2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
58 #include "interrupt.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
70 static void run_deferred_handler(struct interrupt_data *data, void *v_context);
71 #ifndef LISP_FEATURE_WIN32
72 static void store_signal_data_for_later (struct interrupt_data *data,
73 void *handler, int signal,
75 os_context_t *context);
78 sigaddset_deferrable(sigset_t *s)
82 sigaddset(s, SIGQUIT);
83 sigaddset(s, SIGPIPE);
84 sigaddset(s, SIGALRM);
86 sigaddset(s, SIGTSTP);
87 sigaddset(s, SIGCHLD);
89 sigaddset(s, SIGXCPU);
90 sigaddset(s, SIGXFSZ);
91 sigaddset(s, SIGVTALRM);
92 sigaddset(s, SIGPROF);
93 sigaddset(s, SIGWINCH);
95 #if !((defined(LISP_FEATURE_DARWIN) || defined(LISP_FEATURE_FREEBSD)) && defined(LISP_FEATURE_SB_THREAD))
96 sigaddset(s, SIGUSR1);
97 sigaddset(s, SIGUSR2);
100 #ifdef LISP_FEATURE_SB_THREAD
101 sigaddset(s, SIG_INTERRUPT_THREAD);
106 sigaddset_blockable(sigset_t *s)
108 sigaddset_deferrable(s);
109 #ifdef LISP_FEATURE_SB_THREAD
110 #ifdef SIG_RESUME_FROM_GC
111 sigaddset(s, SIG_RESUME_FROM_GC);
113 sigaddset(s, SIG_STOP_FOR_GC);
117 /* initialized in interrupt_init */
118 static sigset_t deferrable_sigset;
119 static sigset_t blockable_sigset;
123 check_blockables_blocked_or_lose(void)
125 #if !defined(LISP_FEATURE_WIN32)
126 /* Get the current sigmask, by blocking the empty set. */
127 sigset_t empty,current;
130 thread_sigmask(SIG_BLOCK, &empty, ¤t);
131 for(i = 1; i < NSIG; i++) {
132 if (sigismember(&blockable_sigset, i) && !sigismember(¤t, i))
133 lose("blockable signal %d not blocked\n",i);
139 unblock_gc_signals(void)
141 #ifdef LISP_FEATURE_SB_THREAD
144 #if defined(SIG_RESUME_FROM_GC)
145 sigaddset(&new,SIG_RESUME_FROM_GC);
147 sigaddset(&new,SIG_STOP_FOR_GC);
148 thread_sigmask(SIG_UNBLOCK,&new,0);
153 check_interrupts_enabled_or_lose(os_context_t *context)
155 struct thread *thread=arch_os_get_current_thread();
156 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
157 lose("interrupts not enabled\n");
159 #ifdef FOREIGN_FUNCTION_CALL_FLAG
160 (!foreign_function_call_active) &&
162 arch_pseudo_atomic_atomic(context))
163 lose ("in pseudo atomic section\n");
166 /* When we catch an internal error, should we pass it back to Lisp to
167 * be handled in a high-level way? (Early in cold init, the answer is
168 * 'no', because Lisp is still too brain-dead to handle anything.
169 * After sufficient initialization has been completed, the answer
171 boolean internal_errors_enabled = 0;
173 #ifndef LISP_FEATURE_WIN32
174 static void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, void*);
176 union interrupt_handler interrupt_handlers[NSIG];
178 /* At the toplevel repl we routinely call this function. The signal
179 * mask ought to be clear anyway most of the time, but may be non-zero
180 * if we were interrupted e.g. while waiting for a queue. */
183 reset_signal_mask(void)
185 #ifndef LISP_FEATURE_WIN32
188 thread_sigmask(SIG_SETMASK,&new,0);
193 block_blockable_signals(void)
195 #ifndef LISP_FEATURE_WIN32
196 thread_sigmask(SIG_BLOCK, &blockable_sigset, 0);
201 block_deferrable_signals(void)
203 #ifndef LISP_FEATURE_WIN32
204 thread_sigmask(SIG_BLOCK, &deferrable_sigset, 0);
210 * utility routines used by various signal handlers
214 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
216 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
220 /* Build a fake stack frame or frames */
222 current_control_frame_pointer =
223 (lispobj *)(unsigned long)
224 (*os_context_register_addr(context, reg_CSP));
225 if ((lispobj *)(unsigned long)
226 (*os_context_register_addr(context, reg_CFP))
227 == current_control_frame_pointer) {
228 /* There is a small window during call where the callee's
229 * frame isn't built yet. */
230 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
231 == FUN_POINTER_LOWTAG) {
232 /* We have called, but not built the new frame, so
233 * build it for them. */
234 current_control_frame_pointer[0] =
235 *os_context_register_addr(context, reg_OCFP);
236 current_control_frame_pointer[1] =
237 *os_context_register_addr(context, reg_LRA);
238 current_control_frame_pointer += 8;
239 /* Build our frame on top of it. */
240 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
243 /* We haven't yet called, build our frame as if the
244 * partial frame wasn't there. */
245 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
248 /* We can't tell whether we are still in the caller if it had to
249 * allocate a stack frame due to stack arguments. */
250 /* This observation provoked some past CMUCL maintainer to ask
251 * "Can anything strange happen during return?" */
254 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
257 current_control_stack_pointer = current_control_frame_pointer + 8;
259 current_control_frame_pointer[0] = oldcont;
260 current_control_frame_pointer[1] = NIL;
261 current_control_frame_pointer[2] =
262 (lispobj)(*os_context_register_addr(context, reg_CODE));
266 /* Stores the context for gc to scavange and builds fake stack
269 fake_foreign_function_call(os_context_t *context)
272 struct thread *thread=arch_os_get_current_thread();
274 /* context_index incrementing must not be interrupted */
275 check_blockables_blocked_or_lose();
277 /* Get current Lisp state from context. */
279 dynamic_space_free_pointer =
280 (lispobj *)(unsigned long)
281 (*os_context_register_addr(context, reg_ALLOC));
282 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", dynamic_space_free_pointer); */
283 #if defined(LISP_FEATURE_ALPHA)
284 if ((long)dynamic_space_free_pointer & 1) {
285 lose("dead in fake_foreign_function_call, context = %x\n", context);
290 current_binding_stack_pointer =
291 (lispobj *)(unsigned long)
292 (*os_context_register_addr(context, reg_BSP));
295 build_fake_control_stack_frames(thread,context);
297 /* Do dynamic binding of the active interrupt context index
298 * and save the context in the context array. */
300 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
302 if (context_index >= MAX_INTERRUPTS) {
303 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS);
306 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
307 make_fixnum(context_index + 1),thread);
309 thread->interrupt_contexts[context_index] = context;
311 #ifdef FOREIGN_FUNCTION_CALL_FLAG
312 foreign_function_call_active = 1;
316 /* blocks all blockable signals. If you are calling from a signal handler,
317 * the usual signal mask will be restored from the context when the handler
318 * finishes. Otherwise, be careful */
320 undo_fake_foreign_function_call(os_context_t *context)
322 struct thread *thread=arch_os_get_current_thread();
323 /* Block all blockable signals. */
324 block_blockable_signals();
326 #ifdef FOREIGN_FUNCTION_CALL_FLAG
327 foreign_function_call_active = 0;
330 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
334 /* Put the dynamic space free pointer back into the context. */
335 *os_context_register_addr(context, reg_ALLOC) =
336 (unsigned long) dynamic_space_free_pointer
337 | (*os_context_register_addr(context, reg_ALLOC)
340 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC)) & ~LOWTAG_MASK)
341 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
346 /* a handler for the signal caused by execution of a trap opcode
347 * signalling an internal error */
349 interrupt_internal_error(os_context_t *context, boolean continuable)
353 fake_foreign_function_call(context);
355 if (!internal_errors_enabled) {
356 describe_internal_error(context);
357 /* There's no good way to recover from an internal error
358 * before the Lisp error handling mechanism is set up. */
359 lose("internal error too early in init, can't recover\n");
362 /* Allocate the SAP object while the interrupts are still
364 context_sap = alloc_sap(context);
366 #ifndef LISP_FEATURE_WIN32
367 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
370 SHOW("in interrupt_internal_error");
372 /* Display some rudimentary debugging information about the
373 * error, so that even if the Lisp error handler gets badly
374 * confused, we have a chance to determine what's going on. */
375 describe_internal_error(context);
377 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
378 continuable ? T : NIL);
380 undo_fake_foreign_function_call(context); /* blocks signals again */
382 arch_skip_instruction(context);
386 interrupt_handle_pending(os_context_t *context)
388 /* There are three ways we can get here. First, if an interrupt
389 * occurs within pseudo-atomic, it will be deferred, and we'll
390 * trap to here at the end of the pseudo-atomic block. Second, if
391 * the GC (in alloc()) decides that a GC is required, it will set
392 * *GC-PENDING* and pseudo-atomic-interrupted, and alloc() is
393 * always called from within pseudo-atomic, and thus we end up
394 * here again. Third, when calling GC-ON or at the end of a
395 * WITHOUT-GCING, MAYBE-HANDLE-PENDING-GC will trap to here if
396 * there is a pending GC. */
398 /* Win32 only needs to handle the GC cases (for now?) */
400 struct thread *thread = arch_os_get_current_thread();
402 FSHOW_SIGNAL((stderr, "/entering interrupt_handle_pending\n"));
404 check_blockables_blocked_or_lose();
406 /* If pseudo_atomic_interrupted is set then the interrupt is going
407 * to be handled now, ergo it's safe to clear it. */
408 arch_clear_pseudo_atomic_interrupted(context);
410 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
411 #ifdef LISP_FEATURE_SB_THREAD
412 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
413 /* another thread has already initiated a gc, this attempt
414 * might as well be cancelled */
415 SetSymbolValue(GC_PENDING,NIL,thread);
416 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
417 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
420 if (SymbolValue(GC_PENDING,thread) != NIL) {
421 /* GC_PENDING is cleared in SUB-GC, or if another thread
422 * is doing a gc already we will get a SIG_STOP_FOR_GC and
423 * that will clear it. */
426 check_blockables_blocked_or_lose();
429 #ifndef LISP_FEATURE_WIN32
430 /* we may be here only to do the gc stuff, if interrupts are
431 * enabled run the pending handler */
432 if (!((SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) ||
434 #ifdef FOREIGN_FUNCTION_CALL_FLAG
435 (!foreign_function_call_active) &&
437 arch_pseudo_atomic_atomic(context)))) {
438 struct interrupt_data *data = thread->interrupt_data;
440 /* There may be no pending handler, because it was only a gc
441 * that had to be executed or because pseudo atomic triggered
442 * twice for a single interrupt. For the interested reader,
443 * that may happen if an interrupt hits after the interrupted
444 * flag is cleared but before pseduo-atomic is set and a
445 * pseudo atomic is interrupted in that interrupt. */
446 if (data->pending_handler) {
448 /* If we're here as the result of a pseudo-atomic as opposed
449 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
450 * NIL, because maybe_defer_handler sets
451 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
452 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
454 /* restore the saved signal mask from the original signal (the
455 * one that interrupted us during the critical section) into the
456 * os_context for the signal we're currently in the handler for.
457 * This should ensure that when we return from the handler the
458 * blocked signals are unblocked */
459 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
461 sigemptyset(&data->pending_mask);
462 /* This will break on sparc linux: the deferred handler really wants
463 * to be called with a void_context */
464 run_deferred_handler(data,(void *)context);
471 * the two main signal handlers:
472 * interrupt_handle_now(..)
473 * maybe_now_maybe_later(..)
475 * to which we have added interrupt_handle_now_handler(..). Why?
476 * Well, mostly because the SPARC/Linux platform doesn't quite do
477 * signals the way we want them done. The third argument in the
478 * handler isn't filled in by the kernel properly, so we fix it up
479 * ourselves in the arch_os_get_context(..) function; however, we only
480 * want to do this when we first hit the handler, and not when
481 * interrupt_handle_now(..) is being called from some other handler
482 * (when the fixup will already have been done). -- CSR, 2002-07-23
486 interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
488 #ifdef FOREIGN_FUNCTION_CALL_FLAG
489 boolean were_in_lisp;
491 union interrupt_handler handler;
493 check_blockables_blocked_or_lose();
495 #ifndef LISP_FEATURE_WIN32
496 if (sigismember(&deferrable_sigset,signal))
497 check_interrupts_enabled_or_lose(context);
500 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
501 /* Under Linux on some architectures, we appear to have to restore
502 the FPU control word from the context, as after the signal is
503 delivered we appear to have a null FPU control word. */
504 os_restore_fp_control(context);
507 handler = interrupt_handlers[signal];
509 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
513 #ifdef FOREIGN_FUNCTION_CALL_FLAG
514 were_in_lisp = !foreign_function_call_active;
518 fake_foreign_function_call(context);
521 FSHOW_SIGNAL((stderr,
522 "/entering interrupt_handle_now(%d, info, context)\n",
525 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
527 /* This can happen if someone tries to ignore or default one
528 * of the signals we need for runtime support, and the runtime
529 * support decides to pass on it. */
530 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal);
532 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
533 /* Once we've decided what to do about contexts in a
534 * return-elsewhere world (the original context will no longer
535 * be available; should we copy it or was nobody using it anyway?)
536 * then we should convert this to return-elsewhere */
538 /* CMUCL comment said "Allocate the SAPs while the interrupts
539 * are still disabled.". I (dan, 2003.08.21) assume this is
540 * because we're not in pseudoatomic and allocation shouldn't
541 * be interrupted. In which case it's no longer an issue as
542 * all our allocation from C now goes through a PA wrapper,
543 * but still, doesn't hurt.
545 * Yeah, but non-gencgc platforms don't really wrap allocation
546 * in PA. MG - 2005-08-29 */
548 lispobj info_sap,context_sap = alloc_sap(context);
549 info_sap = alloc_sap(info);
550 /* Leave deferrable signals blocked, the handler itself will
551 * allow signals again when it sees fit. */
552 #ifdef LISP_FEATURE_SB_THREAD
555 sigemptyset(&unblock);
556 sigaddset(&unblock, SIG_STOP_FOR_GC);
557 #ifdef SIG_RESUME_FROM_GC
558 sigaddset(&unblock, SIG_RESUME_FROM_GC);
560 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
564 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
566 funcall3(handler.lisp,
572 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
574 #ifndef LISP_FEATURE_WIN32
575 /* Allow signals again. */
576 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
578 (*handler.c)(signal, info, context);
581 #ifdef FOREIGN_FUNCTION_CALL_FLAG
585 undo_fake_foreign_function_call(context); /* block signals again */
588 FSHOW_SIGNAL((stderr,
589 "/returning from interrupt_handle_now(%d, info, context)\n",
593 /* This is called at the end of a critical section if the indications
594 * are that some signal was deferred during the section. Note that as
595 * far as C or the kernel is concerned we dealt with the signal
596 * already; we're just doing the Lisp-level processing now that we
599 run_deferred_handler(struct interrupt_data *data, void *v_context) {
600 /* The pending_handler may enable interrupts and then another
601 * interrupt may hit, overwrite interrupt_data, so reset the
602 * pending handler before calling it. Trust the handler to finish
603 * with the siginfo before enabling interrupts. */
604 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
606 data->pending_handler=0;
607 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
610 #ifndef LISP_FEATURE_WIN32
612 maybe_defer_handler(void *handler, struct interrupt_data *data,
613 int signal, siginfo_t *info, os_context_t *context)
615 struct thread *thread=arch_os_get_current_thread();
617 check_blockables_blocked_or_lose();
619 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
620 lose("interrupt already pending\n");
621 /* If interrupts are disabled then INTERRUPT_PENDING is set and
622 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
623 * atomic section inside a WITHOUT-INTERRUPTS.
625 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
626 store_signal_data_for_later(data,handler,signal,info,context);
627 SetSymbolValue(INTERRUPT_PENDING, T,thread);
628 FSHOW_SIGNAL((stderr,
629 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
630 (unsigned int)handler,signal,
631 (unsigned long)thread->os_thread));
634 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
635 * actually use its argument for anything on x86, so this branch
636 * may succeed even when context is null (gencgc alloc()) */
638 #ifdef FOREIGN_FUNCTION_CALL_FLAG
639 /* FIXME: this foreign_function_call_active test is dubious at
640 * best. If a foreign call is made in a pseudo atomic section
641 * (?) or more likely a pseudo atomic section is in a foreign
642 * call then an interrupt is executed immediately. Maybe it
643 * has to do with C code not maintaining pseudo atomic
644 * properly. MG - 2005-08-10 */
645 (!foreign_function_call_active) &&
647 arch_pseudo_atomic_atomic(context)) {
648 store_signal_data_for_later(data,handler,signal,info,context);
649 arch_set_pseudo_atomic_interrupted(context);
650 FSHOW_SIGNAL((stderr,
651 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
652 (unsigned int)handler,signal,
653 (unsigned long)thread->os_thread));
656 FSHOW_SIGNAL((stderr,
657 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
658 (unsigned int)handler,signal,
659 (unsigned long)thread->os_thread));
664 store_signal_data_for_later (struct interrupt_data *data, void *handler,
666 siginfo_t *info, os_context_t *context)
668 if (data->pending_handler)
669 lose("tried to overwrite pending interrupt handler %x with %x\n",
670 data->pending_handler, handler);
672 lose("tried to defer null interrupt handler\n");
673 data->pending_handler = handler;
674 data->pending_signal = signal;
676 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
678 FSHOW_SIGNAL((stderr, "/store_signal_data_for_later: signal: %d\n", signal));
681 /* the signal mask in the context (from before we were
682 * interrupted) is copied to be restored when
683 * run_deferred_handler happens. Then the usually-blocked
684 * signals are added to the mask in the context so that we are
685 * running with blocked signals when the handler returns */
686 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
687 sigaddset_deferrable(os_context_sigmask_addr(context));
692 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
694 os_context_t *context = arch_os_get_context(&void_context);
695 struct thread *thread = arch_os_get_current_thread();
696 struct interrupt_data *data = thread->interrupt_data;
698 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
699 os_restore_fp_control(context);
702 if(!maybe_defer_handler(interrupt_handle_now,data,signal,info,context))
703 interrupt_handle_now(signal, info, context);
705 #ifdef LISP_FEATURE_DARWIN
706 DARWIN_FIX_CONTEXT(context);
711 low_level_interrupt_handle_now(int signal, siginfo_t *info, os_context_t *context)
713 /* No FP control fixage needed, caller has done that. */
714 check_blockables_blocked_or_lose();
715 check_interrupts_enabled_or_lose(context);
716 interrupt_low_level_handlers[signal](signal, info, context);
717 /* No Darwin context fixage needed, caller does that. */
721 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
723 os_context_t *context = arch_os_get_context(&void_context);
724 struct thread *thread = arch_os_get_current_thread();
725 struct interrupt_data *data = thread->interrupt_data;
727 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
728 os_restore_fp_control(context);
731 if(!maybe_defer_handler(low_level_interrupt_handle_now,data,
732 signal,info,context))
733 low_level_interrupt_handle_now(signal, info, context);
735 #ifdef LISP_FEATURE_DARWIN
736 DARWIN_FIX_CONTEXT(context);
741 #ifdef LISP_FEATURE_SB_THREAD
744 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
746 os_context_t *context = arch_os_get_context(&void_context);
748 struct thread *thread=arch_os_get_current_thread();
751 if ((arch_pseudo_atomic_atomic(context) ||
752 SymbolValue(GC_INHIBIT,thread) != NIL)) {
753 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
754 if (SymbolValue(GC_INHIBIT,thread) == NIL)
755 arch_set_pseudo_atomic_interrupted(context);
756 FSHOW_SIGNAL((stderr,"thread=%lu sig_stop_for_gc deferred\n",
759 /* need the context stored so it can have registers scavenged */
760 fake_foreign_function_call(context);
762 sigfillset(&ss); /* Block everything. */
763 thread_sigmask(SIG_BLOCK,&ss,0);
765 if(thread->state!=STATE_RUNNING) {
766 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
767 fixnum_value(thread->state));
769 thread->state=STATE_SUSPENDED;
770 FSHOW_SIGNAL((stderr,"thread=%lu suspended\n",thread->os_thread));
772 #if defined(SIG_RESUME_FROM_GC)
773 sigemptyset(&ss); sigaddset(&ss,SIG_RESUME_FROM_GC);
775 sigemptyset(&ss); sigaddset(&ss,SIG_STOP_FOR_GC);
778 /* It is possible to get SIGCONT (and probably other
779 * non-blockable signals) here. */
780 #ifdef SIG_RESUME_FROM_GC
783 do { sigwait(&ss, &sigret); }
784 while (sigret != SIG_RESUME_FROM_GC);
787 while (sigwaitinfo(&ss,0) != SIG_STOP_FOR_GC);
790 FSHOW_SIGNAL((stderr,"thread=%lu resumed\n",thread->os_thread));
791 if(thread->state!=STATE_RUNNING) {
792 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
793 fixnum_value(thread->state));
796 undo_fake_foreign_function_call(context);
802 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
804 os_context_t *context = arch_os_get_context(&void_context);
805 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
806 os_restore_fp_control(context);
808 interrupt_handle_now(signal, info, context);
809 #ifdef LISP_FEATURE_DARWIN
810 DARWIN_FIX_CONTEXT(context);
814 /* manipulate the signal context and stack such that when the handler
815 * returns, it will call function instead of whatever it was doing
819 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
820 extern int *context_eflags_addr(os_context_t *context);
823 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
824 extern void post_signal_tramp(void);
825 extern void call_into_lisp_tramp(void);
827 arrange_return_to_lisp_function(os_context_t *context, lispobj function)
829 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
830 void * fun=native_pointer(function);
831 void *code = &(((struct simple_fun *) fun)->code);
834 /* Build a stack frame showing `interrupted' so that the
835 * user's backtrace makes (as much) sense (as usual) */
837 /* FIXME: what about restoring fp state? */
838 /* FIXME: what about restoring errno? */
839 #ifdef LISP_FEATURE_X86
840 /* Suppose the existence of some function that saved all
841 * registers, called call_into_lisp, then restored GP registers and
842 * returned. It would look something like this:
850 pushl {address of function to call}
851 call 0x8058db0 <call_into_lisp>
858 * What we do here is set up the stack that call_into_lisp would
859 * expect to see if it had been called by this code, and frob the
860 * signal context so that signal return goes directly to call_into_lisp,
861 * and when that function (and the lisp function it invoked) returns,
862 * it returns to the second half of this imaginary function which
863 * restores all registers and returns to C
865 * For this to work, the latter part of the imaginary function
866 * must obviously exist in reality. That would be post_signal_tramp
869 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
871 #if defined(LISP_FEATURE_DARWIN)
872 u32 *register_save_area = (u32 *)os_validate(0, 0x40);
874 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function, sp));
875 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context, &context));
877 /* 1. os_validate (malloc/mmap) register_save_block
878 * 2. copy register state into register_save_block
879 * 3. put a pointer to register_save_block in a register in the context
880 * 4. set the context's EIP to point to a trampoline which:
881 * a. builds the fake stack frame from the block
883 * c. calls the function
886 *register_save_area = *os_context_pc_addr(context);
887 *(register_save_area + 1) = function;
888 *(register_save_area + 2) = *os_context_register_addr(context,reg_EDI);
889 *(register_save_area + 3) = *os_context_register_addr(context,reg_ESI);
890 *(register_save_area + 4) = *os_context_register_addr(context,reg_EDX);
891 *(register_save_area + 5) = *os_context_register_addr(context,reg_ECX);
892 *(register_save_area + 6) = *os_context_register_addr(context,reg_EBX);
893 *(register_save_area + 7) = *os_context_register_addr(context,reg_EAX);
894 *(register_save_area + 8) = *context_eflags_addr(context);
896 *os_context_pc_addr(context) = call_into_lisp_tramp;
897 *os_context_register_addr(context,reg_ECX) = register_save_area;
900 /* return address for call_into_lisp: */
901 *(sp-15) = (u32)post_signal_tramp;
902 *(sp-14) = function; /* args for call_into_lisp : function*/
903 *(sp-13) = 0; /* arg array */
904 *(sp-12) = 0; /* no. args */
905 /* this order matches that used in POPAD */
906 *(sp-11)=*os_context_register_addr(context,reg_EDI);
907 *(sp-10)=*os_context_register_addr(context,reg_ESI);
909 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
910 /* POPAD ignores the value of ESP: */
912 *(sp-7)=*os_context_register_addr(context,reg_EBX);
914 *(sp-6)=*os_context_register_addr(context,reg_EDX);
915 *(sp-5)=*os_context_register_addr(context,reg_ECX);
916 *(sp-4)=*os_context_register_addr(context,reg_EAX);
917 *(sp-3)=*context_eflags_addr(context);
918 *(sp-2)=*os_context_register_addr(context,reg_EBP);
919 *(sp-1)=*os_context_pc_addr(context);
923 #elif defined(LISP_FEATURE_X86_64)
924 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
926 /* return address for call_into_lisp: */
927 *(sp-18) = (u64)post_signal_tramp;
929 *(sp-17)=*os_context_register_addr(context,reg_R15);
930 *(sp-16)=*os_context_register_addr(context,reg_R14);
931 *(sp-15)=*os_context_register_addr(context,reg_R13);
932 *(sp-14)=*os_context_register_addr(context,reg_R12);
933 *(sp-13)=*os_context_register_addr(context,reg_R11);
934 *(sp-12)=*os_context_register_addr(context,reg_R10);
935 *(sp-11)=*os_context_register_addr(context,reg_R9);
936 *(sp-10)=*os_context_register_addr(context,reg_R8);
937 *(sp-9)=*os_context_register_addr(context,reg_RDI);
938 *(sp-8)=*os_context_register_addr(context,reg_RSI);
939 /* skip RBP and RSP */
940 *(sp-7)=*os_context_register_addr(context,reg_RBX);
941 *(sp-6)=*os_context_register_addr(context,reg_RDX);
942 *(sp-5)=*os_context_register_addr(context,reg_RCX);
943 *(sp-4)=*os_context_register_addr(context,reg_RAX);
944 *(sp-3)=*context_eflags_addr(context);
945 *(sp-2)=*os_context_register_addr(context,reg_RBP);
946 *(sp-1)=*os_context_pc_addr(context);
948 *os_context_register_addr(context,reg_RDI) =
949 (os_context_register_t)function; /* function */
950 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
951 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
953 struct thread *th=arch_os_get_current_thread();
954 build_fake_control_stack_frames(th,context);
957 #ifdef LISP_FEATURE_X86
959 #if !defined(LISP_FEATURE_DARWIN)
960 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
961 *os_context_register_addr(context,reg_ECX) = 0;
962 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
964 *os_context_register_addr(context,reg_UESP) =
965 (os_context_register_t)(sp-15);
967 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
968 #endif /* __NETBSD__ */
969 #endif /* LISP_FEATURE_DARWIN */
971 #elif defined(LISP_FEATURE_X86_64)
972 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
973 *os_context_register_addr(context,reg_RCX) = 0;
974 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
975 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
977 /* this much of the calling convention is common to all
979 *os_context_pc_addr(context) = (os_context_register_t)(unsigned long)code;
980 *os_context_register_addr(context,reg_NARGS) = 0;
981 *os_context_register_addr(context,reg_LIP) =
982 (os_context_register_t)(unsigned long)code;
983 *os_context_register_addr(context,reg_CFP) =
984 (os_context_register_t)(unsigned long)current_control_frame_pointer;
986 #ifdef ARCH_HAS_NPC_REGISTER
987 *os_context_npc_addr(context) =
988 4 + *os_context_pc_addr(context);
990 #ifdef LISP_FEATURE_SPARC
991 *os_context_register_addr(context,reg_CODE) =
992 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
996 #ifdef LISP_FEATURE_SB_THREAD
998 /* FIXME: this function can go away when all lisp handlers are invoked
999 * via arrange_return_to_lisp_function. */
1001 interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
1003 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
1005 /* let the handler enable interrupts again when it sees fit */
1006 sigaddset_deferrable(os_context_sigmask_addr(context));
1007 arrange_return_to_lisp_function(context, SymbolFunction(RUN_INTERRUPTION));
1012 /* KLUDGE: Theoretically the approach we use for undefined alien
1013 * variables should work for functions as well, but on PPC/Darwin
1014 * we get bus error at bogus addresses instead, hence this workaround,
1015 * that has the added benefit of automatically discriminating between
1016 * functions and variables.
1019 undefined_alien_function() {
1020 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
1024 handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
1026 struct thread *th=arch_os_get_current_thread();
1028 /* note the os_context hackery here. When the signal handler returns,
1029 * it won't go back to what it was doing ... */
1030 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
1031 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1032 /* We hit the end of the control stack: disable guard page
1033 * protection so the error handler has some headroom, protect the
1034 * previous page so that we can catch returns from the guard page
1035 * and restore it. */
1036 protect_control_stack_guard_page(0);
1037 protect_control_stack_return_guard_page(1);
1039 arrange_return_to_lisp_function
1040 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
1043 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
1044 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1045 /* We're returning from the guard page: reprotect it, and
1046 * unprotect this one. This works even if we somehow missed
1047 * the return-guard-page, and hit it on our way to new
1048 * exhaustion instead. */
1049 protect_control_stack_guard_page(1);
1050 protect_control_stack_return_guard_page(0);
1053 else if (addr >= undefined_alien_address &&
1054 addr < undefined_alien_address + os_vm_page_size) {
1055 arrange_return_to_lisp_function
1056 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
1063 * noise to install handlers
1066 #ifndef LISP_FEATURE_WIN32
1067 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1068 * they are blocked, in Linux 2.6 the default handler is invoked
1069 * instead that usually coredumps. One might hastily think that adding
1070 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1071 * the whole sa_mask is ignored and instead of not adding the signal
1072 * in question to the mask. That means if it's not blockable the
1073 * signal must be unblocked at the beginning of signal handlers.
1075 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1076 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1077 * will be unblocked in the sigmask during the signal handler. -- RMK
1080 static volatile int sigaction_nodefer_works = -1;
1082 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1083 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1086 sigaction_nodefer_test_handler(int signal, siginfo_t *info, void *void_context)
1088 sigset_t empty, current;
1090 sigemptyset(&empty);
1091 thread_sigmask(SIG_BLOCK, &empty, ¤t);
1092 /* There should be exactly two blocked signals: the two we added
1093 * to sa_mask when setting up the handler. NetBSD doesn't block
1094 * the signal we're handling when SA_NODEFER is set; Linux before
1095 * 2.6.13 or so also doesn't block the other signal when
1096 * SA_NODEFER is set. */
1097 for(i = 1; i < NSIG; i++)
1098 if (sigismember(¤t, i) !=
1099 (((i == SA_NODEFER_TEST_BLOCK_SIGNAL) || (i == signal)) ? 1 : 0)) {
1100 FSHOW_SIGNAL((stderr, "SA_NODEFER doesn't work, signal %d\n", i));
1101 sigaction_nodefer_works = 0;
1103 if (sigaction_nodefer_works == -1)
1104 sigaction_nodefer_works = 1;
1108 see_if_sigaction_nodefer_works()
1110 struct sigaction sa, old_sa;
1112 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
1113 sa.sa_sigaction = sigaction_nodefer_test_handler;
1114 sigemptyset(&sa.sa_mask);
1115 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_BLOCK_SIGNAL);
1116 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_KILL_SIGNAL);
1117 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &sa, &old_sa);
1118 /* Make sure no signals are blocked. */
1121 sigemptyset(&empty);
1122 thread_sigmask(SIG_SETMASK, &empty, 0);
1124 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL);
1125 while (sigaction_nodefer_works == -1);
1126 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &old_sa, NULL);
1129 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1130 #undef SA_NODEFER_TEST_KILL_SIGNAL
1133 unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1137 sigemptyset(&unblock);
1138 sigaddset(&unblock, signal);
1139 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1140 interrupt_handle_now_handler(signal, info, void_context);
1144 low_level_unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1148 sigemptyset(&unblock);
1149 sigaddset(&unblock, signal);
1150 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1151 (*interrupt_low_level_handlers[signal])(signal, info, void_context);
1155 undoably_install_low_level_interrupt_handler (int signal,
1160 struct sigaction sa;
1162 if (0 > signal || signal >= NSIG) {
1163 lose("bad signal number %d\n", signal);
1166 if (ARE_SAME_HANDLER(handler, SIG_DFL))
1167 sa.sa_sigaction = handler;
1168 else if (sigismember(&deferrable_sigset,signal))
1169 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1170 /* The use of a trampoline appears to break the
1171 arch_os_get_context() workaround for SPARC/Linux. For now,
1172 don't use the trampoline (and so be vulnerable to the problems
1173 that SA_NODEFER is meant to solve. */
1174 #if !(defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_LINUX))
1175 else if (!sigaction_nodefer_works &&
1176 !sigismember(&blockable_sigset, signal))
1177 sa.sa_sigaction = low_level_unblock_me_trampoline;
1180 sa.sa_sigaction = handler;
1182 sigcopyset(&sa.sa_mask, &blockable_sigset);
1183 sa.sa_flags = SA_SIGINFO | SA_RESTART
1184 | (sigaction_nodefer_works ? SA_NODEFER : 0);
1185 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1186 if((signal==SIG_MEMORY_FAULT)
1187 #ifdef SIG_MEMORY_FAULT2
1188 || (signal==SIG_MEMORY_FAULT2)
1190 #ifdef SIG_INTERRUPT_THREAD
1191 || (signal==SIG_INTERRUPT_THREAD)
1194 sa.sa_flags |= SA_ONSTACK;
1197 sigaction(signal, &sa, NULL);
1198 interrupt_low_level_handlers[signal] =
1199 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1203 /* This is called from Lisp. */
1205 install_handler(int signal, void handler(int, siginfo_t*, void*))
1207 #ifndef LISP_FEATURE_WIN32
1208 struct sigaction sa;
1210 union interrupt_handler oldhandler;
1212 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1215 sigaddset(&new, signal);
1216 thread_sigmask(SIG_BLOCK, &new, &old);
1218 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%x\n",
1219 (unsigned int)interrupt_low_level_handlers[signal]));
1220 if (interrupt_low_level_handlers[signal]==0) {
1221 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1222 ARE_SAME_HANDLER(handler, SIG_IGN))
1223 sa.sa_sigaction = handler;
1224 else if (sigismember(&deferrable_sigset, signal))
1225 sa.sa_sigaction = maybe_now_maybe_later;
1226 else if (!sigaction_nodefer_works &&
1227 !sigismember(&blockable_sigset, signal))
1228 sa.sa_sigaction = unblock_me_trampoline;
1230 sa.sa_sigaction = interrupt_handle_now_handler;
1232 sigcopyset(&sa.sa_mask, &blockable_sigset);
1233 sa.sa_flags = SA_SIGINFO | SA_RESTART |
1234 (sigaction_nodefer_works ? SA_NODEFER : 0);
1235 sigaction(signal, &sa, NULL);
1238 oldhandler = interrupt_handlers[signal];
1239 interrupt_handlers[signal].c = handler;
1241 thread_sigmask(SIG_SETMASK, &old, 0);
1243 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1245 return (unsigned long)oldhandler.lisp;
1247 /* Probably-wrong Win32 hack */
1255 #ifndef LISP_FEATURE_WIN32
1257 SHOW("entering interrupt_init()");
1258 see_if_sigaction_nodefer_works();
1259 sigemptyset(&deferrable_sigset);
1260 sigemptyset(&blockable_sigset);
1261 sigaddset_deferrable(&deferrable_sigset);
1262 sigaddset_blockable(&blockable_sigset);
1264 /* Set up high level handler information. */
1265 for (i = 0; i < NSIG; i++) {
1266 interrupt_handlers[i].c =
1267 /* (The cast here blasts away the distinction between
1268 * SA_SIGACTION-style three-argument handlers and
1269 * signal(..)-style one-argument handlers, which is OK
1270 * because it works to call the 1-argument form where the
1271 * 3-argument form is expected.) */
1272 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1275 SHOW("returning from interrupt_init()");
1279 #ifndef LISP_FEATURE_WIN32
1281 siginfo_code(siginfo_t *info)
1283 return info->si_code;
1285 os_vm_address_t current_memory_fault_address;
1288 lisp_memory_fault_error(os_context_t *context, os_vm_address_t addr)
1290 /* FIXME: This is lossy: if we get another memory fault (eg. from
1291 * another thread) before lisp has read this, we the information.
1292 * However, since this is mostly informative, we'll live with that for
1293 * now -- some address is better then no address in this case.
1295 current_memory_fault_address = addr;
1296 arrange_return_to_lisp_function(context, SymbolFunction(MEMORY_FAULT_ERROR));
1301 unhandled_trap_error(os_context_t *context)
1303 lispobj context_sap;
1304 fake_foreign_function_call(context);
1305 context_sap = alloc_sap(context);
1306 #ifndef LISP_FEATURE_WIN32
1307 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1309 funcall1(SymbolFunction(UNHANDLED_TRAP_ERROR), context_sap);
1310 lose("UNHANDLED-TRAP-ERROR fell through");
1313 /* Common logic far trapping instructions. How we actually handle each
1314 * case is highly architecture dependant, but the overall shape is
1317 handle_trap(os_context_t *context, int trap)
1320 case trap_PendingInterrupt:
1321 FSHOW((stderr, "/<trap pending interrupt>\n"));
1322 arch_skip_instruction(context);
1323 interrupt_handle_pending(context);
1327 FSHOW((stderr, "/<trap error/cerror %d>\n", trap));
1328 interrupt_internal_error(context, trap==trap_Cerror);
1330 case trap_Breakpoint:
1331 arch_handle_breakpoint(context);
1333 case trap_FunEndBreakpoint:
1334 arch_handle_fun_end_breakpoint(context);
1336 #ifdef trap_AfterBreakpoint
1337 case trap_AfterBreakpoint:
1338 arch_handle_after_breakpoint(context);
1341 #ifdef trap_SingleStepAround
1342 case trap_SingleStepAround:
1343 case trap_SingleStepBefore:
1344 arch_handle_single_step_trap(context, trap);
1348 fake_foreign_function_call(context);
1349 lose("%%PRIMITIVE HALT called; the party is over.\n");
1351 unhandled_trap_error(context);