2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
53 #include "interrupt.h"
62 #include "genesis/fdefn.h"
63 #include "genesis/simple-fun.h"
65 void run_deferred_handler(struct interrupt_data *data, void *v_context) ;
66 static void store_signal_data_for_later (struct interrupt_data *data,
67 void *handler, int signal,
69 os_context_t *context);
70 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
72 extern volatile lispobj all_threads_lock;
73 extern volatile int countdown_to_gc;
76 * This is a workaround for some slightly silly Linux/GNU Libc
77 * behaviour: glibc defines sigset_t to support 1024 signals, which is
78 * more than the kernel. This is usually not a problem, but becomes
79 * one when we want to save a signal mask from a ucontext, and restore
80 * it later into another ucontext: the ucontext is allocated on the
81 * stack by the kernel, so copying a libc-sized sigset_t into it will
82 * overflow and cause other data on the stack to be corrupted */
84 #define REAL_SIGSET_SIZE_BYTES ((NSIG/8))
86 void sigaddset_blockable(sigset_t *s)
90 sigaddset(s, SIGQUIT);
91 sigaddset(s, SIGPIPE);
92 sigaddset(s, SIGALRM);
95 sigaddset(s, SIGTSTP);
96 sigaddset(s, SIGCHLD);
98 sigaddset(s, SIGXCPU);
99 sigaddset(s, SIGXFSZ);
100 sigaddset(s, SIGVTALRM);
101 sigaddset(s, SIGPROF);
102 sigaddset(s, SIGWINCH);
103 sigaddset(s, SIGUSR1);
104 sigaddset(s, SIGUSR2);
105 #ifdef LISP_FEATURE_SB_THREAD
106 sigaddset(s, SIG_STOP_FOR_GC);
107 sigaddset(s, SIG_INTERRUPT_THREAD);
111 /* When we catch an internal error, should we pass it back to Lisp to
112 * be handled in a high-level way? (Early in cold init, the answer is
113 * 'no', because Lisp is still too brain-dead to handle anything.
114 * After sufficient initialization has been completed, the answer
116 boolean internal_errors_enabled = 0;
118 struct interrupt_data * global_interrupt_data;
120 /* At the toplevel repl we routinely call this function. The signal
121 * mask ought to be clear anyway most of the time, but may be non-zero
122 * if we were interrupted e.g. while waiting for a queue. */
125 void reset_signal_mask ()
129 sigprocmask(SIG_SETMASK,&new,0);
132 void reset_signal_mask ()
138 sigprocmask(SIG_SETMASK,&new,&old);
139 for(i=1; i<NSIG; i++) {
140 if(sigismember(&old,i)) {
142 "Warning: signal %d is masked: this is unexpected\n",i);
147 fprintf(stderr,"If this version of SBCL is less than three months old, please report this.\nOtherwise, please try a newer version first\n. Reset signal mask.\n");
155 * utility routines used by various signal handlers
159 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
161 #ifndef LISP_FEATURE_X86
165 /* Build a fake stack frame or frames */
167 current_control_frame_pointer =
168 (lispobj *)(*os_context_register_addr(context, reg_CSP));
169 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
170 == current_control_frame_pointer) {
171 /* There is a small window during call where the callee's
172 * frame isn't built yet. */
173 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
174 == FUN_POINTER_LOWTAG) {
175 /* We have called, but not built the new frame, so
176 * build it for them. */
177 current_control_frame_pointer[0] =
178 *os_context_register_addr(context, reg_OCFP);
179 current_control_frame_pointer[1] =
180 *os_context_register_addr(context, reg_LRA);
181 current_control_frame_pointer += 8;
182 /* Build our frame on top of it. */
183 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
186 /* We haven't yet called, build our frame as if the
187 * partial frame wasn't there. */
188 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
191 /* We can't tell whether we are still in the caller if it had to
192 * allocate a stack frame due to stack arguments. */
193 /* This observation provoked some past CMUCL maintainer to ask
194 * "Can anything strange happen during return?" */
197 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
200 current_control_stack_pointer = current_control_frame_pointer + 8;
202 current_control_frame_pointer[0] = oldcont;
203 current_control_frame_pointer[1] = NIL;
204 current_control_frame_pointer[2] =
205 (lispobj)(*os_context_register_addr(context, reg_CODE));
210 fake_foreign_function_call(os_context_t *context)
213 struct thread *thread=arch_os_get_current_thread();
215 /* Get current Lisp state from context. */
217 dynamic_space_free_pointer =
218 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
220 if ((long)dynamic_space_free_pointer & 1) {
221 lose("dead in fake_foreign_function_call, context = %x", context);
226 current_binding_stack_pointer =
227 (lispobj *)(*os_context_register_addr(context, reg_BSP));
230 build_fake_control_stack_frames(thread,context);
232 /* Do dynamic binding of the active interrupt context index
233 * and save the context in the context array. */
235 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
237 if (context_index >= MAX_INTERRUPTS) {
238 lose("maximum interrupt nesting depth (%d) exceeded", MAX_INTERRUPTS);
241 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
242 make_fixnum(context_index + 1),thread);
244 thread->interrupt_contexts[context_index] = context;
246 /* no longer in Lisp now */
247 foreign_function_call_active = 1;
250 /* blocks all blockable signals. If you are calling from a signal handler,
251 * the usual signal mask will be restored from the context when the handler
252 * finishes. Otherwise, be careful */
255 undo_fake_foreign_function_call(os_context_t *context)
257 struct thread *thread=arch_os_get_current_thread();
258 /* Block all blockable signals. */
261 sigaddset_blockable(&block);
262 sigprocmask(SIG_BLOCK, &block, 0);
264 /* going back into Lisp */
265 foreign_function_call_active = 0;
267 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
271 /* Put the dynamic space free pointer back into the context. */
272 *os_context_register_addr(context, reg_ALLOC) =
273 (unsigned long) dynamic_space_free_pointer;
277 /* a handler for the signal caused by execution of a trap opcode
278 * signalling an internal error */
280 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
283 lispobj context_sap = 0;
285 fake_foreign_function_call(context);
287 /* Allocate the SAP object while the interrupts are still
289 if (internal_errors_enabled) {
290 context_sap = alloc_sap(context);
293 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
295 if (internal_errors_enabled) {
296 SHOW("in interrupt_internal_error");
298 /* Display some rudimentary debugging information about the
299 * error, so that even if the Lisp error handler gets badly
300 * confused, we have a chance to determine what's going on. */
301 describe_internal_error(context);
303 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
304 continuable ? T : NIL);
306 describe_internal_error(context);
307 /* There's no good way to recover from an internal error
308 * before the Lisp error handling mechanism is set up. */
309 lose("internal error too early in init, can't recover");
311 undo_fake_foreign_function_call(context); /* blocks signals again */
313 arch_skip_instruction(context);
318 interrupt_handle_pending(os_context_t *context)
320 struct thread *thread;
321 struct interrupt_data *data;
323 thread=arch_os_get_current_thread();
324 data=thread->interrupt_data;
325 /* FIXME I'm not altogether sure this is appropriate if we're
326 * here as the result of a pseudo-atomic */
327 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
329 /* restore the saved signal mask from the original signal (the
330 * one that interrupted us during the critical section) into the
331 * os_context for the signal we're currently in the handler for.
332 * This should ensure that when we return from the handler the
333 * blocked signals are unblocked */
335 memcpy(os_context_sigmask_addr(context), &data->pending_mask,
336 REAL_SIGSET_SIZE_BYTES);
338 sigemptyset(&data->pending_mask);
339 /* This will break on sparc linux: the deferred handler really wants
340 * to be called with a void_context */
341 run_deferred_handler(data,(void *)context);
345 * the two main signal handlers:
346 * interrupt_handle_now(..)
347 * maybe_now_maybe_later(..)
349 * to which we have added interrupt_handle_now_handler(..). Why?
350 * Well, mostly because the SPARC/Linux platform doesn't quite do
351 * signals the way we want them done. The third argument in the
352 * handler isn't filled in by the kernel properly, so we fix it up
353 * ourselves in the arch_os_get_context(..) function; however, we only
354 * want to do this when we first hit the handler, and not when
355 * interrupt_handle_now(..) is being called from some other handler
356 * (when the fixup will already have been done). -- CSR, 2002-07-23
360 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
362 os_context_t *context = (os_context_t*)void_context;
363 struct thread *thread=arch_os_get_current_thread();
364 #ifndef LISP_FEATURE_X86
365 boolean were_in_lisp;
367 union interrupt_handler handler;
369 #ifdef LISP_FEATURE_LINUX
370 /* Under Linux on some architectures, we appear to have to restore
371 the FPU control word from the context, as after the signal is
372 delivered we appear to have a null FPU control word. */
373 os_restore_fp_control(context);
375 handler = thread->interrupt_data->interrupt_handlers[signal];
377 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
381 #ifndef LISP_FEATURE_X86
382 were_in_lisp = !foreign_function_call_active;
386 fake_foreign_function_call(context);
391 "/entering interrupt_handle_now(%d, info, context)\n",
395 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
397 /* This can happen if someone tries to ignore or default one
398 * of the signals we need for runtime support, and the runtime
399 * support decides to pass on it. */
400 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
402 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
403 /* Once we've decided what to do about contexts in a
404 * return-elsewhere world (the original context will no longer
405 * be available; should we copy it or was nobody using it anyway?)
406 * then we should convert this to return-elsewhere */
408 /* CMUCL comment said "Allocate the SAPs while the interrupts
409 * are still disabled.". I (dan, 2003.08.21) assume this is
410 * because we're not in pseudoatomic and allocation shouldn't
411 * be interrupted. In which case it's no longer an issue as
412 * all our allocation from C now goes through a PA wrapper,
413 * but still, doesn't hurt */
415 lispobj info_sap,context_sap = alloc_sap(context);
416 info_sap = alloc_sap(info);
417 /* Allow signals again. */
418 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
421 SHOW("calling Lisp-level handler");
424 funcall3(handler.lisp,
431 SHOW("calling C-level handler");
434 /* Allow signals again. */
435 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
437 (*handler.c)(signal, info, void_context);
440 #ifndef LISP_FEATURE_X86
444 undo_fake_foreign_function_call(context); /* block signals again */
449 "/returning from interrupt_handle_now(%d, info, context)\n",
454 /* This is called at the end of a critical section if the indications
455 * are that some signal was deferred during the section. Note that as
456 * far as C or the kernel is concerned we dealt with the signal
457 * already; we're just doing the Lisp-level processing now that we
461 run_deferred_handler(struct interrupt_data *data, void *v_context) {
462 (*(data->pending_handler))
463 (data->pending_signal,&(data->pending_info), v_context);
464 data->pending_handler=0;
468 maybe_defer_handler(void *handler, struct interrupt_data *data,
469 int signal, siginfo_t *info, os_context_t *context)
471 struct thread *thread=arch_os_get_current_thread();
472 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
473 store_signal_data_for_later(data,handler,signal,info,context);
474 SetSymbolValue(INTERRUPT_PENDING, T,thread);
477 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
478 * actually use its argument for anything on x86, so this branch
479 * may succeed even when context is null (gencgc alloc()) */
481 #ifndef LISP_FEATURE_X86
482 (!foreign_function_call_active) &&
484 arch_pseudo_atomic_atomic(context)) {
485 store_signal_data_for_later(data,handler,signal,info,context);
486 arch_set_pseudo_atomic_interrupted(context);
492 store_signal_data_for_later (struct interrupt_data *data, void *handler,
494 siginfo_t *info, os_context_t *context)
496 data->pending_handler = handler;
497 data->pending_signal = signal;
499 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
501 /* the signal mask in the context (from before we were
502 * interrupted) is copied to be restored when
503 * run_deferred_handler happens. Then the usually-blocked
504 * signals are added to the mask in the context so that we are
505 * running with blocked signals when the handler returns */
506 sigemptyset(&(data->pending_mask));
507 memcpy(&(data->pending_mask),
508 os_context_sigmask_addr(context),
509 REAL_SIGSET_SIZE_BYTES);
510 sigaddset_blockable(os_context_sigmask_addr(context));
512 /* this is also called from gencgc alloc(), in which case
513 * there has been no signal and is therefore no context. */
516 sigaddset_blockable(&new);
517 sigprocmask(SIG_BLOCK,&new,&(data->pending_mask));
523 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
525 os_context_t *context = arch_os_get_context(&void_context);
526 struct thread *thread=arch_os_get_current_thread();
527 struct interrupt_data *data=thread->interrupt_data;
528 #ifdef LISP_FEATURE_LINUX
529 os_restore_fp_control(context);
531 if(maybe_defer_handler(interrupt_handle_now,data,
532 signal,info,context))
534 interrupt_handle_now(signal, info, context);
538 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
540 os_context_t *context = arch_os_get_context(&void_context);
541 struct thread *thread=arch_os_get_current_thread();
542 struct interrupt_data *data=thread->interrupt_data;
545 if(maybe_defer_handler(sig_stop_for_gc_handler,data,
546 signal,info,context)){
549 /* need the context stored so it can have registers scavenged */
550 fake_foreign_function_call(context);
552 get_spinlock(&all_threads_lock,thread->pid);
554 thread->state=STATE_STOPPED;
555 release_spinlock(&all_threads_lock);
556 kill(thread->pid,SIGSTOP);
558 undo_fake_foreign_function_call(context);
562 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
564 os_context_t *context = arch_os_get_context(&void_context);
565 interrupt_handle_now(signal, info, context);
569 * stuff to detect and handle hitting the GC trigger
572 #ifndef LISP_FEATURE_GENCGC
573 /* since GENCGC has its own way to record trigger */
575 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
577 if (current_auto_gc_trigger == NULL)
580 void *badaddr=arch_get_bad_addr(signal,info,context);
581 return (badaddr >= (void *)current_auto_gc_trigger &&
582 badaddr <((void *)current_dynamic_space + DYNAMIC_SPACE_SIZE));
587 /* manipulate the signal context and stack such that when the handler
588 * returns, it will call function instead of whatever it was doing
592 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
593 extern void post_signal_tramp(void);
594 void arrange_return_to_lisp_function(os_context_t *context, lispobj function)
596 void * fun=native_pointer(function);
597 char *code = &(((struct simple_fun *) fun)->code);
599 /* Build a stack frame showing `interrupted' so that the
600 * user's backtrace makes (as much) sense (as usual) */
601 #ifdef LISP_FEATURE_X86
602 /* Suppose the existence of some function that saved all
603 * registers, called call_into_lisp, then restored GP registers and
604 * returned. We shortcut this: fake the stack that call_into_lisp
605 * would see, then arrange to have it called directly. post_signal_tramp
606 * is the second half of this function
608 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
610 *(sp-14) = post_signal_tramp; /* return address for call_into_lisp */
611 *(sp-13) = function; /* args for call_into_lisp : function*/
612 *(sp-12) = 0; /* arg array */
613 *(sp-11) = 0; /* no. args */
614 /* this order matches that used in POPAD */
615 *(sp-10)=*os_context_register_addr(context,reg_EDI);
616 *(sp-9)=*os_context_register_addr(context,reg_ESI);
617 /* this gets overwritten again before it's used, anyway */
618 *(sp-8)=*os_context_register_addr(context,reg_EBP);
619 *(sp-7)=0 ; /* POPAD doesn't set ESP, but expects a gap for it anyway */
620 *(sp-6)=*os_context_register_addr(context,reg_EBX);
622 *(sp-5)=*os_context_register_addr(context,reg_EDX);
623 *(sp-4)=*os_context_register_addr(context,reg_ECX);
624 *(sp-3)=*os_context_register_addr(context,reg_EAX);
625 *(sp-2)=*os_context_register_addr(context,reg_EBP);
626 *(sp-1)=*os_context_pc_addr(context);
629 struct thread *th=arch_os_get_current_thread();
630 build_fake_control_stack_frames(th,context);
633 #ifdef LISP_FEATURE_X86
634 *os_context_pc_addr(context) = call_into_lisp;
635 *os_context_register_addr(context,reg_ECX) = 0;
636 *os_context_register_addr(context,reg_EBP) = sp-2;
637 *os_context_register_addr(context,reg_ESP) = sp-14;
639 /* this much of the calling convention is common to all
641 *os_context_pc_addr(context) = code;
642 *os_context_register_addr(context,reg_NARGS) = 0;
643 *os_context_register_addr(context,reg_LIP) = code;
644 *os_context_register_addr(context,reg_CFP) =
645 current_control_frame_pointer;
647 #ifdef ARCH_HAS_NPC_REGISTER
648 *os_context_npc_addr(context) =
649 4 + *os_context_pc_addr(context);
651 #ifdef LISP_FEATURE_SPARC
652 *os_context_register_addr(context,reg_CODE) =
653 fun + FUN_POINTER_LOWTAG;
657 #ifdef LISP_FEATURE_SB_THREAD
658 void handle_rt_signal(int num, siginfo_t *info, void *v_context)
660 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
661 struct thread *th=arch_os_get_current_thread();
662 struct interrupt_data *data=
663 th ? th->interrupt_data : global_interrupt_data;
664 if(maybe_defer_handler(handle_rt_signal,data,num,info,context)){
667 arrange_return_to_lisp_function(context,info->si_value.sival_int);
671 boolean handle_control_stack_guard_triggered(os_context_t *context,void *addr){
672 struct thread *th=arch_os_get_current_thread();
673 /* note the os_context hackery here. When the signal handler returns,
674 * it won't go back to what it was doing ... */
675 if(addr>=(void *)CONTROL_STACK_GUARD_PAGE(th) &&
676 addr<(void *)(CONTROL_STACK_GUARD_PAGE(th)+os_vm_page_size)) {
677 /* we hit the end of the control stack. disable protection
678 * temporarily so the error handler has some headroom */
679 protect_control_stack_guard_page(th->pid,0L);
681 arrange_return_to_lisp_function
682 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
688 #ifndef LISP_FEATURE_GENCGC
689 /* This function gets called from the SIGSEGV (for e.g. Linux or
690 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
691 * whether the signal was due to treading on the mprotect()ed zone -
692 * and if so, arrange for a GC to happen. */
693 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
696 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
698 os_context_t *context=(os_context_t *) void_context;
699 struct thread *th=arch_os_get_current_thread();
700 struct interrupt_data *data=
701 th ? th->interrupt_data : global_interrupt_data;
703 if(!foreign_function_call_active && gc_trigger_hit(signal, info, context)){
704 clear_auto_gc_trigger();
705 if(!maybe_defer_handler
706 (interrupt_maybe_gc_int,data,signal,info,void_context))
707 interrupt_maybe_gc_int(signal,info,void_context);
715 /* this is also used by gencgc, in alloc() */
717 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
720 os_context_t *context=(os_context_t *) void_context;
721 fake_foreign_function_call(context);
722 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
723 * which case we will be running with no gc trigger barrier
724 * thing for a while. But it shouldn't be long until the end
725 * of WITHOUT-GCING. */
728 sigaddset_blockable(&new);
729 /* enable signals before calling into Lisp */
730 sigprocmask(SIG_UNBLOCK,&new,0);
731 funcall0(SymbolFunction(SUB_GC));
732 undo_fake_foreign_function_call(context);
738 * noise to install handlers
742 undoably_install_low_level_interrupt_handler (int signal,
748 struct thread *th=arch_os_get_current_thread();
749 struct interrupt_data *data=
750 th ? th->interrupt_data : global_interrupt_data;
752 if (0 > signal || signal >= NSIG) {
753 lose("bad signal number %d", signal);
756 sa.sa_sigaction = handler;
757 sigemptyset(&sa.sa_mask);
758 sigaddset_blockable(&sa.sa_mask);
759 sa.sa_flags = SA_SIGINFO | SA_RESTART;
760 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
761 if((signal==SIG_MEMORY_FAULT)
762 #ifdef SIG_INTERRUPT_THREAD
763 || (signal==SIG_INTERRUPT_THREAD)
766 sa.sa_flags|= SA_ONSTACK;
769 sigaction(signal, &sa, NULL);
770 data->interrupt_low_level_handlers[signal] =
771 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
774 /* This is called from Lisp. */
776 install_handler(int signal, void handler(int, siginfo_t*, void*))
780 union interrupt_handler oldhandler;
781 struct thread *th=arch_os_get_current_thread();
782 struct interrupt_data *data=
783 th ? th->interrupt_data : global_interrupt_data;
785 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
788 sigaddset(&new, signal);
789 sigprocmask(SIG_BLOCK, &new, &old);
792 sigaddset_blockable(&new);
794 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%d\n",
795 interrupt_low_level_handlers[signal]));
796 if (data->interrupt_low_level_handlers[signal]==0) {
797 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
798 ARE_SAME_HANDLER(handler, SIG_IGN)) {
799 sa.sa_sigaction = handler;
800 } else if (sigismember(&new, signal)) {
801 sa.sa_sigaction = maybe_now_maybe_later;
803 sa.sa_sigaction = interrupt_handle_now_handler;
806 sigemptyset(&sa.sa_mask);
807 sigaddset_blockable(&sa.sa_mask);
808 sa.sa_flags = SA_SIGINFO | SA_RESTART;
809 sigaction(signal, &sa, NULL);
812 oldhandler = data->interrupt_handlers[signal];
813 data->interrupt_handlers[signal].c = handler;
815 sigprocmask(SIG_SETMASK, &old, 0);
817 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
819 return (unsigned long)oldhandler.lisp;
826 SHOW("entering interrupt_init()");
827 global_interrupt_data=calloc(sizeof(struct interrupt_data), 1);
829 /* Set up high level handler information. */
830 for (i = 0; i < NSIG; i++) {
831 global_interrupt_data->interrupt_handlers[i].c =
832 /* (The cast here blasts away the distinction between
833 * SA_SIGACTION-style three-argument handlers and
834 * signal(..)-style one-argument handlers, which is OK
835 * because it works to call the 1-argument form where the
836 * 3-argument form is expected.) */
837 (void (*)(int, siginfo_t*, void*))SIG_DFL;
840 SHOW("returning from interrupt_init()");