2 * GENerational Conservative Garbage Collector for SBCL x86
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 * For a review of garbage collection techniques (e.g. generational
18 * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19 * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20 * had been accepted for _ACM Computing Surveys_ and was available
21 * as a PostScript preprint through
22 * <http://www.cs.utexas.edu/users/oops/papers.html>
24 * <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
34 #include "interrupt.h"
39 #include "gc-internal.h"
41 /* assembly language stub that executes trap_PendingInterrupt */
42 void do_pending_interrupt(void);
49 /* the number of actual generations. (The number of 'struct
50 * generation' objects is one more than this, because one object
51 * serves as scratch when GC'ing.) */
52 #define NUM_GENERATIONS 6
54 /* Should we use page protection to help avoid the scavenging of pages
55 * that don't have pointers to younger generations? */
56 boolean enable_page_protection = 1;
58 /* Should we unmap a page and re-mmap it to have it zero filled? */
59 #if defined(__FreeBSD__) || defined(__OpenBSD__)
60 /* comment from cmucl-2.4.8: This can waste a lot of swap on FreeBSD
61 * so don't unmap there.
63 * The CMU CL comment didn't specify a version, but was probably an
64 * old version of FreeBSD (pre-4.0), so this might no longer be true.
65 * OTOH, if it is true, this behavior might exist on OpenBSD too, so
66 * for now we don't unmap there either. -- WHN 2001-04-07 */
67 boolean gencgc_unmap_zero = 0;
69 boolean gencgc_unmap_zero = 1;
72 /* the minimum size (in bytes) for a large object*/
73 unsigned large_object_size = 4 * 4096;
81 /* the verbosity level. All non-error messages are disabled at level 0;
82 * and only a few rare messages are printed at level 1. */
83 unsigned gencgc_verbose = (QSHOW ? 1 : 0);
85 /* FIXME: At some point enable the various error-checking things below
86 * and see what they say. */
88 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
89 * Set verify_gens to NUM_GENERATIONS to disable this kind of check. */
90 int verify_gens = NUM_GENERATIONS;
92 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
93 boolean pre_verify_gen_0 = 0;
95 /* Should we check for bad pointers after gc_free_heap is called
96 * from Lisp PURIFY? */
97 boolean verify_after_free_heap = 0;
99 /* Should we print a note when code objects are found in the dynamic space
100 * during a heap verify? */
101 boolean verify_dynamic_code_check = 0;
103 /* Should we check code objects for fixup errors after they are transported? */
104 boolean check_code_fixups = 0;
106 /* Should we check that newly allocated regions are zero filled? */
107 boolean gencgc_zero_check = 0;
109 /* Should we check that the free space is zero filled? */
110 boolean gencgc_enable_verify_zero_fill = 0;
112 /* Should we check that free pages are zero filled during gc_free_heap
113 * called after Lisp PURIFY? */
114 boolean gencgc_zero_check_during_free_heap = 0;
117 * GC structures and variables
120 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
121 unsigned long bytes_allocated = 0;
122 static unsigned long auto_gc_trigger = 0;
124 /* the source and destination generations. These are set before a GC starts
130 /* FIXME: It would be nice to use this symbolic constant instead of
131 * bare 4096 almost everywhere. We could also use an assertion that
132 * it's equal to getpagesize(). */
133 #define PAGE_BYTES 4096
135 /* An array of page structures is statically allocated.
136 * This helps quickly map between an address its page structure.
137 * NUM_PAGES is set from the size of the dynamic space. */
138 struct page page_table[NUM_PAGES];
140 /* To map addresses to page structures the address of the first page
142 static void *heap_base = NULL;
145 /* Calculate the start address for the given page number. */
147 page_address(int page_num)
149 return (heap_base + (page_num * 4096));
152 /* Find the page index within the page_table for the given
153 * address. Return -1 on failure. */
155 find_page_index(void *addr)
157 int index = addr-heap_base;
160 index = ((unsigned int)index)/4096;
161 if (index < NUM_PAGES)
168 /* a structure to hold the state of a generation */
171 /* the first page that gc_alloc() checks on its next call */
172 int alloc_start_page;
174 /* the first page that gc_alloc_unboxed() checks on its next call */
175 int alloc_unboxed_start_page;
177 /* the first page that gc_alloc_large (boxed) considers on its next
178 * call. (Although it always allocates after the boxed_region.) */
179 int alloc_large_start_page;
181 /* the first page that gc_alloc_large (unboxed) considers on its
182 * next call. (Although it always allocates after the
183 * current_unboxed_region.) */
184 int alloc_large_unboxed_start_page;
186 /* the bytes allocated to this generation */
189 /* the number of bytes at which to trigger a GC */
192 /* to calculate a new level for gc_trigger */
193 int bytes_consed_between_gc;
195 /* the number of GCs since the last raise */
198 /* the average age after which a GC will raise objects to the
202 /* the cumulative sum of the bytes allocated to this generation. It is
203 * cleared after a GC on this generations, and update before new
204 * objects are added from a GC of a younger generation. Dividing by
205 * the bytes_allocated will give the average age of the memory in
206 * this generation since its last GC. */
207 int cum_sum_bytes_allocated;
209 /* a minimum average memory age before a GC will occur helps
210 * prevent a GC when a large number of new live objects have been
211 * added, in which case a GC could be a waste of time */
212 double min_av_mem_age;
214 /* the number of actual generations. (The number of 'struct
215 * generation' objects is one more than this, because one object
216 * serves as scratch when GC'ing.) */
217 #define NUM_GENERATIONS 6
219 /* an array of generation structures. There needs to be one more
220 * generation structure than actual generations as the oldest
221 * generation is temporarily raised then lowered. */
222 struct generation generations[NUM_GENERATIONS+1];
224 /* the oldest generation that is will currently be GCed by default.
225 * Valid values are: 0, 1, ... (NUM_GENERATIONS-1)
227 * The default of (NUM_GENERATIONS-1) enables GC on all generations.
229 * Setting this to 0 effectively disables the generational nature of
230 * the GC. In some applications generational GC may not be useful
231 * because there are no long-lived objects.
233 * An intermediate value could be handy after moving long-lived data
234 * into an older generation so an unnecessary GC of this long-lived
235 * data can be avoided. */
236 unsigned int gencgc_oldest_gen_to_gc = NUM_GENERATIONS-1;
238 /* The maximum free page in the heap is maintained and used to update
239 * ALLOCATION_POINTER which is used by the room function to limit its
240 * search of the heap. XX Gencgc obviously needs to be better
241 * integrated with the Lisp code. */
242 static int last_free_page;
243 static int last_used_page = 0;
246 * miscellaneous heap functions
249 /* Count the number of pages which are write-protected within the
250 * given generation. */
252 count_write_protect_generation_pages(int generation)
257 for (i = 0; i < last_free_page; i++)
258 if ((page_table[i].allocated != FREE_PAGE)
259 && (page_table[i].gen == generation)
260 && (page_table[i].write_protected == 1))
265 /* Count the number of pages within the given generation. */
267 count_generation_pages(int generation)
272 for (i = 0; i < last_free_page; i++)
273 if ((page_table[i].allocated != 0)
274 && (page_table[i].gen == generation))
279 /* Count the number of dont_move pages. */
281 count_dont_move_pages(void)
285 for (i = 0; i < last_free_page; i++) {
286 if ((page_table[i].allocated != 0) && (page_table[i].dont_move != 0)) {
293 /* Work through the pages and add up the number of bytes used for the
294 * given generation. */
296 count_generation_bytes_allocated (int gen)
300 for (i = 0; i < last_free_page; i++) {
301 if ((page_table[i].allocated != 0) && (page_table[i].gen == gen))
302 result += page_table[i].bytes_used;
307 /* Return the average age of the memory in a generation. */
309 gen_av_mem_age(int gen)
311 if (generations[gen].bytes_allocated == 0)
315 ((double)generations[gen].cum_sum_bytes_allocated)
316 / ((double)generations[gen].bytes_allocated);
319 /* The verbose argument controls how much to print: 0 for normal
320 * level of detail; 1 for debugging. */
322 print_generation_stats(int verbose) /* FIXME: should take FILE argument */
327 /* This code uses the FP instructions which may be set up for Lisp
328 * so they need to be saved and reset for C. */
331 /* number of generations to print */
333 gens = NUM_GENERATIONS+1;
335 gens = NUM_GENERATIONS;
337 /* Print the heap stats. */
339 " Generation Boxed Unboxed LB LUB Alloc Waste Trig WP GCs Mem-age\n");
341 for (i = 0; i < gens; i++) {
345 int large_boxed_cnt = 0;
346 int large_unboxed_cnt = 0;
348 for (j = 0; j < last_free_page; j++)
349 if (page_table[j].gen == i) {
351 /* Count the number of boxed pages within the given
353 if (page_table[j].allocated == BOXED_PAGE) {
354 if (page_table[j].large_object)
360 /* Count the number of unboxed pages within the given
362 if (page_table[j].allocated == UNBOXED_PAGE) {
363 if (page_table[j].large_object)
370 gc_assert(generations[i].bytes_allocated
371 == count_generation_bytes_allocated(i));
373 " %8d: %5d %5d %5d %5d %8d %5d %8d %4d %3d %7.4f\n",
375 boxed_cnt, unboxed_cnt, large_boxed_cnt, large_unboxed_cnt,
376 generations[i].bytes_allocated,
377 (count_generation_pages(i)*4096
378 - generations[i].bytes_allocated),
379 generations[i].gc_trigger,
380 count_write_protect_generation_pages(i),
381 generations[i].num_gc,
384 fprintf(stderr," Total bytes allocated=%ld\n", bytes_allocated);
386 fpu_restore(fpu_state);
390 * allocation routines
394 * To support quick and inline allocation, regions of memory can be
395 * allocated and then allocated from with just a free pointer and a
396 * check against an end address.
398 * Since objects can be allocated to spaces with different properties
399 * e.g. boxed/unboxed, generation, ages; there may need to be many
400 * allocation regions.
402 * Each allocation region may be start within a partly used page. Many
403 * features of memory use are noted on a page wise basis, e.g. the
404 * generation; so if a region starts within an existing allocated page
405 * it must be consistent with this page.
407 * During the scavenging of the newspace, objects will be transported
408 * into an allocation region, and pointers updated to point to this
409 * allocation region. It is possible that these pointers will be
410 * scavenged again before the allocation region is closed, e.g. due to
411 * trans_list which jumps all over the place to cleanup the list. It
412 * is important to be able to determine properties of all objects
413 * pointed to when scavenging, e.g to detect pointers to the oldspace.
414 * Thus it's important that the allocation regions have the correct
415 * properties set when allocated, and not just set when closed. The
416 * region allocation routines return regions with the specified
417 * properties, and grab all the pages, setting their properties
418 * appropriately, except that the amount used is not known.
420 * These regions are used to support quicker allocation using just a
421 * free pointer. The actual space used by the region is not reflected
422 * in the pages tables until it is closed. It can't be scavenged until
425 * When finished with the region it should be closed, which will
426 * update the page tables for the actual space used returning unused
427 * space. Further it may be noted in the new regions which is
428 * necessary when scavenging the newspace.
430 * Large objects may be allocated directly without an allocation
431 * region, the page tables are updated immediately.
433 * Unboxed objects don't contain pointers to other objects and so
434 * don't need scavenging. Further they can't contain pointers to
435 * younger generations so WP is not needed. By allocating pages to
436 * unboxed objects the whole page never needs scavenging or
437 * write-protecting. */
439 /* We are only using two regions at present. Both are for the current
440 * newspace generation. */
441 struct alloc_region boxed_region;
442 struct alloc_region unboxed_region;
444 /* XX hack. Current Lisp code uses the following. Need copying in/out. */
445 void *current_region_free_pointer;
446 void *current_region_end_addr;
448 /* The generation currently being allocated to. */
449 static int gc_alloc_generation;
451 /* Find a new region with room for at least the given number of bytes.
453 * It starts looking at the current generation's alloc_start_page. So
454 * may pick up from the previous region if there is enough space. This
455 * keeps the allocation contiguous when scavenging the newspace.
457 * The alloc_region should have been closed by a call to
458 * gc_alloc_update_page_tables(), and will thus be in an empty state.
460 * To assist the scavenging functions write-protected pages are not
461 * used. Free pages should not be write-protected.
463 * It is critical to the conservative GC that the start of regions be
464 * known. To help achieve this only small regions are allocated at a
467 * During scavenging, pointers may be found to within the current
468 * region and the page generation must be set so that pointers to the
469 * from space can be recognized. Therefore the generation of pages in
470 * the region are set to gc_alloc_generation. To prevent another
471 * allocation call using the same pages, all the pages in the region
472 * are allocated, although they will initially be empty.
475 gc_alloc_new_region(int nbytes, int unboxed, struct alloc_region *alloc_region)
487 "/alloc_new_region for %d bytes from gen %d\n",
488 nbytes, gc_alloc_generation));
491 /* Check that the region is in a reset state. */
492 gc_assert((alloc_region->first_page == 0)
493 && (alloc_region->last_page == -1)
494 && (alloc_region->free_pointer == alloc_region->end_addr));
498 generations[gc_alloc_generation].alloc_unboxed_start_page;
501 generations[gc_alloc_generation].alloc_start_page;
504 /* Search for a contiguous free region of at least nbytes with the
505 * given properties: boxed/unboxed, generation. */
507 first_page = restart_page;
509 /* First search for a page with at least 32 bytes free, which is
510 * not write-protected, and which is not marked dont_move.
512 * FIXME: This looks extremely similar, perhaps identical, to
513 * code in gc_alloc_large(). It should be shared somehow. */
514 while ((first_page < NUM_PAGES)
515 && (page_table[first_page].allocated != FREE_PAGE) /* not free page */
517 (page_table[first_page].allocated != UNBOXED_PAGE))
519 (page_table[first_page].allocated != BOXED_PAGE))
520 || (page_table[first_page].large_object != 0)
521 || (page_table[first_page].gen != gc_alloc_generation)
522 || (page_table[first_page].bytes_used >= (4096-32))
523 || (page_table[first_page].write_protected != 0)
524 || (page_table[first_page].dont_move != 0)))
526 /* Check for a failure. */
527 if (first_page >= NUM_PAGES) {
529 "Argh! gc_alloc_new_region failed on first_page, nbytes=%d.\n",
531 print_generation_stats(1);
535 gc_assert(page_table[first_page].write_protected == 0);
539 "/first_page=%d bytes_used=%d\n",
540 first_page, page_table[first_page].bytes_used));
543 /* Now search forward to calculate the available region size. It
544 * tries to keeps going until nbytes are found and the number of
545 * pages is greater than some level. This helps keep down the
546 * number of pages in a region. */
547 last_page = first_page;
548 bytes_found = 4096 - page_table[first_page].bytes_used;
550 while (((bytes_found < nbytes) || (num_pages < 2))
551 && (last_page < (NUM_PAGES-1))
552 && (page_table[last_page+1].allocated == FREE_PAGE)) {
556 gc_assert(page_table[last_page].write_protected == 0);
559 region_size = (4096 - page_table[first_page].bytes_used)
560 + 4096*(last_page-first_page);
562 gc_assert(bytes_found == region_size);
566 "/last_page=%d bytes_found=%d num_pages=%d\n",
567 last_page, bytes_found, num_pages));
570 restart_page = last_page + 1;
571 } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
573 /* Check for a failure. */
574 if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
576 "Argh! gc_alloc_new_region() failed on restart_page, nbytes=%d.\n",
578 print_generation_stats(1);
584 "/gc_alloc_new_region() gen %d: %d bytes: pages %d to %d: addr=%x\n",
589 page_address(first_page)));
592 /* Set up the alloc_region. */
593 alloc_region->first_page = first_page;
594 alloc_region->last_page = last_page;
595 alloc_region->start_addr = page_table[first_page].bytes_used
596 + page_address(first_page);
597 alloc_region->free_pointer = alloc_region->start_addr;
598 alloc_region->end_addr = alloc_region->start_addr + bytes_found;
600 if (gencgc_zero_check) {
602 for (p = (int *)alloc_region->start_addr;
603 p < (int *)alloc_region->end_addr; p++) {
605 /* KLUDGE: It would be nice to use %lx and explicit casts
606 * (long) in code like this, so that it is less likely to
607 * break randomly when running on a machine with different
608 * word sizes. -- WHN 19991129 */
609 lose("The new region at %x is not zero.", p);
614 /* Set up the pages. */
616 /* The first page may have already been in use. */
617 if (page_table[first_page].bytes_used == 0) {
619 page_table[first_page].allocated = UNBOXED_PAGE;
621 page_table[first_page].allocated = BOXED_PAGE;
622 page_table[first_page].gen = gc_alloc_generation;
623 page_table[first_page].large_object = 0;
624 page_table[first_page].first_object_offset = 0;
628 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
630 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
631 gc_assert(page_table[first_page].gen == gc_alloc_generation);
632 gc_assert(page_table[first_page].large_object == 0);
634 for (i = first_page+1; i <= last_page; i++) {
636 page_table[i].allocated = UNBOXED_PAGE;
638 page_table[i].allocated = BOXED_PAGE;
639 page_table[i].gen = gc_alloc_generation;
640 page_table[i].large_object = 0;
641 /* This may not be necessary for unboxed regions (think it was
643 page_table[i].first_object_offset =
644 alloc_region->start_addr - page_address(i);
647 /* Bump up last_free_page. */
648 if (last_page+1 > last_free_page) {
649 last_free_page = last_page+1;
650 SetSymbolValue(ALLOCATION_POINTER,
651 (lispobj)(((char *)heap_base) + last_free_page*4096));
652 if (last_page+1 > last_used_page)
653 last_used_page = last_page+1;
657 /* If the record_new_objects flag is 2 then all new regions created
660 * If it's 1 then then it is only recorded if the first page of the
661 * current region is <= new_areas_ignore_page. This helps avoid
662 * unnecessary recording when doing full scavenge pass.
664 * The new_object structure holds the page, byte offset, and size of
665 * new regions of objects. Each new area is placed in the array of
666 * these structures pointer to by new_areas. new_areas_index holds the
667 * offset into new_areas.
669 * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
670 * later code must detect this and handle it, probably by doing a full
671 * scavenge of a generation. */
672 #define NUM_NEW_AREAS 512
673 static int record_new_objects = 0;
674 static int new_areas_ignore_page;
680 static struct new_area (*new_areas)[];
681 static int new_areas_index;
684 /* Add a new area to new_areas. */
686 add_new_area(int first_page, int offset, int size)
688 unsigned new_area_start,c;
691 /* Ignore if full. */
692 if (new_areas_index >= NUM_NEW_AREAS)
695 switch (record_new_objects) {
699 if (first_page > new_areas_ignore_page)
708 new_area_start = 4096*first_page + offset;
710 /* Search backwards for a prior area that this follows from. If
711 found this will save adding a new area. */
712 for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
714 4096*((*new_areas)[i].page)
715 + (*new_areas)[i].offset
716 + (*new_areas)[i].size;
718 "/add_new_area S1 %d %d %d %d\n",
719 i, c, new_area_start, area_end));*/
720 if (new_area_start == area_end) {
722 "/adding to [%d] %d %d %d with %d %d %d:\n",
724 (*new_areas)[i].page,
725 (*new_areas)[i].offset,
726 (*new_areas)[i].size,
730 (*new_areas)[i].size += size;
734 /*FSHOW((stderr, "/add_new_area S1 %d %d %d\n", i, c, new_area_start));*/
736 (*new_areas)[new_areas_index].page = first_page;
737 (*new_areas)[new_areas_index].offset = offset;
738 (*new_areas)[new_areas_index].size = size;
740 "/new_area %d page %d offset %d size %d\n",
741 new_areas_index, first_page, offset, size));*/
744 /* Note the max new_areas used. */
745 if (new_areas_index > max_new_areas)
746 max_new_areas = new_areas_index;
749 /* Update the tables for the alloc_region. The region maybe added to
752 * When done the alloc_region is set up so that the next quick alloc
753 * will fail safely and thus a new region will be allocated. Further
754 * it is safe to try to re-update the page table of this reset
757 gc_alloc_update_page_tables(int unboxed, struct alloc_region *alloc_region)
763 int orig_first_page_bytes_used;
769 "/gc_alloc_update_page_tables() to gen %d:\n",
770 gc_alloc_generation));
773 first_page = alloc_region->first_page;
775 /* Catch an unused alloc_region. */
776 if ((first_page == 0) && (alloc_region->last_page == -1))
779 next_page = first_page+1;
781 /* Skip if no bytes were allocated. */
782 if (alloc_region->free_pointer != alloc_region->start_addr) {
783 orig_first_page_bytes_used = page_table[first_page].bytes_used;
785 gc_assert(alloc_region->start_addr == (page_address(first_page) + page_table[first_page].bytes_used));
787 /* All the pages used need to be updated */
789 /* Update the first page. */
791 /* If the page was free then set up the gen, and
792 * first_object_offset. */
793 if (page_table[first_page].bytes_used == 0)
794 gc_assert(page_table[first_page].first_object_offset == 0);
797 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
799 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
800 gc_assert(page_table[first_page].gen == gc_alloc_generation);
801 gc_assert(page_table[first_page].large_object == 0);
805 /* Calculate the number of bytes used in this page. This is not
806 * always the number of new bytes, unless it was free. */
808 if ((bytes_used = (alloc_region->free_pointer - page_address(first_page)))>4096) {
812 page_table[first_page].bytes_used = bytes_used;
813 byte_cnt += bytes_used;
816 /* All the rest of the pages should be free. We need to set their
817 * first_object_offset pointer to the start of the region, and set
821 gc_assert(page_table[next_page].allocated == UNBOXED_PAGE);
823 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
824 gc_assert(page_table[next_page].bytes_used == 0);
825 gc_assert(page_table[next_page].gen == gc_alloc_generation);
826 gc_assert(page_table[next_page].large_object == 0);
828 gc_assert(page_table[next_page].first_object_offset ==
829 alloc_region->start_addr - page_address(next_page));
831 /* Calculate the number of bytes used in this page. */
833 if ((bytes_used = (alloc_region->free_pointer
834 - page_address(next_page)))>4096) {
838 page_table[next_page].bytes_used = bytes_used;
839 byte_cnt += bytes_used;
844 region_size = alloc_region->free_pointer - alloc_region->start_addr;
845 bytes_allocated += region_size;
846 generations[gc_alloc_generation].bytes_allocated += region_size;
848 gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
850 /* Set the generations alloc restart page to the last page of
853 generations[gc_alloc_generation].alloc_unboxed_start_page =
856 generations[gc_alloc_generation].alloc_start_page = next_page-1;
858 /* Add the region to the new_areas if requested. */
860 add_new_area(first_page,orig_first_page_bytes_used, region_size);
864 "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
866 gc_alloc_generation));
869 /* There are no bytes allocated. Unallocate the first_page if
870 * there are 0 bytes_used. */
871 if (page_table[first_page].bytes_used == 0)
872 page_table[first_page].allocated = FREE_PAGE;
875 /* Unallocate any unused pages. */
876 while (next_page <= alloc_region->last_page) {
877 gc_assert(page_table[next_page].bytes_used == 0);
878 page_table[next_page].allocated = FREE_PAGE;
882 /* Reset the alloc_region. */
883 alloc_region->first_page = 0;
884 alloc_region->last_page = -1;
885 alloc_region->start_addr = page_address(0);
886 alloc_region->free_pointer = page_address(0);
887 alloc_region->end_addr = page_address(0);
890 static inline void *gc_quick_alloc(int nbytes);
892 /* Allocate a possibly large object. */
894 gc_alloc_large(int nbytes, int unboxed, struct alloc_region *alloc_region)
902 int orig_first_page_bytes_used;
907 int large = (nbytes >= large_object_size);
911 FSHOW((stderr, "/alloc_large %d\n", nbytes));
916 "/gc_alloc_large() for %d bytes from gen %d\n",
917 nbytes, gc_alloc_generation));
920 /* If the object is small, and there is room in the current region
921 then allocation it in the current region. */
923 && ((alloc_region->end_addr-alloc_region->free_pointer) >= nbytes))
924 return gc_quick_alloc(nbytes);
926 /* Search for a contiguous free region of at least nbytes. If it's a
927 large object then align it on a page boundary by searching for a
930 /* To allow the allocation of small objects without the danger of
931 using a page in the current boxed region, the search starts after
932 the current boxed free region. XX could probably keep a page
933 index ahead of the current region and bumped up here to save a
934 lot of re-scanning. */
937 generations[gc_alloc_generation].alloc_large_unboxed_start_page;
939 restart_page = generations[gc_alloc_generation].alloc_large_start_page;
941 if (restart_page <= alloc_region->last_page) {
942 restart_page = alloc_region->last_page+1;
946 first_page = restart_page;
949 while ((first_page < NUM_PAGES)
950 && (page_table[first_page].allocated != FREE_PAGE))
953 /* FIXME: This looks extremely similar, perhaps identical,
954 * to code in gc_alloc_new_region(). It should be shared
956 while ((first_page < NUM_PAGES)
957 && (page_table[first_page].allocated != FREE_PAGE)
959 (page_table[first_page].allocated != UNBOXED_PAGE))
961 (page_table[first_page].allocated != BOXED_PAGE))
962 || (page_table[first_page].large_object != 0)
963 || (page_table[first_page].gen != gc_alloc_generation)
964 || (page_table[first_page].bytes_used >= (4096-32))
965 || (page_table[first_page].write_protected != 0)
966 || (page_table[first_page].dont_move != 0)))
969 if (first_page >= NUM_PAGES) {
971 "Argh! gc_alloc_large failed (first_page), nbytes=%d.\n",
973 print_generation_stats(1);
977 gc_assert(page_table[first_page].write_protected == 0);
981 "/first_page=%d bytes_used=%d\n",
982 first_page, page_table[first_page].bytes_used));
985 last_page = first_page;
986 bytes_found = 4096 - page_table[first_page].bytes_used;
988 while ((bytes_found < nbytes)
989 && (last_page < (NUM_PAGES-1))
990 && (page_table[last_page+1].allocated == FREE_PAGE)) {
994 gc_assert(page_table[last_page].write_protected == 0);
997 region_size = (4096 - page_table[first_page].bytes_used)
998 + 4096*(last_page-first_page);
1000 gc_assert(bytes_found == region_size);
1004 "/last_page=%d bytes_found=%d num_pages=%d\n",
1005 last_page, bytes_found, num_pages));
1008 restart_page = last_page + 1;
1009 } while ((restart_page < NUM_PAGES) && (bytes_found < nbytes));
1011 /* Check for a failure */
1012 if ((restart_page >= NUM_PAGES) && (bytes_found < nbytes)) {
1014 "Argh! gc_alloc_large failed (restart_page), nbytes=%d.\n",
1016 print_generation_stats(1);
1023 "/gc_alloc_large() gen %d: %d of %d bytes: from pages %d to %d: addr=%x\n",
1024 gc_alloc_generation,
1029 page_address(first_page)));
1032 gc_assert(first_page > alloc_region->last_page);
1034 generations[gc_alloc_generation].alloc_large_unboxed_start_page =
1037 generations[gc_alloc_generation].alloc_large_start_page = last_page;
1039 /* Set up the pages. */
1040 orig_first_page_bytes_used = page_table[first_page].bytes_used;
1042 /* If the first page was free then set up the gen, and
1043 * first_object_offset. */
1044 if (page_table[first_page].bytes_used == 0) {
1046 page_table[first_page].allocated = UNBOXED_PAGE;
1048 page_table[first_page].allocated = BOXED_PAGE;
1049 page_table[first_page].gen = gc_alloc_generation;
1050 page_table[first_page].first_object_offset = 0;
1051 page_table[first_page].large_object = large;
1055 gc_assert(page_table[first_page].allocated == UNBOXED_PAGE);
1057 gc_assert(page_table[first_page].allocated == BOXED_PAGE);
1058 gc_assert(page_table[first_page].gen == gc_alloc_generation);
1059 gc_assert(page_table[first_page].large_object == large);
1063 /* Calc. the number of bytes used in this page. This is not
1064 * always the number of new bytes, unless it was free. */
1066 if ((bytes_used = nbytes+orig_first_page_bytes_used) > 4096) {
1070 page_table[first_page].bytes_used = bytes_used;
1071 byte_cnt += bytes_used;
1073 next_page = first_page+1;
1075 /* All the rest of the pages should be free. We need to set their
1076 * first_object_offset pointer to the start of the region, and
1077 * set the bytes_used. */
1079 gc_assert(page_table[next_page].allocated == FREE_PAGE);
1080 gc_assert(page_table[next_page].bytes_used == 0);
1082 page_table[next_page].allocated = UNBOXED_PAGE;
1084 page_table[next_page].allocated = BOXED_PAGE;
1085 page_table[next_page].gen = gc_alloc_generation;
1086 page_table[next_page].large_object = large;
1088 page_table[next_page].first_object_offset =
1089 orig_first_page_bytes_used - 4096*(next_page-first_page);
1091 /* Calculate the number of bytes used in this page. */
1093 if ((bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt) > 4096) {
1097 page_table[next_page].bytes_used = bytes_used;
1098 byte_cnt += bytes_used;
1103 gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
1105 bytes_allocated += nbytes;
1106 generations[gc_alloc_generation].bytes_allocated += nbytes;
1108 /* Add the region to the new_areas if requested. */
1110 add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1112 /* Bump up last_free_page */
1113 if (last_page+1 > last_free_page) {
1114 last_free_page = last_page+1;
1115 SetSymbolValue(ALLOCATION_POINTER,
1116 (lispobj)(((char *)heap_base) + last_free_page*4096));
1117 if (last_page+1 > last_used_page)
1118 last_used_page = last_page+1;
1121 return((void *)(page_address(first_page)+orig_first_page_bytes_used));
1124 /* Allocate bytes. All the rest of the special-purpose allocation
1125 * functions will eventually call this (instead of just duplicating
1126 * parts of its code) */
1129 gc_general_alloc(int nbytes,int unboxed_p,int quick_p)
1131 void *new_free_pointer;
1132 struct alloc_region *my_region =
1133 unboxed_p ? &unboxed_region : &boxed_region;
1135 /* FSHOW((stderr, "/gc_alloc %d\n", nbytes)); */
1137 /* Check whether there is room in the current alloc region. */
1138 new_free_pointer = my_region->free_pointer + nbytes;
1140 if (new_free_pointer <= my_region->end_addr) {
1141 /* If so then allocate from the current alloc region. */
1142 void *new_obj = my_region->free_pointer;
1143 my_region->free_pointer = new_free_pointer;
1145 /* Unless a `quick' alloc was requested, check whether the
1146 alloc region is almost empty. */
1148 (my_region->end_addr - my_region->free_pointer) <= 32) {
1149 /* If so, finished with the current region. */
1150 gc_alloc_update_page_tables(unboxed_p, my_region);
1151 /* Set up a new region. */
1152 gc_alloc_new_region(32 /*bytes*/, unboxed_p, my_region);
1154 return((void *)new_obj);
1157 /* Else not enough free space in the current region. */
1159 /* If there some room left in the current region, enough to be worth
1160 * saving, then allocate a large object. */
1161 /* FIXME: "32" should be a named parameter. */
1162 if ((my_region->end_addr-my_region->free_pointer) > 32)
1163 return gc_alloc_large(nbytes, unboxed_p, my_region);
1165 /* Else find a new region. */
1167 /* Finished with the current region. */
1168 gc_alloc_update_page_tables(unboxed_p, my_region);
1170 /* Set up a new region. */
1171 gc_alloc_new_region(nbytes, unboxed_p, my_region);
1173 /* Should now be enough room. */
1175 /* Check whether there is room in the current region. */
1176 new_free_pointer = my_region->free_pointer + nbytes;
1178 if (new_free_pointer <= my_region->end_addr) {
1179 /* If so then allocate from the current region. */
1180 void *new_obj = my_region->free_pointer;
1181 my_region->free_pointer = new_free_pointer;
1183 /* Check whether the current region is almost empty. */
1184 if ((my_region->end_addr - my_region->free_pointer) <= 32) {
1185 /* If so find, finished with the current region. */
1186 gc_alloc_update_page_tables(unboxed_p, my_region);
1188 /* Set up a new region. */
1189 gc_alloc_new_region(32, unboxed_p, my_region);
1192 return((void *)new_obj);
1195 /* shouldn't happen */
1197 return((void *) NIL); /* dummy value: return something ... */
1202 gc_alloc(int nbytes,int unboxed_p)
1204 /* this is the only function that the external interface to
1205 * allocation presently knows how to call: Lisp code will never
1206 * allocate large objects, or to unboxed space, or `quick'ly.
1207 * Any of that stuff will only ever happen inside of GC */
1208 return gc_general_alloc(nbytes,unboxed_p,0);
1211 /* Allocate space from the boxed_region. If there is not enough free
1212 * space then call gc_alloc to do the job. A pointer to the start of
1213 * the object is returned. */
1214 static inline void *
1215 gc_quick_alloc(int nbytes)
1217 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1220 /* Allocate space for the possibly large boxed object. If it is a
1221 * large object then do a large alloc else use gc_quick_alloc. Note
1222 * that gc_quick_alloc will eventually fall through to
1223 * gc_general_alloc which may allocate the object in a large way
1224 * anyway, but based on decisions about the free space in the current
1225 * region, not the object size itself */
1227 static inline void *
1228 gc_quick_alloc_large(int nbytes)
1230 if (nbytes >= large_object_size)
1231 return gc_alloc_large(nbytes, ALLOC_BOXED, &boxed_region);
1233 return gc_general_alloc(nbytes,ALLOC_BOXED,ALLOC_QUICK);
1236 static inline void *
1237 gc_alloc_unboxed(int nbytes)
1239 return gc_general_alloc(nbytes,ALLOC_UNBOXED,0);
1242 static inline void *
1243 gc_quick_alloc_unboxed(int nbytes)
1245 return gc_general_alloc(nbytes,ALLOC_UNBOXED,ALLOC_QUICK);
1248 /* Allocate space for the object. If it is a large object then do a
1249 * large alloc else allocate from the current region. If there is not
1250 * enough free space then call general gc_alloc_unboxed() to do the job.
1252 * A pointer to the start of the object is returned. */
1253 static inline void *
1254 gc_quick_alloc_large_unboxed(int nbytes)
1256 if (nbytes >= large_object_size)
1257 return gc_alloc_large(nbytes,ALLOC_UNBOXED,&unboxed_region);
1259 return gc_quick_alloc_unboxed(nbytes);
1263 * scavenging/transporting routines derived from gc.c in CMU CL ca. 18b
1266 extern int (*scavtab[256])(lispobj *where, lispobj object);
1267 extern lispobj (*transother[256])(lispobj object);
1268 extern int (*sizetab[256])(lispobj *where);
1270 /* Copy a large boxed object. If the object is in a large object
1271 * region then it is simply promoted, else it is copied. If it's large
1272 * enough then it's copied to a large object region.
1274 * Vectors may have shrunk. If the object is not copied the space
1275 * needs to be reclaimed, and the page_tables corrected. */
1277 copy_large_object(lispobj object, int nwords)
1281 lispobj *source, *dest;
1284 gc_assert(is_lisp_pointer(object));
1285 gc_assert(from_space_p(object));
1286 gc_assert((nwords & 0x01) == 0);
1289 /* Check whether it's a large object. */
1290 first_page = find_page_index((void *)object);
1291 gc_assert(first_page >= 0);
1293 if (page_table[first_page].large_object) {
1295 /* Promote the object. */
1297 int remaining_bytes;
1302 /* Note: Any page write-protection must be removed, else a
1303 * later scavenge_newspace may incorrectly not scavenge these
1304 * pages. This would not be necessary if they are added to the
1305 * new areas, but let's do it for them all (they'll probably
1306 * be written anyway?). */
1308 gc_assert(page_table[first_page].first_object_offset == 0);
1310 next_page = first_page;
1311 remaining_bytes = nwords*4;
1312 while (remaining_bytes > 4096) {
1313 gc_assert(page_table[next_page].gen == from_space);
1314 gc_assert(page_table[next_page].allocated == BOXED_PAGE);
1315 gc_assert(page_table[next_page].large_object);
1316 gc_assert(page_table[next_page].first_object_offset==
1317 -4096*(next_page-first_page));
1318 gc_assert(page_table[next_page].bytes_used == 4096);
1320 page_table[next_page].gen = new_space;
1322 /* Remove any write-protection. We should be able to rely
1323 * on the write-protect flag to avoid redundant calls. */
1324 if (page_table[next_page].write_protected) {
1325 os_protect(page_address(next_page), 4096, OS_VM_PROT_ALL);
1326 page_table[next_page].write_protected = 0;
1328 remaining_bytes -= 4096;
1332 /* Now only one page remains, but the object may have shrunk
1333 * so there may be more unused pages which will be freed. */
1335 /* The object may have shrunk but shouldn't have grown. */
1336 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1338 page_table[next_page].gen = new_space;
1339 gc_assert(page_table[next_page].allocated = BOXED_PAGE);
1341 /* Adjust the bytes_used. */
1342 old_bytes_used = page_table[next_page].bytes_used;
1343 page_table[next_page].bytes_used = remaining_bytes;
1345 bytes_freed = old_bytes_used - remaining_bytes;
1347 /* Free any remaining pages; needs care. */
1349 while ((old_bytes_used == 4096) &&
1350 (page_table[next_page].gen == from_space) &&
1351 (page_table[next_page].allocated == BOXED_PAGE) &&
1352 page_table[next_page].large_object &&
1353 (page_table[next_page].first_object_offset ==
1354 -(next_page - first_page)*4096)) {
1355 /* Checks out OK, free the page. Don't need to bother zeroing
1356 * pages as this should have been done before shrinking the
1357 * object. These pages shouldn't be write-protected as they
1358 * should be zero filled. */
1359 gc_assert(page_table[next_page].write_protected == 0);
1361 old_bytes_used = page_table[next_page].bytes_used;
1362 page_table[next_page].allocated = FREE_PAGE;
1363 page_table[next_page].bytes_used = 0;
1364 bytes_freed += old_bytes_used;
1368 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1369 generations[new_space].bytes_allocated += 4*nwords;
1370 bytes_allocated -= bytes_freed;
1372 /* Add the region to the new_areas if requested. */
1373 add_new_area(first_page,0,nwords*4);
1377 /* Get tag of object. */
1378 tag = lowtag_of(object);
1380 /* Allocate space. */
1381 new = gc_quick_alloc_large(nwords*4);
1384 source = (lispobj *) native_pointer(object);
1386 /* Copy the object. */
1387 while (nwords > 0) {
1388 dest[0] = source[0];
1389 dest[1] = source[1];
1395 /* Return Lisp pointer of new object. */
1396 return ((lispobj) new) | tag;
1400 /* to copy unboxed objects */
1402 copy_unboxed_object(lispobj object, int nwords)
1406 lispobj *source, *dest;
1408 gc_assert(is_lisp_pointer(object));
1409 gc_assert(from_space_p(object));
1410 gc_assert((nwords & 0x01) == 0);
1412 /* Get tag of object. */
1413 tag = lowtag_of(object);
1415 /* Allocate space. */
1416 new = gc_quick_alloc_unboxed(nwords*4);
1419 source = (lispobj *) native_pointer(object);
1421 /* Copy the object. */
1422 while (nwords > 0) {
1423 dest[0] = source[0];
1424 dest[1] = source[1];
1430 /* Return Lisp pointer of new object. */
1431 return ((lispobj) new) | tag;
1434 /* to copy large unboxed objects
1436 * If the object is in a large object region then it is simply
1437 * promoted, else it is copied. If it's large enough then it's copied
1438 * to a large object region.
1440 * Bignums and vectors may have shrunk. If the object is not copied
1441 * the space needs to be reclaimed, and the page_tables corrected.
1443 * KLUDGE: There's a lot of cut-and-paste duplication between this
1444 * function and copy_large_object(..). -- WHN 20000619 */
1446 copy_large_unboxed_object(lispobj object, int nwords)
1450 lispobj *source, *dest;
1453 gc_assert(is_lisp_pointer(object));
1454 gc_assert(from_space_p(object));
1455 gc_assert((nwords & 0x01) == 0);
1457 if ((nwords > 1024*1024) && gencgc_verbose)
1458 FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n", nwords*4));
1460 /* Check whether it's a large object. */
1461 first_page = find_page_index((void *)object);
1462 gc_assert(first_page >= 0);
1464 if (page_table[first_page].large_object) {
1465 /* Promote the object. Note: Unboxed objects may have been
1466 * allocated to a BOXED region so it may be necessary to
1467 * change the region to UNBOXED. */
1468 int remaining_bytes;
1473 gc_assert(page_table[first_page].first_object_offset == 0);
1475 next_page = first_page;
1476 remaining_bytes = nwords*4;
1477 while (remaining_bytes > 4096) {
1478 gc_assert(page_table[next_page].gen == from_space);
1479 gc_assert((page_table[next_page].allocated == UNBOXED_PAGE)
1480 || (page_table[next_page].allocated == BOXED_PAGE));
1481 gc_assert(page_table[next_page].large_object);
1482 gc_assert(page_table[next_page].first_object_offset==
1483 -4096*(next_page-first_page));
1484 gc_assert(page_table[next_page].bytes_used == 4096);
1486 page_table[next_page].gen = new_space;
1487 page_table[next_page].allocated = UNBOXED_PAGE;
1488 remaining_bytes -= 4096;
1492 /* Now only one page remains, but the object may have shrunk so
1493 * there may be more unused pages which will be freed. */
1495 /* Object may have shrunk but shouldn't have grown - check. */
1496 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1498 page_table[next_page].gen = new_space;
1499 page_table[next_page].allocated = UNBOXED_PAGE;
1501 /* Adjust the bytes_used. */
1502 old_bytes_used = page_table[next_page].bytes_used;
1503 page_table[next_page].bytes_used = remaining_bytes;
1505 bytes_freed = old_bytes_used - remaining_bytes;
1507 /* Free any remaining pages; needs care. */
1509 while ((old_bytes_used == 4096) &&
1510 (page_table[next_page].gen == from_space) &&
1511 ((page_table[next_page].allocated == UNBOXED_PAGE)
1512 || (page_table[next_page].allocated == BOXED_PAGE)) &&
1513 page_table[next_page].large_object &&
1514 (page_table[next_page].first_object_offset ==
1515 -(next_page - first_page)*4096)) {
1516 /* Checks out OK, free the page. Don't need to both zeroing
1517 * pages as this should have been done before shrinking the
1518 * object. These pages shouldn't be write-protected, even if
1519 * boxed they should be zero filled. */
1520 gc_assert(page_table[next_page].write_protected == 0);
1522 old_bytes_used = page_table[next_page].bytes_used;
1523 page_table[next_page].allocated = FREE_PAGE;
1524 page_table[next_page].bytes_used = 0;
1525 bytes_freed += old_bytes_used;
1529 if ((bytes_freed > 0) && gencgc_verbose)
1531 "/copy_large_unboxed bytes_freed=%d\n",
1534 generations[from_space].bytes_allocated -= 4*nwords + bytes_freed;
1535 generations[new_space].bytes_allocated += 4*nwords;
1536 bytes_allocated -= bytes_freed;
1541 /* Get tag of object. */
1542 tag = lowtag_of(object);
1544 /* Allocate space. */
1545 new = gc_quick_alloc_large_unboxed(nwords*4);
1548 source = (lispobj *) native_pointer(object);
1550 /* Copy the object. */
1551 while (nwords > 0) {
1552 dest[0] = source[0];
1553 dest[1] = source[1];
1559 /* Return Lisp pointer of new object. */
1560 return ((lispobj) new) | tag;
1569 * code and code-related objects
1572 static lispobj trans_fun_header(lispobj object);
1573 static lispobj trans_boxed(lispobj object);
1576 /* Scan a x86 compiled code object, looking for possible fixups that
1577 * have been missed after a move.
1579 * Two types of fixups are needed:
1580 * 1. Absolute fixups to within the code object.
1581 * 2. Relative fixups to outside the code object.
1583 * Currently only absolute fixups to the constant vector, or to the
1584 * code area are checked. */
1586 sniff_code_object(struct code *code, unsigned displacement)
1588 int nheader_words, ncode_words, nwords;
1590 void *constants_start_addr, *constants_end_addr;
1591 void *code_start_addr, *code_end_addr;
1592 int fixup_found = 0;
1594 if (!check_code_fixups)
1597 ncode_words = fixnum_value(code->code_size);
1598 nheader_words = HeaderValue(*(lispobj *)code);
1599 nwords = ncode_words + nheader_words;
1601 constants_start_addr = (void *)code + 5*4;
1602 constants_end_addr = (void *)code + nheader_words*4;
1603 code_start_addr = (void *)code + nheader_words*4;
1604 code_end_addr = (void *)code + nwords*4;
1606 /* Work through the unboxed code. */
1607 for (p = code_start_addr; p < code_end_addr; p++) {
1608 void *data = *(void **)p;
1609 unsigned d1 = *((unsigned char *)p - 1);
1610 unsigned d2 = *((unsigned char *)p - 2);
1611 unsigned d3 = *((unsigned char *)p - 3);
1612 unsigned d4 = *((unsigned char *)p - 4);
1614 unsigned d5 = *((unsigned char *)p - 5);
1615 unsigned d6 = *((unsigned char *)p - 6);
1618 /* Check for code references. */
1619 /* Check for a 32 bit word that looks like an absolute
1620 reference to within the code adea of the code object. */
1621 if ((data >= (code_start_addr-displacement))
1622 && (data < (code_end_addr-displacement))) {
1623 /* function header */
1625 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) == (unsigned)code)) {
1626 /* Skip the function header */
1630 /* the case of PUSH imm32 */
1634 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1635 p, d6, d5, d4, d3, d2, d1, data));
1636 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1638 /* the case of MOV [reg-8],imm32 */
1640 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1641 || d2==0x45 || d2==0x46 || d2==0x47)
1645 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1646 p, d6, d5, d4, d3, d2, d1, data));
1647 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1649 /* the case of LEA reg,[disp32] */
1650 if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1653 "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1654 p, d6, d5, d4, d3, d2, d1, data));
1655 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1659 /* Check for constant references. */
1660 /* Check for a 32 bit word that looks like an absolute
1661 reference to within the constant vector. Constant references
1663 if ((data >= (constants_start_addr-displacement))
1664 && (data < (constants_end_addr-displacement))
1665 && (((unsigned)data & 0x3) == 0)) {
1670 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1671 p, d6, d5, d4, d3, d2, d1, data));
1672 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1675 /* the case of MOV m32,EAX */
1679 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1680 p, d6, d5, d4, d3, d2, d1, data));
1681 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1684 /* the case of CMP m32,imm32 */
1685 if ((d1 == 0x3d) && (d2 == 0x81)) {
1688 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1689 p, d6, d5, d4, d3, d2, d1, data));
1691 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1694 /* Check for a mod=00, r/m=101 byte. */
1695 if ((d1 & 0xc7) == 5) {
1700 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1701 p, d6, d5, d4, d3, d2, d1, data));
1702 FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1704 /* the case of CMP reg32,m32 */
1708 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1709 p, d6, d5, d4, d3, d2, d1, data));
1710 FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1712 /* the case of MOV m32,reg32 */
1716 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1717 p, d6, d5, d4, d3, d2, d1, data));
1718 FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1720 /* the case of MOV reg32,m32 */
1724 "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1725 p, d6, d5, d4, d3, d2, d1, data));
1726 FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1728 /* the case of LEA reg32,m32 */
1732 "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1733 p, d6, d5, d4, d3, d2, d1, data));
1734 FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1740 /* If anything was found, print some information on the code
1744 "/compiled code object at %x: header words = %d, code words = %d\n",
1745 code, nheader_words, ncode_words));
1747 "/const start = %x, end = %x\n",
1748 constants_start_addr, constants_end_addr));
1750 "/code start = %x, end = %x\n",
1751 code_start_addr, code_end_addr));
1756 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1758 int nheader_words, ncode_words, nwords;
1759 void *constants_start_addr, *constants_end_addr;
1760 void *code_start_addr, *code_end_addr;
1761 lispobj fixups = NIL;
1762 unsigned displacement = (unsigned)new_code - (unsigned)old_code;
1763 struct vector *fixups_vector;
1765 ncode_words = fixnum_value(new_code->code_size);
1766 nheader_words = HeaderValue(*(lispobj *)new_code);
1767 nwords = ncode_words + nheader_words;
1769 "/compiled code object at %x: header words = %d, code words = %d\n",
1770 new_code, nheader_words, ncode_words)); */
1771 constants_start_addr = (void *)new_code + 5*4;
1772 constants_end_addr = (void *)new_code + nheader_words*4;
1773 code_start_addr = (void *)new_code + nheader_words*4;
1774 code_end_addr = (void *)new_code + nwords*4;
1777 "/const start = %x, end = %x\n",
1778 constants_start_addr,constants_end_addr));
1780 "/code start = %x; end = %x\n",
1781 code_start_addr,code_end_addr));
1784 /* The first constant should be a pointer to the fixups for this
1785 code objects. Check. */
1786 fixups = new_code->constants[0];
1788 /* It will be 0 or the unbound-marker if there are no fixups, and
1789 * will be an other pointer if it is valid. */
1790 if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1791 !is_lisp_pointer(fixups)) {
1792 /* Check for possible errors. */
1793 if (check_code_fixups)
1794 sniff_code_object(new_code, displacement);
1796 /*fprintf(stderr,"Fixups for code object not found!?\n");
1797 fprintf(stderr,"*** Compiled code object at %x: header_words=%d code_words=%d .\n",
1798 new_code, nheader_words, ncode_words);
1799 fprintf(stderr,"*** Const. start = %x; end= %x; Code start = %x; end = %x\n",
1800 constants_start_addr,constants_end_addr,
1801 code_start_addr,code_end_addr);*/
1805 fixups_vector = (struct vector *)native_pointer(fixups);
1807 /* Could be pointing to a forwarding pointer. */
1808 if (is_lisp_pointer(fixups) &&
1809 (find_page_index((void*)fixups_vector) != -1) &&
1810 (fixups_vector->header == 0x01)) {
1811 /* If so, then follow it. */
1812 /*SHOW("following pointer to a forwarding pointer");*/
1813 fixups_vector = (struct vector *)native_pointer((lispobj)fixups_vector->length);
1816 /*SHOW("got fixups");*/
1818 if (widetag_of(fixups_vector->header) ==
1819 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG) {
1820 /* Got the fixups for the code block. Now work through the vector,
1821 and apply a fixup at each address. */
1822 int length = fixnum_value(fixups_vector->length);
1824 for (i = 0; i < length; i++) {
1825 unsigned offset = fixups_vector->data[i];
1826 /* Now check the current value of offset. */
1827 unsigned old_value =
1828 *(unsigned *)((unsigned)code_start_addr + offset);
1830 /* If it's within the old_code object then it must be an
1831 * absolute fixup (relative ones are not saved) */
1832 if ((old_value >= (unsigned)old_code)
1833 && (old_value < ((unsigned)old_code + nwords*4)))
1834 /* So add the dispacement. */
1835 *(unsigned *)((unsigned)code_start_addr + offset) =
1836 old_value + displacement;
1838 /* It is outside the old code object so it must be a
1839 * relative fixup (absolute fixups are not saved). So
1840 * subtract the displacement. */
1841 *(unsigned *)((unsigned)code_start_addr + offset) =
1842 old_value - displacement;
1846 /* Check for possible errors. */
1847 if (check_code_fixups) {
1848 sniff_code_object(new_code,displacement);
1854 trans_boxed_large(lispobj object)
1857 unsigned long length;
1859 gc_assert(is_lisp_pointer(object));
1861 header = *((lispobj *) native_pointer(object));
1862 length = HeaderValue(header) + 1;
1863 length = CEILING(length, 2);
1865 return copy_large_object(object, length);
1870 trans_unboxed_large(lispobj object)
1873 unsigned long length;
1876 gc_assert(is_lisp_pointer(object));
1878 header = *((lispobj *) native_pointer(object));
1879 length = HeaderValue(header) + 1;
1880 length = CEILING(length, 2);
1882 return copy_large_unboxed_object(object, length);
1887 * vector-like objects
1891 /* FIXME: What does this mean? */
1892 int gencgc_hash = 1;
1895 scav_vector(lispobj *where, lispobj object)
1897 unsigned int kv_length;
1899 unsigned int length = 0; /* (0 = dummy to stop GCC warning) */
1900 lispobj *hash_table;
1901 lispobj empty_symbol;
1902 unsigned int *index_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1903 unsigned int *next_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1904 unsigned int *hash_vector = NULL; /* (NULL = dummy to stop GCC warning) */
1906 unsigned next_vector_length = 0;
1908 /* FIXME: A comment explaining this would be nice. It looks as
1909 * though SB-VM:VECTOR-VALID-HASHING-SUBTYPE is set for EQ-based
1910 * hash tables in the Lisp HASH-TABLE code, and nowhere else. */
1911 if (HeaderValue(object) != subtype_VectorValidHashing)
1915 /* This is set for backward compatibility. FIXME: Do we need
1918 (subtype_VectorMustRehash<<N_WIDETAG_BITS) | SIMPLE_VECTOR_WIDETAG;
1922 kv_length = fixnum_value(where[1]);
1923 kv_vector = where + 2; /* Skip the header and length. */
1924 /*FSHOW((stderr,"/kv_length = %d\n", kv_length));*/
1926 /* Scavenge element 0, which may be a hash-table structure. */
1927 scavenge(where+2, 1);
1928 if (!is_lisp_pointer(where[2])) {
1929 lose("no pointer at %x in hash table", where[2]);
1931 hash_table = (lispobj *)native_pointer(where[2]);
1932 /*FSHOW((stderr,"/hash_table = %x\n", hash_table));*/
1933 if (widetag_of(hash_table[0]) != INSTANCE_HEADER_WIDETAG) {
1934 lose("hash table not instance (%x at %x)", hash_table[0], hash_table);
1937 /* Scavenge element 1, which should be some internal symbol that
1938 * the hash table code reserves for marking empty slots. */
1939 scavenge(where+3, 1);
1940 if (!is_lisp_pointer(where[3])) {
1941 lose("not empty-hash-table-slot symbol pointer: %x", where[3]);
1943 empty_symbol = where[3];
1944 /* fprintf(stderr,"* empty_symbol = %x\n", empty_symbol);*/
1945 if (widetag_of(*(lispobj *)native_pointer(empty_symbol)) !=
1946 SYMBOL_HEADER_WIDETAG) {
1947 lose("not a symbol where empty-hash-table-slot symbol expected: %x",
1948 *(lispobj *)native_pointer(empty_symbol));
1951 /* Scavenge hash table, which will fix the positions of the other
1952 * needed objects. */
1953 scavenge(hash_table, 16);
1955 /* Cross-check the kv_vector. */
1956 if (where != (lispobj *)native_pointer(hash_table[9])) {
1957 lose("hash_table table!=this table %x", hash_table[9]);
1961 weak_p_obj = hash_table[10];
1965 lispobj index_vector_obj = hash_table[13];
1967 if (is_lisp_pointer(index_vector_obj) &&
1968 (widetag_of(*(lispobj *)native_pointer(index_vector_obj)) ==
1969 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1970 index_vector = ((unsigned int *)native_pointer(index_vector_obj)) + 2;
1971 /*FSHOW((stderr, "/index_vector = %x\n",index_vector));*/
1972 length = fixnum_value(((unsigned int *)native_pointer(index_vector_obj))[1]);
1973 /*FSHOW((stderr, "/length = %d\n", length));*/
1975 lose("invalid index_vector %x", index_vector_obj);
1981 lispobj next_vector_obj = hash_table[14];
1983 if (is_lisp_pointer(next_vector_obj) &&
1984 (widetag_of(*(lispobj *)native_pointer(next_vector_obj)) ==
1985 SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
1986 next_vector = ((unsigned int *)native_pointer(next_vector_obj)) + 2;
1987 /*FSHOW((stderr, "/next_vector = %x\n", next_vector));*/
1988 next_vector_length = fixnum_value(((unsigned int *)native_pointer(next_vector_obj))[1]);
1989 /*FSHOW((stderr, "/next_vector_length = %d\n", next_vector_length));*/
1991 lose("invalid next_vector %x", next_vector_obj);
1995 /* maybe hash vector */
1997 /* FIXME: This bare "15" offset should become a symbolic
1998 * expression of some sort. And all the other bare offsets
1999 * too. And the bare "16" in scavenge(hash_table, 16). And
2000 * probably other stuff too. Ugh.. */
2001 lispobj hash_vector_obj = hash_table[15];
2003 if (is_lisp_pointer(hash_vector_obj) &&
2004 (widetag_of(*(lispobj *)native_pointer(hash_vector_obj))
2005 == SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG)) {
2006 hash_vector = ((unsigned int *)native_pointer(hash_vector_obj)) + 2;
2007 /*FSHOW((stderr, "/hash_vector = %x\n", hash_vector));*/
2008 gc_assert(fixnum_value(((unsigned int *)native_pointer(hash_vector_obj))[1])
2009 == next_vector_length);
2012 /*FSHOW((stderr, "/no hash_vector: %x\n", hash_vector_obj));*/
2016 /* These lengths could be different as the index_vector can be a
2017 * different length from the others, a larger index_vector could help
2018 * reduce collisions. */
2019 gc_assert(next_vector_length*2 == kv_length);
2021 /* now all set up.. */
2023 /* Work through the KV vector. */
2026 for (i = 1; i < next_vector_length; i++) {
2027 lispobj old_key = kv_vector[2*i];
2028 unsigned int old_index = (old_key & 0x1fffffff)%length;
2030 /* Scavenge the key and value. */
2031 scavenge(&kv_vector[2*i],2);
2033 /* Check whether the key has moved and is EQ based. */
2035 lispobj new_key = kv_vector[2*i];
2036 unsigned int new_index = (new_key & 0x1fffffff)%length;
2038 if ((old_index != new_index) &&
2039 ((!hash_vector) || (hash_vector[i] == 0x80000000)) &&
2040 ((new_key != empty_symbol) ||
2041 (kv_vector[2*i] != empty_symbol))) {
2044 "* EQ key %d moved from %x to %x; index %d to %d\n",
2045 i, old_key, new_key, old_index, new_index));*/
2047 if (index_vector[old_index] != 0) {
2048 /*FSHOW((stderr, "/P1 %d\n", index_vector[old_index]));*/
2050 /* Unlink the key from the old_index chain. */
2051 if (index_vector[old_index] == i) {
2052 /*FSHOW((stderr, "/P2a %d\n", next_vector[i]));*/
2053 index_vector[old_index] = next_vector[i];
2054 /* Link it into the needing rehash chain. */
2055 next_vector[i] = fixnum_value(hash_table[11]);
2056 hash_table[11] = make_fixnum(i);
2059 unsigned prior = index_vector[old_index];
2060 unsigned next = next_vector[prior];
2062 /*FSHOW((stderr, "/P3a %d %d\n", prior, next));*/
2065 /*FSHOW((stderr, "/P3b %d %d\n", prior, next));*/
2068 next_vector[prior] = next_vector[next];
2069 /* Link it into the needing rehash
2072 fixnum_value(hash_table[11]);
2073 hash_table[11] = make_fixnum(next);
2078 next = next_vector[next];
2086 return (CEILING(kv_length + 2, 2));
2095 /* XX This is a hack adapted from cgc.c. These don't work too well with the
2096 * gencgc as a list of the weak pointers is maintained within the
2097 * objects which causes writes to the pages. A limited attempt is made
2098 * to avoid unnecessary writes, but this needs a re-think. */
2100 #define WEAK_POINTER_NWORDS \
2101 CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
2104 scav_weak_pointer(lispobj *where, lispobj object)
2106 struct weak_pointer *wp = weak_pointers;
2107 /* Push the weak pointer onto the list of weak pointers.
2108 * Do I have to watch for duplicates? Originally this was
2109 * part of trans_weak_pointer but that didn't work in the
2110 * case where the WP was in a promoted region.
2113 /* Check whether it's already in the list. */
2114 while (wp != NULL) {
2115 if (wp == (struct weak_pointer*)where) {
2121 /* Add it to the start of the list. */
2122 wp = (struct weak_pointer*)where;
2123 if (wp->next != weak_pointers) {
2124 wp->next = weak_pointers;
2126 /*SHOW("avoided write to weak pointer");*/
2131 /* Do not let GC scavenge the value slot of the weak pointer.
2132 * (That is why it is a weak pointer.) */
2134 return WEAK_POINTER_NWORDS;
2138 /* Scan an area looking for an object which encloses the given pointer.
2139 * Return the object start on success or NULL on failure. */
2141 search_space(lispobj *start, size_t words, lispobj *pointer)
2145 lispobj thing = *start;
2147 /* If thing is an immediate then this is a cons. */
2148 if (is_lisp_pointer(thing)
2149 || ((thing & 3) == 0) /* fixnum */
2150 || (widetag_of(thing) == BASE_CHAR_WIDETAG)
2151 || (widetag_of(thing) == UNBOUND_MARKER_WIDETAG))
2154 count = (sizetab[widetag_of(thing)])(start);
2156 /* Check whether the pointer is within this object. */
2157 if ((pointer >= start) && (pointer < (start+count))) {
2159 /*FSHOW((stderr,"/found %x in %x %x\n", pointer, start, thing));*/
2163 /* Round up the count. */
2164 count = CEILING(count,2);
2173 search_read_only_space(lispobj *pointer)
2175 lispobj* start = (lispobj*)READ_ONLY_SPACE_START;
2176 lispobj* end = (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER);
2177 if ((pointer < start) || (pointer >= end))
2179 return (search_space(start, (pointer+2)-start, pointer));
2183 search_static_space(lispobj *pointer)
2185 lispobj* start = (lispobj*)STATIC_SPACE_START;
2186 lispobj* end = (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER);
2187 if ((pointer < start) || (pointer >= end))
2189 return (search_space(start, (pointer+2)-start, pointer));
2192 /* a faster version for searching the dynamic space. This will work even
2193 * if the object is in a current allocation region. */
2195 search_dynamic_space(lispobj *pointer)
2197 int page_index = find_page_index(pointer);
2200 /* The address may be invalid, so do some checks. */
2201 if ((page_index == -1) || (page_table[page_index].allocated == FREE_PAGE))
2203 start = (lispobj *)((void *)page_address(page_index)
2204 + page_table[page_index].first_object_offset);
2205 return (search_space(start, (pointer+2)-start, pointer));
2208 /* Is there any possibility that pointer is a valid Lisp object
2209 * reference, and/or something else (e.g. subroutine call return
2210 * address) which should prevent us from moving the referred-to thing? */
2212 possibly_valid_dynamic_space_pointer(lispobj *pointer)
2214 lispobj *start_addr;
2216 /* Find the object start address. */
2217 if ((start_addr = search_dynamic_space(pointer)) == NULL) {
2221 /* We need to allow raw pointers into Code objects for return
2222 * addresses. This will also pick up pointers to functions in code
2224 if (widetag_of(*start_addr) == CODE_HEADER_WIDETAG) {
2225 /* XXX could do some further checks here */
2229 /* If it's not a return address then it needs to be a valid Lisp
2231 if (!is_lisp_pointer((lispobj)pointer)) {
2235 /* Check that the object pointed to is consistent with the pointer
2238 * FIXME: It's not safe to rely on the result from this check
2239 * before an object is initialized. Thus, if we were interrupted
2240 * just as an object had been allocated but not initialized, the
2241 * GC relying on this result could bogusly reclaim the memory.
2242 * However, we can't really afford to do without this check. So
2243 * we should make it safe somehow.
2244 * (1) Perhaps just review the code to make sure
2245 * that WITHOUT-GCING or WITHOUT-INTERRUPTS or some such
2246 * thing is wrapped around critical sections where allocated
2247 * memory type bits haven't been set.
2248 * (2) Perhaps find some other hack to protect against this, e.g.
2249 * recording the result of the last call to allocate-lisp-memory,
2250 * and returning true from this function when *pointer is
2251 * a reference to that result. */
2252 switch (lowtag_of((lispobj)pointer)) {
2253 case FUN_POINTER_LOWTAG:
2254 /* Start_addr should be the enclosing code object, or a closure
2256 switch (widetag_of(*start_addr)) {
2257 case CODE_HEADER_WIDETAG:
2258 /* This case is probably caught above. */
2260 case CLOSURE_HEADER_WIDETAG:
2261 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2262 if ((unsigned)pointer !=
2263 ((unsigned)start_addr+FUN_POINTER_LOWTAG)) {
2267 pointer, start_addr, *start_addr));
2275 pointer, start_addr, *start_addr));
2279 case LIST_POINTER_LOWTAG:
2280 if ((unsigned)pointer !=
2281 ((unsigned)start_addr+LIST_POINTER_LOWTAG)) {
2285 pointer, start_addr, *start_addr));
2288 /* Is it plausible cons? */
2289 if ((is_lisp_pointer(start_addr[0])
2290 || ((start_addr[0] & 3) == 0) /* fixnum */
2291 || (widetag_of(start_addr[0]) == BASE_CHAR_WIDETAG)
2292 || (widetag_of(start_addr[0]) == UNBOUND_MARKER_WIDETAG))
2293 && (is_lisp_pointer(start_addr[1])
2294 || ((start_addr[1] & 3) == 0) /* fixnum */
2295 || (widetag_of(start_addr[1]) == BASE_CHAR_WIDETAG)
2296 || (widetag_of(start_addr[1]) == UNBOUND_MARKER_WIDETAG)))
2302 pointer, start_addr, *start_addr));
2305 case INSTANCE_POINTER_LOWTAG:
2306 if ((unsigned)pointer !=
2307 ((unsigned)start_addr+INSTANCE_POINTER_LOWTAG)) {
2311 pointer, start_addr, *start_addr));
2314 if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
2318 pointer, start_addr, *start_addr));
2322 case OTHER_POINTER_LOWTAG:
2323 if ((unsigned)pointer !=
2324 ((int)start_addr+OTHER_POINTER_LOWTAG)) {
2328 pointer, start_addr, *start_addr));
2331 /* Is it plausible? Not a cons. XXX should check the headers. */
2332 if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
2336 pointer, start_addr, *start_addr));
2339 switch (widetag_of(start_addr[0])) {
2340 case UNBOUND_MARKER_WIDETAG:
2341 case BASE_CHAR_WIDETAG:
2345 pointer, start_addr, *start_addr));
2348 /* only pointed to by function pointers? */
2349 case CLOSURE_HEADER_WIDETAG:
2350 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
2354 pointer, start_addr, *start_addr));
2357 case INSTANCE_HEADER_WIDETAG:
2361 pointer, start_addr, *start_addr));
2364 /* the valid other immediate pointer objects */
2365 case SIMPLE_VECTOR_WIDETAG:
2367 case COMPLEX_WIDETAG:
2368 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
2369 case COMPLEX_SINGLE_FLOAT_WIDETAG:
2371 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
2372 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
2374 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
2375 case COMPLEX_LONG_FLOAT_WIDETAG:
2377 case SIMPLE_ARRAY_WIDETAG:
2378 case COMPLEX_STRING_WIDETAG:
2379 case COMPLEX_BIT_VECTOR_WIDETAG:
2380 case COMPLEX_VECTOR_WIDETAG:
2381 case COMPLEX_ARRAY_WIDETAG:
2382 case VALUE_CELL_HEADER_WIDETAG:
2383 case SYMBOL_HEADER_WIDETAG:
2385 case CODE_HEADER_WIDETAG:
2386 case BIGNUM_WIDETAG:
2387 case SINGLE_FLOAT_WIDETAG:
2388 case DOUBLE_FLOAT_WIDETAG:
2389 #ifdef LONG_FLOAT_WIDETAG
2390 case LONG_FLOAT_WIDETAG:
2392 case SIMPLE_STRING_WIDETAG:
2393 case SIMPLE_BIT_VECTOR_WIDETAG:
2394 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2395 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2396 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2397 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2398 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2399 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2400 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2402 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2403 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2405 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2406 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2408 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2409 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2411 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2412 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2413 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2414 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2416 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2417 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2419 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2420 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2422 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2423 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2426 case WEAK_POINTER_WIDETAG:
2433 pointer, start_addr, *start_addr));
2441 pointer, start_addr, *start_addr));
2449 /* Adjust large bignum and vector objects. This will adjust the
2450 * allocated region if the size has shrunk, and move unboxed objects
2451 * into unboxed pages. The pages are not promoted here, and the
2452 * promoted region is not added to the new_regions; this is really
2453 * only designed to be called from preserve_pointer(). Shouldn't fail
2454 * if this is missed, just may delay the moving of objects to unboxed
2455 * pages, and the freeing of pages. */
2457 maybe_adjust_large_object(lispobj *where)
2462 int remaining_bytes;
2469 /* Check whether it's a vector or bignum object. */
2470 switch (widetag_of(where[0])) {
2471 case SIMPLE_VECTOR_WIDETAG:
2474 case BIGNUM_WIDETAG:
2475 case SIMPLE_STRING_WIDETAG:
2476 case SIMPLE_BIT_VECTOR_WIDETAG:
2477 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2478 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2479 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2480 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2481 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2482 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2483 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2485 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2486 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2488 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
2489 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
2491 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2492 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2494 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2495 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2496 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2497 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2499 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2500 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2502 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2503 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2505 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2506 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2508 boxed = UNBOXED_PAGE;
2514 /* Find its current size. */
2515 nwords = (sizetab[widetag_of(where[0])])(where);
2517 first_page = find_page_index((void *)where);
2518 gc_assert(first_page >= 0);
2520 /* Note: Any page write-protection must be removed, else a later
2521 * scavenge_newspace may incorrectly not scavenge these pages.
2522 * This would not be necessary if they are added to the new areas,
2523 * but lets do it for them all (they'll probably be written
2526 gc_assert(page_table[first_page].first_object_offset == 0);
2528 next_page = first_page;
2529 remaining_bytes = nwords*4;
2530 while (remaining_bytes > 4096) {
2531 gc_assert(page_table[next_page].gen == from_space);
2532 gc_assert((page_table[next_page].allocated == BOXED_PAGE)
2533 || (page_table[next_page].allocated == UNBOXED_PAGE));
2534 gc_assert(page_table[next_page].large_object);
2535 gc_assert(page_table[next_page].first_object_offset ==
2536 -4096*(next_page-first_page));
2537 gc_assert(page_table[next_page].bytes_used == 4096);
2539 page_table[next_page].allocated = boxed;
2541 /* Shouldn't be write-protected at this stage. Essential that the
2543 gc_assert(!page_table[next_page].write_protected);
2544 remaining_bytes -= 4096;
2548 /* Now only one page remains, but the object may have shrunk so
2549 * there may be more unused pages which will be freed. */
2551 /* Object may have shrunk but shouldn't have grown - check. */
2552 gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2554 page_table[next_page].allocated = boxed;
2555 gc_assert(page_table[next_page].allocated ==
2556 page_table[first_page].allocated);
2558 /* Adjust the bytes_used. */
2559 old_bytes_used = page_table[next_page].bytes_used;
2560 page_table[next_page].bytes_used = remaining_bytes;
2562 bytes_freed = old_bytes_used - remaining_bytes;
2564 /* Free any remaining pages; needs care. */
2566 while ((old_bytes_used == 4096) &&
2567 (page_table[next_page].gen == from_space) &&
2568 ((page_table[next_page].allocated == UNBOXED_PAGE)
2569 || (page_table[next_page].allocated == BOXED_PAGE)) &&
2570 page_table[next_page].large_object &&
2571 (page_table[next_page].first_object_offset ==
2572 -(next_page - first_page)*4096)) {
2573 /* It checks out OK, free the page. We don't need to both zeroing
2574 * pages as this should have been done before shrinking the
2575 * object. These pages shouldn't be write protected as they
2576 * should be zero filled. */
2577 gc_assert(page_table[next_page].write_protected == 0);
2579 old_bytes_used = page_table[next_page].bytes_used;
2580 page_table[next_page].allocated = FREE_PAGE;
2581 page_table[next_page].bytes_used = 0;
2582 bytes_freed += old_bytes_used;
2586 if ((bytes_freed > 0) && gencgc_verbose) {
2588 "/maybe_adjust_large_object() freed %d\n",
2592 generations[from_space].bytes_allocated -= bytes_freed;
2593 bytes_allocated -= bytes_freed;
2598 /* Take a possible pointer to a Lisp object and mark its page in the
2599 * page_table so that it will not be relocated during a GC.
2601 * This involves locating the page it points to, then backing up to
2602 * the first page that has its first object start at offset 0, and
2603 * then marking all pages dont_move from the first until a page that
2604 * ends by being full, or having free gen.
2606 * This ensures that objects spanning pages are not broken.
2608 * It is assumed that all the page static flags have been cleared at
2609 * the start of a GC.
2611 * It is also assumed that the current gc_alloc() region has been
2612 * flushed and the tables updated. */
2614 preserve_pointer(void *addr)
2616 int addr_page_index = find_page_index(addr);
2619 unsigned region_allocation;
2621 /* quick check 1: Address is quite likely to have been invalid. */
2622 if ((addr_page_index == -1)
2623 || (page_table[addr_page_index].allocated == FREE_PAGE)
2624 || (page_table[addr_page_index].bytes_used == 0)
2625 || (page_table[addr_page_index].gen != from_space)
2626 /* Skip if already marked dont_move. */
2627 || (page_table[addr_page_index].dont_move != 0))
2630 /* (Now that we know that addr_page_index is in range, it's
2631 * safe to index into page_table[] with it.) */
2632 region_allocation = page_table[addr_page_index].allocated;
2634 /* quick check 2: Check the offset within the page.
2636 * FIXME: The mask should have a symbolic name, and ideally should
2637 * be derived from page size instead of hardwired to 0xfff.
2638 * (Also fix other uses of 0xfff, elsewhere.) */
2639 if (((unsigned)addr & 0xfff) > page_table[addr_page_index].bytes_used)
2642 /* Filter out anything which can't be a pointer to a Lisp object
2643 * (or, as a special case which also requires dont_move, a return
2644 * address referring to something in a CodeObject). This is
2645 * expensive but important, since it vastly reduces the
2646 * probability that random garbage will be bogusly interpreter as
2647 * a pointer which prevents a page from moving. */
2648 if (!possibly_valid_dynamic_space_pointer(addr))
2651 /* Work backwards to find a page with a first_object_offset of 0.
2652 * The pages should be contiguous with all bytes used in the same
2653 * gen. Assumes the first_object_offset is negative or zero. */
2654 first_page = addr_page_index;
2655 while (page_table[first_page].first_object_offset != 0) {
2657 /* Do some checks. */
2658 gc_assert(page_table[first_page].bytes_used == 4096);
2659 gc_assert(page_table[first_page].gen == from_space);
2660 gc_assert(page_table[first_page].allocated == region_allocation);
2663 /* Adjust any large objects before promotion as they won't be
2664 * copied after promotion. */
2665 if (page_table[first_page].large_object) {
2666 maybe_adjust_large_object(page_address(first_page));
2667 /* If a large object has shrunk then addr may now point to a
2668 * free area in which case it's ignored here. Note it gets
2669 * through the valid pointer test above because the tail looks
2671 if ((page_table[addr_page_index].allocated == FREE_PAGE)
2672 || (page_table[addr_page_index].bytes_used == 0)
2673 /* Check the offset within the page. */
2674 || (((unsigned)addr & 0xfff)
2675 > page_table[addr_page_index].bytes_used)) {
2677 "weird? ignore ptr 0x%x to freed area of large object\n",
2681 /* It may have moved to unboxed pages. */
2682 region_allocation = page_table[first_page].allocated;
2685 /* Now work forward until the end of this contiguous area is found,
2686 * marking all pages as dont_move. */
2687 for (i = first_page; ;i++) {
2688 gc_assert(page_table[i].allocated == region_allocation);
2690 /* Mark the page static. */
2691 page_table[i].dont_move = 1;
2693 /* Move the page to the new_space. XX I'd rather not do this
2694 * but the GC logic is not quite able to copy with the static
2695 * pages remaining in the from space. This also requires the
2696 * generation bytes_allocated counters be updated. */
2697 page_table[i].gen = new_space;
2698 generations[new_space].bytes_allocated += page_table[i].bytes_used;
2699 generations[from_space].bytes_allocated -= page_table[i].bytes_used;
2701 /* It is essential that the pages are not write protected as
2702 * they may have pointers into the old-space which need
2703 * scavenging. They shouldn't be write protected at this
2705 gc_assert(!page_table[i].write_protected);
2707 /* Check whether this is the last page in this contiguous block.. */
2708 if ((page_table[i].bytes_used < 4096)
2709 /* ..or it is 4096 and is the last in the block */
2710 || (page_table[i+1].allocated == FREE_PAGE)
2711 || (page_table[i+1].bytes_used == 0) /* next page free */
2712 || (page_table[i+1].gen != from_space) /* diff. gen */
2713 || (page_table[i+1].first_object_offset == 0))
2717 /* Check that the page is now static. */
2718 gc_assert(page_table[addr_page_index].dont_move != 0);
2721 /* If the given page is not write-protected, then scan it for pointers
2722 * to younger generations or the top temp. generation, if no
2723 * suspicious pointers are found then the page is write-protected.
2725 * Care is taken to check for pointers to the current gc_alloc()
2726 * region if it is a younger generation or the temp. generation. This
2727 * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2728 * the gc_alloc_generation does not need to be checked as this is only
2729 * called from scavenge_generation() when the gc_alloc generation is
2730 * younger, so it just checks if there is a pointer to the current
2733 * We return 1 if the page was write-protected, else 0. */
2735 update_page_write_prot(int page)
2737 int gen = page_table[page].gen;
2740 void **page_addr = (void **)page_address(page);
2741 int num_words = page_table[page].bytes_used / 4;
2743 /* Shouldn't be a free page. */
2744 gc_assert(page_table[page].allocated != FREE_PAGE);
2745 gc_assert(page_table[page].bytes_used != 0);
2747 /* Skip if it's already write-protected or an unboxed page. */
2748 if (page_table[page].write_protected
2749 || (page_table[page].allocated == UNBOXED_PAGE))
2752 /* Scan the page for pointers to younger generations or the
2753 * top temp. generation. */
2755 for (j = 0; j < num_words; j++) {
2756 void *ptr = *(page_addr+j);
2757 int index = find_page_index(ptr);
2759 /* Check that it's in the dynamic space */
2761 if (/* Does it point to a younger or the temp. generation? */
2762 ((page_table[index].allocated != FREE_PAGE)
2763 && (page_table[index].bytes_used != 0)
2764 && ((page_table[index].gen < gen)
2765 || (page_table[index].gen == NUM_GENERATIONS)))
2767 /* Or does it point within a current gc_alloc() region? */
2768 || ((boxed_region.start_addr <= ptr)
2769 && (ptr <= boxed_region.free_pointer))
2770 || ((unboxed_region.start_addr <= ptr)
2771 && (ptr <= unboxed_region.free_pointer))) {
2778 /* Write-protect the page. */
2779 /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2781 os_protect((void *)page_addr,
2783 OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2785 /* Note the page as protected in the page tables. */
2786 page_table[page].write_protected = 1;
2792 /* Scavenge a generation.
2794 * This will not resolve all pointers when generation is the new
2795 * space, as new objects may be added which are not check here - use
2796 * scavenge_newspace generation.
2798 * Write-protected pages should not have any pointers to the
2799 * from_space so do need scavenging; thus write-protected pages are
2800 * not always scavenged. There is some code to check that these pages
2801 * are not written; but to check fully the write-protected pages need
2802 * to be scavenged by disabling the code to skip them.
2804 * Under the current scheme when a generation is GCed the younger
2805 * generations will be empty. So, when a generation is being GCed it
2806 * is only necessary to scavenge the older generations for pointers
2807 * not the younger. So a page that does not have pointers to younger
2808 * generations does not need to be scavenged.
2810 * The write-protection can be used to note pages that don't have
2811 * pointers to younger pages. But pages can be written without having
2812 * pointers to younger generations. After the pages are scavenged here
2813 * they can be scanned for pointers to younger generations and if
2814 * there are none the page can be write-protected.
2816 * One complication is when the newspace is the top temp. generation.
2818 * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2819 * that none were written, which they shouldn't be as they should have
2820 * no pointers to younger generations. This breaks down for weak
2821 * pointers as the objects contain a link to the next and are written
2822 * if a weak pointer is scavenged. Still it's a useful check. */
2824 scavenge_generation(int generation)
2831 /* Clear the write_protected_cleared flags on all pages. */
2832 for (i = 0; i < NUM_PAGES; i++)
2833 page_table[i].write_protected_cleared = 0;
2836 for (i = 0; i < last_free_page; i++) {
2837 if ((page_table[i].allocated == BOXED_PAGE)
2838 && (page_table[i].bytes_used != 0)
2839 && (page_table[i].gen == generation)) {
2842 /* This should be the start of a contiguous block. */
2843 gc_assert(page_table[i].first_object_offset == 0);
2845 /* We need to find the full extent of this contiguous
2846 * block in case objects span pages. */
2848 /* Now work forward until the end of this contiguous area
2849 * is found. A small area is preferred as there is a
2850 * better chance of its pages being write-protected. */
2851 for (last_page = i; ; last_page++)
2852 /* Check whether this is the last page in this contiguous
2854 if ((page_table[last_page].bytes_used < 4096)
2855 /* Or it is 4096 and is the last in the block */
2856 || (page_table[last_page+1].allocated != BOXED_PAGE)
2857 || (page_table[last_page+1].bytes_used == 0)
2858 || (page_table[last_page+1].gen != generation)
2859 || (page_table[last_page+1].first_object_offset == 0))
2862 /* Do a limited check for write_protected pages. If all pages
2863 * are write_protected then there is no need to scavenge. */
2866 for (j = i; j <= last_page; j++)
2867 if (page_table[j].write_protected == 0) {
2875 scavenge(page_address(i), (page_table[last_page].bytes_used
2876 + (last_page-i)*4096)/4);
2878 /* Now scan the pages and write protect those
2879 * that don't have pointers to younger
2881 if (enable_page_protection) {
2882 for (j = i; j <= last_page; j++) {
2883 num_wp += update_page_write_prot(j);
2892 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2894 "/write protected %d pages within generation %d\n",
2895 num_wp, generation));
2899 /* Check that none of the write_protected pages in this generation
2900 * have been written to. */
2901 for (i = 0; i < NUM_PAGES; i++) {
2902 if ((page_table[i].allocation ! =FREE_PAGE)
2903 && (page_table[i].bytes_used != 0)
2904 && (page_table[i].gen == generation)
2905 && (page_table[i].write_protected_cleared != 0)) {
2906 FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2908 "/page bytes_used=%d first_object_offset=%d dont_move=%d\n",
2909 page_table[i].bytes_used,
2910 page_table[i].first_object_offset,
2911 page_table[i].dont_move));
2912 lose("write to protected page %d in scavenge_generation()", i);
2919 /* Scavenge a newspace generation. As it is scavenged new objects may
2920 * be allocated to it; these will also need to be scavenged. This
2921 * repeats until there are no more objects unscavenged in the
2922 * newspace generation.
2924 * To help improve the efficiency, areas written are recorded by
2925 * gc_alloc() and only these scavenged. Sometimes a little more will be
2926 * scavenged, but this causes no harm. An easy check is done that the
2927 * scavenged bytes equals the number allocated in the previous
2930 * Write-protected pages are not scanned except if they are marked
2931 * dont_move in which case they may have been promoted and still have
2932 * pointers to the from space.
2934 * Write-protected pages could potentially be written by alloc however
2935 * to avoid having to handle re-scavenging of write-protected pages
2936 * gc_alloc() does not write to write-protected pages.
2938 * New areas of objects allocated are recorded alternatively in the two
2939 * new_areas arrays below. */
2940 static struct new_area new_areas_1[NUM_NEW_AREAS];
2941 static struct new_area new_areas_2[NUM_NEW_AREAS];
2943 /* Do one full scan of the new space generation. This is not enough to
2944 * complete the job as new objects may be added to the generation in
2945 * the process which are not scavenged. */
2947 scavenge_newspace_generation_one_scan(int generation)
2952 "/starting one full scan of newspace generation %d\n",
2955 for (i = 0; i < last_free_page; i++) {
2956 if ((page_table[i].allocated == BOXED_PAGE)
2957 && (page_table[i].bytes_used != 0)
2958 && (page_table[i].gen == generation)
2959 && ((page_table[i].write_protected == 0)
2960 /* (This may be redundant as write_protected is now
2961 * cleared before promotion.) */
2962 || (page_table[i].dont_move == 1))) {
2965 /* The scavenge will start at the first_object_offset of page i.
2967 * We need to find the full extent of this contiguous
2968 * block in case objects span pages.
2970 * Now work forward until the end of this contiguous area
2971 * is found. A small area is preferred as there is a
2972 * better chance of its pages being write-protected. */
2973 for (last_page = i; ;last_page++) {
2974 /* Check whether this is the last page in this
2975 * contiguous block */
2976 if ((page_table[last_page].bytes_used < 4096)
2977 /* Or it is 4096 and is the last in the block */
2978 || (page_table[last_page+1].allocated != BOXED_PAGE)
2979 || (page_table[last_page+1].bytes_used == 0)
2980 || (page_table[last_page+1].gen != generation)
2981 || (page_table[last_page+1].first_object_offset == 0))
2985 /* Do a limited check for write-protected pages. If all
2986 * pages are write-protected then no need to scavenge,
2987 * except if the pages are marked dont_move. */
2990 for (j = i; j <= last_page; j++)
2991 if ((page_table[j].write_protected == 0)
2992 || (page_table[j].dont_move != 0)) {
3000 /* Calculate the size. */
3002 size = (page_table[last_page].bytes_used
3003 - page_table[i].first_object_offset)/4;
3005 size = (page_table[last_page].bytes_used
3006 + (last_page-i)*4096
3007 - page_table[i].first_object_offset)/4;
3010 new_areas_ignore_page = last_page;
3012 scavenge(page_address(i) +
3013 page_table[i].first_object_offset,
3024 "/done with one full scan of newspace generation %d\n",
3028 /* Do a complete scavenge of the newspace generation. */
3030 scavenge_newspace_generation(int generation)
3034 /* the new_areas array currently being written to by gc_alloc() */
3035 struct new_area (*current_new_areas)[] = &new_areas_1;
3036 int current_new_areas_index;
3038 /* the new_areas created but the previous scavenge cycle */
3039 struct new_area (*previous_new_areas)[] = NULL;
3040 int previous_new_areas_index;
3042 /* Flush the current regions updating the tables. */
3043 gc_alloc_update_page_tables(0, &boxed_region);
3044 gc_alloc_update_page_tables(1, &unboxed_region);
3046 /* Turn on the recording of new areas by gc_alloc(). */
3047 new_areas = current_new_areas;
3048 new_areas_index = 0;
3050 /* Don't need to record new areas that get scavenged anyway during
3051 * scavenge_newspace_generation_one_scan. */
3052 record_new_objects = 1;
3054 /* Start with a full scavenge. */
3055 scavenge_newspace_generation_one_scan(generation);
3057 /* Record all new areas now. */
3058 record_new_objects = 2;
3060 /* Flush the current regions updating the tables. */
3061 gc_alloc_update_page_tables(0, &boxed_region);
3062 gc_alloc_update_page_tables(1, &unboxed_region);
3064 /* Grab new_areas_index. */
3065 current_new_areas_index = new_areas_index;
3068 "The first scan is finished; current_new_areas_index=%d.\n",
3069 current_new_areas_index));*/
3071 while (current_new_areas_index > 0) {
3072 /* Move the current to the previous new areas */
3073 previous_new_areas = current_new_areas;
3074 previous_new_areas_index = current_new_areas_index;
3076 /* Scavenge all the areas in previous new areas. Any new areas
3077 * allocated are saved in current_new_areas. */
3079 /* Allocate an array for current_new_areas; alternating between
3080 * new_areas_1 and 2 */
3081 if (previous_new_areas == &new_areas_1)
3082 current_new_areas = &new_areas_2;
3084 current_new_areas = &new_areas_1;
3086 /* Set up for gc_alloc(). */
3087 new_areas = current_new_areas;
3088 new_areas_index = 0;
3090 /* Check whether previous_new_areas had overflowed. */
3091 if (previous_new_areas_index >= NUM_NEW_AREAS) {
3093 /* New areas of objects allocated have been lost so need to do a
3094 * full scan to be sure! If this becomes a problem try
3095 * increasing NUM_NEW_AREAS. */
3097 SHOW("new_areas overflow, doing full scavenge");
3099 /* Don't need to record new areas that get scavenge anyway
3100 * during scavenge_newspace_generation_one_scan. */
3101 record_new_objects = 1;
3103 scavenge_newspace_generation_one_scan(generation);
3105 /* Record all new areas now. */
3106 record_new_objects = 2;
3108 /* Flush the current regions updating the tables. */
3109 gc_alloc_update_page_tables(0, &boxed_region);
3110 gc_alloc_update_page_tables(1, &unboxed_region);
3114 /* Work through previous_new_areas. */
3115 for (i = 0; i < previous_new_areas_index; i++) {
3116 /* FIXME: All these bare *4 and /4 should be something
3117 * like BYTES_PER_WORD or WBYTES. */
3118 int page = (*previous_new_areas)[i].page;
3119 int offset = (*previous_new_areas)[i].offset;
3120 int size = (*previous_new_areas)[i].size / 4;
3121 gc_assert((*previous_new_areas)[i].size % 4 == 0);
3123 scavenge(page_address(page)+offset, size);
3126 /* Flush the current regions updating the tables. */
3127 gc_alloc_update_page_tables(0, &boxed_region);
3128 gc_alloc_update_page_tables(1, &unboxed_region);
3131 current_new_areas_index = new_areas_index;
3134 "The re-scan has finished; current_new_areas_index=%d.\n",
3135 current_new_areas_index));*/
3138 /* Turn off recording of areas allocated by gc_alloc(). */
3139 record_new_objects = 0;
3142 /* Check that none of the write_protected pages in this generation
3143 * have been written to. */
3144 for (i = 0; i < NUM_PAGES; i++) {
3145 if ((page_table[i].allocation != FREE_PAGE)
3146 && (page_table[i].bytes_used != 0)
3147 && (page_table[i].gen == generation)
3148 && (page_table[i].write_protected_cleared != 0)
3149 && (page_table[i].dont_move == 0)) {
3150 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d",
3151 i, generation, page_table[i].dont_move);
3157 /* Un-write-protect all the pages in from_space. This is done at the
3158 * start of a GC else there may be many page faults while scavenging
3159 * the newspace (I've seen drive the system time to 99%). These pages
3160 * would need to be unprotected anyway before unmapping in
3161 * free_oldspace; not sure what effect this has on paging.. */
3163 unprotect_oldspace(void)
3167 for (i = 0; i < last_free_page; i++) {
3168 if ((page_table[i].allocated != FREE_PAGE)
3169 && (page_table[i].bytes_used != 0)
3170 && (page_table[i].gen == from_space)) {
3173 page_start = (void *)page_address(i);
3175 /* Remove any write-protection. We should be able to rely
3176 * on the write-protect flag to avoid redundant calls. */
3177 if (page_table[i].write_protected) {
3178 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3179 page_table[i].write_protected = 0;
3185 /* Work through all the pages and free any in from_space. This
3186 * assumes that all objects have been copied or promoted to an older
3187 * generation. Bytes_allocated and the generation bytes_allocated
3188 * counter are updated. The number of bytes freed is returned. */
3189 extern void i586_bzero(void *addr, int nbytes);
3193 int bytes_freed = 0;
3194 int first_page, last_page;
3199 /* Find a first page for the next region of pages. */
3200 while ((first_page < last_free_page)
3201 && ((page_table[first_page].allocated == FREE_PAGE)
3202 || (page_table[first_page].bytes_used == 0)
3203 || (page_table[first_page].gen != from_space)))
3206 if (first_page >= last_free_page)
3209 /* Find the last page of this region. */
3210 last_page = first_page;
3213 /* Free the page. */
3214 bytes_freed += page_table[last_page].bytes_used;
3215 generations[page_table[last_page].gen].bytes_allocated -=
3216 page_table[last_page].bytes_used;
3217 page_table[last_page].allocated = FREE_PAGE;
3218 page_table[last_page].bytes_used = 0;
3220 /* Remove any write-protection. We should be able to rely
3221 * on the write-protect flag to avoid redundant calls. */
3223 void *page_start = (void *)page_address(last_page);
3225 if (page_table[last_page].write_protected) {
3226 os_protect(page_start, 4096, OS_VM_PROT_ALL);
3227 page_table[last_page].write_protected = 0;
3232 while ((last_page < last_free_page)
3233 && (page_table[last_page].allocated != FREE_PAGE)
3234 && (page_table[last_page].bytes_used != 0)
3235 && (page_table[last_page].gen == from_space));
3237 /* Zero pages from first_page to (last_page-1).
3239 * FIXME: Why not use os_zero(..) function instead of
3240 * hand-coding this again? (Check other gencgc_unmap_zero
3242 if (gencgc_unmap_zero) {
3243 void *page_start, *addr;
3245 page_start = (void *)page_address(first_page);
3247 os_invalidate(page_start, 4096*(last_page-first_page));
3248 addr = os_validate(page_start, 4096*(last_page-first_page));
3249 if (addr == NULL || addr != page_start) {
3250 /* Is this an error condition? I couldn't really tell from
3251 * the old CMU CL code, which fprintf'ed a message with
3252 * an exclamation point at the end. But I've never seen the
3253 * message, so it must at least be unusual..
3255 * (The same condition is also tested for in gc_free_heap.)
3257 * -- WHN 19991129 */
3258 lose("i586_bzero: page moved, 0x%08x ==> 0x%08x",
3265 page_start = (int *)page_address(first_page);
3266 i586_bzero(page_start, 4096*(last_page-first_page));
3269 first_page = last_page;
3271 } while (first_page < last_free_page);
3273 bytes_allocated -= bytes_freed;
3278 /* Print some information about a pointer at the given address. */
3280 print_ptr(lispobj *addr)
3282 /* If addr is in the dynamic space then out the page information. */
3283 int pi1 = find_page_index((void*)addr);
3286 fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %d dont_move %d\n",
3287 (unsigned int) addr,
3289 page_table[pi1].allocated,
3290 page_table[pi1].gen,
3291 page_table[pi1].bytes_used,
3292 page_table[pi1].first_object_offset,
3293 page_table[pi1].dont_move);
3294 fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
3307 extern int undefined_tramp;
3310 verify_space(lispobj *start, size_t words)
3312 int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3313 int is_in_readonly_space =
3314 (READ_ONLY_SPACE_START <= (unsigned)start &&
3315 (unsigned)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
3319 lispobj thing = *(lispobj*)start;
3321 if (is_lisp_pointer(thing)) {
3322 int page_index = find_page_index((void*)thing);
3323 int to_readonly_space =
3324 (READ_ONLY_SPACE_START <= thing &&
3325 thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER));
3326 int to_static_space =
3327 (STATIC_SPACE_START <= thing &&
3328 thing < SymbolValue(STATIC_SPACE_FREE_POINTER));
3330 /* Does it point to the dynamic space? */
3331 if (page_index != -1) {
3332 /* If it's within the dynamic space it should point to a used
3333 * page. XX Could check the offset too. */
3334 if ((page_table[page_index].allocated != FREE_PAGE)
3335 && (page_table[page_index].bytes_used == 0))
3336 lose ("Ptr %x @ %x sees free page.", thing, start);
3337 /* Check that it doesn't point to a forwarding pointer! */
3338 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3339 lose("Ptr %x @ %x sees forwarding ptr.", thing, start);
3341 /* Check that its not in the RO space as it would then be a
3342 * pointer from the RO to the dynamic space. */
3343 if (is_in_readonly_space) {
3344 lose("ptr to dynamic space %x from RO space %x",
3347 /* Does it point to a plausible object? This check slows
3348 * it down a lot (so it's commented out).
3350 * FIXME: Add a variable to enable this dynamically. */
3351 /* if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
3352 * lose("ptr %x to invalid object %x", thing, start); */
3354 /* Verify that it points to another valid space. */
3355 if (!to_readonly_space && !to_static_space
3356 && (thing != (unsigned)&undefined_tramp)) {
3357 lose("Ptr %x @ %x sees junk.", thing, start);
3361 if (thing & 0x3) { /* Skip fixnums. FIXME: There should be an
3362 * is_fixnum for this. */
3364 switch(widetag_of(*start)) {
3367 case SIMPLE_VECTOR_WIDETAG:
3369 case COMPLEX_WIDETAG:
3370 case SIMPLE_ARRAY_WIDETAG:
3371 case COMPLEX_STRING_WIDETAG:
3372 case COMPLEX_BIT_VECTOR_WIDETAG:
3373 case COMPLEX_VECTOR_WIDETAG:
3374 case COMPLEX_ARRAY_WIDETAG:
3375 case CLOSURE_HEADER_WIDETAG:
3376 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3377 case VALUE_CELL_HEADER_WIDETAG:
3378 case SYMBOL_HEADER_WIDETAG:
3379 case BASE_CHAR_WIDETAG:
3380 case UNBOUND_MARKER_WIDETAG:
3381 case INSTANCE_HEADER_WIDETAG:
3386 case CODE_HEADER_WIDETAG:
3388 lispobj object = *start;
3390 int nheader_words, ncode_words, nwords;
3392 struct simple_fun *fheaderp;
3394 code = (struct code *) start;
3396 /* Check that it's not in the dynamic space.
3397 * FIXME: Isn't is supposed to be OK for code
3398 * objects to be in the dynamic space these days? */
3399 if (is_in_dynamic_space
3400 /* It's ok if it's byte compiled code. The trace
3401 * table offset will be a fixnum if it's x86
3402 * compiled code - check.
3404 * FIXME: #^#@@! lack of abstraction here..
3405 * This line can probably go away now that
3406 * there's no byte compiler, but I've got
3407 * too much to worry about right now to try
3408 * to make sure. -- WHN 2001-10-06 */
3409 && !(code->trace_table_offset & 0x3)
3410 /* Only when enabled */
3411 && verify_dynamic_code_check) {
3413 "/code object at %x in the dynamic space\n",
3417 ncode_words = fixnum_value(code->code_size);
3418 nheader_words = HeaderValue(object);
3419 nwords = ncode_words + nheader_words;
3420 nwords = CEILING(nwords, 2);
3421 /* Scavenge the boxed section of the code data block */
3422 verify_space(start + 1, nheader_words - 1);
3424 /* Scavenge the boxed section of each function
3425 * object in the code data block. */
3426 fheaderl = code->entry_points;
3427 while (fheaderl != NIL) {
3429 (struct simple_fun *) native_pointer(fheaderl);
3430 gc_assert(widetag_of(fheaderp->header) == SIMPLE_FUN_HEADER_WIDETAG);
3431 verify_space(&fheaderp->name, 1);
3432 verify_space(&fheaderp->arglist, 1);
3433 verify_space(&fheaderp->type, 1);
3434 fheaderl = fheaderp->next;
3440 /* unboxed objects */
3441 case BIGNUM_WIDETAG:
3442 case SINGLE_FLOAT_WIDETAG:
3443 case DOUBLE_FLOAT_WIDETAG:
3444 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3445 case LONG_FLOAT_WIDETAG:
3447 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3448 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3450 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3451 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3453 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3454 case COMPLEX_LONG_FLOAT_WIDETAG:
3456 case SIMPLE_STRING_WIDETAG:
3457 case SIMPLE_BIT_VECTOR_WIDETAG:
3458 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3459 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3460 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3461 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3462 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3463 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3464 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3466 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3467 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3469 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
3470 case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
3472 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3473 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3475 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3476 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3477 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3478 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3480 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3481 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3483 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3484 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3486 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3487 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3490 case WEAK_POINTER_WIDETAG:
3491 count = (sizetab[widetag_of(*start)])(start);
3507 /* FIXME: It would be nice to make names consistent so that
3508 * foo_size meant size *in* *bytes* instead of size in some
3509 * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3510 * Some counts of lispobjs are called foo_count; it might be good
3511 * to grep for all foo_size and rename the appropriate ones to
3513 int read_only_space_size =
3514 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER)
3515 - (lispobj*)READ_ONLY_SPACE_START;
3516 int static_space_size =
3517 (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER)
3518 - (lispobj*)STATIC_SPACE_START;
3519 int binding_stack_size =
3520 (lispobj*)SymbolValue(BINDING_STACK_POINTER)
3521 - (lispobj*)BINDING_STACK_START;
3523 verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3524 verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
3525 verify_space((lispobj*)BINDING_STACK_START , binding_stack_size);
3529 verify_generation(int generation)
3533 for (i = 0; i < last_free_page; i++) {
3534 if ((page_table[i].allocated != FREE_PAGE)
3535 && (page_table[i].bytes_used != 0)
3536 && (page_table[i].gen == generation)) {
3538 int region_allocation = page_table[i].allocated;
3540 /* This should be the start of a contiguous block */
3541 gc_assert(page_table[i].first_object_offset == 0);
3543 /* Need to find the full extent of this contiguous block in case
3544 objects span pages. */
3546 /* Now work forward until the end of this contiguous area is
3548 for (last_page = i; ;last_page++)
3549 /* Check whether this is the last page in this contiguous
3551 if ((page_table[last_page].bytes_used < 4096)
3552 /* Or it is 4096 and is the last in the block */
3553 || (page_table[last_page+1].allocated != region_allocation)
3554 || (page_table[last_page+1].bytes_used == 0)
3555 || (page_table[last_page+1].gen != generation)
3556 || (page_table[last_page+1].first_object_offset == 0))
3559 verify_space(page_address(i), (page_table[last_page].bytes_used
3560 + (last_page-i)*4096)/4);
3566 /* Check that all the free space is zero filled. */
3568 verify_zero_fill(void)
3572 for (page = 0; page < last_free_page; page++) {
3573 if (page_table[page].allocated == FREE_PAGE) {
3574 /* The whole page should be zero filled. */
3575 int *start_addr = (int *)page_address(page);
3578 for (i = 0; i < size; i++) {
3579 if (start_addr[i] != 0) {
3580 lose("free page not zero at %x", start_addr + i);
3584 int free_bytes = 4096 - page_table[page].bytes_used;
3585 if (free_bytes > 0) {
3586 int *start_addr = (int *)((unsigned)page_address(page)
3587 + page_table[page].bytes_used);
3588 int size = free_bytes / 4;
3590 for (i = 0; i < size; i++) {
3591 if (start_addr[i] != 0) {
3592 lose("free region not zero at %x", start_addr + i);
3600 /* External entry point for verify_zero_fill */
3602 gencgc_verify_zero_fill(void)
3604 /* Flush the alloc regions updating the tables. */
3605 boxed_region.free_pointer = current_region_free_pointer;
3606 gc_alloc_update_page_tables(0, &boxed_region);
3607 gc_alloc_update_page_tables(1, &unboxed_region);
3608 SHOW("verifying zero fill");
3610 current_region_free_pointer = boxed_region.free_pointer;
3611 current_region_end_addr = boxed_region.end_addr;
3615 verify_dynamic_space(void)
3619 for (i = 0; i < NUM_GENERATIONS; i++)
3620 verify_generation(i);
3622 if (gencgc_enable_verify_zero_fill)
3626 /* Write-protect all the dynamic boxed pages in the given generation. */
3628 write_protect_generation_pages(int generation)
3632 gc_assert(generation < NUM_GENERATIONS);
3634 for (i = 0; i < last_free_page; i++)
3635 if ((page_table[i].allocated == BOXED_PAGE)
3636 && (page_table[i].bytes_used != 0)
3637 && (page_table[i].gen == generation)) {
3640 page_start = (void *)page_address(i);
3642 os_protect(page_start,
3644 OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3646 /* Note the page as protected in the page tables. */
3647 page_table[i].write_protected = 1;
3650 if (gencgc_verbose > 1) {
3652 "/write protected %d of %d pages in generation %d\n",
3653 count_write_protect_generation_pages(generation),
3654 count_generation_pages(generation),
3659 /* Garbage collect a generation. If raise is 0 then the remains of the
3660 * generation are not raised to the next generation. */
3662 garbage_collect_generation(int generation, int raise)
3664 unsigned long bytes_freed;
3666 unsigned long static_space_size;
3668 gc_assert(generation <= (NUM_GENERATIONS-1));
3670 /* The oldest generation can't be raised. */
3671 gc_assert((generation != (NUM_GENERATIONS-1)) || (raise == 0));
3673 /* Initialize the weak pointer list. */
3674 weak_pointers = NULL;
3676 /* When a generation is not being raised it is transported to a
3677 * temporary generation (NUM_GENERATIONS), and lowered when
3678 * done. Set up this new generation. There should be no pages
3679 * allocated to it yet. */
3681 gc_assert(generations[NUM_GENERATIONS].bytes_allocated == 0);
3683 /* Set the global src and dest. generations */
3684 from_space = generation;
3686 new_space = generation+1;
3688 new_space = NUM_GENERATIONS;
3690 /* Change to a new space for allocation, resetting the alloc_start_page */
3691 gc_alloc_generation = new_space;
3692 generations[new_space].alloc_start_page = 0;
3693 generations[new_space].alloc_unboxed_start_page = 0;
3694 generations[new_space].alloc_large_start_page = 0;
3695 generations[new_space].alloc_large_unboxed_start_page = 0;
3697 /* Before any pointers are preserved, the dont_move flags on the
3698 * pages need to be cleared. */
3699 for (i = 0; i < last_free_page; i++)
3700 page_table[i].dont_move = 0;
3702 /* Un-write-protect the old-space pages. This is essential for the
3703 * promoted pages as they may contain pointers into the old-space
3704 * which need to be scavenged. It also helps avoid unnecessary page
3705 * faults as forwarding pointers are written into them. They need to
3706 * be un-protected anyway before unmapping later. */
3707 unprotect_oldspace();
3709 /* Scavenge the stack's conservative roots. */
3712 for (ptr = (void **)CONTROL_STACK_END - 1;
3713 ptr > (void **)&raise;
3715 preserve_pointer(*ptr);
3720 if (gencgc_verbose > 1) {
3721 int num_dont_move_pages = count_dont_move_pages();
3723 "/non-movable pages due to conservative pointers = %d (%d bytes)\n",
3724 num_dont_move_pages,
3725 /* FIXME: 4096 should be symbolic constant here and
3726 * prob'ly elsewhere too. */
3727 num_dont_move_pages * 4096);
3731 /* Scavenge all the rest of the roots. */
3733 /* Scavenge the Lisp functions of the interrupt handlers, taking
3734 * care to avoid SIG_DFL and SIG_IGN. */
3735 for (i = 0; i < NSIG; i++) {
3736 union interrupt_handler handler = interrupt_handlers[i];
3737 if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3738 !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3739 scavenge((lispobj *)(interrupt_handlers + i), 1);
3743 /* Scavenge the binding stack. */
3744 scavenge((lispobj *) BINDING_STACK_START,
3745 (lispobj *)SymbolValue(BINDING_STACK_POINTER) -
3746 (lispobj *)BINDING_STACK_START);
3748 /* The original CMU CL code had scavenge-read-only-space code
3749 * controlled by the Lisp-level variable
3750 * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3751 * wasn't documented under what circumstances it was useful or
3752 * safe to turn it on, so it's been turned off in SBCL. If you
3753 * want/need this functionality, and can test and document it,
3754 * please submit a patch. */
3756 if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3757 unsigned long read_only_space_size =
3758 (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3759 (lispobj*)READ_ONLY_SPACE_START;
3761 "/scavenge read only space: %d bytes\n",
3762 read_only_space_size * sizeof(lispobj)));
3763 scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3767 /* Scavenge static space. */
3769 (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER) -
3770 (lispobj *)STATIC_SPACE_START;
3771 if (gencgc_verbose > 1) {
3773 "/scavenge static space: %d bytes\n",
3774 static_space_size * sizeof(lispobj)));
3776 scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3778 /* All generations but the generation being GCed need to be
3779 * scavenged. The new_space generation needs special handling as
3780 * objects may be moved in - it is handled separately below. */
3781 for (i = 0; i < NUM_GENERATIONS; i++) {
3782 if ((i != generation) && (i != new_space)) {
3783 scavenge_generation(i);
3787 /* Finally scavenge the new_space generation. Keep going until no
3788 * more objects are moved into the new generation */
3789 scavenge_newspace_generation(new_space);
3791 /* FIXME: I tried reenabling this check when debugging unrelated
3792 * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3793 * Since the current GC code seems to work well, I'm guessing that
3794 * this debugging code is just stale, but I haven't tried to
3795 * figure it out. It should be figured out and then either made to
3796 * work or just deleted. */
3797 #define RESCAN_CHECK 0
3799 /* As a check re-scavenge the newspace once; no new objects should
3802 int old_bytes_allocated = bytes_allocated;
3803 int bytes_allocated;
3805 /* Start with a full scavenge. */
3806 scavenge_newspace_generation_one_scan(new_space);
3808 /* Flush the current regions, updating the tables. */
3809 gc_alloc_update_page_tables(0, &boxed_region);
3810 gc_alloc_update_page_tables(1, &unboxed_region);
3812 bytes_allocated = bytes_allocated - old_bytes_allocated;
3814 if (bytes_allocated != 0) {
3815 lose("Rescan of new_space allocated %d more bytes.",
3821 scan_weak_pointers();
3823 /* Flush the current regions, updating the tables. */
3824 gc_alloc_update_page_tables(0, &boxed_region);
3825 gc_alloc_update_page_tables(1, &unboxed_region);
3827 /* Free the pages in oldspace, but not those marked dont_move. */
3828 bytes_freed = free_oldspace();
3830 /* If the GC is not raising the age then lower the generation back
3831 * to its normal generation number */
3833 for (i = 0; i < last_free_page; i++)
3834 if ((page_table[i].bytes_used != 0)
3835 && (page_table[i].gen == NUM_GENERATIONS))
3836 page_table[i].gen = generation;
3837 gc_assert(generations[generation].bytes_allocated == 0);
3838 generations[generation].bytes_allocated =
3839 generations[NUM_GENERATIONS].bytes_allocated;
3840 generations[NUM_GENERATIONS].bytes_allocated = 0;
3843 /* Reset the alloc_start_page for generation. */
3844 generations[generation].alloc_start_page = 0;
3845 generations[generation].alloc_unboxed_start_page = 0;
3846 generations[generation].alloc_large_start_page = 0;
3847 generations[generation].alloc_large_unboxed_start_page = 0;
3849 if (generation >= verify_gens) {
3853 verify_dynamic_space();
3856 /* Set the new gc trigger for the GCed generation. */
3857 generations[generation].gc_trigger =
3858 generations[generation].bytes_allocated
3859 + generations[generation].bytes_consed_between_gc;
3862 generations[generation].num_gc = 0;
3864 ++generations[generation].num_gc;
3867 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3869 update_x86_dynamic_space_free_pointer(void)
3874 for (i = 0; i < NUM_PAGES; i++)
3875 if ((page_table[i].allocated != FREE_PAGE)
3876 && (page_table[i].bytes_used != 0))
3879 last_free_page = last_page+1;
3881 SetSymbolValue(ALLOCATION_POINTER,
3882 (lispobj)(((char *)heap_base) + last_free_page*4096));
3883 return 0; /* dummy value: return something ... */
3886 /* GC all generations newer than last_gen, raising the objects in each
3887 * to the next older generation - we finish when all generations below
3888 * last_gen are empty. Then if last_gen is due for a GC, or if
3889 * last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
3890 * too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3892 * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
3893 * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
3896 collect_garbage(unsigned last_gen)
3903 boxed_region.free_pointer = current_region_free_pointer;
3905 FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
3907 if (last_gen > NUM_GENERATIONS) {
3909 "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
3914 /* Flush the alloc regions updating the tables. */
3915 gc_alloc_update_page_tables(0, &boxed_region);
3916 gc_alloc_update_page_tables(1, &unboxed_region);
3918 /* Verify the new objects created by Lisp code. */
3919 if (pre_verify_gen_0) {
3920 SHOW((stderr, "pre-checking generation 0\n"));
3921 verify_generation(0);
3924 if (gencgc_verbose > 1)
3925 print_generation_stats(0);
3928 /* Collect the generation. */
3930 if (gen >= gencgc_oldest_gen_to_gc) {
3931 /* Never raise the oldest generation. */
3936 || (generations[gen].num_gc >= generations[gen].trigger_age);
3939 if (gencgc_verbose > 1) {
3941 "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
3944 generations[gen].bytes_allocated,
3945 generations[gen].gc_trigger,
3946 generations[gen].num_gc));
3949 /* If an older generation is being filled, then update its
3952 generations[gen+1].cum_sum_bytes_allocated +=
3953 generations[gen+1].bytes_allocated;
3956 garbage_collect_generation(gen, raise);
3958 /* Reset the memory age cum_sum. */
3959 generations[gen].cum_sum_bytes_allocated = 0;
3961 if (gencgc_verbose > 1) {
3962 FSHOW((stderr, "GC of generation %d finished:\n", gen));
3963 print_generation_stats(0);
3967 } while ((gen <= gencgc_oldest_gen_to_gc)
3968 && ((gen < last_gen)
3969 || ((gen <= gencgc_oldest_gen_to_gc)
3971 && (generations[gen].bytes_allocated
3972 > generations[gen].gc_trigger)
3973 && (gen_av_mem_age(gen)
3974 > generations[gen].min_av_mem_age))));
3976 /* Now if gen-1 was raised all generations before gen are empty.
3977 * If it wasn't raised then all generations before gen-1 are empty.
3979 * Now objects within this gen's pages cannot point to younger
3980 * generations unless they are written to. This can be exploited
3981 * by write-protecting the pages of gen; then when younger
3982 * generations are GCed only the pages which have been written
3987 gen_to_wp = gen - 1;
3989 /* There's not much point in WPing pages in generation 0 as it is
3990 * never scavenged (except promoted pages). */
3991 if ((gen_to_wp > 0) && enable_page_protection) {
3992 /* Check that they are all empty. */
3993 for (i = 0; i < gen_to_wp; i++) {
3994 if (generations[i].bytes_allocated)
3995 lose("trying to write-protect gen. %d when gen. %d nonempty",
3998 write_protect_generation_pages(gen_to_wp);
4001 /* Set gc_alloc() back to generation 0. The current regions should
4002 * be flushed after the above GCs. */
4003 gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4004 gc_alloc_generation = 0;
4006 update_x86_dynamic_space_free_pointer();
4008 /* This is now done by Lisp SCRUB-CONTROL-STACK in Lisp SUB-GC, so
4009 * we needn't do it here: */
4012 current_region_free_pointer = boxed_region.free_pointer;
4013 current_region_end_addr = boxed_region.end_addr;
4015 SHOW("returning from collect_garbage");
4018 /* This is called by Lisp PURIFY when it is finished. All live objects
4019 * will have been moved to the RO and Static heaps. The dynamic space
4020 * will need a full re-initialization. We don't bother having Lisp
4021 * PURIFY flush the current gc_alloc() region, as the page_tables are
4022 * re-initialized, and every page is zeroed to be sure. */
4028 if (gencgc_verbose > 1)
4029 SHOW("entering gc_free_heap");
4031 for (page = 0; page < NUM_PAGES; page++) {
4032 /* Skip free pages which should already be zero filled. */
4033 if (page_table[page].allocated != FREE_PAGE) {
4034 void *page_start, *addr;
4036 /* Mark the page free. The other slots are assumed invalid
4037 * when it is a FREE_PAGE and bytes_used is 0 and it
4038 * should not be write-protected -- except that the
4039 * generation is used for the current region but it sets
4041 page_table[page].allocated = FREE_PAGE;
4042 page_table[page].bytes_used = 0;
4044 /* Zero the page. */
4045 page_start = (void *)page_address(page);
4047 /* First, remove any write-protection. */
4048 os_protect(page_start, 4096, OS_VM_PROT_ALL);
4049 page_table[page].write_protected = 0;
4051 os_invalidate(page_start,4096);
4052 addr = os_validate(page_start,4096);
4053 if (addr == NULL || addr != page_start) {
4054 lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x",
4058 } else if (gencgc_zero_check_during_free_heap) {
4059 /* Double-check that the page is zero filled. */
4061 gc_assert(page_table[page].allocated == FREE_PAGE);
4062 gc_assert(page_table[page].bytes_used == 0);
4063 page_start = (int *)page_address(page);
4064 for (i=0; i<1024; i++) {
4065 if (page_start[i] != 0) {
4066 lose("free region not zero at %x", page_start + i);
4072 bytes_allocated = 0;
4074 /* Initialize the generations. */
4075 for (page = 0; page < NUM_GENERATIONS; page++) {
4076 generations[page].alloc_start_page = 0;
4077 generations[page].alloc_unboxed_start_page = 0;
4078 generations[page].alloc_large_start_page = 0;
4079 generations[page].alloc_large_unboxed_start_page = 0;
4080 generations[page].bytes_allocated = 0;
4081 generations[page].gc_trigger = 2000000;
4082 generations[page].num_gc = 0;
4083 generations[page].cum_sum_bytes_allocated = 0;
4086 if (gencgc_verbose > 1)
4087 print_generation_stats(0);
4089 /* Initialize gc_alloc(). */
4090 gc_alloc_generation = 0;
4091 boxed_region.first_page = 0;
4092 boxed_region.last_page = -1;
4093 boxed_region.start_addr = page_address(0);
4094 boxed_region.free_pointer = page_address(0);
4095 boxed_region.end_addr = page_address(0);
4096 unboxed_region.first_page = 0;
4097 unboxed_region.last_page = -1;
4098 unboxed_region.start_addr = page_address(0);
4099 unboxed_region.free_pointer = page_address(0);
4100 unboxed_region.end_addr = page_address(0);
4102 #if 0 /* Lisp PURIFY is currently running on the C stack so don't do this. */
4107 SetSymbolValue(ALLOCATION_POINTER, (lispobj)((char *)heap_base));
4109 current_region_free_pointer = boxed_region.free_pointer;
4110 current_region_end_addr = boxed_region.end_addr;
4112 if (verify_after_free_heap) {
4113 /* Check whether purify has left any bad pointers. */
4115 SHOW("checking after free_heap\n");
4126 scavtab[SIMPLE_VECTOR_WIDETAG] = scav_vector;
4127 scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4128 transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4130 heap_base = (void*)DYNAMIC_SPACE_START;
4132 /* Initialize each page structure. */
4133 for (i = 0; i < NUM_PAGES; i++) {
4134 /* Initialize all pages as free. */
4135 page_table[i].allocated = FREE_PAGE;
4136 page_table[i].bytes_used = 0;
4138 /* Pages are not write-protected at startup. */
4139 page_table[i].write_protected = 0;
4142 bytes_allocated = 0;
4144 /* Initialize the generations.
4146 * FIXME: very similar to code in gc_free_heap(), should be shared */
4147 for (i = 0; i < NUM_GENERATIONS; i++) {
4148 generations[i].alloc_start_page = 0;
4149 generations[i].alloc_unboxed_start_page = 0;
4150 generations[i].alloc_large_start_page = 0;
4151 generations[i].alloc_large_unboxed_start_page = 0;
4152 generations[i].bytes_allocated = 0;
4153 generations[i].gc_trigger = 2000000;
4154 generations[i].num_gc = 0;
4155 generations[i].cum_sum_bytes_allocated = 0;
4156 /* the tune-able parameters */
4157 generations[i].bytes_consed_between_gc = 2000000;
4158 generations[i].trigger_age = 1;
4159 generations[i].min_av_mem_age = 0.75;
4162 /* Initialize gc_alloc.
4164 * FIXME: identical with code in gc_free_heap(), should be shared */
4165 gc_alloc_generation = 0;
4166 boxed_region.first_page = 0;
4167 boxed_region.last_page = -1;
4168 boxed_region.start_addr = page_address(0);
4169 boxed_region.free_pointer = page_address(0);
4170 boxed_region.end_addr = page_address(0);
4171 unboxed_region.first_page = 0;
4172 unboxed_region.last_page = -1;
4173 unboxed_region.start_addr = page_address(0);
4174 unboxed_region.free_pointer = page_address(0);
4175 unboxed_region.end_addr = page_address(0);
4179 current_region_free_pointer = boxed_region.free_pointer;
4180 current_region_end_addr = boxed_region.end_addr;
4183 /* Pick up the dynamic space from after a core load.
4185 * The ALLOCATION_POINTER points to the end of the dynamic space.
4187 * XX A scan is needed to identify the closest first objects for pages. */
4189 gencgc_pickup_dynamic(void)
4192 int addr = DYNAMIC_SPACE_START;
4193 int alloc_ptr = SymbolValue(ALLOCATION_POINTER);
4195 /* Initialize the first region. */
4197 page_table[page].allocated = BOXED_PAGE;
4198 page_table[page].gen = 0;
4199 page_table[page].bytes_used = 4096;
4200 page_table[page].large_object = 0;
4201 page_table[page].first_object_offset =
4202 (void *)DYNAMIC_SPACE_START - page_address(page);
4205 } while (addr < alloc_ptr);
4207 generations[0].bytes_allocated = 4096*page;
4208 bytes_allocated = 4096*page;
4210 current_region_free_pointer = boxed_region.free_pointer;
4211 current_region_end_addr = boxed_region.end_addr;
4215 gc_initialize_pointers(void)
4217 gencgc_pickup_dynamic();
4222 /* a counter for how deep we are in alloc(..) calls */
4223 int alloc_entered = 0;
4225 /* alloc(..) is the external interface for memory allocation. It
4226 * allocates to generation 0. It is not called from within the garbage
4227 * collector as it is only external uses that need the check for heap
4228 * size (GC trigger) and to disable the interrupts (interrupts are
4229 * always disabled during a GC).
4231 * The vops that call alloc(..) assume that the returned space is zero-filled.
4232 * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4234 * The check for a GC trigger is only performed when the current
4235 * region is full, so in most cases it's not needed. Further MAYBE-GC
4236 * is only called once because Lisp will remember "need to collect
4237 * garbage" and get around to it when it can. */
4241 /* Check for alignment allocation problems. */
4242 gc_assert((((unsigned)current_region_free_pointer & 0x7) == 0)
4243 && ((nbytes & 0x7) == 0));
4245 if (SymbolValue(PSEUDO_ATOMIC_ATOMIC)) {/* if already in a pseudo atomic */
4247 void *new_free_pointer;
4250 if (alloc_entered) {
4251 SHOW("alloc re-entered in already-pseudo-atomic case");
4255 /* Check whether there is room in the current region. */
4256 new_free_pointer = current_region_free_pointer + nbytes;
4258 /* FIXME: Shouldn't we be doing some sort of lock here, to
4259 * keep from getting screwed if an interrupt service routine
4260 * allocates memory between the time we calculate new_free_pointer
4261 * and the time we write it back to current_region_free_pointer?
4262 * Perhaps I just don't understand pseudo-atomics..
4264 * Perhaps I don't. It looks as though what happens is if we
4265 * were interrupted any time during the pseudo-atomic
4266 * interval (which includes now) we discard the allocated
4267 * memory and try again. So, at least we don't return
4268 * a memory area that was allocated out from underneath us
4269 * by code in an ISR.
4270 * Still, that doesn't seem to prevent
4271 * current_region_free_pointer from getting corrupted:
4272 * We read current_region_free_pointer.
4273 * They read current_region_free_pointer.
4274 * They write current_region_free_pointer.
4275 * We write current_region_free_pointer, scribbling over
4276 * whatever they wrote. */
4278 if (new_free_pointer <= boxed_region.end_addr) {
4279 /* If so then allocate from the current region. */
4280 void *new_obj = current_region_free_pointer;
4281 current_region_free_pointer = new_free_pointer;
4283 return((void *)new_obj);
4286 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4287 /* Double the trigger. */
4288 auto_gc_trigger *= 2;
4290 /* Exit the pseudo-atomic. */
4291 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
4292 if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
4293 /* Handle any interrupts that occurred during
4295 do_pending_interrupt();
4297 funcall0(SymbolFunction(MAYBE_GC));
4298 /* Re-enter the pseudo-atomic. */
4299 SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
4300 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
4303 /* Call gc_alloc(). */
4304 boxed_region.free_pointer = current_region_free_pointer;
4306 void *new_obj = gc_alloc(nbytes,0);
4307 current_region_free_pointer = boxed_region.free_pointer;
4308 current_region_end_addr = boxed_region.end_addr;
4314 void *new_free_pointer;
4317 /* At least wrap this allocation in a pseudo atomic to prevent
4318 * gc_alloc() from being re-entered. */
4319 SetSymbolValue(PSEUDO_ATOMIC_INTERRUPTED, make_fixnum(0));
4320 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(1));
4323 SHOW("alloc re-entered in not-already-pseudo-atomic case");
4326 /* Check whether there is room in the current region. */
4327 new_free_pointer = current_region_free_pointer + nbytes;
4329 if (new_free_pointer <= boxed_region.end_addr) {
4330 /* If so then allocate from the current region. */
4331 void *new_obj = current_region_free_pointer;
4332 current_region_free_pointer = new_free_pointer;
4334 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
4335 if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED)) {
4336 /* Handle any interrupts that occurred during
4338 do_pending_interrupt();
4342 return((void *)new_obj);
4345 /* KLUDGE: There's lots of code around here shared with the
4346 * the other branch. Is there some way to factor out the
4347 * duplicate code? -- WHN 19991129 */
4348 if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
4349 /* Double the trigger. */
4350 auto_gc_trigger *= 2;
4352 /* Exit the pseudo atomic. */
4353 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
4354 if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
4355 /* Handle any interrupts that occurred during
4357 do_pending_interrupt();
4359 funcall0(SymbolFunction(MAYBE_GC));
4363 /* Else call gc_alloc(). */
4364 boxed_region.free_pointer = current_region_free_pointer;
4365 result = gc_alloc(nbytes,0);
4366 current_region_free_pointer = boxed_region.free_pointer;
4367 current_region_end_addr = boxed_region.end_addr;
4370 SetSymbolValue(PSEUDO_ATOMIC_ATOMIC, make_fixnum(0));
4371 if (SymbolValue(PSEUDO_ATOMIC_INTERRUPTED) != 0) {
4372 /* Handle any interrupts that occurred during gc_alloc(..). */
4373 do_pending_interrupt();
4382 * noise to manipulate the gc trigger stuff
4386 set_auto_gc_trigger(os_vm_size_t dynamic_usage)
4388 auto_gc_trigger += dynamic_usage;
4392 clear_auto_gc_trigger(void)
4394 auto_gc_trigger = 0;
4397 /* Find the code object for the given pc, or return NULL on failure.
4399 * FIXME: PC shouldn't be lispobj*, should it? Maybe void*? */
4401 component_ptr_from_pc(lispobj *pc)
4403 lispobj *object = NULL;
4405 if ( (object = search_read_only_space(pc)) )
4407 else if ( (object = search_static_space(pc)) )
4410 object = search_dynamic_space(pc);
4412 if (object) /* if we found something */
4413 if (widetag_of(*object) == CODE_HEADER_WIDETAG) /* if it's a code object */
4420 * shared support for the OS-dependent signal handlers which
4421 * catch GENCGC-related write-protect violations
4424 void unhandled_sigmemoryfault(void);
4426 /* Depending on which OS we're running under, different signals might
4427 * be raised for a violation of write protection in the heap. This
4428 * function factors out the common generational GC magic which needs
4429 * to invoked in this case, and should be called from whatever signal
4430 * handler is appropriate for the OS we're running under.
4432 * Return true if this signal is a normal generational GC thing that
4433 * we were able to handle, or false if it was abnormal and control
4434 * should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
4437 gencgc_handle_wp_violation(void* fault_addr)
4439 int page_index = find_page_index(fault_addr);
4441 #if defined QSHOW_SIGNALS
4442 FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
4443 fault_addr, page_index));
4446 /* Check whether the fault is within the dynamic space. */
4447 if (page_index == (-1)) {
4449 /* It can be helpful to be able to put a breakpoint on this
4450 * case to help diagnose low-level problems. */
4451 unhandled_sigmemoryfault();
4453 /* not within the dynamic space -- not our responsibility */
4458 /* The only acceptable reason for an signal like this from the
4459 * heap is that the generational GC write-protected the page. */
4460 if (page_table[page_index].write_protected != 1) {
4461 lose("access failure in heap page not marked as write-protected");
4464 /* Unprotect the page. */
4465 os_protect(page_address(page_index), 4096, OS_VM_PROT_ALL);
4466 page_table[page_index].write_protected = 0;
4467 page_table[page_index].write_protected_cleared = 1;
4469 /* Don't worry, we can handle it. */
4474 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4475 * it's not just a case of the program hitting the write barrier, and
4476 * are about to let Lisp deal with it. It's basically just a
4477 * convenient place to set a gdb breakpoint. */
4479 unhandled_sigmemoryfault()