current_new_areas_index = new_areas_index;
3089 "The re-scan has finished; current_new_areas_index=%d.\n",
3090 current_new_areas_index));*/
3093 /* Turn off recording of areas allocated by gc_alloc(). */
3094 record_new_objects = 0;
3097 /* Check that none of the write_protected pages in this generation
3098 * have been written to. */
3099 for (i = 0; i < page_table_pages; i++) {
3100 if ((page_table[i].allocation != FREE_PAGE_FLAG)
3101 && (page_table[i].bytes_used != 0)
3102 && (page_table[i].gen == generation)
3103 && (page_table[i].write_protected_cleared != 0)
3104 && (page_table[i].dont_move == 0)) {
3105 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
3106 i, generation, page_table[i].dont_move);
3112 /* Un-write-protect all the pages in from_space. This is done at the
3113 * start of a GC else there may be many page faults while scavenging
3114 * the newspace (I've seen drive the system time to 99%). These pages
3115 * would need to be unprotected anyway before unmapping in
3116 * free_oldspace; not sure what effect this has on paging.. */
3118 unprotect_oldspace(void)
3122 for (i = 0; i < last_free_page; i++) {
3123 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3124 && (page_table[i].bytes_used != 0)
3125 && (page_table[i].gen == from_space)) {
3128 page_start = (void *)page_address(i);
3130 /* Remove any write-protection. We should be able to rely
3131 * on the write-protect flag to avoid redundant calls. */
3132 if (page_table[i].write_protected) {
3133 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3134 page_table[i].write_protected = 0;
3140 /* Work through all the pages and free any in from_space. This
3141 * assumes that all objects have been copied or promoted to an older
3142 * generation. Bytes_allocated and the generation bytes_allocated
3143 * counter are updated. The number of bytes freed is returned. */
3147 long bytes_freed = 0;
3148 page_index_t first_page, last_page;
3153 /* Find a first page for the next region of pages. */
3154 while ((first_page < last_free_page)
3155 && ((page_table[first_page].allocated == FREE_PAGE_FLAG)
3156 || (page_table[first_page].bytes_used == 0)
3157 || (page_table[first_page].gen != from_space)))
3160 if (first_page >= last_free_page)
3163 /* Find the last page of this region. */
3164 last_page = first_page;
3167 /* Free the page. */
3168 bytes_freed += page_table[last_page].bytes_used;
3169 generations[page_table[last_page].gen].bytes_allocated -=
3170 page_table[last_page].bytes_used;
3171 page_table[last_page].allocated = FREE_PAGE_FLAG;
3172 page_table[last_page].bytes_used = 0;
3174 /* Remove any write-protection. We should be able to rely
3175 * on the write-protect flag to avoid redundant calls. */
3177 void *page_start = (void *)page_address(last_page);
3179 if (page_table[last_page].write_protected) {
3180 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
3181 page_table[last_page].write_protected = 0;
3186 while ((last_page < last_free_page)
3187 && (page_table[last_page].allocated != FREE_PAGE_FLAG)
3188 && (page_table[last_page].bytes_used != 0)
3189 && (page_table[last_page].gen == from_space));
3191 #ifdef READ_PROTECT_FREE_PAGES
3192 os_protect(page_address(first_page),
3193 PAGE_BYTES*(last_page-first_page),
3196 first_page = last_page;
3197 } while (first_page < last_free_page);
3199 bytes_allocated -= bytes_freed;
3204 /* Print some information about a pointer at the given address. */
3206 print_ptr(lispobj *addr)
3208 /* If addr is in the dynamic space then out the page information. */
3209 page_index_t pi1 = find_page_index((void*)addr);
3212 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3213 (unsigned long) addr,
3215 page_table[pi1].allocated,
3216 page_table[pi1].gen,
3217 page_table[pi1].bytes_used,
3218 page_table[pi1].first_object_offset,
3219 page_table[pi1].dont_move);
3220 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3234 verify_space(lispobj *start, size_t words)
3236 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3237 int is_in_readonly_space =
3238 (READ_ONLY_SPACE_START <= (unsigned long)start &&
3239 (unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3243 lispobj thing = *(lispobj*)start;
3245 if (is_lisp_pointer(thing)) {
3246 page_index_t page_index = find_page_index((void*)thing);
3247 long to_readonly_space =
3248 (READ_ONLY_SPACE_START <= thing &&
3249 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3250 long to_static_space =
3251 (STATIC_SPACE_START <= thing &&
3252 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3254 /* Does it point to the dynamic space? */
3255 if (page_index != -1) {
3256 /* If it's within the dynamic space it should point to a used
3257 * page. XX Could check the offset too. */
3258 if ((page_table[page_index].allocated != FREE_PAGE_FLAG)
3259 && (page_table[page_index].bytes_used == 0))
3260 lose ("Ptr %x @ %x sees free page.\n", thing, start);
3261 /* Check that it doesn't point to a forwarding pointer! */
3262 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3263 lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
3265 /* Check that its not in the RO space as it would then be a
3266 * pointer from the RO to the dynamic space. */
3267 if (is_in_readonly_space) {
3268 lose("ptr to dynamic space %x from RO space %x\n",
3271 /* Does it point to a plausible object? This check slows
3272 * it down a lot (so it's commented out).
3274 * "a lot" is serious: it ate 50 minutes cpu time on
3275 * my duron 950 before I came back from lunch and
3278 * FIXME: Add a variable to enable this
3281 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3282 lose("ptr %x to invalid object %x\n", thing, start);
3286 /* Verify that it points to another valid space. */
3287 if (!to_readonly_space && !to_static_space) {
3288 lose("Ptr %x @ %x sees junk.\n", thing, start);
3292 if (!(fixnump(thing))) {
3294 switch(widetag_of(*start)) {
3297 case SIMPLE_VECTOR_WIDETAG:
3299 case COMPLEX_WIDETAG:
3300 case SIMPLE_ARRAY_WIDETAG:
3301 case COMPLEX_BASE_STRING_WIDETAG:
3302 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3303 case COMPLEX_CHARACTER_STRING_WIDETAG:
3305 case COMPLEX_VECTOR_NIL_WIDETAG:
3306 case COMPLEX_BIT_VECTOR_WIDETAG:
3307 case COMPLEX_VECTOR_WIDETAG:
3308 case COMPLEX_ARRAY_WIDETAG:
3309 case CLOSURE_HEADER_WIDETAG:
3310 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3311 case VALUE_CELL_HEADER_WIDETAG:
3312 case SYMBOL_HEADER_WIDETAG:
3313 case CHARACTER_WIDETAG:
3314 #if N_WORD_BITS == 64
3315 case SINGLE_FLOAT_WIDETAG:
3317 case UNBOUND_MARKER_WIDETAG:
3322 case INSTANCE_HEADER_WIDETAG:
3325 long ntotal = HeaderValue(thing);
3326 lispobj layout = ((struct instance *)start)->slots[0];
3331 nuntagged = ((struct layout *)native_pointer(layout))->n_untagged_slots;
3332 verify_space(start + 1, ntotal - fixnum_value(nuntagged));
3336 case CODE_HEADER_WIDETAG:
3338 lispobj object = *start;
3340 long nheader_words, ncode_words, nwords;
3342 struct simple_fun *fheaderp;
3344 code = (struct code *) start;
3346 /* Check that it's not in the dynamic space.
3347 * FIXME: Isn't is supposed to be OK for code
3348 * objects to be in the dynamic space these days? */
3349 if (is_in_dynamic_space
3350 /* It's ok if it's byte compiled code. The trace
3351 * table offset will be a fixnum if it's x86
3352 * compiled code - check.
3354 * FIXME: #^#@@! lack of abstraction here..
3355 * This line can probably go away now that
3356 * there's no byte compiler, but I've got
3357 * too much to worry about right now to try
3358 * to make sure. -- WHN 2001-10-06 */
3359 && fixnump(code->trace_table_offset)
3360 /* Only when enabled */
3361 && verify_dynamic_code_check) {
3363 "/code object at %x in the dynamic space\n",
3367 ncode_words = fixnum_value(code->code_size);
3368 nheader_words = HeaderValue(object);
3369 nwords = ncode_words + nheader_words;
3370 nwords = CEILING(nwords, 2);
3371 /* Scavenge the boxed section of the code data block */
3372 verify_space(start + 1, nheader_words - 1);
3374 /* Scavenge the boxed section of each function
3375 * object in the code data block. */
3376 fheaderl = code->entry_points;
3377 while (fheaderl != NIL) {
3379 (struct simple_fun *) native_pointer(fheaderl);
3380 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3381 verify_space(&fheaderp->name, 1);
3382 verify_space(&fheaderp->arglist, 1);
3383 verify_space(&fheaderp->type, 1);
3384 fheaderl = fheaderp->next;
3390 /* unboxed objects */
3391 case BIGNUM_WIDETAG:
3392 #if N_WORD_BITS != 64
3393 case SINGLE_FLOAT_WIDETAG:
3395 case DOUBLE_FLOAT_WIDETAG:
3396 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3397 case LONG_FLOAT_WIDETAG:
3399 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3400 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3402 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3403 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3405 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3406 case COMPLEX_LONG_FLOAT_WIDETAG:
3408 case SIMPLE_BASE_STRING_WIDETAG:
3409 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3410 case SIMPLE_CHARACTER_STRING_WIDETAG:
3412 case SIMPLE_BIT_VECTOR_WIDETAG:
3413 case SIMPLE_ARRAY_NIL_WIDETAG:
3414 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3415 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3416 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3417 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3418 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3419 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3420 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
3421 case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
3423 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3424 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3425 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
3426 case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
3428 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3429 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3431 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3432 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3434 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3435 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3437 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3438 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3440 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3441 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3443 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3444 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3446 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
3447 case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
3449 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3450 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3452 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3453 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3454 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3455 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3457 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3458 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3460 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3461 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3463 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3464 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3467 case WEAK_POINTER_WIDETAG:
3468 #ifdef LUTEX_WIDETAG
3471 count = (sizetab[widetag_of(*start)])(start);
3476 "/Unhandled widetag 0x%x at 0x%x\n",
3477 widetag_of(*start), start));
3491 /* FIXME: It would be nice to make names consistent so that
3492 * foo_size meant size *in* *bytes* instead of size in some
3493 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3494 * Some counts of lispobjs are called foo_count; it might be good
3495 * to grep for all foo_size and rename the appropriate ones to
3497 long read_only_space_size =
3498 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3499 - (lispobj*)READ_ONLY_SPACE_START;
3500 long static_space_size =
3501 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3502 - (lispobj*)STATIC_SPACE_START;
3504 for_each_thread(th) {
3505 long binding_stack_size =
3506 (lispobj*)get_binding_stack_pointer(th)
3507 - (lispobj*)th->binding_stack_start;
3508 verify_space(th->binding_stack_start, binding_stack_size);
3510 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3511 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3515 verify_generation(generation_index_t generation)
3519 for (i = 0; i < last_free_page; i++) {
3520 if ((page_table[i].allocated != FREE_PAGE_FLAG)
3521 && (page_table[i].bytes_used != 0)
3522 && (page_table[i].gen == generation)) {
3523 page_index_t last_page;
3524 int region_allocation = page_table[i].allocated;
3526 /* This should be the start of a contiguous block */
3527 gc_assert(page_table[i].first_object_offset == 0);
3529 /* Need to find the full extent of this contiguous block in case
3530 objects span pages. */
3532 /* Now work forward until the end of this contiguous area is
3534 for (last_page = i; ;last_page++)
3535 /* Check whether this is the last page in this contiguous
3537 if ((page_table[last_page].bytes_used < PAGE_BYTES)
3538 /* Or it is PAGE_BYTES and is the last in the block */
3539 || (page_table[last_page+1].allocated != region_allocation)
3540 || (page_table[last_page+1].bytes_used == 0)
3541 || (page_table[last_page+1].gen != generation)
3542 || (page_table[last_page+1].first_object_offset == 0))
3545 verify_space(page_address(i), (page_table[last_page].bytes_used
3546 + (last_page-i)*PAGE_BYTES)/N_WORD_BYTES);
3552 /* Check that all the free space is zero filled. */
3554 verify_zero_fill(void)
3558 for (page = 0; page < last_free_page; page++) {
3559 if (page_table[page].allocated == FREE_PAGE_FLAG) {
3560 /* The whole page should be zero filled. */
3561 long *start_addr = (long *)page_address(page);
3564 for (i = 0; i < size; i++) {
3565 if (start_addr[i] != 0) {
3566 lose("free page not zero at %x\n", start_addr + i);
3570 long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
3571 if (free_bytes > 0) {
3572 long *start_addr = (long *)((unsigned long)page_address(page)
3573 + page_table[page].bytes_used);
3574 long size = free_bytes / N_WORD_BYTES;
3576 for (i = 0; i < size; i++) {
3577 if (start_addr[i] != 0) {
3578 lose("free region not zero at %x\n", start_addr + i);
3586 /* External entry point for verify_zero_fill */
3588 gencgc_verify_zero_fill(void)
3590 /* Flush the alloc regions updating the tables. */
3591 gc_alloc_update_all_page_tables();
3592 SHOW("verifying zero fill");
3597 verify_dynamic_space(void)
3599 generation_index_t i;
3601 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3602 verify_generation(i);
3604 if (gencgc_enable_verify_zero_fill)
3608 /* Write-protect all the dynamic boxed pages in the given generation. */
3610 write_protect_generation_pages(generation_index_t generation)
3614 gc_assert(generation < SCRATCH_GENERATION);
3616 for (start = 0; start < last_free_page; start++) {
3617 if ((page_table[start].allocated == BOXED_PAGE_FLAG)
3618 && (page_table[start].bytes_used != 0)
3619 && !page_table[start].dont_move
3620 && (page_table[start].gen == generation)) {
3624 /* Note the page as protected in the page tables. */
3625 page_table[start].write_protected = 1;
3627 for (last = start + 1; last < last_free_page; last++) {
3628 if ((page_table[last].allocated != BOXED_PAGE_FLAG)
3629 || (page_table[last].bytes_used == 0)
3630 || page_table[last].dont_move
3631 || (page_table[last].gen != generation))
3633 page_table[last].write_protected = 1;
3636 page_start = (void *)page_address(start);
3638 os_protect(page_start,
3639 PAGE_BYTES * (last - start),
3640 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3646 if (gencgc_verbose > 1) {
3648 "/write protected %d of %d pages in generation %d\n",
3649 count_write_protect_generation_pages(generation),
3650 count_generation_pages(generation),
3655 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3658 scavenge_control_stack()
3660 unsigned long control_stack_size;
3662 /* This is going to be a big problem when we try to port threads
3664 struct thread *th = arch_os_get_current_thread();
3665 lispobj *control_stack =
3666 (lispobj *)(th->control_stack_start);
3668 control_stack_size = current_control_stack_pointer - control_stack;
3669 scavenge(control_stack, control_stack_size);
3672 /* Scavenging Interrupt Contexts */
3674 static int boxed_registers[] = BOXED_REGISTERS;
3677 scavenge_interrupt_context(os_context_t * context)
3683 unsigned long lip_offset;
3684 int lip_register_pair;
3686 unsigned long pc_code_offset;
3688 #ifdef ARCH_HAS_LINK_REGISTER
3689 unsigned long lr_code_offset;
3691 #ifdef ARCH_HAS_NPC_REGISTER
3692 unsigned long npc_code_offset;
3696 /* Find the LIP's register pair and calculate it's offset */
3697 /* before we scavenge the context. */
3700 * I (RLT) think this is trying to find the boxed register that is
3701 * closest to the LIP address, without going past it. Usually, it's
3702 * reg_CODE or reg_LRA. But sometimes, nothing can be found.
3704 lip = *os_context_register_addr(context, reg_LIP);
3705 lip_offset = 0x7FFFFFFF;
3706 lip_register_pair = -1;
3707 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3712 index = boxed_registers[i];
3713 reg = *os_context_register_addr(context, index);
3714 if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
3716 if (offset < lip_offset) {
3717 lip_offset = offset;
3718 lip_register_pair = index;
3722 #endif /* reg_LIP */
3724 /* Compute the PC's offset from the start of the CODE */
3726 pc_code_offset = *os_context_pc_addr(context) - *os_context_register_addr(context, reg_CODE);
3727 #ifdef ARCH_HAS_NPC_REGISTER
3728 npc_code_offset = *os_context_npc_addr(context) - *os_context_register_addr(context, reg_CODE);
3729 #endif /* ARCH_HAS_NPC_REGISTER */
3731 #ifdef ARCH_HAS_LINK_REGISTER
3733 *os_context_lr_addr(context) -
3734 *os_context_register_addr(context, reg_CODE);
3737 /* Scanvenge all boxed registers in the context. */
3738 for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
3742 index = boxed_registers[i];
3743 foo = *os_context_register_addr(context, index);
3745 *os_context_register_addr(context, index) = foo;
3747 scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
3754 * But what happens if lip_register_pair is -1? *os_context_register_addr on Solaris
3755 * (see solaris_register_address in solaris-os.c) will return
3756 * &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
3757 * that what we really want? My guess is that that is not what we
3758 * want, so if lip_register_pair is -1, we don't touch reg_LIP at
3759 * all. But maybe it doesn't really matter if LIP is trashed?
3761 if (lip_register_pair >= 0) {
3762 *os_context_register_addr(context, reg_LIP) =
3763 *os_context_register_addr(context, lip_register_pair) + lip_offset;
3765 #endif /* reg_LIP */
3767 /* Fix the PC if it was in from space */
3768 if (from_space_p(*os_context_pc_addr(context)))
3769 *os_context_pc_addr(context) = *os_context_register_addr(context, reg_CODE) + pc_code_offset;
3771 #ifdef ARCH_HAS_LINK_REGISTER
3772 /* Fix the LR ditto; important if we're being called from
3773 * an assembly routine that expects to return using blr, otherwise
3775 if (from_space_p(*os_context_lr_addr(context)))
3776 *os_context_lr_addr(context) =
3777 *os_context_register_addr(context, reg_CODE) + lr_code_offset;
3780 #ifdef ARCH_HAS_NPC_REGISTER
3781 if (from_space_p(*os_context_npc_addr(context)))
3782 *os_context_npc_addr(context) = *os_context_register_addr(context, reg_CODE) + npc_code_offset;
3783 #endif /* ARCH_HAS_NPC_REGISTER */
3787 scavenge_interrupt_contexts(void)
3790 os_context_t *context;
3792 struct thread *th=arch_os_get_current_thread();
3794 index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
3796 #if defined(DEBUG_PRINT_CONTEXT_INDEX)
3797 printf("Number of active contexts: %d\n", index);
3800 for (i = 0; i < index; i++) {
3801 context = th->interrupt_contexts[i];
3802 scavenge_interrupt_context(context);
3808 #if defined(LISP_FEATURE_SB_THREAD)
3810 preserve_context_registers (os_context_t *c)
3813 /* On Darwin the signal context isn't a contiguous block of memory,
3814 * so just preserve_pointering its contents won't be sufficient.
3816 #if defined(LISP_FEATURE_DARWIN)
3817 #if defined LISP_FEATURE_X86
3818 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3819 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3820 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3821 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3822 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3823 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3824 preserve_pointer((void*)*os_context_pc_addr(c));
3825 #elif defined LISP_FEATURE_X86_64
3826 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3827 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3828 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3829 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3830 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3831 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3832 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3833 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3834 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3835 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3836 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3837 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3838 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3839 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3840 preserve_pointer((void*)*os_context_pc_addr(c));
3842 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3845 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3846 preserve_pointer(*ptr);
3851 /* Garbage collect a generation. If raise is 0 then the remains of the
3852 * generation are not raised to the next generation. */
3854 garbage_collect_generation(generation_index_t generation, int raise)
3856 unsigned long bytes_freed;
3858 unsigned long static_space_size;
3860 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3862 /* The oldest generation can't be raised. */
3863 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3865 /* Check if weak hash tables were processed in the previous GC. */
3866 gc_assert(weak_hash_tables == NULL);
3868 /* Initialize the weak pointer list. */
3869 weak_pointers = NULL;
3871 #ifdef LUTEX_WIDETAG
3872 unmark_lutexes(generation);
3875 /* When a generation is not being raised it is transported to a
3876 * temporary generation (NUM_GENERATIONS), and lowered when
3877 * done. Set up this new generation. There should be no pages
3878 * allocated to it yet. */
3880 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3883 /* Set the global src and dest. generations */
3884 from_space = generation;
3886 new_space = generation+1;
3888 new_space = SCRATCH_GENERATION;
3890 /* Change to a new space for allocation, resetting the alloc_start_page */
3891 gc_alloc_generation = new_space;
3892 generations[new_space].alloc_start_page = 0;
3893 generations[new_space].alloc_unboxed_start_page = 0;
3894 generations[new_space].alloc_large_start_page = 0;
3895 generations[new_space].alloc_large_unboxed_start_page = 0;
3897 /* Before any pointers are preserved, the dont_move flags on the
3898 * pages need to be cleared. */
3899 for (i = 0; i < last_free_page; i++)
3900 if(page_table[i].gen==from_space)
3901 page_table[i].dont_move = 0;
3903 /* Un-write-protect the old-space pages. This is essential for the
3904 * promoted pages as they may contain pointers into the old-space
3905 * which need to be scavenged. It also helps avoid unnecessary page
3906 * faults as forwarding pointers are written into them. They need to
3907 * be un-protected anyway before unmapping later. */
3908 unprotect_oldspace();
3910 /* Scavenge the stacks' conservative roots. */
3912 /* there are potentially two stacks for each thread: the main
3913 * stack, which may contain Lisp pointers, and the alternate stack.
3914 * We don't ever run Lisp code on the altstack, but it may
3915 * host a sigcontext with lisp objects in it */
3917 /* what we need to do: (1) find the stack pointer for the main
3918 * stack; scavenge it (2) find the interrupt context on the
3919 * alternate stack that might contain lisp values, and scavenge
3922 /* we assume that none of the preceding applies to the thread that
3923 * initiates GC. If you ever call GC from inside an altstack
3924 * handler, you will lose. */
3926 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3927 /* And if we're saving a core, there's no point in being conservative. */
3928 if (conservative_stack) {
3929 for_each_thread(th) {
3931 void **esp=(void **)-1;
3932 #ifdef LISP_FEATURE_SB_THREAD
3934 if(th==arch_os_get_current_thread()) {
3935 /* Somebody is going to burn in hell for this, but casting
3936 * it in two steps shuts gcc up about strict aliasing. */
3937 esp = (void **)((void *)&raise);
3940 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3941 for(i=free-1;i>=0;i--) {
3942 os_context_t *c=th->interrupt_contexts[i];
3943 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3944 if (esp1>=(void **)th->control_stack_start &&
3945 esp1<(void **)th->control_stack_end) {
3946 if(esp1<esp) esp=esp1;
3947 preserve_context_registers(c);
3952 esp = (void **)((void *)&raise);
3954 for (ptr = ((void **)th->control_stack_end)-1; ptr > esp; ptr--) {
3955 preserve_pointer(*ptr);
3962 if (gencgc_verbose > 1) {
3963 long num_dont_move_pages = count_dont_move_pages();
3965 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3966 num_dont_move_pages,
3967 num_dont_move_pages * PAGE_BYTES);
3971 /* Scavenge all the rest of the roots. */
3973 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3975 * If not x86, we need to scavenge the interrupt context(s) and the
3978 scavenge_interrupt_contexts();
3979 scavenge_control_stack();
3982 /* Scavenge the Lisp functions of the interrupt handlers, taking
3983 * care to avoid SIG_DFL and SIG_IGN. */
3984 for (i = 0; i < NSIG; i++) {
3985 union interrupt_handler handler = interrupt_handlers[i];
3986 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3987 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3988 scavenge((lispobj *)(interrupt_handlers + i), 1);
3991 /* Scavenge the binding stacks. */
3994 for_each_thread(th) {
3995 long len= (lispobj *)get_binding_stack_pointer(th) -
3996 th->binding_stack_start;
3997 scavenge((lispobj *) th->binding_stack_start,len);
3998 #ifdef LISP_FEATURE_SB_THREAD
3999 /* do the tls as well */
4000 len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
4001 (sizeof (struct thread))/(sizeof (lispobj));
4002 scavenge((lispobj *) (th+1),len);
4007 /* The original CMU CL code had scavenge-read-only-space code
4008 * controlled by the Lisp-level variable
4009 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
4010 * wasn't documented under what circumstances it was useful or
4011 * safe to turn it on, so it's been turned off in SBCL. If you
4012 * want/need this functionality, and can test and document it,
4013 * please submit a patch. */
4015 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
4016 unsigned long read_only_space_size =
4017 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
4018 (lispobj*)READ_ONLY_SPACE_START;
4020 "/scavenge read only space: %d bytes\n",
4021 read_only_space_size * sizeof(lispobj)));
4022 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
4026 /* Scavenge static space. */
4028 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
4029 (lispobj *)STATIC_SPACE_START;
4030 if (gencgc_verbose > 1) {
4032 "/scavenge static space: %d bytes\n",
4033 static_space_size * sizeof(lispobj)));
4035 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
4037 /* All generations but the generation being GCed need to be
4038 * scavenged. The new_space generation needs special handling as
4039 * objects may be moved in - it is handled separately below. */
4040 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
4042 /* Finally scavenge the new_space generation. Keep going until no
4043 * more objects are moved into the new generation */
4044 scavenge_newspace_generation(new_space);
4046 /* FIXME: I tried reenabling this check when debugging unrelated
4047 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
4048 * Since the current GC code seems to work well, I'm guessing that
4049 * this debugging code is just stale, but I haven't tried to
4050 * figure it out. It should be figured out and then either made to
4051 * work or just deleted. */
4052 #define RESCAN_CHECK 0
4054 /* As a check re-scavenge the newspace once; no new objects should
4057 long old_bytes_allocated = bytes_allocated;
4058 long bytes_allocated;
4060 /* Start with a full scavenge. */
4061 scavenge_newspace_generation_one_scan(new_space);
4063 /* Flush the current regions, updating the tables. */
4064 gc_alloc_update_all_page_tables();
4066 bytes_allocated = bytes_allocated - old_bytes_allocated;
4068 if (bytes_allocated != 0) {
4069 lose("Rescan of new_space allocated %d more bytes.\n",
4075 scan_weak_hash_tables();
4076 scan_weak_pointers();
4078 /* Flush the current regions, updating the tables. */
4079 gc_alloc_update_all_page_tables();
4081 /* Free the pages in oldspace, but not those marked dont_move. */
4082 bytes_freed = free_oldspace();
4084 /* If the GC is not raising the age then lower the generation back
4085 * to its normal generation number */
4087 for (i = 0; i < last_free_page; i++)
4088 if ((page_table[i].bytes_used != 0)
4089 && (page_table[i].gen == SCRATCH_GENERATION))
4090 page_table[i].gen = generation;
4091 gc_assert(generations[generation].bytes_allocated == 0);
4092 generations[generation].bytes_allocated =
4093 generations[SCRATCH_GENERATION].bytes_allocated;
4094 generations[SCRATCH_GENERATION].bytes_allocated = 0;
4097 /* Reset the alloc_start_page for generation. */
4098 generations[generation].alloc_start_page = 0;
4099 generations[generation].alloc_unboxed_start_page = 0;
4100 generations[generation].alloc_large_start_page = 0;
4101 generations[generation].alloc_large_unboxed_start_page = 0;
4103 if (generation >= verify_gens) {
4107 verify_dynamic_space();
4110 /* Set the new gc trigger for the GCed generation. */
4111 generations[generation].gc_trigger =
4112 generations[generation].bytes_allocated
4113 + generations[generation].bytes_consed_between_gc;
4116 generations[generation].num_gc = 0;
4118 ++generations[generation].num_gc;
4120 #ifdef LUTEX_WIDETAG
4121 reap_lutexes(generation);
4123 move_lutexes(generation, generation+1);
4127 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
4129 update_dynamic_space_free_pointer(void)
4131 page_index_t last_page = -1, i;
4133 for (i = 0; i < last_free_page; i++)
4134 if ((page_table[i].allocated != FREE_PAGE_FLAG)
4135 && (page_table[i].bytes_used != 0))
4138 last_free_page = last_page+1;
4140 set_alloc_pointer((lispobj)(((char *)heap_base) + last_free_page*PAGE_BYTES));
4141 return 0; /* dummy value: return something ... */
4145 remap_free_pages (page_index_t from, page_index_t to)
4147 page_index_t first_page, last_page;
4149 for (first_page = from; first_page <= to; first_page++) {
4150 if (page_table[first_page].allocated != FREE_PAGE_FLAG ||
4151 page_table[first_page].need_to_zero == 0) {
4155 last_page = first_page + 1;
4156 while (page_table[last_page].allocated == FREE_PAGE_FLAG &&
4158 page_table[last_page].need_to_zero == 1) {
4162 /* There's a mysterious Solaris/x86 problem with using mmap
4163 * tricks for memory zeroing. See sbcl-devel thread
4164 * "Re: patch: standalone executable redux".
4166 #if defined(LISP_FEATURE_SUNOS)
4167 zero_pages(first_page, last_page-1);
4169 zero_pages_with_mmap(first_page, last_page-1);
4172 first_page = last_page;
4176 generation_index_t small_generation_limit = 1;
4178 /* GC all generations newer than last_gen, raising the objects in each
4179 * to the next older generation - we finish when all generations below
4180 * last_gen are empty. Then if last_gen is due for a GC, or if
4181 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
4182 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
4184 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4185 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4187 collect_garbage(generation_index_t last_gen)
4189 generation_index_t gen = 0, i;
4192 /* The largest value of last_free_page seen since the time
4193 * remap_free_pages was called. */
4194 static page_index_t high_water_mark = 0;
4196 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4200 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4202 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4207 /* Flush the alloc regions updating the tables. */
4208 gc_alloc_update_all_page_tables();
4210 /* Verify the new objects created by Lisp code. */
4211 if (pre_verify_gen_0) {
4212 FSHOW((stderr, "pre-checking generation 0\n"));
4213 verify_generation(0);
4216 if (gencgc_verbose > 1)
4217 print_generation_stats(0);
4220 /* Collect the generation. */
4222 if (gen >= gencgc_oldest_gen_to_gc) {
4223 /* Never raise the oldest generation. */
4228 || (generations[gen].num_gc >= generations[gen].trigger_age);
4231 if (gencgc_verbose > 1) {
4233 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4236 generations[gen].bytes_allocated,
4237 generations[gen].gc_trigger,
4238 generations[gen].num_gc));
4241 /* If an older generation is being filled, then update its
4244 generations[gen+1].cum_sum_bytes_allocated +=
4245 generations[gen+1].bytes_allocated;
4248 garbage_collect_generation(gen, raise);
4250 /* Reset the memory age cum_sum. */
4251 generations[gen].cum_sum_bytes_allocated = 0;
4253 if (gencgc_verbose > 1) {
4254 FSHOW((stderr, "GC of generation %d finished:\n", gen));
4255 print_generation_stats(0);
4259 } while ((gen <= gencgc_oldest_gen_to_gc)
4260 && ((gen < last_gen)
4261 || ((gen <= gencgc_oldest_gen_to_gc)
4263 && (generations[gen].bytes_allocated
4264 > generations[gen].gc_trigger)
4265 && (gen_av_mem_age(gen)
4266 > generations[gen].min_av_mem_age))));
4268 /* Now if gen-1 was raised all generations before gen are empty.
4269 * If it wasn't raised then all generations before gen-1 are empty.
4271 * Now objects within this gen's pages cannot point to younger
4272 * generations unless they are written to. This can be exploited
4273 * by write-protecting the pages of gen; then when younger
4274 * generations are GCed only the pages which have been written
4279 gen_to_wp = gen - 1;
4281 /* There's not much point in WPing pages in generation 0 as it is
4282 * never scavenged (except promoted pages). */
4283 if ((gen_to_wp > 0) && enable_page_protection) {
4284 /* Check that they are all empty. */
4285 for (i = 0; i < gen_to_wp; i++) {
4286 if (generations[i].bytes_allocated)
4287 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4290 write_protect_generation_pages(gen_to_wp);
4293 /* Set gc_alloc() back to generation 0. The current regions should
4294 * be flushed after the above GCs. */
4295 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4296 gc_alloc_generation = 0;
4298 /* Save the high-water mark before updating last_free_page */
4299 if (last_free_page > high_water_mark)
4300 high_water_mark = last_free_page;
4302 update_dynamic_space_free_pointer();
4304 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4306 fprintf(stderr,"Next gc when %ld bytes have been consed\n",
4309 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4312 if (gen > small_generation_limit) {
4313 if (last_free_page > high_water_mark)
4314 high_water_mark = last_free_page;
4315 remap_free_pages(0, high_water_mark);
4316 high_water_mark = 0;
4321 SHOW("returning from collect_garbage");
4324 /* This is called by Lisp PURIFY when it is finished. All live objects
4325 * will have been moved to the RO and Static heaps. The dynamic space
4326 * will need a full re-initialization. We don't bother having Lisp
4327 * PURIFY flush the current gc_alloc() region, as the page_tables are
4328 * re-initialized, and every page is zeroed to be sure. */
4334 if (gencgc_verbose > 1)
4335 SHOW("entering gc_free_heap");
4337 for (page = 0; page < page_table_pages; page++) {
4338 /* Skip free pages which should already be zero filled. */
4339 if (page_table[page].allocated != FREE_PAGE_FLAG) {
4340 void *page_start, *addr;
4342 /* Mark the page free. The other slots are assumed invalid
4343 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
4344 * should not be write-protected -- except that the
4345 * generation is used for the current region but it sets
4347 page_table[page].allocated = FREE_PAGE_FLAG;
4348 page_table[page].bytes_used = 0;
4350 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure about this change. */
4351 /* Zero the page. */
4352 page_start = (void *)page_address(page);
4354 /* First, remove any write-protection. */
4355 os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
4356 page_table[page].write_protected = 0;
4358 os_invalidate(page_start,PAGE_BYTES);
4359 addr = os_validate(page_start,PAGE_BYTES);
4360 if (addr == NULL || addr != page_start) {
4361 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
4366 page_table[page].write_protected = 0;
4368 } else if (gencgc_zero_check_during_free_heap) {
4369 /* Double-check that the page is zero filled. */
4372 gc_assert(page_table[page].allocated == FREE_PAGE_FLAG);
4373 gc_assert(page_table[page].bytes_used == 0);
4374 page_start = (long *)page_address(page);
4375 for (i=0; i<1024; i++) {
4376 if (page_start[i] != 0) {
4377 lose("free region not zero at %x\n", page_start + i);
4383 bytes_allocated = 0;
4385 /* Initialize the generations. */
4386 for (page = 0; page < NUM_GENERATIONS; page++) {
4387 generations[page].alloc_start_page = 0;
4388 generations[page].alloc_unboxed_start_page = 0;
4389 generations[page].alloc_large_start_page = 0;
4390 generations[page].alloc_large_unboxed_start_page = 0;
4391 generations[page].bytes_allocated = 0;
4392 generations[page].gc_trigger = 2000000;
4393 generations[page].num_gc = 0;
4394 generations[page].cum_sum_bytes_allocated = 0;
4395 generations[page].lutexes = NULL;
4398 if (gencgc_verbose > 1)
4399 print_generation_stats(0);
4401 /* Initialize gc_alloc(). */
4402 gc_alloc_generation = 0;
4404 gc_set_region_empty(&boxed_region);
4405 gc_set_region_empty(&unboxed_region);
4408 set_alloc_pointer((lispobj)((char *)heap_base));
4410 if (verify_after_free_heap) {
4411 /* Check whether purify has left any bad pointers. */
4413 SHOW("checking after free_heap\n");
4423 /* Compute the number of pages needed for the dynamic space.
4424 * Dynamic space size should be aligned on page size. */
4425 page_table_pages = dynamic_space_size/PAGE_BYTES;
4426 gc_assert(dynamic_space_size == (size_t) page_table_pages*PAGE_BYTES);
4428 page_table = calloc(page_table_pages, sizeof(struct page));
4429 gc_assert(page_table);
4432 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4433 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4435 #ifdef LUTEX_WIDETAG
4436 scavtab[LUTEX_WIDETAG] = scav_lutex;
4437 transother[LUTEX_WIDETAG] = trans_lutex;
4438 sizetab[LUTEX_WIDETAG] = size_lutex;
4441 heap_base = (void*)DYNAMIC_SPACE_START;
4443 /* Initialize each page structure. */
4444 for (i = 0; i < page_table_pages; i++) {
4445 /* Initialize all pages as free. */
4446 page_table[i].allocated = FREE_PAGE_FLAG;
4447 page_table[i].bytes_used = 0;
4449 /* Pages are not write-protected at startup. */
4450 page_table[i].write_protected = 0;
4453 bytes_allocated = 0;
4455 /* Initialize the generations.
4457 * FIXME: very similar to code in gc_free_heap(), should be shared */
4458 for (i = 0; i < NUM_GENERATIONS; i++) {
4459 generations[i].alloc_start_page = 0;
4460 generations[i].alloc_unboxed_start_page = 0;
4461 generations[i].alloc_large_start_page = 0;
4462 generations[i].alloc_large_unboxed_start_page = 0;
4463 generations[i].bytes_allocated = 0;
4464 generations[i].gc_trigger = 2000000;
4465 generations[i].num_gc = 0;
4466 generations[i].cum_sum_bytes_allocated = 0;
4467 /* the tune-able parameters */
4468 generations[i].bytes_consed_between_gc = 2000000;
4469 generations[i].trigger_age = 1;
4470 generations[i].min_av_mem_age = 0.75;
4471 generations[i].lutexes = NULL;
4474 /* Initialize gc_alloc. */
4475 gc_alloc_generation = 0;
4476 gc_set_region_empty(&boxed_region);
4477 gc_set_region_empty(&unboxed_region);
4482 /* Pick up the dynamic space from after a core load.
4484 * The ALLOCATION_POINTER points to the end of the dynamic space.
4488 gencgc_pickup_dynamic(void)
4490 page_index_t page = 0;
4491 long alloc_ptr = get_alloc_pointer();
4492 lispobj *prev=(lispobj *)page_address(page);
4493 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4496 lispobj *first,*ptr= (lispobj *)page_address(page);
4497 page_table[page].allocated = BOXED_PAGE_FLAG;
4498 page_table[page].gen = gen;
4499 page_table[page].bytes_used = PAGE_BYTES;
4500 page_table[page].large_object = 0;
4501 page_table[page].write_protected = 0;
4502 page_table[page].write_protected_cleared = 0;
4503 page_table[page].dont_move = 0;
4504 page_table[page].need_to_zero = 1;
4506 if (!gencgc_partial_pickup) {
4507 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4508 if(ptr == first) prev=ptr;
4509 page_table[page].first_object_offset =
4510 (void *)prev - page_address(page);
4513 } while ((long)page_address(page) < alloc_ptr);
4515 #ifdef LUTEX_WIDETAG
4516 /* Lutexes have been registered in generation 0 by coreparse, and
4517 * need to be moved to the right one manually.
4519 move_lutexes(0, PSEUDO_STATIC_GENERATION);
4522 last_free_page = page;
4524 generations[gen].bytes_allocated = PAGE_BYTES*page;
4525 bytes_allocated = PAGE_BYTES*page;
4527 gc_alloc_update_all_page_tables();
4528 write_protect_generation_pages(gen);
4532 gc_initialize_pointers(void)
4534 gencgc_pickup_dynamic();
4540 /* alloc(..) is the external interface for memory allocation. It
4541 * allocates to generation 0. It is not called from within the garbage
4542 * collector as it is only external uses that need the check for heap
4543 * size (GC trigger) and to disable the interrupts (interrupts are
4544 * always disabled during a GC).
4546 * The vops that call alloc(..) assume that the returned space is zero-filled.
4547 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4549 * The check for a GC trigger is only performed when the current
4550 * region is full, so in most cases it's not needed. */
4555 struct thread *thread=arch_os_get_current_thread();
4556 struct alloc_region *region=
4557 #ifdef LISP_FEATURE_SB_THREAD
4558 thread ? &(thread->alloc_region) : &boxed_region;
4562 #ifndef LISP_FEATURE_WIN32
4563 lispobj alloc_signal;
4566 void *new_free_pointer;
4568 gc_assert(nbytes>0);
4570 /* Check for alignment allocation problems. */
4571 gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
4572 && ((nbytes & LOWTAG_MASK) == 0));
4576 /* there are a few places in the C code that allocate data in the
4577 * heap before Lisp starts. This is before interrupts are enabled,
4578 * so we don't need to check for pseudo-atomic */
4579 #ifdef LISP_FEATURE_SB_THREAD
4580 if(!get_psuedo_atomic_atomic(th)) {
4582 fprintf(stderr, "fatal error in thread 0x%x, tid=%ld\n",
4584 __asm__("movl %fs,%0" : "=r" (fs) : );
4585 fprintf(stderr, "fs is %x, th->tls_cookie=%x \n",
4586 debug_get_fs(),th->tls_cookie);
4587 lose("If you see this message before 2004.01.31, mail details to sbcl-devel\n");
4590 gc_assert(get_pseudo_atomic_atomic(th));
4594 /* maybe we can do this quickly ... */
4595 new_free_pointer = region->free_pointer + nbytes;
4596 if (new_free_pointer <= region->end_addr) {
4597 new_obj = (void*)(region->free_pointer);
4598 region->free_pointer = new_free_pointer;
4599 return(new_obj); /* yup */
4602 /* we have to go the long way around, it seems. Check whether
4603 * we should GC in the near future
4605 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4606 gc_assert(get_pseudo_atomic_atomic(thread));
4607 /* Don't flood the system with interrupts if the need to gc is
4608 * already noted. This can happen for example when SUB-GC
4609 * allocates or after a gc triggered in a WITHOUT-GCING. */
4610 if (SymbolValue(GC_PENDING,thread) == NIL) {
4611 /* set things up so that GC happens when we finish the PA
4613 SetSymbolValue(GC_PENDING,T,thread);
4614 if (SymbolValue(GC_INHIBIT,thread) == NIL)
4615 set_pseudo_atomic_interrupted(thread);
4618 new_obj = gc_alloc_with_region(nbytes,0,region,0);
4620 #ifndef LISP_FEATURE_WIN32
4621 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4622 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4623 if ((signed long) alloc_signal <= 0) {
4624 #ifdef LISP_FEATURE_SB_THREAD
4625 kill_thread_safely(thread->os_thread, SIGPROF);
4630 SetSymbolValue(ALLOC_SIGNAL,
4631 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4641 * shared support for the OS-dependent signal handlers which
4642 * catch GENCGC-related write-protect violations
4645 void unhandled_sigmemoryfault(void);
4647 /* Depending on which OS we're running under, different signals might
4648 * be raised for a violation of write protection in the heap. This
4649 * function factors out the common generational GC magic which needs
4650 * to invoked in this case, and should be called from whatever signal
4651 * handler is appropriate for the OS we're running under.
4653 * Return true if this signal is a normal generational GC thing that
4654 * we were able to handle, or false if it was abnormal and control
4655 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4658 gencgc_handle_wp_violation(void* fault_addr)
4660 page_index_t page_index = find_page_index(fault_addr);
4662 #ifdef QSHOW_SIGNALS
4663 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4664 fault_addr, page_index));
4667 /* Check whether the fault is within the dynamic space. */
4668 if (page_index == (-1)) {
4670 /* It can be helpful to be able to put a breakpoint on this
4671 * case to help diagnose low-level problems. */
4672 unhandled_sigmemoryfault();
4674 /* not within the dynamic space -- not our responsibility */
4678 if (page_table[page_index].write_protected) {
4679 /* Unprotect the page. */
4680 os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
4681 page_table[page_index].write_protected_cleared = 1;
4682 page_table[page_index].write_protected = 0;
4684 /* The only acceptable reason for this signal on a heap
4685 * access is that GENCGC write-protected the page.
4686 * However, if two CPUs hit a wp page near-simultaneously,
4687 * we had better not have the second one lose here if it
4688 * does this test after the first one has already set wp=0
4690 if(page_table[page_index].write_protected_cleared != 1)
4691 lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
4692 page_index, boxed_region.first_page, boxed_region.last_page);
4694 /* Don't worry, we can handle it. */
4698 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4699 * it's not just a case of the program hitting the write barrier, and
4700 * are about to let Lisp deal with it. It's basically just a
4701 * convenient place to set a gdb breakpoint. */
4703 unhandled_sigmemoryfault()
4706 void gc_alloc_update_all_page_tables(void)
4708 /* Flush the alloc regions updating the tables. */
4711 gc_alloc_update_page_tables(0, &th->alloc_region);
4712 gc_alloc_update_page_tables(1, &unboxed_region);
4713 gc_alloc_update_page_tables(0, &boxed_region);
4717 gc_set_region_empty(struct alloc_region *region)
4719 region->first_page = 0;
4720 region->last_page = -1;
4721 region->start_addr = page_address(0);
4722 region->free_pointer = page_address(0);
4723 region->end_addr = page_address(0);
4727 zero_all_free_pages()
4731 for (i = 0; i < last_free_page; i++) {
4732 if (page_table[i].allocated == FREE_PAGE_FLAG) {
4733 #ifdef READ_PROTECT_FREE_PAGES
4734 os_protect(page_address(i),
4743 /* Things to do before doing a final GC before saving a core (without
4746 * + Pages in large_object pages aren't moved by the GC, so we need to
4747 * unset that flag from all pages.
4748 * + The pseudo-static generation isn't normally collected, but it seems
4749 * reasonable to collect it at least when saving a core. So move the
4750 * pages to a normal generation.
4753 prepare_for_final_gc ()
4756 for (i = 0; i < last_free_page; i++) {
4757 page_table[i].large_object = 0;
4758 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4759 int used = page_table[i].bytes_used;
4760 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4761 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4762 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4768 /* Do a non-conservative GC, and then save a core with the initial
4769 * function being set to the value of the static symbol
4770 * SB!VM:RESTART-LISP-FUNCTION */
4772 gc_and_save(char *filename, int prepend_runtime)
4775 void *runtime_bytes = NULL;
4776 size_t runtime_size;
4778 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4783 conservative_stack = 0;
4785 /* The filename might come from Lisp, and be moved by the now
4786 * non-conservative GC. */
4787 filename = strdup(filename);
4789 /* Collect twice: once into relatively high memory, and then back
4790 * into low memory. This compacts the retained data into the lower
4791 * pages, minimizing the size of the core file.
4793 prepare_for_final_gc();
4794 gencgc_alloc_start_page = last_free_page;
4795 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4797 prepare_for_final_gc();
4798 gencgc_alloc_start_page = -1;
4799 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4801 if (prepend_runtime)
4802 save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
4804 /* The dumper doesn't know that pages need to be zeroed before use. */
4805 zero_all_free_pages();
4806 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4808 /* Oops. Save still managed to fail. Since we've mangled the stack
4809 * beyond hope, there's not much we can do.
4810 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4811 * going to be rather unsatisfactory too... */
4812 lose("Attempt to save core after non-conservative GC failed.\n");