2 * GENerational Conservative Garbage Collector for SBCL
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
32 #if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
33 #include "pthreads_win32.h"
41 #include "interrupt.h"
46 #include "gc-internal.h"
48 #include "pseudo-atomic.h"
50 #include "genesis/vector.h"
51 #include "genesis/weak-pointer.h"
52 #include "genesis/fdefn.h"
53 #include "genesis/simple-fun.h"
55 #include "genesis/hash-table.h"
56 #include "genesis/instance.h"
57 #include "genesis/layout.h"
59 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
60 #include "genesis/cons.h"
63 /* forward declarations */
64 page_index_t gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
72 /* Generations 0-5 are normal collected generations, 6 is only used as
73 * scratch space by the collector, and should never get collected.
76 SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
80 /* Should we use page protection to help avoid the scavenging of pages
81 * that don't have pointers to younger generations? */
82 boolean enable_page_protection = 1;
84 /* the minimum size (in bytes) for a large object*/
85 #if (GENCGC_ALLOC_GRANULARITY >= PAGE_BYTES) && (GENCGC_ALLOC_GRANULARITY >= GENCGC_CARD_BYTES)
86 os_vm_size_t large_object_size = 4 * GENCGC_ALLOC_GRANULARITY;
87 #elif (GENCGC_CARD_BYTES >= PAGE_BYTES) && (GENCGC_CARD_BYTES >= GENCGC_ALLOC_GRANULARITY)
88 os_vm_size_t large_object_size = 4 * GENCGC_CARD_BYTES;
90 os_vm_size_t large_object_size = 4 * PAGE_BYTES;
93 /* Largest allocation seen since last GC. */
94 os_vm_size_t large_allocation = 0;
101 /* the verbosity level. All non-error messages are disabled at level 0;
102 * and only a few rare messages are printed at level 1. */
104 boolean gencgc_verbose = 1;
106 boolean gencgc_verbose = 0;
109 /* FIXME: At some point enable the various error-checking things below
110 * and see what they say. */
112 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
113 * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
115 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
117 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
118 boolean pre_verify_gen_0 = 0;
120 /* Should we check for bad pointers after gc_free_heap is called
121 * from Lisp PURIFY? */
122 boolean verify_after_free_heap = 0;
124 /* Should we print a note when code objects are found in the dynamic space
125 * during a heap verify? */
126 boolean verify_dynamic_code_check = 0;
128 #ifdef LISP_FEATURE_X86
129 /* Should we check code objects for fixup errors after they are transported? */
130 boolean check_code_fixups = 0;
133 /* Should we check that newly allocated regions are zero filled? */
134 boolean gencgc_zero_check = 0;
136 /* Should we check that the free space is zero filled? */
137 boolean gencgc_enable_verify_zero_fill = 0;
139 /* Should we check that free pages are zero filled during gc_free_heap
140 * called after Lisp PURIFY? */
141 boolean gencgc_zero_check_during_free_heap = 0;
143 /* When loading a core, don't do a full scan of the memory for the
144 * memory region boundaries. (Set to true by coreparse.c if the core
145 * contained a pagetable entry).
147 boolean gencgc_partial_pickup = 0;
149 /* If defined, free pages are read-protected to ensure that nothing
153 /* #define READ_PROTECT_FREE_PAGES */
157 * GC structures and variables
160 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
161 os_vm_size_t bytes_allocated = 0;
162 os_vm_size_t auto_gc_trigger = 0;
164 /* the source and destination generations. These are set before a GC starts
166 generation_index_t from_space;
167 generation_index_t new_space;
169 /* Set to 1 when in GC */
170 boolean gc_active_p = 0;
172 /* should the GC be conservative on stack. If false (only right before
173 * saving a core), don't scan the stack / mark pages dont_move. */
174 static boolean conservative_stack = 1;
176 /* An array of page structures is allocated on gc initialization.
177 * This helps to quickly map between an address and its page structure.
178 * page_table_pages is set from the size of the dynamic space. */
179 page_index_t page_table_pages;
180 struct page *page_table;
182 static inline boolean page_allocated_p(page_index_t page) {
183 return (page_table[page].allocated != FREE_PAGE_FLAG);
186 static inline boolean page_no_region_p(page_index_t page) {
187 return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
190 static inline boolean page_allocated_no_region_p(page_index_t page) {
191 return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
192 && page_no_region_p(page));
195 static inline boolean page_free_p(page_index_t page) {
196 return (page_table[page].allocated == FREE_PAGE_FLAG);
199 static inline boolean page_boxed_p(page_index_t page) {
200 return (page_table[page].allocated & BOXED_PAGE_FLAG);
203 static inline boolean code_page_p(page_index_t page) {
204 return (page_table[page].allocated & CODE_PAGE_FLAG);
207 static inline boolean page_boxed_no_region_p(page_index_t page) {
208 return page_boxed_p(page) && page_no_region_p(page);
211 static inline boolean page_unboxed_p(page_index_t page) {
212 /* Both flags set == boxed code page */
213 return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
214 && !page_boxed_p(page));
217 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
218 return (page_boxed_no_region_p(page)
219 && (page_table[page].bytes_used != 0)
220 && !page_table[page].dont_move
221 && (page_table[page].gen == generation));
224 /* To map addresses to page structures the address of the first page
226 void *heap_base = NULL;
228 /* Calculate the start address for the given page number. */
230 page_address(page_index_t page_num)
232 return (heap_base + (page_num * GENCGC_CARD_BYTES));
235 /* Calculate the address where the allocation region associated with
236 * the page starts. */
238 page_scan_start(page_index_t page_index)
240 return page_address(page_index)-page_table[page_index].scan_start_offset;
243 /* True if the page starts a contiguous block. */
244 static inline boolean
245 page_starts_contiguous_block_p(page_index_t page_index)
247 return page_table[page_index].scan_start_offset == 0;
250 /* True if the page is the last page in a contiguous block. */
251 static inline boolean
252 page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
254 return (/* page doesn't fill block */
255 (page_table[page_index].bytes_used < GENCGC_CARD_BYTES)
256 /* page is last allocated page */
257 || ((page_index + 1) >= last_free_page)
259 || page_free_p(page_index + 1)
260 /* next page contains no data */
261 || (page_table[page_index + 1].bytes_used == 0)
262 /* next page is in different generation */
263 || (page_table[page_index + 1].gen != gen)
264 /* next page starts its own contiguous block */
265 || (page_starts_contiguous_block_p(page_index + 1)));
268 /* Find the page index within the page_table for the given
269 * address. Return -1 on failure. */
271 find_page_index(void *addr)
273 if (addr >= heap_base) {
274 page_index_t index = ((pointer_sized_uint_t)addr -
275 (pointer_sized_uint_t)heap_base) / GENCGC_CARD_BYTES;
276 if (index < page_table_pages)
283 npage_bytes(page_index_t npages)
285 gc_assert(npages>=0);
286 return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
289 /* Check that X is a higher address than Y and return offset from Y to
291 static inline os_vm_size_t
292 void_diff(void *x, void *y)
295 return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
298 /* a structure to hold the state of a generation
300 * CAUTION: If you modify this, make sure to touch up the alien
301 * definition in src/code/gc.lisp accordingly. ...or better yes,
302 * deal with the FIXME there...
306 /* the first page that gc_alloc() checks on its next call */
307 page_index_t alloc_start_page;
309 /* the first page that gc_alloc_unboxed() checks on its next call */
310 page_index_t alloc_unboxed_start_page;
312 /* the first page that gc_alloc_large (boxed) considers on its next
313 * call. (Although it always allocates after the boxed_region.) */
314 page_index_t alloc_large_start_page;
316 /* the first page that gc_alloc_large (unboxed) considers on its
317 * next call. (Although it always allocates after the
318 * current_unboxed_region.) */
319 page_index_t alloc_large_unboxed_start_page;
321 /* the bytes allocated to this generation */
322 os_vm_size_t bytes_allocated;
324 /* the number of bytes at which to trigger a GC */
325 os_vm_size_t gc_trigger;
327 /* to calculate a new level for gc_trigger */
328 os_vm_size_t bytes_consed_between_gc;
330 /* the number of GCs since the last raise */
333 /* the number of GCs to run on the generations before raising objects to the
335 int number_of_gcs_before_promotion;
337 /* the cumulative sum of the bytes allocated to this generation. It is
338 * cleared after a GC on this generations, and update before new
339 * objects are added from a GC of a younger generation. Dividing by
340 * the bytes_allocated will give the average age of the memory in
341 * this generation since its last GC. */
342 os_vm_size_t cum_sum_bytes_allocated;
344 /* a minimum average memory age before a GC will occur helps
345 * prevent a GC when a large number of new live objects have been
346 * added, in which case a GC could be a waste of time */
347 double minimum_age_before_gc;
350 /* an array of generation structures. There needs to be one more
351 * generation structure than actual generations as the oldest
352 * generation is temporarily raised then lowered. */
353 struct generation generations[NUM_GENERATIONS];
355 /* the oldest generation that is will currently be GCed by default.
356 * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
358 * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
360 * Setting this to 0 effectively disables the generational nature of
361 * the GC. In some applications generational GC may not be useful
362 * because there are no long-lived objects.
364 * An intermediate value could be handy after moving long-lived data
365 * into an older generation so an unnecessary GC of this long-lived
366 * data can be avoided. */
367 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
369 /* The maximum free page in the heap is maintained and used to update
370 * ALLOCATION_POINTER which is used by the room function to limit its
371 * search of the heap. XX Gencgc obviously needs to be better
372 * integrated with the Lisp code. */
373 page_index_t last_free_page;
375 #ifdef LISP_FEATURE_SB_THREAD
376 /* This lock is to prevent multiple threads from simultaneously
377 * allocating new regions which overlap each other. Note that the
378 * majority of GC is single-threaded, but alloc() may be called from
379 * >1 thread at a time and must be thread-safe. This lock must be
380 * seized before all accesses to generations[] or to parts of
381 * page_table[] that other threads may want to see */
382 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
383 /* This lock is used to protect non-thread-local allocation. */
384 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
387 extern os_vm_size_t gencgc_release_granularity;
388 os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
390 extern os_vm_size_t gencgc_alloc_granularity;
391 os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
395 * miscellaneous heap functions
398 /* Count the number of pages which are write-protected within the
399 * given generation. */
401 count_write_protect_generation_pages(generation_index_t generation)
403 page_index_t i, count = 0;
405 for (i = 0; i < last_free_page; i++)
406 if (page_allocated_p(i)
407 && (page_table[i].gen == generation)
408 && (page_table[i].write_protected == 1))
413 /* Count the number of pages within the given generation. */
415 count_generation_pages(generation_index_t generation)
418 page_index_t count = 0;
420 for (i = 0; i < last_free_page; i++)
421 if (page_allocated_p(i)
422 && (page_table[i].gen == generation))
429 count_dont_move_pages(void)
432 page_index_t count = 0;
433 for (i = 0; i < last_free_page; i++) {
434 if (page_allocated_p(i)
435 && (page_table[i].dont_move != 0)) {
443 /* Work through the pages and add up the number of bytes used for the
444 * given generation. */
446 count_generation_bytes_allocated (generation_index_t gen)
449 os_vm_size_t result = 0;
450 for (i = 0; i < last_free_page; i++) {
451 if (page_allocated_p(i)
452 && (page_table[i].gen == gen))
453 result += page_table[i].bytes_used;
458 /* Return the average age of the memory in a generation. */
460 generation_average_age(generation_index_t gen)
462 if (generations[gen].bytes_allocated == 0)
466 ((double)generations[gen].cum_sum_bytes_allocated)
467 / ((double)generations[gen].bytes_allocated);
471 write_generation_stats(FILE *file)
473 generation_index_t i;
475 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
476 #define FPU_STATE_SIZE 27
477 int fpu_state[FPU_STATE_SIZE];
478 #elif defined(LISP_FEATURE_PPC)
479 #define FPU_STATE_SIZE 32
480 long long fpu_state[FPU_STATE_SIZE];
481 #elif defined(LISP_FEATURE_SPARC)
483 * 32 (single-precision) FP registers, and the FP state register.
484 * But Sparc V9 has 32 double-precision registers (equivalent to 64
485 * single-precision, but can't be accessed), so we leave enough room
488 #define FPU_STATE_SIZE (((32 + 32 + 1) + 1)/2)
489 long long fpu_state[FPU_STATE_SIZE];
492 /* This code uses the FP instructions which may be set up for Lisp
493 * so they need to be saved and reset for C. */
496 /* Print the heap stats. */
498 " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
500 for (i = 0; i < SCRATCH_GENERATION; i++) {
502 page_index_t boxed_cnt = 0;
503 page_index_t unboxed_cnt = 0;
504 page_index_t large_boxed_cnt = 0;
505 page_index_t large_unboxed_cnt = 0;
506 page_index_t pinned_cnt=0;
508 for (j = 0; j < last_free_page; j++)
509 if (page_table[j].gen == i) {
511 /* Count the number of boxed pages within the given
513 if (page_boxed_p(j)) {
514 if (page_table[j].large_object)
519 if(page_table[j].dont_move) pinned_cnt++;
520 /* Count the number of unboxed pages within the given
522 if (page_unboxed_p(j)) {
523 if (page_table[j].large_object)
530 gc_assert(generations[i].bytes_allocated
531 == count_generation_bytes_allocated(i));
533 " %1d: %5ld %5ld %5ld %5ld",
535 generations[i].alloc_start_page,
536 generations[i].alloc_unboxed_start_page,
537 generations[i].alloc_large_start_page,
538 generations[i].alloc_large_unboxed_start_page);
540 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
541 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
542 boxed_cnt, unboxed_cnt, large_boxed_cnt,
543 large_unboxed_cnt, pinned_cnt);
548 " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
549 generations[i].bytes_allocated,
550 (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
551 generations[i].gc_trigger,
552 count_write_protect_generation_pages(i),
553 generations[i].num_gc,
554 generation_average_age(i));
556 fprintf(file," Total bytes allocated = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
557 fprintf(file," Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
559 fpu_restore(fpu_state);
563 write_heap_exhaustion_report(FILE *file, long available, long requested,
564 struct thread *thread)
567 "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
568 gc_active_p ? "garbage collection" : "allocation",
571 write_generation_stats(file);
572 fprintf(file, "GC control variables:\n");
573 fprintf(file, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
574 SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
575 (SymbolValue(GC_PENDING, thread) == T) ?
576 "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
577 "false" : "in progress"));
578 #ifdef LISP_FEATURE_SB_THREAD
579 fprintf(file, " *STOP-FOR-GC-PENDING* = %s\n",
580 SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
585 print_generation_stats(void)
587 write_generation_stats(stderr);
590 extern char* gc_logfile;
591 char * gc_logfile = NULL;
594 log_generation_stats(char *logfile, char *header)
597 FILE * log = fopen(logfile, "a");
599 fprintf(log, "%s\n", header);
600 write_generation_stats(log);
603 fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
610 report_heap_exhaustion(long available, long requested, struct thread *th)
613 FILE * log = fopen(gc_logfile, "a");
615 write_heap_exhaustion_report(log, available, requested, th);
618 fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
622 /* Always to stderr as well. */
623 write_heap_exhaustion_report(stderr, available, requested, th);
627 #if defined(LISP_FEATURE_X86)
628 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
631 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
632 * if zeroing it ourselves, i.e. in practice give the memory back to the
633 * OS. Generally done after a large GC.
635 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
637 void *addr = page_address(start), *new_addr;
638 os_vm_size_t length = npage_bytes(1+end-start);
643 gc_assert(length >= gencgc_release_granularity);
644 gc_assert((length % gencgc_release_granularity) == 0);
646 os_invalidate(addr, length);
647 new_addr = os_validate(addr, length);
648 if (new_addr == NULL || new_addr != addr) {
649 lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
653 for (i = start; i <= end; i++) {
654 page_table[i].need_to_zero = 0;
658 /* Zero the pages from START to END (inclusive). Generally done just after
659 * a new region has been allocated.
662 zero_pages(page_index_t start, page_index_t end) {
666 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
667 fast_bzero(page_address(start), npage_bytes(1+end-start));
669 bzero(page_address(start), npage_bytes(1+end-start));
675 zero_and_mark_pages(page_index_t start, page_index_t end) {
678 zero_pages(start, end);
679 for (i = start; i <= end; i++)
680 page_table[i].need_to_zero = 0;
683 /* Zero the pages from START to END (inclusive), except for those
684 * pages that are known to already zeroed. Mark all pages in the
685 * ranges as non-zeroed.
688 zero_dirty_pages(page_index_t start, page_index_t end) {
691 for (i = start; i <= end; i++) {
692 if (!page_table[i].need_to_zero) continue;
693 for (j = i+1; (j <= end) && (page_table[j].need_to_zero); j++);
698 for (i = start; i <= end; i++) {
699 page_table[i].need_to_zero = 1;
705 * To support quick and inline allocation, regions of memory can be
706 * allocated and then allocated from with just a free pointer and a
707 * check against an end address.
709 * Since objects can be allocated to spaces with different properties
710 * e.g. boxed/unboxed, generation, ages; there may need to be many
711 * allocation regions.
713 * Each allocation region may start within a partly used page. Many
714 * features of memory use are noted on a page wise basis, e.g. the
715 * generation; so if a region starts within an existing allocated page
716 * it must be consistent with this page.
718 * During the scavenging of the newspace, objects will be transported
719 * into an allocation region, and pointers updated to point to this
720 * allocation region. It is possible that these pointers will be
721 * scavenged again before the allocation region is closed, e.g. due to
722 * trans_list which jumps all over the place to cleanup the list. It
723 * is important to be able to determine properties of all objects
724 * pointed to when scavenging, e.g to detect pointers to the oldspace.
725 * Thus it's important that the allocation regions have the correct
726 * properties set when allocated, and not just set when closed. The
727 * region allocation routines return regions with the specified
728 * properties, and grab all the pages, setting their properties
729 * appropriately, except that the amount used is not known.
731 * These regions are used to support quicker allocation using just a
732 * free pointer. The actual space used by the region is not reflected
733 * in the pages tables until it is closed. It can't be scavenged until
736 * When finished with the region it should be closed, which will
737 * update the page tables for the actual space used returning unused
738 * space. Further it may be noted in the new regions which is
739 * necessary when scavenging the newspace.
741 * Large objects may be allocated directly without an allocation
742 * region, the page tables are updated immediately.
744 * Unboxed objects don't contain pointers to other objects and so
745 * don't need scavenging. Further they can't contain pointers to
746 * younger generations so WP is not needed. By allocating pages to
747 * unboxed objects the whole page never needs scavenging or
748 * write-protecting. */
750 /* We are only using two regions at present. Both are for the current
751 * newspace generation. */
752 struct alloc_region boxed_region;
753 struct alloc_region unboxed_region;
755 /* The generation currently being allocated to. */
756 static generation_index_t gc_alloc_generation;
758 static inline page_index_t
759 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
762 if (UNBOXED_PAGE_FLAG == page_type_flag) {
763 return generations[generation].alloc_large_unboxed_start_page;
764 } else if (BOXED_PAGE_FLAG & page_type_flag) {
765 /* Both code and data. */
766 return generations[generation].alloc_large_start_page;
768 lose("bad page type flag: %d", page_type_flag);
771 if (UNBOXED_PAGE_FLAG == page_type_flag) {
772 return generations[generation].alloc_unboxed_start_page;
773 } else if (BOXED_PAGE_FLAG & page_type_flag) {
774 /* Both code and data. */
775 return generations[generation].alloc_start_page;
777 lose("bad page_type_flag: %d", page_type_flag);
783 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
787 if (UNBOXED_PAGE_FLAG == page_type_flag) {
788 generations[generation].alloc_large_unboxed_start_page = page;
789 } else if (BOXED_PAGE_FLAG & page_type_flag) {
790 /* Both code and data. */
791 generations[generation].alloc_large_start_page = page;
793 lose("bad page type flag: %d", page_type_flag);
796 if (UNBOXED_PAGE_FLAG == page_type_flag) {
797 generations[generation].alloc_unboxed_start_page = page;
798 } else if (BOXED_PAGE_FLAG & page_type_flag) {
799 /* Both code and data. */
800 generations[generation].alloc_start_page = page;
802 lose("bad page type flag: %d", page_type_flag);
807 /* Find a new region with room for at least the given number of bytes.
809 * It starts looking at the current generation's alloc_start_page. So
810 * may pick up from the previous region if there is enough space. This
811 * keeps the allocation contiguous when scavenging the newspace.
813 * The alloc_region should have been closed by a call to
814 * gc_alloc_update_page_tables(), and will thus be in an empty state.
816 * To assist the scavenging functions write-protected pages are not
817 * used. Free pages should not be write-protected.
819 * It is critical to the conservative GC that the start of regions be
820 * known. To help achieve this only small regions are allocated at a
823 * During scavenging, pointers may be found to within the current
824 * region and the page generation must be set so that pointers to the
825 * from space can be recognized. Therefore the generation of pages in
826 * the region are set to gc_alloc_generation. To prevent another
827 * allocation call using the same pages, all the pages in the region
828 * are allocated, although they will initially be empty.
831 gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
833 page_index_t first_page;
834 page_index_t last_page;
835 os_vm_size_t bytes_found;
841 "/alloc_new_region for %d bytes from gen %d\n",
842 nbytes, gc_alloc_generation));
845 /* Check that the region is in a reset state. */
846 gc_assert((alloc_region->first_page == 0)
847 && (alloc_region->last_page == -1)
848 && (alloc_region->free_pointer == alloc_region->end_addr));
849 ret = thread_mutex_lock(&free_pages_lock);
851 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
852 last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
853 bytes_found=(GENCGC_CARD_BYTES - page_table[first_page].bytes_used)
854 + npage_bytes(last_page-first_page);
856 /* Set up the alloc_region. */
857 alloc_region->first_page = first_page;
858 alloc_region->last_page = last_page;
859 alloc_region->start_addr = page_table[first_page].bytes_used
860 + page_address(first_page);
861 alloc_region->free_pointer = alloc_region->start_addr;
862 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
864 /* Set up the pages. */
866 /* The first page may have already been in use. */
867 if (page_table[first_page].bytes_used == 0) {
868 page_table[first_page].allocated = page_type_flag;
869 page_table[first_page].gen = gc_alloc_generation;
870 page_table[first_page].large_object = 0;
871 page_table[first_page].scan_start_offset = 0;
874 gc_assert(page_table[first_page].allocated == page_type_flag);
875 page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
877 gc_assert(page_table[first_page].gen == gc_alloc_generation);
878 gc_assert(page_table[first_page].large_object == 0);
880 for (i = first_page+1; i <= last_page; i++) {
881 page_table[i].allocated = page_type_flag;
882 page_table[i].gen = gc_alloc_generation;
883 page_table[i].large_object = 0;
884 /* This may not be necessary for unboxed regions (think it was
886 page_table[i].scan_start_offset =
887 void_diff(page_address(i),alloc_region->start_addr);
888 page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
890 /* Bump up last_free_page. */
891 if (last_page+1 > last_free_page) {
892 last_free_page = last_page+1;
893 /* do we only want to call this on special occasions? like for
895 set_alloc_pointer((lispobj)page_address(last_free_page));
897 ret = thread_mutex_unlock(&free_pages_lock);
900 #ifdef READ_PROTECT_FREE_PAGES
901 os_protect(page_address(first_page),
902 npage_bytes(1+last_page-first_page),
906 /* If the first page was only partial, don't check whether it's
907 * zeroed (it won't be) and don't zero it (since the parts that
908 * we're interested in are guaranteed to be zeroed).
910 if (page_table[first_page].bytes_used) {
914 zero_dirty_pages(first_page, last_page);
916 /* we can do this after releasing free_pages_lock */
917 if (gencgc_zero_check) {
919 for (p = (word_t *)alloc_region->start_addr;
920 p < (word_t *)alloc_region->end_addr; p++) {
922 lose("The new region is not zero at %p (start=%p, end=%p).\n",
923 p, alloc_region->start_addr, alloc_region->end_addr);
929 /* If the record_new_objects flag is 2 then all new regions created
932 * If it's 1 then then it is only recorded if the first page of the
933 * current region is <= new_areas_ignore_page. This helps avoid
934 * unnecessary recording when doing full scavenge pass.
936 * The new_object structure holds the page, byte offset, and size of
937 * new regions of objects. Each new area is placed in the array of
938 * these structures pointer to by new_areas. new_areas_index holds the
939 * offset into new_areas.
941 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
942 * later code must detect this and handle it, probably by doing a full
943 * scavenge of a generation. */
944 #define NUM_NEW_AREAS 512
945 static int record_new_objects = 0;
946 static page_index_t new_areas_ignore_page;
952 static struct new_area (*new_areas)[];
953 static size_t new_areas_index;
954 size_t max_new_areas;
956 /* Add a new area to new_areas. */
958 add_new_area(page_index_t first_page, size_t offset, size_t size)
960 size_t new_area_start, c;
963 /* Ignore if full. */
964 if (new_areas_index >= NUM_NEW_AREAS)
967 switch (record_new_objects) {
971 if (first_page > new_areas_ignore_page)
980 new_area_start = npage_bytes(first_page) + offset;
982 /* Search backwards for a prior area that this follows from. If
983 found this will save adding a new area. */
984 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
986 npage_bytes((*new_areas)[i].page)
987 + (*new_areas)[i].offset
988 + (*new_areas)[i].size;
990 "/add_new_area S1 %d %d %d %d\n",
991 i, c, new_area_start, area_end));*/
992 if (new_area_start == area_end) {
994 "/adding to [%d] %d %d %d with %d %d %d:\n",
996 (*new_areas)[i].page,
997 (*new_areas)[i].offset,
998 (*new_areas)[i].size,
1002 (*new_areas)[i].size += size;
1007 (*new_areas)[new_areas_index].page = first_page;
1008 (*new_areas)[new_areas_index].offset = offset;
1009 (*new_areas)[new_areas_index].size = size;
1011 "/new_area %d page %d offset %d size %d\n",
1012 new_areas_index, first_page, offset, size));*/
1015 /* Note the max new_areas used. */
1016 if (new_areas_index > max_new_areas)
1017 max_new_areas = new_areas_index;
1020 /* Update the tables for the alloc_region. The region may be added to
1023 * When done the alloc_region is set up so that the next quick alloc
1024 * will fail safely and thus a new region will be allocated. Further
1025 * it is safe to try to re-update the page table of this reset
1028 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
1031 page_index_t first_page;
1032 page_index_t next_page;
1033 os_vm_size_t bytes_used;
1034 os_vm_size_t region_size;
1035 os_vm_size_t byte_cnt;
1036 page_bytes_t orig_first_page_bytes_used;
1040 first_page = alloc_region->first_page;
1042 /* Catch an unused alloc_region. */
1043 if ((first_page == 0) && (alloc_region->last_page == -1))
1046 next_page = first_page+1;
1048 ret = thread_mutex_lock(&free_pages_lock);
1049 gc_assert(ret == 0);
1050 if (alloc_region->free_pointer != alloc_region->start_addr) {
1051 /* some bytes were allocated in the region */
1052 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1054 gc_assert(alloc_region->start_addr ==
1055 (page_address(first_page)
1056 + page_table[first_page].bytes_used));
1058 /* All the pages used need to be updated */
1060 /* Update the first page. */
1062 /* If the page was free then set up the gen, and
1063 * scan_start_offset. */
1064 if (page_table[first_page].bytes_used == 0)
1065 gc_assert(page_starts_contiguous_block_p(first_page));
1066 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1068 gc_assert(page_table[first_page].allocated & page_type_flag);
1069 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1070 gc_assert(page_table[first_page].large_object == 0);
1074 /* Calculate the number of bytes used in this page. This is not
1075 * always the number of new bytes, unless it was free. */
1077 if ((bytes_used = void_diff(alloc_region->free_pointer,
1078 page_address(first_page)))
1079 >GENCGC_CARD_BYTES) {
1080 bytes_used = GENCGC_CARD_BYTES;
1083 page_table[first_page].bytes_used = bytes_used;
1084 byte_cnt += bytes_used;
1087 /* All the rest of the pages should be free. We need to set
1088 * their scan_start_offset pointer to the start of the
1089 * region, and set the bytes_used. */
1091 page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1092 gc_assert(page_table[next_page].allocated & page_type_flag);
1093 gc_assert(page_table[next_page].bytes_used == 0);
1094 gc_assert(page_table[next_page].gen == gc_alloc_generation);
1095 gc_assert(page_table[next_page].large_object == 0);
1097 gc_assert(page_table[next_page].scan_start_offset ==
1098 void_diff(page_address(next_page),
1099 alloc_region->start_addr));
1101 /* Calculate the number of bytes used in this page. */
1103 if ((bytes_used = void_diff(alloc_region->free_pointer,
1104 page_address(next_page)))>GENCGC_CARD_BYTES) {
1105 bytes_used = GENCGC_CARD_BYTES;
1108 page_table[next_page].bytes_used = bytes_used;
1109 byte_cnt += bytes_used;
1114 region_size = void_diff(alloc_region->free_pointer,
1115 alloc_region->start_addr);
1116 bytes_allocated += region_size;
1117 generations[gc_alloc_generation].bytes_allocated += region_size;
1119 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1121 /* Set the generations alloc restart page to the last page of
1123 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1125 /* Add the region to the new_areas if requested. */
1126 if (BOXED_PAGE_FLAG & page_type_flag)
1127 add_new_area(first_page,orig_first_page_bytes_used, region_size);
1131 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1133 gc_alloc_generation));
1136 /* There are no bytes allocated. Unallocate the first_page if
1137 * there are 0 bytes_used. */
1138 page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1139 if (page_table[first_page].bytes_used == 0)
1140 page_table[first_page].allocated = FREE_PAGE_FLAG;
1143 /* Unallocate any unused pages. */
1144 while (next_page <= alloc_region->last_page) {
1145 gc_assert(page_table[next_page].bytes_used == 0);
1146 page_table[next_page].allocated = FREE_PAGE_FLAG;
1149 ret = thread_mutex_unlock(&free_pages_lock);
1150 gc_assert(ret == 0);
1152 /* alloc_region is per-thread, we're ok to do this unlocked */
1153 gc_set_region_empty(alloc_region);
1156 static inline void *gc_quick_alloc(word_t nbytes);
1158 /* Allocate a possibly large object. */
1160 gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
1163 page_index_t first_page, next_page, last_page;
1164 page_bytes_t orig_first_page_bytes_used;
1165 os_vm_size_t byte_cnt;
1166 os_vm_size_t bytes_used;
1169 ret = thread_mutex_lock(&free_pages_lock);
1170 gc_assert(ret == 0);
1172 first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1173 if (first_page <= alloc_region->last_page) {
1174 first_page = alloc_region->last_page+1;
1177 last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1179 gc_assert(first_page > alloc_region->last_page);
1181 set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1183 /* Set up the pages. */
1184 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1186 /* If the first page was free then set up the gen, and
1187 * scan_start_offset. */
1188 if (page_table[first_page].bytes_used == 0) {
1189 page_table[first_page].allocated = page_type_flag;
1190 page_table[first_page].gen = gc_alloc_generation;
1191 page_table[first_page].scan_start_offset = 0;
1192 page_table[first_page].large_object = 1;
1195 gc_assert(page_table[first_page].allocated == page_type_flag);
1196 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1197 gc_assert(page_table[first_page].large_object == 1);
1201 /* Calc. the number of bytes used in this page. This is not
1202 * always the number of new bytes, unless it was free. */
1204 if ((bytes_used = nbytes+orig_first_page_bytes_used) > GENCGC_CARD_BYTES) {
1205 bytes_used = GENCGC_CARD_BYTES;
1208 page_table[first_page].bytes_used = bytes_used;
1209 byte_cnt += bytes_used;
1211 next_page = first_page+1;
1213 /* All the rest of the pages should be free. We need to set their
1214 * scan_start_offset pointer to the start of the region, and set
1215 * the bytes_used. */
1217 gc_assert(page_free_p(next_page));
1218 gc_assert(page_table[next_page].bytes_used == 0);
1219 page_table[next_page].allocated = page_type_flag;
1220 page_table[next_page].gen = gc_alloc_generation;
1221 page_table[next_page].large_object = 1;
1223 page_table[next_page].scan_start_offset =
1224 npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1226 /* Calculate the number of bytes used in this page. */
1228 bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1229 if (bytes_used > GENCGC_CARD_BYTES) {
1230 bytes_used = GENCGC_CARD_BYTES;
1233 page_table[next_page].bytes_used = bytes_used;
1234 page_table[next_page].write_protected=0;
1235 page_table[next_page].dont_move=0;
1236 byte_cnt += bytes_used;
1240 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1242 bytes_allocated += nbytes;
1243 generations[gc_alloc_generation].bytes_allocated += nbytes;
1245 /* Add the region to the new_areas if requested. */
1246 if (BOXED_PAGE_FLAG & page_type_flag)
1247 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1249 /* Bump up last_free_page */
1250 if (last_page+1 > last_free_page) {
1251 last_free_page = last_page+1;
1252 set_alloc_pointer((lispobj)(page_address(last_free_page)));
1254 ret = thread_mutex_unlock(&free_pages_lock);
1255 gc_assert(ret == 0);
1257 #ifdef READ_PROTECT_FREE_PAGES
1258 os_protect(page_address(first_page),
1259 npage_bytes(1+last_page-first_page),
1263 zero_dirty_pages(first_page, last_page);
1265 return page_address(first_page);
1268 static page_index_t gencgc_alloc_start_page = -1;
1271 gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
1273 struct thread *thread = arch_os_get_current_thread();
1274 /* Write basic information before doing anything else: if we don't
1275 * call to lisp this is a must, and even if we do there is always
1276 * the danger that we bounce back here before the error has been
1277 * handled, or indeed even printed.
1279 report_heap_exhaustion(available, requested, thread);
1280 if (gc_active_p || (available == 0)) {
1281 /* If we are in GC, or totally out of memory there is no way
1282 * to sanely transfer control to the lisp-side of things.
1284 lose("Heap exhausted, game over.");
1287 /* FIXME: assert free_pages_lock held */
1288 (void)thread_mutex_unlock(&free_pages_lock);
1289 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
1290 gc_assert(get_pseudo_atomic_atomic(thread));
1291 clear_pseudo_atomic_atomic(thread);
1292 if (get_pseudo_atomic_interrupted(thread))
1293 do_pending_interrupt();
1295 /* Another issue is that signalling HEAP-EXHAUSTED error leads
1296 * to running user code at arbitrary places, even in a
1297 * WITHOUT-INTERRUPTS which may lead to a deadlock without
1298 * running out of the heap. So at this point all bets are
1300 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1301 corruption_warning_and_maybe_lose
1302 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1303 funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
1304 alloc_number(available), alloc_number(requested));
1305 lose("HEAP-EXHAUSTED-ERROR fell through");
1310 gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
1313 page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
1314 page_index_t first_page, last_page, restart_page = *restart_page_ptr;
1315 os_vm_size_t nbytes = bytes;
1316 os_vm_size_t nbytes_goal = nbytes;
1317 os_vm_size_t bytes_found = 0;
1318 os_vm_size_t most_bytes_found = 0;
1319 boolean small_object = nbytes < GENCGC_CARD_BYTES;
1320 /* FIXME: assert(free_pages_lock is held); */
1322 if (nbytes_goal < gencgc_alloc_granularity)
1323 nbytes_goal = gencgc_alloc_granularity;
1325 /* Toggled by gc_and_save for heap compaction, normally -1. */
1326 if (gencgc_alloc_start_page != -1) {
1327 restart_page = gencgc_alloc_start_page;
1330 /* FIXME: This is on bytes instead of nbytes pending cleanup of
1331 * long from the interface. */
1332 gc_assert(bytes>=0);
1333 /* Search for a page with at least nbytes of space. We prefer
1334 * not to split small objects on multiple pages, to reduce the
1335 * number of contiguous allocation regions spaning multiple
1336 * pages: this helps avoid excessive conservativism.
1338 * For other objects, we guarantee that they start on their own
1341 first_page = restart_page;
1342 while (first_page < page_table_pages) {
1344 if (page_free_p(first_page)) {
1345 gc_assert(0 == page_table[first_page].bytes_used);
1346 bytes_found = GENCGC_CARD_BYTES;
1347 } else if (small_object &&
1348 (page_table[first_page].allocated == page_type_flag) &&
1349 (page_table[first_page].large_object == 0) &&
1350 (page_table[first_page].gen == gc_alloc_generation) &&
1351 (page_table[first_page].write_protected == 0) &&
1352 (page_table[first_page].dont_move == 0)) {
1353 bytes_found = GENCGC_CARD_BYTES - page_table[first_page].bytes_used;
1354 if (bytes_found < nbytes) {
1355 if (bytes_found > most_bytes_found)
1356 most_bytes_found = bytes_found;
1365 gc_assert(page_table[first_page].write_protected == 0);
1366 for (last_page = first_page+1;
1367 ((last_page < page_table_pages) &&
1368 page_free_p(last_page) &&
1369 (bytes_found < nbytes_goal));
1371 bytes_found += GENCGC_CARD_BYTES;
1372 gc_assert(0 == page_table[last_page].bytes_used);
1373 gc_assert(0 == page_table[last_page].write_protected);
1376 if (bytes_found > most_bytes_found) {
1377 most_bytes_found = bytes_found;
1378 most_bytes_found_from = first_page;
1379 most_bytes_found_to = last_page;
1381 if (bytes_found >= nbytes_goal)
1384 first_page = last_page;
1387 bytes_found = most_bytes_found;
1388 restart_page = first_page + 1;
1390 /* Check for a failure */
1391 if (bytes_found < nbytes) {
1392 gc_assert(restart_page >= page_table_pages);
1393 gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1396 gc_assert(most_bytes_found_to);
1397 *restart_page_ptr = most_bytes_found_from;
1398 return most_bytes_found_to-1;
1401 /* Allocate bytes. All the rest of the special-purpose allocation
1402 * functions will eventually call this */
1405 gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
1408 void *new_free_pointer;
1410 if (nbytes>=large_object_size)
1411 return gc_alloc_large(nbytes, page_type_flag, my_region);
1413 /* Check whether there is room in the current alloc region. */
1414 new_free_pointer = my_region->free_pointer + nbytes;
1416 /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1417 my_region->free_pointer, new_free_pointer); */
1419 if (new_free_pointer <= my_region->end_addr) {
1420 /* If so then allocate from the current alloc region. */
1421 void *new_obj = my_region->free_pointer;
1422 my_region->free_pointer = new_free_pointer;
1424 /* Unless a `quick' alloc was requested, check whether the
1425 alloc region is almost empty. */
1427 void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1428 /* If so, finished with the current region. */
1429 gc_alloc_update_page_tables(page_type_flag, my_region);
1430 /* Set up a new region. */
1431 gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1434 return((void *)new_obj);
1437 /* Else not enough free space in the current region: retry with a
1440 gc_alloc_update_page_tables(page_type_flag, my_region);
1441 gc_alloc_new_region(nbytes, page_type_flag, my_region);
1442 return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1445 /* these are only used during GC: all allocation from the mutator calls
1446 * alloc() -> gc_alloc_with_region() with the appropriate per-thread
1449 static inline void *
1450 gc_quick_alloc(word_t nbytes)
1452 return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
1455 static inline void *
1456 gc_alloc_unboxed(word_t nbytes)
1458 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
1461 static inline void *
1462 gc_quick_alloc_unboxed(word_t nbytes)
1464 return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
1467 /* Copy a large object. If the object is in a large object region then
1468 * it is simply promoted, else it is copied. If it's large enough then
1469 * it's copied to a large object region.
1471 * Bignums and vectors may have shrunk. If the object is not copied
1472 * the space needs to be reclaimed, and the page_tables corrected. */
1474 general_copy_large_object(lispobj object, word_t nwords, boolean boxedp)
1478 page_index_t first_page;
1480 gc_assert(is_lisp_pointer(object));
1481 gc_assert(from_space_p(object));
1482 gc_assert((nwords & 0x01) == 0);
1484 if ((nwords > 1024*1024) && gencgc_verbose) {
1485 FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
1486 nwords*N_WORD_BYTES));
1489 /* Check whether it's a large object. */
1490 first_page = find_page_index((void *)object);
1491 gc_assert(first_page >= 0);
1493 if (page_table[first_page].large_object) {
1494 /* Promote the object. Note: Unboxed objects may have been
1495 * allocated to a BOXED region so it may be necessary to
1496 * change the region to UNBOXED. */
1497 os_vm_size_t remaining_bytes;
1498 os_vm_size_t bytes_freed;
1499 page_index_t next_page;
1500 page_bytes_t old_bytes_used;
1502 /* FIXME: This comment is somewhat stale.
1504 * Note: Any page write-protection must be removed, else a
1505 * later scavenge_newspace may incorrectly not scavenge these
1506 * pages. This would not be necessary if they are added to the
1507 * new areas, but let's do it for them all (they'll probably
1508 * be written anyway?). */
1510 gc_assert(page_starts_contiguous_block_p(first_page));
1511 next_page = first_page;
1512 remaining_bytes = nwords*N_WORD_BYTES;
1514 while (remaining_bytes > GENCGC_CARD_BYTES) {
1515 gc_assert(page_table[next_page].gen == from_space);
1516 gc_assert(page_table[next_page].large_object);
1517 gc_assert(page_table[next_page].scan_start_offset ==
1518 npage_bytes(next_page-first_page));
1519 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
1520 /* Should have been unprotected by unprotect_oldspace()
1521 * for boxed objects, and after promotion unboxed ones
1522 * should not be on protected pages at all. */
1523 gc_assert(!page_table[next_page].write_protected);
1526 gc_assert(page_boxed_p(next_page));
1528 gc_assert(page_allocated_no_region_p(next_page));
1529 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1531 page_table[next_page].gen = new_space;
1533 remaining_bytes -= GENCGC_CARD_BYTES;
1537 /* Now only one page remains, but the object may have shrunk so
1538 * there may be more unused pages which will be freed. */
1540 /* Object may have shrunk but shouldn't have grown - check. */
1541 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1543 page_table[next_page].gen = new_space;
1546 gc_assert(page_boxed_p(next_page));
1548 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1550 /* Adjust the bytes_used. */
1551 old_bytes_used = page_table[next_page].bytes_used;
1552 page_table[next_page].bytes_used = remaining_bytes;
1554 bytes_freed = old_bytes_used - remaining_bytes;
1556 /* Free any remaining pages; needs care. */
1558 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1559 (page_table[next_page].gen == from_space) &&
1560 /* FIXME: It is not obvious to me why this is necessary
1561 * as a loop condition: it seems to me that the
1562 * scan_start_offset test should be sufficient, but
1563 * experimentally that is not the case. --NS
1566 page_boxed_p(next_page) :
1567 page_allocated_no_region_p(next_page)) &&
1568 page_table[next_page].large_object &&
1569 (page_table[next_page].scan_start_offset ==
1570 npage_bytes(next_page - first_page))) {
1571 /* Checks out OK, free the page. Don't need to both zeroing
1572 * pages as this should have been done before shrinking the
1573 * object. These pages shouldn't be write-protected, even if
1574 * boxed they should be zero filled. */
1575 gc_assert(page_table[next_page].write_protected == 0);
1577 old_bytes_used = page_table[next_page].bytes_used;
1578 page_table[next_page].allocated = FREE_PAGE_FLAG;
1579 page_table[next_page].bytes_used = 0;
1580 bytes_freed += old_bytes_used;
1584 if ((bytes_freed > 0) && gencgc_verbose) {
1586 "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
1590 generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
1592 generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1593 bytes_allocated -= bytes_freed;
1595 /* Add the region to the new_areas if requested. */
1597 add_new_area(first_page,0,nwords*N_WORD_BYTES);
1602 /* Get tag of object. */
1603 tag = lowtag_of(object);
1605 /* Allocate space. */
1606 new = gc_general_alloc(nwords*N_WORD_BYTES,
1607 (boxedp ? BOXED_PAGE_FLAG : UNBOXED_PAGE_FLAG),
1610 /* Copy the object. */
1611 memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1613 /* Return Lisp pointer of new object. */
1614 return ((lispobj) new) | tag;
1619 copy_large_object(lispobj object, sword_t nwords)
1621 return general_copy_large_object(object, nwords, 1);
1625 copy_large_unboxed_object(lispobj object, sword_t nwords)
1627 return general_copy_large_object(object, nwords, 0);
1630 /* to copy unboxed objects */
1632 copy_unboxed_object(lispobj object, sword_t nwords)
1634 return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
1639 * code and code-related objects
1642 static lispobj trans_fun_header(lispobj object);
1643 static lispobj trans_boxed(lispobj object);
1646 /* Scan a x86 compiled code object, looking for possible fixups that
1647 * have been missed after a move.
1649 * Two types of fixups are needed:
1650 * 1. Absolute fixups to within the code object.
1651 * 2. Relative fixups to outside the code object.
1653 * Currently only absolute fixups to the constant vector, or to the
1654 * code area are checked. */
1655 #ifdef LISP_FEATURE_X86
1657 sniff_code_object(struct code *code, os_vm_size_t displacement)
1659 sword_t nheader_words, ncode_words, nwords;
1660 os_vm_address_t constants_start_addr = NULL, constants_end_addr, p;
1661 os_vm_address_t code_start_addr, code_end_addr;
1662 os_vm_address_t code_addr = (os_vm_address_t)code;
1663 int fixup_found = 0;
1665 if (!check_code_fixups)
1668 FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1670 ncode_words = fixnum_value(code->code_size);
1671 nheader_words = HeaderValue(*(lispobj *)code);
1672 nwords = ncode_words + nheader_words;
1674 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1675 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1676 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1677 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1679 /* Work through the unboxed code. */
1680 for (p = code_start_addr; p < code_end_addr; p++) {
1681 void *data = *(void **)p;
1682 unsigned d1 = *((unsigned char *)p - 1);
1683 unsigned d2 = *((unsigned char *)p - 2);
1684 unsigned d3 = *((unsigned char *)p - 3);
1685 unsigned d4 = *((unsigned char *)p - 4);
1687 unsigned d5 = *((unsigned char *)p - 5);
1688 unsigned d6 = *((unsigned char *)p - 6);
1691 /* Check for code references. */
1692 /* Check for a 32 bit word that looks like an absolute
1693 reference to within the code adea of the code object. */
1694 if ((data >= (void*)(code_start_addr-displacement))
1695 && (data < (void*)(code_end_addr-displacement))) {
1696 /* function header */
1698 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1700 /* Skip the function header */
1704 /* the case of PUSH imm32 */
1708 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1709 p, d6, d5, d4, d3, d2, d1, data));
1710 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1712 /* the case of MOV [reg-8],imm32 */
1714 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1715 || d2==0x45 || d2==0x46 || d2==0x47)
1719 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1720 p, d6, d5, d4, d3, d2, d1, data));
1721 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1723 /* the case of LEA reg,[disp32] */
1724 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1727 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1728 p, d6, d5, d4, d3, d2, d1, data));
1729 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1733 /* Check for constant references. */
1734 /* Check for a 32 bit word that looks like an absolute
1735 reference to within the constant vector. Constant references
1737 if ((data >= (void*)(constants_start_addr-displacement))
1738 && (data < (void*)(constants_end_addr-displacement))
1739 && (((unsigned)data & 0x3) == 0)) {
1744 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1745 p, d6, d5, d4, d3, d2, d1, data));
1746 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1749 /* the case of MOV m32,EAX */
1753 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1754 p, d6, d5, d4, d3, d2, d1, data));
1755 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1758 /* the case of CMP m32,imm32 */
1759 if ((d1 == 0x3d) && (d2 == 0x81)) {
1762 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1763 p, d6, d5, d4, d3, d2, d1, data));
1765 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1768 /* Check for a mod=00, r/m=101 byte. */
1769 if ((d1 & 0xc7) == 5) {
1774 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1775 p, d6, d5, d4, d3, d2, d1, data));
1776 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1778 /* the case of CMP reg32,m32 */
1782 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1783 p, d6, d5, d4, d3, d2, d1, data));
1784 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1786 /* the case of MOV m32,reg32 */
1790 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1791 p, d6, d5, d4, d3, d2, d1, data));
1792 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1794 /* the case of MOV reg32,m32 */
1798 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1799 p, d6, d5, d4, d3, d2, d1, data));
1800 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1802 /* the case of LEA reg32,m32 */
1806 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1807 p, d6, d5, d4, d3, d2, d1, data));
1808 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1814 /* If anything was found, print some information on the code
1818 "/compiled code object at %x: header words = %d, code words = %d\n",
1819 code, nheader_words, ncode_words));
1821 "/const start = %x, end = %x\n",
1822 constants_start_addr, constants_end_addr));
1824 "/code start = %x, end = %x\n",
1825 code_start_addr, code_end_addr));
1830 #ifdef LISP_FEATURE_X86
1832 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1834 sword_t nheader_words, ncode_words, nwords;
1835 os_vm_address_t constants_start_addr, constants_end_addr;
1836 os_vm_address_t code_start_addr, code_end_addr;
1837 os_vm_address_t code_addr = (os_vm_address_t)new_code;
1838 os_vm_address_t old_addr = (os_vm_address_t)old_code;
1839 os_vm_size_t displacement = code_addr - old_addr;
1840 lispobj fixups = NIL;
1841 struct vector *fixups_vector;
1843 ncode_words = fixnum_value(new_code->code_size);
1844 nheader_words = HeaderValue(*(lispobj *)new_code);
1845 nwords = ncode_words + nheader_words;
1847 "/compiled code object at %x: header words = %d, code words = %d\n",
1848 new_code, nheader_words, ncode_words)); */
1849 constants_start_addr = code_addr + 5*N_WORD_BYTES;
1850 constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1851 code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1852 code_end_addr = code_addr + nwords*N_WORD_BYTES;
1855 "/const start = %x, end = %x\n",
1856 constants_start_addr,constants_end_addr));
1858 "/code start = %x; end = %x\n",
1859 code_start_addr,code_end_addr));
1862 /* The first constant should be a pointer to the fixups for this
1863 code objects. Check. */
1864 fixups = new_code->constants[0];
1866 /* It will be 0 or the unbound-marker if there are no fixups (as
1867 * will be the case if the code object has been purified, for
1868 * example) and will be an other pointer if it is valid. */
1869 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1870 !is_lisp_pointer(fixups)) {
1871 /* Check for possible errors. */
1872 if (check_code_fixups)
1873 sniff_code_object(new_code, displacement);
1878 fixups_vector = (struct vector *)native_pointer(fixups);
1880 /* Could be pointing to a forwarding pointer. */
1881 /* FIXME is this always in from_space? if so, could replace this code with
1882 * forwarding_pointer_p/forwarding_pointer_value */
1883 if (is_lisp_pointer(fixups) &&
1884 (find_page_index((void*)fixups_vector) != -1) &&
1885 (fixups_vector->header == 0x01)) {
1886 /* If so, then follow it. */
1887 /*SHOW("following pointer to a forwarding pointer");*/
1889 (struct vector *)native_pointer((lispobj)fixups_vector->length);
1892 /*SHOW("got fixups");*/
1894 if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1895 /* Got the fixups for the code block. Now work through the vector,
1896 and apply a fixup at each address. */
1897 sword_t length = fixnum_value(fixups_vector->length);
1899 for (i = 0; i < length; i++) {
1900 long offset = fixups_vector->data[i];
1901 /* Now check the current value of offset. */
1902 os_vm_address_t old_value = *(os_vm_address_t *)(code_start_addr + offset);
1904 /* If it's within the old_code object then it must be an
1905 * absolute fixup (relative ones are not saved) */
1906 if ((old_value >= old_addr)
1907 && (old_value < (old_addr + nwords*N_WORD_BYTES)))
1908 /* So add the dispacement. */
1909 *(os_vm_address_t *)(code_start_addr + offset) =
1910 old_value + displacement;
1912 /* It is outside the old code object so it must be a
1913 * relative fixup (absolute fixups are not saved). So
1914 * subtract the displacement. */
1915 *(os_vm_address_t *)(code_start_addr + offset) =
1916 old_value - displacement;
1919 /* This used to just print a note to stderr, but a bogus fixup seems to
1920 * indicate real heap corruption, so a hard hailure is in order. */
1921 lose("fixup vector %p has a bad widetag: %d\n",
1922 fixups_vector, widetag_of(fixups_vector->header));
1925 /* Check for possible errors. */
1926 if (check_code_fixups) {
1927 sniff_code_object(new_code,displacement);
1933 trans_boxed_large(lispobj object)
1938 gc_assert(is_lisp_pointer(object));
1940 header = *((lispobj *) native_pointer(object));
1941 length = HeaderValue(header) + 1;
1942 length = CEILING(length, 2);
1944 return copy_large_object(object, length);
1947 /* Doesn't seem to be used, delete it after the grace period. */
1950 trans_unboxed_large(lispobj object)
1955 gc_assert(is_lisp_pointer(object));
1957 header = *((lispobj *) native_pointer(object));
1958 length = HeaderValue(header) + 1;
1959 length = CEILING(length, 2);
1961 return copy_large_unboxed_object(object, length);
1969 /* XX This is a hack adapted from cgc.c. These don't work too
1970 * efficiently with the gencgc as a list of the weak pointers is
1971 * maintained within the objects which causes writes to the pages. A
1972 * limited attempt is made to avoid unnecessary writes, but this needs
1974 #define WEAK_POINTER_NWORDS \
1975 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
1978 scav_weak_pointer(lispobj *where, lispobj object)
1980 /* Since we overwrite the 'next' field, we have to make
1981 * sure not to do so for pointers already in the list.
1982 * Instead of searching the list of weak_pointers each
1983 * time, we ensure that next is always NULL when the weak
1984 * pointer isn't in the list, and not NULL otherwise.
1985 * Since we can't use NULL to denote end of list, we
1986 * use a pointer back to the same weak_pointer.
1988 struct weak_pointer * wp = (struct weak_pointer*)where;
1990 if (NULL == wp->next) {
1991 wp->next = weak_pointers;
1993 if (NULL == wp->next)
1997 /* Do not let GC scavenge the value slot of the weak pointer.
1998 * (That is why it is a weak pointer.) */
2000 return WEAK_POINTER_NWORDS;
2005 search_read_only_space(void *pointer)
2007 lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
2008 lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
2009 if ((pointer < (void *)start) || (pointer >= (void *)end))
2011 return (gc_search_space(start,
2012 (((lispobj *)pointer)+2)-start,
2013 (lispobj *) pointer));
2017 search_static_space(void *pointer)
2019 lispobj *start = (lispobj *)STATIC_SPACE_START;
2020 lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
2021 if ((pointer < (void *)start) || (pointer >= (void *)end))
2023 return (gc_search_space(start,
2024 (((lispobj *)pointer)+2)-start,
2025 (lispobj *) pointer));
2028 /* a faster version for searching the dynamic space. This will work even
2029 * if the object is in a current allocation region. */
2031 search_dynamic_space(void *pointer)
2033 page_index_t page_index = find_page_index(pointer);
2036 /* The address may be invalid, so do some checks. */
2037 if ((page_index == -1) || page_free_p(page_index))
2039 start = (lispobj *)page_scan_start(page_index);
2040 return (gc_search_space(start,
2041 (((lispobj *)pointer)+2)-start,
2042 (lispobj *)pointer));
2045 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2047 /* Is there any possibility that pointer is a valid Lisp object
2048 * reference, and/or something else (e.g. subroutine call return
2049 * address) which should prevent us from moving the referred-to thing?
2050 * This is called from preserve_pointers() */
2052 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2054 lispobj *start_addr;
2056 /* Find the object start address. */
2057 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2061 return looks_like_valid_lisp_pointer_p(pointer, start_addr);
2064 #endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2066 /* Adjust large bignum and vector objects. This will adjust the
2067 * allocated region if the size has shrunk, and move unboxed objects
2068 * into unboxed pages. The pages are not promoted here, and the
2069 * promoted region is not added to the new_regions; this is really
2070 * only designed to be called from preserve_pointer(). Shouldn't fail
2071 * if this is missed, just may delay the moving of objects to unboxed
2072 * pages, and the freeing of pages. */
2074 maybe_adjust_large_object(lispobj *where)
2076 page_index_t first_page;
2077 page_index_t next_page;
2080 uword_t remaining_bytes;
2081 uword_t bytes_freed;
2082 uword_t old_bytes_used;
2086 /* Check whether it's a vector or bignum object. */
2087 switch (widetag_of(where[0])) {
2088 case SIMPLE_VECTOR_WIDETAG:
2089 boxed = BOXED_PAGE_FLAG;
2091 case BIGNUM_WIDETAG:
2092 case SIMPLE_BASE_STRING_WIDETAG:
2093 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2094 case SIMPLE_CHARACTER_STRING_WIDETAG:
2096 case SIMPLE_BIT_VECTOR_WIDETAG:
2097 case SIMPLE_ARRAY_NIL_WIDETAG:
2098 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2099 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2100 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2101 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2102 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2103 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2105 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
2107 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2108 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2109 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2110 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2112 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2113 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2115 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2116 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2118 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2119 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2122 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
2124 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2125 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2127 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2128 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2130 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2131 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2132 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2133 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2135 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2136 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2138 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2139 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2141 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2142 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2144 boxed = UNBOXED_PAGE_FLAG;
2150 /* Find its current size. */
2151 nwords = (sizetab[widetag_of(where[0])])(where);
2153 first_page = find_page_index((void *)where);
2154 gc_assert(first_page >= 0);
2156 /* Note: Any page write-protection must be removed, else a later
2157 * scavenge_newspace may incorrectly not scavenge these pages.
2158 * This would not be necessary if they are added to the new areas,
2159 * but lets do it for them all (they'll probably be written
2162 gc_assert(page_starts_contiguous_block_p(first_page));
2164 next_page = first_page;
2165 remaining_bytes = nwords*N_WORD_BYTES;
2166 while (remaining_bytes > GENCGC_CARD_BYTES) {
2167 gc_assert(page_table[next_page].gen == from_space);
2168 gc_assert(page_allocated_no_region_p(next_page));
2169 gc_assert(page_table[next_page].large_object);
2170 gc_assert(page_table[next_page].scan_start_offset ==
2171 npage_bytes(next_page-first_page));
2172 gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
2174 page_table[next_page].allocated = boxed;
2176 /* Shouldn't be write-protected at this stage. Essential that the
2178 gc_assert(!page_table[next_page].write_protected);
2179 remaining_bytes -= GENCGC_CARD_BYTES;
2183 /* Now only one page remains, but the object may have shrunk so
2184 * there may be more unused pages which will be freed. */
2186 /* Object may have shrunk but shouldn't have grown - check. */
2187 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2189 page_table[next_page].allocated = boxed;
2190 gc_assert(page_table[next_page].allocated ==
2191 page_table[first_page].allocated);
2193 /* Adjust the bytes_used. */
2194 old_bytes_used = page_table[next_page].bytes_used;
2195 page_table[next_page].bytes_used = remaining_bytes;
2197 bytes_freed = old_bytes_used - remaining_bytes;
2199 /* Free any remaining pages; needs care. */
2201 while ((old_bytes_used == GENCGC_CARD_BYTES) &&
2202 (page_table[next_page].gen == from_space) &&
2203 page_allocated_no_region_p(next_page) &&
2204 page_table[next_page].large_object &&
2205 (page_table[next_page].scan_start_offset ==
2206 npage_bytes(next_page - first_page))) {
2207 /* It checks out OK, free the page. We don't need to both zeroing
2208 * pages as this should have been done before shrinking the
2209 * object. These pages shouldn't be write protected as they
2210 * should be zero filled. */
2211 gc_assert(page_table[next_page].write_protected == 0);
2213 old_bytes_used = page_table[next_page].bytes_used;
2214 page_table[next_page].allocated = FREE_PAGE_FLAG;
2215 page_table[next_page].bytes_used = 0;
2216 bytes_freed += old_bytes_used;
2220 if ((bytes_freed > 0) && gencgc_verbose) {
2222 "/maybe_adjust_large_object() freed %d\n",
2226 generations[from_space].bytes_allocated -= bytes_freed;
2227 bytes_allocated -= bytes_freed;
2232 /* Take a possible pointer to a Lisp object and mark its page in the
2233 * page_table so that it will not be relocated during a GC.
2235 * This involves locating the page it points to, then backing up to
2236 * the start of its region, then marking all pages dont_move from there
2237 * up to the first page that's not full or has a different generation
2239 * It is assumed that all the page static flags have been cleared at
2240 * the start of a GC.
2242 * It is also assumed that the current gc_alloc() region has been
2243 * flushed and the tables updated. */
2246 preserve_pointer(void *addr)
2248 page_index_t addr_page_index = find_page_index(addr);
2249 page_index_t first_page;
2251 unsigned int region_allocation;
2253 /* quick check 1: Address is quite likely to have been invalid. */
2254 if ((addr_page_index == -1)
2255 || page_free_p(addr_page_index)
2256 || (page_table[addr_page_index].bytes_used == 0)
2257 || (page_table[addr_page_index].gen != from_space)
2258 /* Skip if already marked dont_move. */
2259 || (page_table[addr_page_index].dont_move != 0))
2261 gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2262 /* (Now that we know that addr_page_index is in range, it's
2263 * safe to index into page_table[] with it.) */
2264 region_allocation = page_table[addr_page_index].allocated;
2266 /* quick check 2: Check the offset within the page.
2269 if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) >
2270 page_table[addr_page_index].bytes_used)
2273 /* Filter out anything which can't be a pointer to a Lisp object
2274 * (or, as a special case which also requires dont_move, a return
2275 * address referring to something in a CodeObject). This is
2276 * expensive but important, since it vastly reduces the
2277 * probability that random garbage will be bogusly interpreted as
2278 * a pointer which prevents a page from moving.
2280 * This only needs to happen on x86oids, where this is used for
2281 * conservative roots. Non-x86oid systems only ever call this
2282 * function on known-valid lisp objects. */
2283 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2284 if (!(code_page_p(addr_page_index)
2285 || (is_lisp_pointer((lispobj)addr) &&
2286 possibly_valid_dynamic_space_pointer(addr))))
2290 /* Find the beginning of the region. Note that there may be
2291 * objects in the region preceding the one that we were passed a
2292 * pointer to: if this is the case, we will write-protect all the
2293 * previous objects' pages too. */
2296 /* I think this'd work just as well, but without the assertions.
2297 * -dan 2004.01.01 */
2298 first_page = find_page_index(page_scan_start(addr_page_index))
2300 first_page = addr_page_index;
2301 while (!page_starts_contiguous_block_p(first_page)) {
2303 /* Do some checks. */
2304 gc_assert(page_table[first_page].bytes_used == GENCGC_CARD_BYTES);
2305 gc_assert(page_table[first_page].gen == from_space);
2306 gc_assert(page_table[first_page].allocated == region_allocation);
2310 /* Adjust any large objects before promotion as they won't be
2311 * copied after promotion. */
2312 if (page_table[first_page].large_object) {
2313 /* Large objects (specifically vectors and bignums) can
2314 * shrink, leaving a "tail" of zeroed space, which appears to
2315 * the filter above as a seris of valid conses, both car and
2316 * cdr of which contain the fixnum zero, but will be
2317 * deallocated when the GC shrinks the large object region to
2318 * fit the object within. We allow raw pointers within code
2319 * space, but for boxed and unboxed space we do not, nor do
2320 * pointers to within a non-code object appear valid above. A
2321 * cons cell will never merit allocation to a large object
2322 * page, so pick them off now, before we try to adjust the
2324 if ((lowtag_of((lispobj)addr) == LIST_POINTER_LOWTAG) &&
2325 !code_page_p(first_page)) {
2328 maybe_adjust_large_object(page_address(first_page));
2329 /* It may have moved to unboxed pages. */
2330 region_allocation = page_table[first_page].allocated;
2333 /* Now work forward until the end of this contiguous area is found,
2334 * marking all pages as dont_move. */
2335 for (i = first_page; ;i++) {
2336 gc_assert(page_table[i].allocated == region_allocation);
2338 /* Mark the page static. */
2339 page_table[i].dont_move = 1;
2341 /* It is essential that the pages are not write protected as
2342 * they may have pointers into the old-space which need
2343 * scavenging. They shouldn't be write protected at this
2345 gc_assert(!page_table[i].write_protected);
2347 /* Check whether this is the last page in this contiguous block.. */
2348 if (page_ends_contiguous_block_p(i, from_space))
2352 /* Check that the page is now static. */
2353 gc_assert(page_table[addr_page_index].dont_move != 0);
2356 /* If the given page is not write-protected, then scan it for pointers
2357 * to younger generations or the top temp. generation, if no
2358 * suspicious pointers are found then the page is write-protected.
2360 * Care is taken to check for pointers to the current gc_alloc()
2361 * region if it is a younger generation or the temp. generation. This
2362 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2363 * the gc_alloc_generation does not need to be checked as this is only
2364 * called from scavenge_generation() when the gc_alloc generation is
2365 * younger, so it just checks if there is a pointer to the current
2368 * We return 1 if the page was write-protected, else 0. */
2370 update_page_write_prot(page_index_t page)
2372 generation_index_t gen = page_table[page].gen;
2375 void **page_addr = (void **)page_address(page);
2376 sword_t num_words = page_table[page].bytes_used / N_WORD_BYTES;
2378 /* Shouldn't be a free page. */
2379 gc_assert(page_allocated_p(page));
2380 gc_assert(page_table[page].bytes_used != 0);
2382 /* Skip if it's already write-protected, pinned, or unboxed */
2383 if (page_table[page].write_protected
2384 /* FIXME: What's the reason for not write-protecting pinned pages? */
2385 || page_table[page].dont_move
2386 || page_unboxed_p(page))
2389 /* Scan the page for pointers to younger generations or the
2390 * top temp. generation. */
2392 for (j = 0; j < num_words; j++) {
2393 void *ptr = *(page_addr+j);
2394 page_index_t index = find_page_index(ptr);
2396 /* Check that it's in the dynamic space */
2398 if (/* Does it point to a younger or the temp. generation? */
2399 (page_allocated_p(index)
2400 && (page_table[index].bytes_used != 0)
2401 && ((page_table[index].gen < gen)
2402 || (page_table[index].gen == SCRATCH_GENERATION)))
2404 /* Or does it point within a current gc_alloc() region? */
2405 || ((boxed_region.start_addr <= ptr)
2406 && (ptr <= boxed_region.free_pointer))
2407 || ((unboxed_region.start_addr <= ptr)
2408 && (ptr <= unboxed_region.free_pointer))) {
2415 /* Write-protect the page. */
2416 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2418 os_protect((void *)page_addr,
2420 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2422 /* Note the page as protected in the page tables. */
2423 page_table[page].write_protected = 1;
2429 /* Scavenge all generations from FROM to TO, inclusive, except for
2430 * new_space which needs special handling, as new objects may be
2431 * added which are not checked here - use scavenge_newspace generation.
2433 * Write-protected pages should not have any pointers to the
2434 * from_space so do need scavenging; thus write-protected pages are
2435 * not always scavenged. There is some code to check that these pages
2436 * are not written; but to check fully the write-protected pages need
2437 * to be scavenged by disabling the code to skip them.
2439 * Under the current scheme when a generation is GCed the younger
2440 * generations will be empty. So, when a generation is being GCed it
2441 * is only necessary to scavenge the older generations for pointers
2442 * not the younger. So a page that does not have pointers to younger
2443 * generations does not need to be scavenged.
2445 * The write-protection can be used to note pages that don't have
2446 * pointers to younger pages. But pages can be written without having
2447 * pointers to younger generations. After the pages are scavenged here
2448 * they can be scanned for pointers to younger generations and if
2449 * there are none the page can be write-protected.
2451 * One complication is when the newspace is the top temp. generation.
2453 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2454 * that none were written, which they shouldn't be as they should have
2455 * no pointers to younger generations. This breaks down for weak
2456 * pointers as the objects contain a link to the next and are written
2457 * if a weak pointer is scavenged. Still it's a useful check. */
2459 scavenge_generations(generation_index_t from, generation_index_t to)
2462 page_index_t num_wp = 0;
2466 /* Clear the write_protected_cleared flags on all pages. */
2467 for (i = 0; i < page_table_pages; i++)
2468 page_table[i].write_protected_cleared = 0;
2471 for (i = 0; i < last_free_page; i++) {
2472 generation_index_t generation = page_table[i].gen;
2474 && (page_table[i].bytes_used != 0)
2475 && (generation != new_space)
2476 && (generation >= from)
2477 && (generation <= to)) {
2478 page_index_t last_page,j;
2479 int write_protected=1;
2481 /* This should be the start of a region */
2482 gc_assert(page_starts_contiguous_block_p(i));
2484 /* Now work forward until the end of the region */
2485 for (last_page = i; ; last_page++) {
2487 write_protected && page_table[last_page].write_protected;
2488 if (page_ends_contiguous_block_p(last_page, generation))
2491 if (!write_protected) {
2492 scavenge(page_address(i),
2493 ((uword_t)(page_table[last_page].bytes_used
2494 + npage_bytes(last_page-i)))
2497 /* Now scan the pages and write protect those that
2498 * don't have pointers to younger generations. */
2499 if (enable_page_protection) {
2500 for (j = i; j <= last_page; j++) {
2501 num_wp += update_page_write_prot(j);
2504 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2506 "/write protected %d pages within generation %d\n",
2507 num_wp, generation));
2515 /* Check that none of the write_protected pages in this generation
2516 * have been written to. */
2517 for (i = 0; i < page_table_pages; i++) {
2518 if (page_allocated_p(i)
2519 && (page_table[i].bytes_used != 0)
2520 && (page_table[i].gen == generation)
2521 && (page_table[i].write_protected_cleared != 0)) {
2522 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2524 "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
2525 page_table[i].bytes_used,
2526 page_table[i].scan_start_offset,
2527 page_table[i].dont_move));
2528 lose("write to protected page %d in scavenge_generation()\n", i);
2535 /* Scavenge a newspace generation. As it is scavenged new objects may
2536 * be allocated to it; these will also need to be scavenged. This
2537 * repeats until there are no more objects unscavenged in the
2538 * newspace generation.
2540 * To help improve the efficiency, areas written are recorded by
2541 * gc_alloc() and only these scavenged. Sometimes a little more will be
2542 * scavenged, but this causes no harm. An easy check is done that the
2543 * scavenged bytes equals the number allocated in the previous
2546 * Write-protected pages are not scanned except if they are marked
2547 * dont_move in which case they may have been promoted and still have
2548 * pointers to the from space.
2550 * Write-protected pages could potentially be written by alloc however
2551 * to avoid having to handle re-scavenging of write-protected pages
2552 * gc_alloc() does not write to write-protected pages.
2554 * New areas of objects allocated are recorded alternatively in the two
2555 * new_areas arrays below. */
2556 static struct new_area new_areas_1[NUM_NEW_AREAS];
2557 static struct new_area new_areas_2[NUM_NEW_AREAS];
2559 /* Do one full scan of the new space generation. This is not enough to
2560 * complete the job as new objects may be added to the generation in
2561 * the process which are not scavenged. */
2563 scavenge_newspace_generation_one_scan(generation_index_t generation)
2568 "/starting one full scan of newspace generation %d\n",
2570 for (i = 0; i < last_free_page; i++) {
2571 /* Note that this skips over open regions when it encounters them. */
2573 && (page_table[i].bytes_used != 0)
2574 && (page_table[i].gen == generation)
2575 && ((page_table[i].write_protected == 0)
2576 /* (This may be redundant as write_protected is now
2577 * cleared before promotion.) */
2578 || (page_table[i].dont_move == 1))) {
2579 page_index_t last_page;
2582 /* The scavenge will start at the scan_start_offset of
2585 * We need to find the full extent of this contiguous
2586 * block in case objects span pages.
2588 * Now work forward until the end of this contiguous area
2589 * is found. A small area is preferred as there is a
2590 * better chance of its pages being write-protected. */
2591 for (last_page = i; ;last_page++) {
2592 /* If all pages are write-protected and movable,
2593 * then no need to scavenge */
2594 all_wp=all_wp && page_table[last_page].write_protected &&
2595 !page_table[last_page].dont_move;
2597 /* Check whether this is the last page in this
2598 * contiguous block */
2599 if (page_ends_contiguous_block_p(last_page, generation))
2603 /* Do a limited check for write-protected pages. */
2605 sword_t nwords = (((uword_t)
2606 (page_table[last_page].bytes_used
2607 + npage_bytes(last_page-i)
2608 + page_table[i].scan_start_offset))
2610 new_areas_ignore_page = last_page;
2612 scavenge(page_scan_start(i), nwords);
2619 "/done with one full scan of newspace generation %d\n",
2623 /* Do a complete scavenge of the newspace generation. */
2625 scavenge_newspace_generation(generation_index_t generation)
2629 /* the new_areas array currently being written to by gc_alloc() */
2630 struct new_area (*current_new_areas)[] = &new_areas_1;
2631 size_t current_new_areas_index;
2633 /* the new_areas created by the previous scavenge cycle */
2634 struct new_area (*previous_new_areas)[] = NULL;
2635 size_t previous_new_areas_index;
2637 /* Flush the current regions updating the tables. */
2638 gc_alloc_update_all_page_tables();
2640 /* Turn on the recording of new areas by gc_alloc(). */
2641 new_areas = current_new_areas;
2642 new_areas_index = 0;
2644 /* Don't need to record new areas that get scavenged anyway during
2645 * scavenge_newspace_generation_one_scan. */
2646 record_new_objects = 1;
2648 /* Start with a full scavenge. */
2649 scavenge_newspace_generation_one_scan(generation);
2651 /* Record all new areas now. */
2652 record_new_objects = 2;
2654 /* Give a chance to weak hash tables to make other objects live.
2655 * FIXME: The algorithm implemented here for weak hash table gcing
2656 * is O(W^2+N) as Bruno Haible warns in
2657 * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
2658 * see "Implementation 2". */
2659 scav_weak_hash_tables();
2661 /* Flush the current regions updating the tables. */
2662 gc_alloc_update_all_page_tables();
2664 /* Grab new_areas_index. */
2665 current_new_areas_index = new_areas_index;
2668 "The first scan is finished; current_new_areas_index=%d.\n",
2669 current_new_areas_index));*/
2671 while (current_new_areas_index > 0) {
2672 /* Move the current to the previous new areas */
2673 previous_new_areas = current_new_areas;
2674 previous_new_areas_index = current_new_areas_index;
2676 /* Scavenge all the areas in previous new areas. Any new areas
2677 * allocated are saved in current_new_areas. */
2679 /* Allocate an array for current_new_areas; alternating between
2680 * new_areas_1 and 2 */
2681 if (previous_new_areas == &new_areas_1)
2682 current_new_areas = &new_areas_2;
2684 current_new_areas = &new_areas_1;
2686 /* Set up for gc_alloc(). */
2687 new_areas = current_new_areas;
2688 new_areas_index = 0;
2690 /* Check whether previous_new_areas had overflowed. */
2691 if (previous_new_areas_index >= NUM_NEW_AREAS) {
2693 /* New areas of objects allocated have been lost so need to do a
2694 * full scan to be sure! If this becomes a problem try
2695 * increasing NUM_NEW_AREAS. */
2696 if (gencgc_verbose) {
2697 SHOW("new_areas overflow, doing full scavenge");
2700 /* Don't need to record new areas that get scavenged
2701 * anyway during scavenge_newspace_generation_one_scan. */
2702 record_new_objects = 1;
2704 scavenge_newspace_generation_one_scan(generation);
2706 /* Record all new areas now. */
2707 record_new_objects = 2;
2709 scav_weak_hash_tables();
2711 /* Flush the current regions updating the tables. */
2712 gc_alloc_update_all_page_tables();
2716 /* Work through previous_new_areas. */
2717 for (i = 0; i < previous_new_areas_index; i++) {
2718 page_index_t page = (*previous_new_areas)[i].page;
2719 size_t offset = (*previous_new_areas)[i].offset;
2720 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
2721 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
2722 scavenge(page_address(page)+offset, size);
2725 scav_weak_hash_tables();
2727 /* Flush the current regions updating the tables. */
2728 gc_alloc_update_all_page_tables();
2731 current_new_areas_index = new_areas_index;
2734 "The re-scan has finished; current_new_areas_index=%d.\n",
2735 current_new_areas_index));*/
2738 /* Turn off recording of areas allocated by gc_alloc(). */
2739 record_new_objects = 0;
2744 /* Check that none of the write_protected pages in this generation
2745 * have been written to. */
2746 for (i = 0; i < page_table_pages; i++) {
2747 if (page_allocated_p(i)
2748 && (page_table[i].bytes_used != 0)
2749 && (page_table[i].gen == generation)
2750 && (page_table[i].write_protected_cleared != 0)
2751 && (page_table[i].dont_move == 0)) {
2752 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
2753 i, generation, page_table[i].dont_move);
2760 /* Un-write-protect all the pages in from_space. This is done at the
2761 * start of a GC else there may be many page faults while scavenging
2762 * the newspace (I've seen drive the system time to 99%). These pages
2763 * would need to be unprotected anyway before unmapping in
2764 * free_oldspace; not sure what effect this has on paging.. */
2766 unprotect_oldspace(void)
2769 void *region_addr = 0;
2770 void *page_addr = 0;
2771 uword_t region_bytes = 0;
2773 for (i = 0; i < last_free_page; i++) {
2774 if (page_allocated_p(i)
2775 && (page_table[i].bytes_used != 0)
2776 && (page_table[i].gen == from_space)) {
2778 /* Remove any write-protection. We should be able to rely
2779 * on the write-protect flag to avoid redundant calls. */
2780 if (page_table[i].write_protected) {
2781 page_table[i].write_protected = 0;
2782 page_addr = page_address(i);
2785 region_addr = page_addr;
2786 region_bytes = GENCGC_CARD_BYTES;
2787 } else if (region_addr + region_bytes == page_addr) {
2788 /* Region continue. */
2789 region_bytes += GENCGC_CARD_BYTES;
2791 /* Unprotect previous region. */
2792 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2793 /* First page in new region. */
2794 region_addr = page_addr;
2795 region_bytes = GENCGC_CARD_BYTES;
2801 /* Unprotect last region. */
2802 os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2806 /* Work through all the pages and free any in from_space. This
2807 * assumes that all objects have been copied or promoted to an older
2808 * generation. Bytes_allocated and the generation bytes_allocated
2809 * counter are updated. The number of bytes freed is returned. */
2813 uword_t bytes_freed = 0;
2814 page_index_t first_page, last_page;
2819 /* Find a first page for the next region of pages. */
2820 while ((first_page < last_free_page)
2821 && (page_free_p(first_page)
2822 || (page_table[first_page].bytes_used == 0)
2823 || (page_table[first_page].gen != from_space)))
2826 if (first_page >= last_free_page)
2829 /* Find the last page of this region. */
2830 last_page = first_page;
2833 /* Free the page. */
2834 bytes_freed += page_table[last_page].bytes_used;
2835 generations[page_table[last_page].gen].bytes_allocated -=
2836 page_table[last_page].bytes_used;
2837 page_table[last_page].allocated = FREE_PAGE_FLAG;
2838 page_table[last_page].bytes_used = 0;
2839 /* Should already be unprotected by unprotect_oldspace(). */
2840 gc_assert(!page_table[last_page].write_protected);
2843 while ((last_page < last_free_page)
2844 && page_allocated_p(last_page)
2845 && (page_table[last_page].bytes_used != 0)
2846 && (page_table[last_page].gen == from_space));
2848 #ifdef READ_PROTECT_FREE_PAGES
2849 os_protect(page_address(first_page),
2850 npage_bytes(last_page-first_page),
2853 first_page = last_page;
2854 } while (first_page < last_free_page);
2856 bytes_allocated -= bytes_freed;
2861 /* Print some information about a pointer at the given address. */
2863 print_ptr(lispobj *addr)
2865 /* If addr is in the dynamic space then out the page information. */
2866 page_index_t pi1 = find_page_index((void*)addr);
2869 fprintf(stderr," %p: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
2872 page_table[pi1].allocated,
2873 page_table[pi1].gen,
2874 page_table[pi1].bytes_used,
2875 page_table[pi1].scan_start_offset,
2876 page_table[pi1].dont_move);
2877 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
2891 is_in_stack_space(lispobj ptr)
2893 /* For space verification: Pointers can be valid if they point
2894 * to a thread stack space. This would be faster if the thread
2895 * structures had page-table entries as if they were part of
2896 * the heap space. */
2898 for_each_thread(th) {
2899 if ((th->control_stack_start <= (lispobj *)ptr) &&
2900 (th->control_stack_end >= (lispobj *)ptr)) {
2908 verify_space(lispobj *start, size_t words)
2910 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
2911 int is_in_readonly_space =
2912 (READ_ONLY_SPACE_START <= (uword_t)start &&
2913 (uword_t)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
2917 lispobj thing = *(lispobj*)start;
2919 if (is_lisp_pointer(thing)) {
2920 page_index_t page_index = find_page_index((void*)thing);
2921 sword_t to_readonly_space =
2922 (READ_ONLY_SPACE_START <= thing &&
2923 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
2924 sword_t to_static_space =
2925 (STATIC_SPACE_START <= thing &&
2926 thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
2928 /* Does it point to the dynamic space? */
2929 if (page_index != -1) {
2930 /* If it's within the dynamic space it should point to a used
2931 * page. XX Could check the offset too. */
2932 if (page_allocated_p(page_index)
2933 && (page_table[page_index].bytes_used == 0))
2934 lose ("Ptr %p @ %p sees free page.\n", thing, start);
2935 /* Check that it doesn't point to a forwarding pointer! */
2936 if (*((lispobj *)native_pointer(thing)) == 0x01) {
2937 lose("Ptr %p @ %p sees forwarding ptr.\n", thing, start);
2939 /* Check that its not in the RO space as it would then be a
2940 * pointer from the RO to the dynamic space. */
2941 if (is_in_readonly_space) {
2942 lose("ptr to dynamic space %p from RO space %x\n",
2945 /* Does it point to a plausible object? This check slows
2946 * it down a lot (so it's commented out).
2948 * "a lot" is serious: it ate 50 minutes cpu time on
2949 * my duron 950 before I came back from lunch and
2952 * FIXME: Add a variable to enable this
2955 if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
2956 lose("ptr %p to invalid object %p\n", thing, start);
2960 extern void funcallable_instance_tramp;
2961 /* Verify that it points to another valid space. */
2962 if (!to_readonly_space && !to_static_space
2963 && (thing != (lispobj)&funcallable_instance_tramp)
2964 && !is_in_stack_space(thing)) {
2965 lose("Ptr %p @ %p sees junk.\n", thing, start);
2969 if (!(fixnump(thing))) {
2971 switch(widetag_of(*start)) {
2974 case SIMPLE_VECTOR_WIDETAG:
2976 case COMPLEX_WIDETAG:
2977 case SIMPLE_ARRAY_WIDETAG:
2978 case COMPLEX_BASE_STRING_WIDETAG:
2979 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
2980 case COMPLEX_CHARACTER_STRING_WIDETAG:
2982 case COMPLEX_VECTOR_NIL_WIDETAG:
2983 case COMPLEX_BIT_VECTOR_WIDETAG:
2984 case COMPLEX_VECTOR_WIDETAG:
2985 case COMPLEX_ARRAY_WIDETAG:
2986 case CLOSURE_HEADER_WIDETAG:
2987 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2988 case VALUE_CELL_HEADER_WIDETAG:
2989 case SYMBOL_HEADER_WIDETAG:
2990 case CHARACTER_WIDETAG:
2991 #if N_WORD_BITS == 64
2992 case SINGLE_FLOAT_WIDETAG:
2994 case UNBOUND_MARKER_WIDETAG:
2999 case INSTANCE_HEADER_WIDETAG:
3002 sword_t ntotal = HeaderValue(thing);
3003 lispobj layout = ((struct instance *)start)->slots[0];
3008 nuntagged = ((struct layout *)
3009 native_pointer(layout))->n_untagged_slots;
3010 verify_space(start + 1,
3011 ntotal - fixnum_value(nuntagged));
3015 case CODE_HEADER_WIDETAG:
3017 lispobj object = *start;
3019 sword_t nheader_words, ncode_words, nwords;
3021 struct simple_fun *fheaderp;
3023 code = (struct code *) start;
3025 /* Check that it's not in the dynamic space.
3026 * FIXME: Isn't is supposed to be OK for code
3027 * objects to be in the dynamic space these days? */
3028 if (is_in_dynamic_space
3029 /* It's ok if it's byte compiled code. The trace
3030 * table offset will be a fixnum if it's x86
3031 * compiled code - check.
3033 * FIXME: #^#@@! lack of abstraction here..
3034 * This line can probably go away now that
3035 * there's no byte compiler, but I've got
3036 * too much to worry about right now to try
3037 * to make sure. -- WHN 2001-10-06 */
3038 && fixnump(code->trace_table_offset)
3039 /* Only when enabled */
3040 && verify_dynamic_code_check) {
3042 "/code object at %p in the dynamic space\n",
3046 ncode_words = fixnum_value(code->code_size);
3047 nheader_words = HeaderValue(object);
3048 nwords = ncode_words + nheader_words;
3049 nwords = CEILING(nwords, 2);
3050 /* Scavenge the boxed section of the code data block */
3051 verify_space(start + 1, nheader_words - 1);
3053 /* Scavenge the boxed section of each function
3054 * object in the code data block. */
3055 fheaderl = code->entry_points;
3056 while (fheaderl != NIL) {
3058 (struct simple_fun *) native_pointer(fheaderl);
3059 gc_assert(widetag_of(fheaderp->header) ==
3060 SIMPLE_FUN_HEADER_WIDETAG);
3061 verify_space(&fheaderp->name, 1);
3062 verify_space(&fheaderp->arglist, 1);
3063 verify_space(&fheaderp->type, 1);
3064 fheaderl = fheaderp->next;
3070 /* unboxed objects */
3071 case BIGNUM_WIDETAG:
3072 #if N_WORD_BITS != 64
3073 case SINGLE_FLOAT_WIDETAG:
3075 case DOUBLE_FLOAT_WIDETAG:
3076 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3077 case LONG_FLOAT_WIDETAG:
3079 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3080 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3082 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3083 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3085 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3086 case COMPLEX_LONG_FLOAT_WIDETAG:
3088 #ifdef SIMD_PACK_WIDETAG
3089 case SIMD_PACK_WIDETAG:
3091 case SIMPLE_BASE_STRING_WIDETAG:
3092 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3093 case SIMPLE_CHARACTER_STRING_WIDETAG:
3095 case SIMPLE_BIT_VECTOR_WIDETAG:
3096 case SIMPLE_ARRAY_NIL_WIDETAG:
3097 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3098 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3099 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3100 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3101 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3102 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3104 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
3106 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3107 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3108 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3109 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3111 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3112 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3114 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3115 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3117 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3118 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3121 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
3123 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3124 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3126 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3127 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3129 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3130 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3131 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3132 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3134 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3135 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3137 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3138 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3140 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3141 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3144 case WEAK_POINTER_WIDETAG:
3145 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3146 case NO_TLS_VALUE_MARKER_WIDETAG:
3148 count = (sizetab[widetag_of(*start)])(start);
3152 lose("Unhandled widetag %p at %p\n",
3153 widetag_of(*start), start);
3165 /* FIXME: It would be nice to make names consistent so that
3166 * foo_size meant size *in* *bytes* instead of size in some
3167 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3168 * Some counts of lispobjs are called foo_count; it might be good
3169 * to grep for all foo_size and rename the appropriate ones to
3171 sword_t read_only_space_size =
3172 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3173 - (lispobj*)READ_ONLY_SPACE_START;
3174 sword_t static_space_size =
3175 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3176 - (lispobj*)STATIC_SPACE_START;
3178 for_each_thread(th) {
3179 sword_t binding_stack_size =
3180 (lispobj*)get_binding_stack_pointer(th)
3181 - (lispobj*)th->binding_stack_start;
3182 verify_space(th->binding_stack_start, binding_stack_size);
3184 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3185 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3189 verify_generation(generation_index_t generation)
3193 for (i = 0; i < last_free_page; i++) {
3194 if (page_allocated_p(i)
3195 && (page_table[i].bytes_used != 0)
3196 && (page_table[i].gen == generation)) {
3197 page_index_t last_page;
3199 /* This should be the start of a contiguous block */
3200 gc_assert(page_starts_contiguous_block_p(i));
3202 /* Need to find the full extent of this contiguous block in case
3203 objects span pages. */
3205 /* Now work forward until the end of this contiguous area is
3207 for (last_page = i; ;last_page++)
3208 /* Check whether this is the last page in this contiguous
3210 if (page_ends_contiguous_block_p(last_page, generation))
3213 verify_space(page_address(i),
3215 (page_table[last_page].bytes_used
3216 + npage_bytes(last_page-i)))
3223 /* Check that all the free space is zero filled. */
3225 verify_zero_fill(void)
3229 for (page = 0; page < last_free_page; page++) {
3230 if (page_free_p(page)) {
3231 /* The whole page should be zero filled. */
3232 sword_t *start_addr = (sword_t *)page_address(page);
3233 sword_t size = 1024;
3235 for (i = 0; i < size; i++) {
3236 if (start_addr[i] != 0) {
3237 lose("free page not zero at %x\n", start_addr + i);
3241 sword_t free_bytes = GENCGC_CARD_BYTES - page_table[page].bytes_used;
3242 if (free_bytes > 0) {
3243 sword_t *start_addr = (sword_t *)((uword_t)page_address(page)
3244 + page_table[page].bytes_used);
3245 sword_t size = free_bytes / N_WORD_BYTES;
3247 for (i = 0; i < size; i++) {
3248 if (start_addr[i] != 0) {
3249 lose("free region not zero at %x\n", start_addr + i);
3257 /* External entry point for verify_zero_fill */
3259 gencgc_verify_zero_fill(void)
3261 /* Flush the alloc regions updating the tables. */
3262 gc_alloc_update_all_page_tables();
3263 SHOW("verifying zero fill");
3268 verify_dynamic_space(void)
3270 generation_index_t i;
3272 for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
3273 verify_generation(i);
3275 if (gencgc_enable_verify_zero_fill)
3279 /* Write-protect all the dynamic boxed pages in the given generation. */
3281 write_protect_generation_pages(generation_index_t generation)
3285 gc_assert(generation < SCRATCH_GENERATION);
3287 for (start = 0; start < last_free_page; start++) {
3288 if (protect_page_p(start, generation)) {
3292 /* Note the page as protected in the page tables. */
3293 page_table[start].write_protected = 1;
3295 for (last = start + 1; last < last_free_page; last++) {
3296 if (!protect_page_p(last, generation))
3298 page_table[last].write_protected = 1;
3301 page_start = (void *)page_address(start);
3303 os_protect(page_start,
3304 npage_bytes(last - start),
3305 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3311 if (gencgc_verbose > 1) {
3313 "/write protected %d of %d pages in generation %d\n",
3314 count_write_protect_generation_pages(generation),
3315 count_generation_pages(generation),
3320 #if defined(LISP_FEATURE_SB_THREAD) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
3322 preserve_context_registers (os_context_t *c)
3325 /* On Darwin the signal context isn't a contiguous block of memory,
3326 * so just preserve_pointering its contents won't be sufficient.
3328 #if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
3329 #if defined LISP_FEATURE_X86
3330 preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3331 preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3332 preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3333 preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3334 preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3335 preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3336 preserve_pointer((void*)*os_context_pc_addr(c));
3337 #elif defined LISP_FEATURE_X86_64
3338 preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3339 preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3340 preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3341 preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3342 preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3343 preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3344 preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3345 preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3346 preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3347 preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3348 preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3349 preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3350 preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3351 preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3352 preserve_pointer((void*)*os_context_pc_addr(c));
3354 #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3357 #if !defined(LISP_FEATURE_WIN32)
3358 for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3359 preserve_pointer(*ptr);
3366 move_pinned_pages_to_newspace()
3370 /* scavenge() will evacuate all oldspace pages, but no newspace
3371 * pages. Pinned pages are precisely those pages which must not
3372 * be evacuated, so move them to newspace directly. */
3374 for (i = 0; i < last_free_page; i++) {
3375 if (page_table[i].dont_move &&
3376 /* dont_move is cleared lazily, so validate the space as well. */
3377 page_table[i].gen == from_space) {
3378 page_table[i].gen = new_space;
3379 /* And since we're moving the pages wholesale, also adjust
3380 * the generation allocation counters. */
3381 generations[new_space].bytes_allocated += page_table[i].bytes_used;
3382 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
3387 /* Garbage collect a generation. If raise is 0 then the remains of the
3388 * generation are not raised to the next generation. */
3390 garbage_collect_generation(generation_index_t generation, int raise)
3392 uword_t bytes_freed;
3394 uword_t static_space_size;
3397 gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3399 /* The oldest generation can't be raised. */
3400 gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3402 /* Check if weak hash tables were processed in the previous GC. */
3403 gc_assert(weak_hash_tables == NULL);
3405 /* Initialize the weak pointer list. */
3406 weak_pointers = NULL;
3408 /* When a generation is not being raised it is transported to a
3409 * temporary generation (NUM_GENERATIONS), and lowered when
3410 * done. Set up this new generation. There should be no pages
3411 * allocated to it yet. */
3413 gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3416 /* Set the global src and dest. generations */
3417 from_space = generation;
3419 new_space = generation+1;
3421 new_space = SCRATCH_GENERATION;
3423 /* Change to a new space for allocation, resetting the alloc_start_page */
3424 gc_alloc_generation = new_space;
3425 generations[new_space].alloc_start_page = 0;
3426 generations[new_space].alloc_unboxed_start_page = 0;
3427 generations[new_space].alloc_large_start_page = 0;
3428 generations[new_space].alloc_large_unboxed_start_page = 0;
3430 /* Before any pointers are preserved, the dont_move flags on the
3431 * pages need to be cleared. */
3432 for (i = 0; i < last_free_page; i++)
3433 if(page_table[i].gen==from_space)
3434 page_table[i].dont_move = 0;
3436 /* Un-write-protect the old-space pages. This is essential for the
3437 * promoted pages as they may contain pointers into the old-space
3438 * which need to be scavenged. It also helps avoid unnecessary page
3439 * faults as forwarding pointers are written into them. They need to
3440 * be un-protected anyway before unmapping later. */
3441 unprotect_oldspace();
3443 /* Scavenge the stacks' conservative roots. */
3445 /* there are potentially two stacks for each thread: the main
3446 * stack, which may contain Lisp pointers, and the alternate stack.
3447 * We don't ever run Lisp code on the altstack, but it may
3448 * host a sigcontext with lisp objects in it */
3450 /* what we need to do: (1) find the stack pointer for the main
3451 * stack; scavenge it (2) find the interrupt context on the
3452 * alternate stack that might contain lisp values, and scavenge
3455 /* we assume that none of the preceding applies to the thread that
3456 * initiates GC. If you ever call GC from inside an altstack
3457 * handler, you will lose. */
3459 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3460 /* And if we're saving a core, there's no point in being conservative. */
3461 if (conservative_stack) {
3462 for_each_thread(th) {
3464 void **esp=(void **)-1;
3465 if (th->state == STATE_DEAD)
3467 # if defined(LISP_FEATURE_SB_SAFEPOINT)
3468 /* Conservative collect_garbage is always invoked with a
3469 * foreign C call or an interrupt handler on top of every
3470 * existing thread, so the stored SP in each thread
3471 * structure is valid, no matter which thread we are looking
3472 * at. For threads that were running Lisp code, the pitstop
3473 * and edge functions maintain this value within the
3474 * interrupt or exception handler. */
3475 esp = os_get_csp(th);
3476 assert_on_stack(th, esp);
3478 /* In addition to pointers on the stack, also preserve the
3479 * return PC, the only value from the context that we need
3480 * in addition to the SP. The return PC gets saved by the
3481 * foreign call wrapper, and removed from the control stack
3482 * into a register. */
3483 preserve_pointer(th->pc_around_foreign_call);
3485 /* And on platforms with interrupts: scavenge ctx registers. */
3487 /* Disabled on Windows, because it does not have an explicit
3488 * stack of `interrupt_contexts'. The reported CSP has been
3489 * chosen so that the current context on the stack is
3490 * covered by the stack scan. See also set_csp_from_context(). */
3491 # ifndef LISP_FEATURE_WIN32
3492 if (th != arch_os_get_current_thread()) {
3493 long k = fixnum_value(
3494 SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3496 preserve_context_registers(th->interrupt_contexts[--k]);
3499 # elif defined(LISP_FEATURE_SB_THREAD)
3501 if(th==arch_os_get_current_thread()) {
3502 /* Somebody is going to burn in hell for this, but casting
3503 * it in two steps shuts gcc up about strict aliasing. */
3504 esp = (void **)((void *)&raise);
3507 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3508 for(i=free-1;i>=0;i--) {
3509 os_context_t *c=th->interrupt_contexts[i];
3510 esp1 = (void **) *os_context_register_addr(c,reg_SP);
3511 if (esp1>=(void **)th->control_stack_start &&
3512 esp1<(void **)th->control_stack_end) {
3513 if(esp1<esp) esp=esp1;
3514 preserve_context_registers(c);
3519 esp = (void **)((void *)&raise);
3521 if (!esp || esp == (void*) -1)
3522 lose("garbage_collect: no SP known for thread %x (OS %x)",
3524 for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
3525 preserve_pointer(*ptr);
3530 /* Non-x86oid systems don't have "conservative roots" as such, but
3531 * the same mechanism is used for objects pinned for use by alien
3533 for_each_thread(th) {
3534 lispobj pin_list = SymbolTlValue(PINNED_OBJECTS,th);
3535 while (pin_list != NIL) {
3536 struct cons *list_entry =
3537 (struct cons *)native_pointer(pin_list);
3538 preserve_pointer(list_entry->car);
3539 pin_list = list_entry->cdr;
3545 if (gencgc_verbose > 1) {
3546 sword_t num_dont_move_pages = count_dont_move_pages();
3548 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3549 num_dont_move_pages,
3550 npage_bytes(num_dont_move_pages));
3554 /* Now that all of the pinned (dont_move) pages are known, and
3555 * before we start to scavenge (and thus relocate) objects,
3556 * relocate the pinned pages to newspace, so that the scavenger
3557 * will not attempt to relocate their contents. */
3558 move_pinned_pages_to_newspace();
3560 /* Scavenge all the rest of the roots. */
3562 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3564 * If not x86, we need to scavenge the interrupt context(s) and the
3569 for_each_thread(th) {
3570 scavenge_interrupt_contexts(th);
3571 scavenge_control_stack(th);
3574 # ifdef LISP_FEATURE_SB_SAFEPOINT
3575 /* In this case, scrub all stacks right here from the GCing thread
3576 * instead of doing what the comment below says. Suboptimal, but
3579 scrub_thread_control_stack(th);
3581 /* Scrub the unscavenged control stack space, so that we can't run
3582 * into any stale pointers in a later GC (this is done by the
3583 * stop-for-gc handler in the other threads). */
3584 scrub_control_stack();
3589 /* Scavenge the Lisp functions of the interrupt handlers, taking
3590 * care to avoid SIG_DFL and SIG_IGN. */
3591 for (i = 0; i < NSIG; i++) {
3592 union interrupt_handler handler = interrupt_handlers[i];
3593 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3594 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3595 scavenge((lispobj *)(interrupt_handlers + i), 1);
3598 /* Scavenge the binding stacks. */
3601 for_each_thread(th) {
3602 sword_t len= (lispobj *)get_binding_stack_pointer(th) -
3603 th->binding_stack_start;
3604 scavenge((lispobj *) th->binding_stack_start,len);
3605 #ifdef LISP_FEATURE_SB_THREAD
3606 /* do the tls as well */
3607 len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
3608 (sizeof (struct thread))/(sizeof (lispobj));
3609 scavenge((lispobj *) (th+1),len);
3614 /* The original CMU CL code had scavenge-read-only-space code
3615 * controlled by the Lisp-level variable
3616 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3617 * wasn't documented under what circumstances it was useful or
3618 * safe to turn it on, so it's been turned off in SBCL. If you
3619 * want/need this functionality, and can test and document it,
3620 * please submit a patch. */
3622 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3623 uword_t read_only_space_size =
3624 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3625 (lispobj*)READ_ONLY_SPACE_START;
3627 "/scavenge read only space: %d bytes\n",
3628 read_only_space_size * sizeof(lispobj)));
3629 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3633 /* Scavenge static space. */
3635 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3636 (lispobj *)STATIC_SPACE_START;
3637 if (gencgc_verbose > 1) {
3639 "/scavenge static space: %d bytes\n",
3640 static_space_size * sizeof(lispobj)));
3642 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3644 /* All generations but the generation being GCed need to be
3645 * scavenged. The new_space generation needs special handling as
3646 * objects may be moved in - it is handled separately below. */
3647 scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
3649 /* Finally scavenge the new_space generation. Keep going until no
3650 * more objects are moved into the new generation */
3651 scavenge_newspace_generation(new_space);
3653 /* FIXME: I tried reenabling this check when debugging unrelated
3654 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3655 * Since the current GC code seems to work well, I'm guessing that
3656 * this debugging code is just stale, but I haven't tried to
3657 * figure it out. It should be figured out and then either made to
3658 * work or just deleted. */
3659 #define RESCAN_CHECK 0
3661 /* As a check re-scavenge the newspace once; no new objects should
3664 os_vm_size_t old_bytes_allocated = bytes_allocated;
3665 os_vm_size_t bytes_allocated;
3667 /* Start with a full scavenge. */
3668 scavenge_newspace_generation_one_scan(new_space);
3670 /* Flush the current regions, updating the tables. */
3671 gc_alloc_update_all_page_tables();
3673 bytes_allocated = bytes_allocated - old_bytes_allocated;
3675 if (bytes_allocated != 0) {
3676 lose("Rescan of new_space allocated %d more bytes.\n",
3682 scan_weak_hash_tables();
3683 scan_weak_pointers();
3685 /* Flush the current regions, updating the tables. */
3686 gc_alloc_update_all_page_tables();
3688 /* Free the pages in oldspace, but not those marked dont_move. */
3689 bytes_freed = free_oldspace();
3691 /* If the GC is not raising the age then lower the generation back
3692 * to its normal generation number */
3694 for (i = 0; i < last_free_page; i++)
3695 if ((page_table[i].bytes_used != 0)
3696 && (page_table[i].gen == SCRATCH_GENERATION))
3697 page_table[i].gen = generation;
3698 gc_assert(generations[generation].bytes_allocated == 0);
3699 generations[generation].bytes_allocated =
3700 generations[SCRATCH_GENERATION].bytes_allocated;
3701 generations[SCRATCH_GENERATION].bytes_allocated = 0;
3704 /* Reset the alloc_start_page for generation. */
3705 generations[generation].alloc_start_page = 0;
3706 generations[generation].alloc_unboxed_start_page = 0;
3707 generations[generation].alloc_large_start_page = 0;
3708 generations[generation].alloc_large_unboxed_start_page = 0;
3710 if (generation >= verify_gens) {
3711 if (gencgc_verbose) {
3715 verify_dynamic_space();
3718 /* Set the new gc trigger for the GCed generation. */
3719 generations[generation].gc_trigger =
3720 generations[generation].bytes_allocated
3721 + generations[generation].bytes_consed_between_gc;
3724 generations[generation].num_gc = 0;
3726 ++generations[generation].num_gc;
3730 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3732 update_dynamic_space_free_pointer(void)
3734 page_index_t last_page = -1, i;
3736 for (i = 0; i < last_free_page; i++)
3737 if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
3740 last_free_page = last_page+1;
3742 set_alloc_pointer((lispobj)(page_address(last_free_page)));
3743 return 0; /* dummy value: return something ... */
3747 remap_page_range (page_index_t from, page_index_t to)
3749 /* There's a mysterious Solaris/x86 problem with using mmap
3750 * tricks for memory zeroing. See sbcl-devel thread
3751 * "Re: patch: standalone executable redux".
3753 #if defined(LISP_FEATURE_SUNOS)
3754 zero_and_mark_pages(from, to);
3757 release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
3758 release_mask = release_granularity-1,
3760 aligned_from = (from+release_mask)&~release_mask,
3761 aligned_end = (end&~release_mask);
3763 if (aligned_from < aligned_end) {
3764 zero_pages_with_mmap(aligned_from, aligned_end-1);
3765 if (aligned_from != from)
3766 zero_and_mark_pages(from, aligned_from-1);
3767 if (aligned_end != end)
3768 zero_and_mark_pages(aligned_end, end-1);
3770 zero_and_mark_pages(from, to);
3776 remap_free_pages (page_index_t from, page_index_t to, int forcibly)
3778 page_index_t first_page, last_page;
3781 return remap_page_range(from, to);
3783 for (first_page = from; first_page <= to; first_page++) {
3784 if (page_allocated_p(first_page) ||
3785 (page_table[first_page].need_to_zero == 0))
3788 last_page = first_page + 1;
3789 while (page_free_p(last_page) &&
3790 (last_page <= to) &&
3791 (page_table[last_page].need_to_zero == 1))
3794 remap_page_range(first_page, last_page-1);
3796 first_page = last_page;
3800 generation_index_t small_generation_limit = 1;
3802 /* GC all generations newer than last_gen, raising the objects in each
3803 * to the next older generation - we finish when all generations below
3804 * last_gen are empty. Then if last_gen is due for a GC, or if
3805 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3806 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3808 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3809 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3811 collect_garbage(generation_index_t last_gen)
3813 generation_index_t gen = 0, i;
3814 int raise, more = 0;
3816 /* The largest value of last_free_page seen since the time
3817 * remap_free_pages was called. */
3818 static page_index_t high_water_mark = 0;
3820 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3821 log_generation_stats(gc_logfile, "=== GC Start ===");
3825 if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
3827 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3832 /* Flush the alloc regions updating the tables. */
3833 gc_alloc_update_all_page_tables();
3835 /* Verify the new objects created by Lisp code. */
3836 if (pre_verify_gen_0) {
3837 FSHOW((stderr, "pre-checking generation 0\n"));
3838 verify_generation(0);
3841 if (gencgc_verbose > 1)
3842 print_generation_stats();
3845 /* Collect the generation. */
3847 if (more || (gen >= gencgc_oldest_gen_to_gc)) {
3848 /* Never raise the oldest generation. Never raise the extra generation
3849 * collected due to more-flag. */
3855 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
3856 /* If we would not normally raise this one, but we're
3857 * running low on space in comparison to the object-sizes
3858 * we've been seeing, raise it and collect the next one
3860 if (!raise && gen == last_gen) {
3861 more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
3866 if (gencgc_verbose > 1) {
3868 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3871 generations[gen].bytes_allocated,
3872 generations[gen].gc_trigger,
3873 generations[gen].num_gc));
3876 /* If an older generation is being filled, then update its
3879 generations[gen+1].cum_sum_bytes_allocated +=
3880 generations[gen+1].bytes_allocated;
3883 garbage_collect_generation(gen, raise);
3885 /* Reset the memory age cum_sum. */
3886 generations[gen].cum_sum_bytes_allocated = 0;
3888 if (gencgc_verbose > 1) {
3889 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3890 print_generation_stats();
3894 } while ((gen <= gencgc_oldest_gen_to_gc)
3895 && ((gen < last_gen)
3898 && (generations[gen].bytes_allocated
3899 > generations[gen].gc_trigger)
3900 && (generation_average_age(gen)
3901 > generations[gen].minimum_age_before_gc))));
3903 /* Now if gen-1 was raised all generations before gen are empty.
3904 * If it wasn't raised then all generations before gen-1 are empty.
3906 * Now objects within this gen's pages cannot point to younger
3907 * generations unless they are written to. This can be exploited
3908 * by write-protecting the pages of gen; then when younger
3909 * generations are GCed only the pages which have been written
3914 gen_to_wp = gen - 1;
3916 /* There's not much point in WPing pages in generation 0 as it is
3917 * never scavenged (except promoted pages). */
3918 if ((gen_to_wp > 0) && enable_page_protection) {
3919 /* Check that they are all empty. */
3920 for (i = 0; i < gen_to_wp; i++) {
3921 if (generations[i].bytes_allocated)
3922 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
3925 write_protect_generation_pages(gen_to_wp);
3928 /* Set gc_alloc() back to generation 0. The current regions should
3929 * be flushed after the above GCs. */
3930 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
3931 gc_alloc_generation = 0;
3933 /* Save the high-water mark before updating last_free_page */
3934 if (last_free_page > high_water_mark)
3935 high_water_mark = last_free_page;
3937 update_dynamic_space_free_pointer();
3939 /* Update auto_gc_trigger. Make sure we trigger the next GC before
3940 * running out of heap! */
3941 if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
3942 auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
3944 auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
3947 fprintf(stderr,"Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n",
3950 /* If we did a big GC (arbitrarily defined as gen > 1), release memory
3953 if (gen > small_generation_limit) {
3954 if (last_free_page > high_water_mark)
3955 high_water_mark = last_free_page;
3956 remap_free_pages(0, high_water_mark, 0);
3957 high_water_mark = 0;
3961 large_allocation = 0;
3963 log_generation_stats(gc_logfile, "=== GC End ===");
3964 SHOW("returning from collect_garbage");
3967 /* This is called by Lisp PURIFY when it is finished. All live objects
3968 * will have been moved to the RO and Static heaps. The dynamic space
3969 * will need a full re-initialization. We don't bother having Lisp
3970 * PURIFY flush the current gc_alloc() region, as the page_tables are
3971 * re-initialized, and every page is zeroed to be sure. */
3975 page_index_t page, last_page;
3977 if (gencgc_verbose > 1) {
3978 SHOW("entering gc_free_heap");
3981 for (page = 0; page < page_table_pages; page++) {
3982 /* Skip free pages which should already be zero filled. */
3983 if (page_allocated_p(page)) {
3985 for (last_page = page;
3986 (last_page < page_table_pages) && page_allocated_p(last_page);
3988 /* Mark the page free. The other slots are assumed invalid
3989 * when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
3990 * should not be write-protected -- except that the
3991 * generation is used for the current region but it sets
3993 page_table[page].allocated = FREE_PAGE_FLAG;
3994 page_table[page].bytes_used = 0;
3995 page_table[page].write_protected = 0;
3998 #ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
3999 * about this change. */
4000 page_start = (void *)page_address(page);
4001 os_protect(page_start, npage_bytes(last_page-page), OS_VM_PROT_ALL);
4002 remap_free_pages(page, last_page-1, 1);
4005 } else if (gencgc_zero_check_during_free_heap) {
4006 /* Double-check that the page is zero filled. */
4007 sword_t *page_start;
4009 gc_assert(page_free_p(page));
4010 gc_assert(page_table[page].bytes_used == 0);
4011 page_start = (sword_t *)page_address(page);
4012 for (i=0; i<GENCGC_CARD_BYTES/sizeof(sword_t); i++) {
4013 if (page_start[i] != 0) {
4014 lose("free region not zero at %x\n", page_start + i);
4020 bytes_allocated = 0;
4022 /* Initialize the generations. */
4023 for (page = 0; page < NUM_GENERATIONS; page++) {
4024 generations[page].alloc_start_page = 0;
4025 generations[page].alloc_unboxed_start_page = 0;
4026 generations[page].alloc_large_start_page = 0;
4027 generations[page].alloc_large_unboxed_start_page = 0;
4028 generations[page].bytes_allocated = 0;
4029 generations[page].gc_trigger = 2000000;
4030 generations[page].num_gc = 0;
4031 generations[page].cum_sum_bytes_allocated = 0;
4034 if (gencgc_verbose > 1)
4035 print_generation_stats();
4037 /* Initialize gc_alloc(). */
4038 gc_alloc_generation = 0;
4040 gc_set_region_empty(&boxed_region);
4041 gc_set_region_empty(&unboxed_region);
4044 set_alloc_pointer((lispobj)((char *)heap_base));
4046 if (verify_after_free_heap) {
4047 /* Check whether purify has left any bad pointers. */
4048 FSHOW((stderr, "checking after free_heap\n"));
4058 #if defined(LISP_FEATURE_SB_SAFEPOINT)
4062 /* Compute the number of pages needed for the dynamic space.
4063 * Dynamic space size should be aligned on page size. */
4064 page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
4065 gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4067 /* Default nursery size to 5% of the total dynamic space size,
4069 bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
4070 if (bytes_consed_between_gcs < (1024*1024))
4071 bytes_consed_between_gcs = 1024*1024;
4073 /* The page_table must be allocated using "calloc" to initialize
4074 * the page structures correctly. There used to be a separate
4075 * initialization loop (now commented out; see below) but that was
4076 * unnecessary and did hurt startup time. */
4077 page_table = calloc(page_table_pages, sizeof(struct page));
4078 gc_assert(page_table);
4081 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4082 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4084 heap_base = (void*)DYNAMIC_SPACE_START;
4086 /* The page structures are initialized implicitly when page_table
4087 * is allocated with "calloc" above. Formerly we had the following
4088 * explicit initialization here (comments converted to C99 style
4089 * for readability as C's block comments don't nest):
4091 * // Initialize each page structure.
4092 * for (i = 0; i < page_table_pages; i++) {
4093 * // Initialize all pages as free.
4094 * page_table[i].allocated = FREE_PAGE_FLAG;
4095 * page_table[i].bytes_used = 0;
4097 * // Pages are not write-protected at startup.
4098 * page_table[i].write_protected = 0;
4101 * Without this loop the image starts up much faster when dynamic
4102 * space is large -- which it is on 64-bit platforms already by
4103 * default -- and when "calloc" for large arrays is implemented
4104 * using copy-on-write of a page of zeroes -- which it is at least
4105 * on Linux. In this case the pages that page_table_pages is stored
4106 * in are mapped and cleared not before the corresponding part of
4107 * dynamic space is used. For example, this saves clearing 16 MB of
4108 * memory at startup if the page size is 4 KB and the size of
4109 * dynamic space is 4 GB.
4110 * FREE_PAGE_FLAG must be 0 for this to work correctly which is
4111 * asserted below: */
4113 /* Compile time assertion: If triggered, declares an array
4114 * of dimension -1 forcing a syntax error. The intent of the
4115 * assignment is to avoid an "unused variable" warning. */
4116 char assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
4117 assert_free_page_flag_0[0] = assert_free_page_flag_0[0];
4120 bytes_allocated = 0;
4122 /* Initialize the generations.
4124 * FIXME: very similar to code in gc_free_heap(), should be shared */
4125 for (i = 0; i < NUM_GENERATIONS; i++) {
4126 generations[i].alloc_start_page = 0;
4127 generations[i].alloc_unboxed_start_page = 0;
4128 generations[i].alloc_large_start_page = 0;
4129 generations[i].alloc_large_unboxed_start_page = 0;
4130 generations[i].bytes_allocated = 0;
4131 generations[i].gc_trigger = 2000000;
4132 generations[i].num_gc = 0;
4133 generations[i].cum_sum_bytes_allocated = 0;
4134 /* the tune-able parameters */
4135 generations[i].bytes_consed_between_gc
4136 = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
4137 generations[i].number_of_gcs_before_promotion = 1;
4138 generations[i].minimum_age_before_gc = 0.75;
4141 /* Initialize gc_alloc. */
4142 gc_alloc_generation = 0;
4143 gc_set_region_empty(&boxed_region);
4144 gc_set_region_empty(&unboxed_region);
4149 /* Pick up the dynamic space from after a core load.
4151 * The ALLOCATION_POINTER points to the end of the dynamic space.
4155 gencgc_pickup_dynamic(void)
4157 page_index_t page = 0;
4158 void *alloc_ptr = (void *)get_alloc_pointer();
4159 lispobj *prev=(lispobj *)page_address(page);
4160 generation_index_t gen = PSEUDO_STATIC_GENERATION;
4162 bytes_allocated = 0;
4165 lispobj *first,*ptr= (lispobj *)page_address(page);
4167 if (!gencgc_partial_pickup || page_allocated_p(page)) {
4168 /* It is possible, though rare, for the saved page table
4169 * to contain free pages below alloc_ptr. */
4170 page_table[page].gen = gen;
4171 page_table[page].bytes_used = GENCGC_CARD_BYTES;
4172 page_table[page].large_object = 0;
4173 page_table[page].write_protected = 0;
4174 page_table[page].write_protected_cleared = 0;
4175 page_table[page].dont_move = 0;
4176 page_table[page].need_to_zero = 1;
4178 bytes_allocated += GENCGC_CARD_BYTES;
4181 if (!gencgc_partial_pickup) {
4182 page_table[page].allocated = BOXED_PAGE_FLAG;
4183 first=gc_search_space(prev,(ptr+2)-prev,ptr);
4186 page_table[page].scan_start_offset =
4187 page_address(page) - (void *)prev;
4190 } while (page_address(page) < alloc_ptr);
4192 last_free_page = page;
4194 generations[gen].bytes_allocated = bytes_allocated;
4196 gc_alloc_update_all_page_tables();
4197 write_protect_generation_pages(gen);
4201 gc_initialize_pointers(void)
4203 gencgc_pickup_dynamic();
4207 /* alloc(..) is the external interface for memory allocation. It
4208 * allocates to generation 0. It is not called from within the garbage
4209 * collector as it is only external uses that need the check for heap
4210 * size (GC trigger) and to disable the interrupts (interrupts are
4211 * always disabled during a GC).
4213 * The vops that call alloc(..) assume that the returned space is zero-filled.
4214 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4216 * The check for a GC trigger is only performed when the current
4217 * region is full, so in most cases it's not needed. */
4219 static inline lispobj *
4220 general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
4221 struct thread *thread)
4223 #ifndef LISP_FEATURE_WIN32
4224 lispobj alloc_signal;
4227 void *new_free_pointer;
4228 os_vm_size_t trigger_bytes = 0;
4230 gc_assert(nbytes>0);
4232 /* Check for alignment allocation problems. */
4233 gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
4234 && ((nbytes & LOWTAG_MASK) == 0));
4236 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
4237 /* Must be inside a PA section. */
4238 gc_assert(get_pseudo_atomic_atomic(thread));
4241 if (nbytes > large_allocation)
4242 large_allocation = nbytes;
4244 /* maybe we can do this quickly ... */
4245 new_free_pointer = region->free_pointer + nbytes;
4246 if (new_free_pointer <= region->end_addr) {
4247 new_obj = (void*)(region->free_pointer);
4248 region->free_pointer = new_free_pointer;
4249 return(new_obj); /* yup */
4252 /* We don't want to count nbytes against auto_gc_trigger unless we
4253 * have to: it speeds up the tenuring of objects and slows down
4254 * allocation. However, unless we do so when allocating _very_
4255 * large objects we are in danger of exhausting the heap without
4256 * running sufficient GCs.
4258 if (nbytes >= bytes_consed_between_gcs)
4259 trigger_bytes = nbytes;
4261 /* we have to go the long way around, it seems. Check whether we
4262 * should GC in the near future
4264 if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
4265 /* Don't flood the system with interrupts if the need to gc is
4266 * already noted. This can happen for example when SUB-GC
4267 * allocates or after a gc triggered in a WITHOUT-GCING. */
4268 if (SymbolValue(GC_PENDING,thread) == NIL) {
4269 /* set things up so that GC happens when we finish the PA
4271 SetSymbolValue(GC_PENDING,T,thread);
4272 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4273 #ifdef LISP_FEATURE_SB_SAFEPOINT
4274 thread_register_gc_trigger();
4276 set_pseudo_atomic_interrupted(thread);
4277 #ifdef GENCGC_IS_PRECISE
4278 /* PPC calls alloc() from a trap or from pa_alloc(),
4279 * look up the most context if it's from a trap. */
4281 os_context_t *context =
4282 thread->interrupt_data->allocation_trap_context;
4283 maybe_save_gc_mask_and_block_deferrables
4284 (context ? os_context_sigmask_addr(context) : NULL);
4287 maybe_save_gc_mask_and_block_deferrables(NULL);
4293 new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4295 #ifndef LISP_FEATURE_WIN32
4296 /* for sb-prof, and not supported on Windows yet */
4297 alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4298 if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4299 if ((sword_t) alloc_signal <= 0) {
4300 SetSymbolValue(ALLOC_SIGNAL, T, thread);
4303 SetSymbolValue(ALLOC_SIGNAL,
4304 alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4314 general_alloc(sword_t nbytes, int page_type_flag)
4316 struct thread *thread = arch_os_get_current_thread();
4317 /* Select correct region, and call general_alloc_internal with it.
4318 * For other then boxed allocation we must lock first, since the
4319 * region is shared. */
4320 if (BOXED_PAGE_FLAG & page_type_flag) {
4321 #ifdef LISP_FEATURE_SB_THREAD
4322 struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4324 struct alloc_region *region = &boxed_region;
4326 return general_alloc_internal(nbytes, page_type_flag, region, thread);
4327 } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4329 gc_assert(0 == thread_mutex_lock(&allocation_lock));
4330 obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4331 gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4334 lose("bad page type flag: %d", page_type_flag);
4338 lispobj AMD64_SYSV_ABI *
4341 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4342 struct thread *self = arch_os_get_current_thread();
4343 int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
4344 if (!was_pseudo_atomic)
4345 set_pseudo_atomic_atomic(self);
4347 gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4350 lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
4352 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4353 if (!was_pseudo_atomic)
4354 clear_pseudo_atomic_atomic(self);
4361 * shared support for the OS-dependent signal handlers which
4362 * catch GENCGC-related write-protect violations
4364 void unhandled_sigmemoryfault(void* addr);
4366 /* Depending on which OS we're running under, different signals might
4367 * be raised for a violation of write protection in the heap. This
4368 * function factors out the common generational GC magic which needs
4369 * to invoked in this case, and should be called from whatever signal
4370 * handler is appropriate for the OS we're running under.
4372 * Return true if this signal is a normal generational GC thing that
4373 * we were able to handle, or false if it was abnormal and control
4374 * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
4376 * We have two control flags for this: one causes us to ignore faults
4377 * on unprotected pages completely, and the second complains to stderr
4378 * but allows us to continue without losing.
4380 extern boolean ignore_memoryfaults_on_unprotected_pages;
4381 boolean ignore_memoryfaults_on_unprotected_pages = 0;
4383 extern boolean continue_after_memoryfault_on_unprotected_pages;
4384 boolean continue_after_memoryfault_on_unprotected_pages = 0;
4387 gencgc_handle_wp_violation(void* fault_addr)
4389 page_index_t page_index = find_page_index(fault_addr);
4392 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4393 fault_addr, page_index));
4396 /* Check whether the fault is within the dynamic space. */
4397 if (page_index == (-1)) {
4399 /* It can be helpful to be able to put a breakpoint on this
4400 * case to help diagnose low-level problems. */
4401 unhandled_sigmemoryfault(fault_addr);
4403 /* not within the dynamic space -- not our responsibility */
4408 ret = thread_mutex_lock(&free_pages_lock);
4409 gc_assert(ret == 0);
4410 if (page_table[page_index].write_protected) {
4411 /* Unprotect the page. */
4412 os_protect(page_address(page_index), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
4413 page_table[page_index].write_protected_cleared = 1;
4414 page_table[page_index].write_protected = 0;
4415 } else if (!ignore_memoryfaults_on_unprotected_pages) {
4416 /* The only acceptable reason for this signal on a heap
4417 * access is that GENCGC write-protected the page.
4418 * However, if two CPUs hit a wp page near-simultaneously,
4419 * we had better not have the second one lose here if it
4420 * does this test after the first one has already set wp=0
4422 if(page_table[page_index].write_protected_cleared != 1) {
4423 void lisp_backtrace(int frames);
4426 "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
4427 " boxed_region.first_page: %"PAGE_INDEX_FMT","
4428 " boxed_region.last_page %"PAGE_INDEX_FMT"\n"
4429 " page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
4430 " page.bytes_used: %"PAGE_BYTES_FMT"\n"
4431 " page.allocated: %d\n"
4432 " page.write_protected: %d\n"
4433 " page.write_protected_cleared: %d\n"
4434 " page.generation: %d\n",
4437 boxed_region.first_page,
4438 boxed_region.last_page,
4439 page_table[page_index].scan_start_offset,
4440 page_table[page_index].bytes_used,
4441 page_table[page_index].allocated,
4442 page_table[page_index].write_protected,
4443 page_table[page_index].write_protected_cleared,
4444 page_table[page_index].gen);
4445 if (!continue_after_memoryfault_on_unprotected_pages)
4449 ret = thread_mutex_unlock(&free_pages_lock);
4450 gc_assert(ret == 0);
4451 /* Don't worry, we can handle it. */
4455 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4456 * it's not just a case of the program hitting the write barrier, and
4457 * are about to let Lisp deal with it. It's basically just a
4458 * convenient place to set a gdb breakpoint. */
4460 unhandled_sigmemoryfault(void *addr)
4463 void gc_alloc_update_all_page_tables(void)
4465 /* Flush the alloc regions updating the tables. */
4467 for_each_thread(th) {
4468 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4469 #if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
4470 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
4473 gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4474 gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4478 gc_set_region_empty(struct alloc_region *region)
4480 region->first_page = 0;
4481 region->last_page = -1;
4482 region->start_addr = page_address(0);
4483 region->free_pointer = page_address(0);
4484 region->end_addr = page_address(0);
4488 zero_all_free_pages()
4492 for (i = 0; i < last_free_page; i++) {
4493 if (page_free_p(i)) {
4494 #ifdef READ_PROTECT_FREE_PAGES
4495 os_protect(page_address(i),
4504 /* Things to do before doing a final GC before saving a core (without
4507 * + Pages in large_object pages aren't moved by the GC, so we need to
4508 * unset that flag from all pages.
4509 * + The pseudo-static generation isn't normally collected, but it seems
4510 * reasonable to collect it at least when saving a core. So move the
4511 * pages to a normal generation.
4514 prepare_for_final_gc ()
4517 for (i = 0; i < last_free_page; i++) {
4518 page_table[i].large_object = 0;
4519 if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4520 int used = page_table[i].bytes_used;
4521 page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4522 generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4523 generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4529 /* Do a non-conservative GC, and then save a core with the initial
4530 * function being set to the value of the static symbol
4531 * SB!VM:RESTART-LISP-FUNCTION */
4533 gc_and_save(char *filename, boolean prepend_runtime,
4534 boolean save_runtime_options, boolean compressed,
4535 int compression_level, int application_type)
4538 void *runtime_bytes = NULL;
4539 size_t runtime_size;
4541 file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4546 conservative_stack = 0;
4548 /* The filename might come from Lisp, and be moved by the now
4549 * non-conservative GC. */
4550 filename = strdup(filename);
4552 /* Collect twice: once into relatively high memory, and then back
4553 * into low memory. This compacts the retained data into the lower
4554 * pages, minimizing the size of the core file.
4556 prepare_for_final_gc();
4557 gencgc_alloc_start_page = last_free_page;
4558 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4560 prepare_for_final_gc();
4561 gencgc_alloc_start_page = -1;
4562 collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4564 if (prepend_runtime)
4565 save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
4568 /* The dumper doesn't know that pages need to be zeroed before use. */
4569 zero_all_free_pages();
4570 save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4571 prepend_runtime, save_runtime_options,
4572 compressed ? compression_level : COMPRESSION_LEVEL_NONE);
4573 /* Oops. Save still managed to fail. Since we've mangled the stack
4574 * beyond hope, there's not much we can do.
4575 * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4576 * going to be rather unsatisfactory too... */
4577 lose("Attempt to save core after non-conservative GC failed.\n");