2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
25 #include "interrupt.h"
36 void sigaddset_blockable(sigset_t *s)
40 sigaddset(s, SIGQUIT);
41 sigaddset(s, SIGPIPE);
42 sigaddset(s, SIGALRM);
45 sigaddset(s, SIGTSTP);
46 sigaddset(s, SIGCHLD);
48 sigaddset(s, SIGXCPU);
49 sigaddset(s, SIGXFSZ);
50 sigaddset(s, SIGVTALRM);
51 sigaddset(s, SIGPROF);
52 sigaddset(s, SIGWINCH);
53 sigaddset(s, SIGUSR1);
54 sigaddset(s, SIGUSR2);
57 /* When we catch an internal error, should we pass it back to Lisp to
58 * be handled in a high-level way? (Early in cold init, the answer is
59 * 'no', because Lisp is still too brain-dead to handle anything.
60 * After sufficient initialization has been completed, the answer
62 boolean internal_errors_enabled = 0;
64 os_context_t *lisp_interrupt_contexts[MAX_INTERRUPTS];
66 /* As far as I can tell, what's going on here is:
68 * In the case of most signals, when Lisp asks us to handle the
69 * signal, the outermost handler (the one actually passed to UNIX) is
70 * either interrupt_handle_now(..) or interrupt_handle_later(..).
71 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
72 * and interrupt_low_level_handlers[..] is cleared.
74 * However, some signals need special handling, e.g.
76 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
77 * garbage collector to detect violations of write protection,
78 * because some cases of such signals (e.g. GC-related violations of
79 * write protection) are handled at C level and never passed on to
80 * Lisp. For such signals, we still store any Lisp-level handler
81 * in interrupt_handlers[..], but for the outermost handle we use
82 * the value from interrupt_low_level_handlers[..], instead of the
83 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
85 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
86 * pseudo-atomic sections, and some classes of error (e.g. "function
87 * not defined"). This never goes anywhere near the Lisp handlers at all.
88 * See runtime/alpha-arch.c and code/signal.lisp
90 * - WHN 20000728, dan 20010128 */
93 void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, void*) = {0};
94 union interrupt_handler interrupt_handlers[NSIG];
96 /* signal number, siginfo_t, and old mask information for pending signal
98 * pending_signal=0 when there is no pending signal. */
99 static int pending_signal = 0;
100 static siginfo_t pending_info;
101 static sigset_t pending_mask;
103 static boolean maybe_gc_pending = 0;
106 * utility routines used by various signal handlers
110 fake_foreign_function_call(os_context_t *context)
117 /* Get current Lisp state from context. */
119 dynamic_space_free_pointer =
120 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
122 if ((long)dynamic_space_free_pointer & 1) {
123 lose("dead in fake_foreign_function_call, context = %x", context);
128 current_binding_stack_pointer =
129 (lispobj *)(*os_context_register_addr(context, reg_BSP));
133 /* Build a fake stack frame. */
134 current_control_frame_pointer =
135 (lispobj *)(*os_context_register_addr(context, reg_CSP));
136 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
137 == current_control_frame_pointer) {
138 /* There is a small window during call where the callee's
139 * frame isn't built yet. */
140 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
141 == FUN_POINTER_LOWTAG) {
142 /* We have called, but not built the new frame, so
143 * build it for them. */
144 current_control_frame_pointer[0] =
145 *os_context_register_addr(context, reg_OCFP);
146 current_control_frame_pointer[1] =
147 *os_context_register_addr(context, reg_LRA);
148 current_control_frame_pointer += 8;
149 /* Build our frame on top of it. */
150 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
153 /* We haven't yet called, build our frame as if the
154 * partial frame wasn't there. */
155 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
158 /* ### We can't tell whether we are still in the caller if it had
159 * to reg_ALLOCate the stack frame due to stack arguments. */
160 /* ### Can anything strange happen during return? */
163 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
166 current_control_stack_pointer = current_control_frame_pointer + 8;
168 current_control_frame_pointer[0] = oldcont;
169 current_control_frame_pointer[1] = NIL;
170 current_control_frame_pointer[2] =
171 (lispobj)(*os_context_register_addr(context, reg_CODE));
174 /* Do dynamic binding of the active interrupt context index
175 * and save the context in the context array. */
176 context_index = SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX)>>2;
177 /* FIXME: Ick! Why use abstract "make_fixnum" in some places if
178 * you're going to convert from fixnum by bare >>2 in other
179 * places? Use fixnum_value(..) here, and look for other places
180 * which do bare >> and << for fixnum_value and make_fixnum. */
182 if (context_index >= MAX_INTERRUPTS) {
183 lose("maximum interrupt nesting depth (%d) exceeded",
187 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
188 make_fixnum(context_index + 1));
190 lisp_interrupt_contexts[context_index] = context;
192 /* no longer in Lisp now */
193 foreign_function_call_active = 1;
197 undo_fake_foreign_function_call(os_context_t *context)
199 /* Block all blockable signals. */
202 sigaddset_blockable(&block);
203 sigprocmask(SIG_BLOCK, &block, 0);
205 /* going back into Lisp */
206 foreign_function_call_active = 0;
208 /* Undo dynamic binding. */
209 /* ### Do I really need to unbind_to_here()? */
210 /* FIXME: Is this to undo the binding of
211 * FREE_INTERRUPT_CONTEXT_INDEX? If so, we should say so. And
212 * perhaps yes, unbind_to_here() really would be clearer and less
214 /* dan (2001.08.10) thinks the above supposition is probably correct */
218 /* Put the dynamic space free pointer back into the context. */
219 *os_context_register_addr(context, reg_ALLOC) =
220 (unsigned long) dynamic_space_free_pointer;
224 /* a handler for the signal caused by execution of a trap opcode
225 * signalling an internal error */
227 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
230 lispobj context_sap = 0;
232 fake_foreign_function_call(context);
234 /* Allocate the SAP object while the interrupts are still
236 if (internal_errors_enabled) {
237 context_sap = alloc_sap(context);
240 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
242 if (internal_errors_enabled) {
243 SHOW("in interrupt_internal_error");
245 /* Display some rudimentary debugging information about the
246 * error, so that even if the Lisp error handler gets badly
247 * confused, we have a chance to determine what's going on. */
248 describe_internal_error(context);
250 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
251 continuable ? T : NIL);
253 describe_internal_error(context);
254 /* There's no good way to recover from an internal error
255 * before the Lisp error handling mechanism is set up. */
256 lose("internal error too early in init, can't recover");
258 undo_fake_foreign_function_call(context);
260 arch_skip_instruction(context);
264 /* This function handles pending interrupts. Note that in C/kernel
265 * terms we dealt with the signal already; we just haven't decided
266 * whether to call a Lisp handler or do a GC or something like that.
267 * If it helps, you can think of pending_{signal,mask,info} as a
268 * one-element queue of signals that we have acknowledged but not
272 interrupt_handle_pending(os_context_t *context)
275 boolean were_in_lisp = !foreign_function_call_active;
278 SetSymbolValue(INTERRUPT_PENDING, NIL);
280 if (maybe_gc_pending) {
281 maybe_gc_pending = 0;
286 fake_foreign_function_call(context);
288 funcall0(SymbolFunction(MAYBE_GC));
293 undo_fake_foreign_function_call(context);
297 /* FIXME: This isn't very clear. It would be good to reverse
298 * engineer it and rewrite the code more clearly, or write a clear
299 * explanation of what's going on in the comments, or both.
301 * WHN's question 1a: How come we unconditionally copy from
302 * pending_mask into the context, and then test whether
303 * pending_signal is set?
305 * WHN's question 1b: If pending_signal wasn't set, how could
306 * pending_mask be valid?
308 * Dan Barlow's reply (sbcl-devel 2001-03-13): And the answer is -
309 * or appears to be - because interrupt_maybe_gc set it that way
310 * (look in the #ifndef __i386__ bit). We can't GC during a
311 * pseudo-atomic, so we set maybe_gc_pending=1 and
312 * arch_set_pseudo_atomic_interrupted(..) When we come out of
313 * pseudo_atomic we're marked as interrupted, so we call
314 * interrupt_handle_pending, which does the GC using the pending
315 * context (it needs a context so that it has registers to use as
316 * GC roots) then notices there's no actual interrupt handler to
317 * call, so doesn't. That's the second question [1b] answered,
318 * anyway. Why we still need to copy the pending_mask into the
319 * context given that we're now done with the context anyway, I
322 memcpy(os_context_sigmask_addr(context), &pending_mask,
323 4 /* sizeof(sigset_t) */ );
325 sigemptyset(&pending_mask);
326 if (pending_signal) {
327 int signal = pending_signal;
329 memcpy(&info, &pending_info, sizeof(siginfo_t));
331 interrupt_handle_now(signal, &info, context);
336 * the two main signal handlers:
337 * interrupt_handle_now(..)
338 * maybe_now_maybe_later(..)
342 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
344 os_context_t *context = (os_context_t*)void_context;
346 boolean were_in_lisp;
348 union interrupt_handler handler;
350 /* FIXME: The CMU CL we forked off of had this Linux-only
351 * operation here. Newer CMU CLs (e.g. 18c) have hairier
352 * Linux/i386-only logic here. SBCL seems to be more reliable
353 * without anything here. However, if we start supporting code
354 * which sets the rounding mode, then we may want to do something
355 * special to force the rounding mode back to some standard value
356 * here, so that ISRs can have a standard environment. (OTOH, if
357 * rounding modes are under user control, then perhaps we should
358 * leave this up to the user.)
360 * In the absence of a test case to show that this is really a
361 * problem, we just suppress this code completely (just like the
362 * parallel code in maybe_now_maybe_later).
364 * SET_FPU_CONTROL_WORD(context->__fpregs_mem.cw);
367 handler = interrupt_handlers[signal];
369 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
374 were_in_lisp = !foreign_function_call_active;
378 fake_foreign_function_call(context);
383 "/entering interrupt_handle_now(%d, info, context)\n",
387 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
389 /* This can happen if someone tries to ignore or default one
390 * of the signals we need for runtime support, and the runtime
391 * support decides to pass on it. */
392 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
394 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
396 /* Allocate the SAPs while the interrupts are still disabled.
397 * (FIXME: Why? This is the way it was done in CMU CL, and it
398 * even had the comment noting that this is the way it was
399 * done, but no motivation..) */
400 lispobj info_sap,context_sap = alloc_sap(context);
401 info_sap = alloc_sap(info);
402 /* Allow signals again. */
403 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
406 SHOW("calling Lisp-level handler");
409 funcall3(handler.lisp,
416 SHOW("calling C-level handler");
419 /* Allow signals again. */
420 sigprocmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
422 (*handler.c)(signal, info, void_context);
429 undo_fake_foreign_function_call(context);
434 "/returning from interrupt_handle_now(%d, info, context)\n",
440 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
442 os_context_t *context = (os_context_t*)void_context;
444 /* FIXME: See Debian cmucl 2.4.17, and mail from DTC on the CMU CL
445 * mailing list 23 Oct 1999, for changes in FPU handling at
446 * interrupt time which should be ported into SBCL. Also see the
447 * analogous logic at the head of interrupt_handle_now for
448 * more related FIXME stuff.
450 * For now, we just suppress this code completely.
452 * SET_FPU_CONTROL_WORD(context->__fpregs_mem.cw);
455 /* see comments at top of code/signal.lisp for what's going on here
456 * with INTERRUPTS_ENABLED/INTERRUPT_HANDLE_NOW
458 if (SymbolValue(INTERRUPTS_ENABLED) == NIL) {
460 /* FIXME: This code is exactly the same as the code in the
461 * other leg of the if(..), and should be factored out into
462 * a shared function. */
463 pending_signal = signal;
464 memcpy(&pending_info, info, sizeof(siginfo_t));
465 memcpy(&pending_mask,
466 os_context_sigmask_addr(context),
468 sigaddset_blockable(os_context_sigmask_addr(context));
469 SetSymbolValue(INTERRUPT_PENDING, T);
473 (!foreign_function_call_active) &&
475 arch_pseudo_atomic_atomic(context)) {
477 /* FIXME: It would probably be good to replace these bare
478 * memcpy(..) calls with calls to cpy_siginfo_t and
479 * cpy_sigset_t, so that we only have to get the sizeof
480 * expressions right in one place, and after that static type
481 * checking takes over. */
482 pending_signal = signal;
483 memcpy(&pending_info, info, sizeof(siginfo_t));
484 memcpy(&pending_mask,
485 os_context_sigmask_addr(context),
487 sigaddset_blockable(os_context_sigmask_addr(context));
489 arch_set_pseudo_atomic_interrupted(context);
492 interrupt_handle_now(signal, info, context);
497 * stuff to detect and handle hitting the GC trigger
500 #ifndef INTERNAL_GC_TRIGGER
502 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
504 if (current_auto_gc_trigger == NULL)
507 lispobj *badaddr=(lispobj *)arch_get_bad_addr(signal,
511 return (badaddr >= current_auto_gc_trigger &&
512 badaddr < current_dynamic_space + DYNAMIC_SPACE_SIZE);
518 /* This function gets called from the SIGSEGV (for e.g. Linux or
519 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
520 * whether the signal was due to treading on the mprotect()ed zone -
521 * and if so, arrange for a GC to happen. */
523 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
525 os_context_t *context=(os_context_t *) void_context;
527 if (!foreign_function_call_active
528 #ifndef INTERNAL_GC_TRIGGER
529 && gc_trigger_hit(signal, info, context)
532 #ifndef INTERNAL_GC_TRIGGER
533 clear_auto_gc_trigger();
536 if (arch_pseudo_atomic_atomic(context)) {
537 /* don't GC during an atomic operation. Instead, copy the
538 * signal mask somewhere safe. interrupt_handle_pending
539 * will detect pending_signal==0 and know to do a GC with the
540 * signal context instead of calling a Lisp-level handler */
541 maybe_gc_pending = 1;
542 if (pending_signal == 0) {
543 /* FIXME: This copy-pending_mask-then-sigaddset_blockable
544 * idiom occurs over and over. It should be factored out
545 * into a function with a descriptive name. */
546 memcpy(&pending_mask,
547 os_context_sigmask_addr(context),
549 sigaddset_blockable(os_context_sigmask_addr(context));
551 arch_set_pseudo_atomic_interrupted(context);
554 lispobj *old_free_space=current_dynamic_space;
555 fake_foreign_function_call(context);
556 funcall0(SymbolFunction(MAYBE_GC));
557 undo_fake_foreign_function_call(context);
558 if(current_dynamic_space==old_free_space)
559 /* MAYBE-GC (as the name suggest) might not. If it
560 * doesn't, it won't reset the GC trigger either, so we
561 * have to do it ourselves. Add small amount of space
562 * to tide us over while GC is inhibited
564 set_auto_gc_trigger((u32)dynamic_space_free_pointer
565 -(u32)current_dynamic_space
566 +(u32)os_vm_page_size);
576 * noise to install handlers
580 * what low-level signal handlers looked like before
581 * undoably_install_low_level_interrupt_handler() got involved
583 struct low_level_signal_handler_state {
585 void (*handler)(int, siginfo_t*, void*);
586 } old_low_level_signal_handler_states[NSIG];
589 uninstall_low_level_interrupt_handlers_atexit(void)
592 for (signal = 0; signal < NSIG; ++signal) {
593 struct low_level_signal_handler_state
594 *old_low_level_signal_handler_state =
595 old_low_level_signal_handler_states + signal;
596 if (old_low_level_signal_handler_state->was_modified) {
598 sa.sa_sigaction = old_low_level_signal_handler_state->handler;
599 sigemptyset(&sa.sa_mask);
600 sa.sa_flags = SA_SIGINFO | SA_RESTART;
601 sigaction(signal, &sa, NULL);
606 /* Undoably install a special low-level handler for signal; or if
607 * handler is SIG_DFL, remove any special handling for signal.
609 * The "undoably" aspect is because we also arrange with atexit() for
610 * the handler to be restored to its old value. This is for tidiness:
611 * it shouldn't matter much ordinarily, but it does remove a window
612 * where e.g. memory fault signals (SIGSEGV or SIGBUS, which in
613 * ordinary operation of SBCL are sent to the generational garbage
614 * collector, then possibly onward to Lisp code) or SIGINT (which is
615 * ordinarily passed to Lisp code) could otherwise be handled
616 * bizarrely/brokenly because the Lisp code would try to deal with
617 * them using machinery (like stream output buffers) which has already
618 * been dismantled. */
620 undoably_install_low_level_interrupt_handler (int signal,
626 struct low_level_signal_handler_state *old_low_level_signal_handler_state =
627 old_low_level_signal_handler_states + signal;
629 if (0 > signal || signal >= NSIG) {
630 lose("bad signal number %d", signal);
633 sa.sa_sigaction = handler;
634 sigemptyset(&sa.sa_mask);
635 sigaddset_blockable(&sa.sa_mask);
636 sa.sa_flags = SA_SIGINFO | SA_RESTART;
638 /* In the case of interrupt handlers which are modified more than
639 * once, we only save the original unmodified copy. */
640 if (!old_low_level_signal_handler_state->was_modified) {
641 struct sigaction *old_handler =
642 (struct sigaction*) &old_low_level_signal_handler_state->handler;
643 old_low_level_signal_handler_state->was_modified = 1;
644 sigaction(signal, &sa, old_handler);
646 sigaction(signal, &sa, NULL);
649 interrupt_low_level_handlers[signal] =
650 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
653 /* This is called from Lisp. */
655 install_handler(int signal, void handler(int, siginfo_t*, void*))
659 union interrupt_handler oldhandler;
661 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
664 sigaddset(&new, signal);
665 sigprocmask(SIG_BLOCK, &new, &old);
668 sigaddset_blockable(&new);
670 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%d\n",
671 interrupt_low_level_handlers[signal]));
672 if (interrupt_low_level_handlers[signal]==0) {
673 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
674 ARE_SAME_HANDLER(handler, SIG_IGN)) {
675 sa.sa_sigaction = handler;
676 } else if (sigismember(&new, signal)) {
677 sa.sa_sigaction = maybe_now_maybe_later;
679 sa.sa_sigaction = interrupt_handle_now;
682 sigemptyset(&sa.sa_mask);
683 sigaddset_blockable(&sa.sa_mask);
684 sa.sa_flags = SA_SIGINFO | SA_RESTART;
686 sigaction(signal, &sa, NULL);
689 oldhandler = interrupt_handlers[signal];
690 interrupt_handlers[signal].c = handler;
692 sigprocmask(SIG_SETMASK, &old, 0);
694 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
696 return (unsigned long)oldhandler.lisp;
704 SHOW("entering interrupt_init()");
706 /* Set up for recovery from any installed low-level handlers. */
707 atexit(&uninstall_low_level_interrupt_handlers_atexit);
709 /* Set up high level handler information. */
710 for (i = 0; i < NSIG; i++) {
711 interrupt_handlers[i].c =
712 /* (The cast here blasts away the distinction between
713 * SA_SIGACTION-style three-argument handlers and
714 * signal(..)-style one-argument handlers, which is OK
715 * because it works to call the 1-argument form where the
716 * 3-argument form is expected.) */
717 (void (*)(int, siginfo_t*, void*))SIG_DFL;
720 SHOW("returning from interrupt_init()");