2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
49 #include <sys/types.h>
50 #ifndef LISP_FEATURE_WIN32
58 #include "interrupt.h"
66 #include "genesis/fdefn.h"
67 #include "genesis/simple-fun.h"
68 #include "genesis/cons.h"
72 static void run_deferred_handler(struct interrupt_data *data, void *v_context);
73 #ifndef LISP_FEATURE_WIN32
74 static void store_signal_data_for_later (struct interrupt_data *data,
75 void *handler, int signal,
77 os_context_t *context);
78 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
81 sigaddset_deferrable(sigset_t *s)
85 sigaddset(s, SIGQUIT);
86 sigaddset(s, SIGPIPE);
87 sigaddset(s, SIGALRM);
89 sigaddset(s, SIGTSTP);
90 sigaddset(s, SIGCHLD);
92 sigaddset(s, SIGXCPU);
93 sigaddset(s, SIGXFSZ);
94 sigaddset(s, SIGVTALRM);
95 sigaddset(s, SIGPROF);
96 sigaddset(s, SIGWINCH);
98 #if !((defined(LISP_FEATURE_DARWIN) || defined(LISP_FEATURE_FREEBSD)) && defined(LISP_FEATURE_SB_THREAD))
99 sigaddset(s, SIGUSR1);
100 sigaddset(s, SIGUSR2);
103 #ifdef LISP_FEATURE_SB_THREAD
104 sigaddset(s, SIG_INTERRUPT_THREAD);
109 sigaddset_blockable(sigset_t *s)
111 sigaddset_deferrable(s);
112 #ifdef LISP_FEATURE_SB_THREAD
113 #ifdef SIG_RESUME_FROM_GC
114 sigaddset(s, SIG_RESUME_FROM_GC);
116 sigaddset(s, SIG_STOP_FOR_GC);
120 /* initialized in interrupt_init */
121 static sigset_t deferrable_sigset;
122 static sigset_t blockable_sigset;
126 check_blockables_blocked_or_lose()
128 #ifndef LISP_FEATURE_WIN32
129 /* Get the current sigmask, by blocking the empty set. */
130 sigset_t empty,current;
133 thread_sigmask(SIG_BLOCK, &empty, ¤t);
134 for(i = 1; i < NSIG; i++) {
135 if (sigismember(&blockable_sigset, i) && !sigismember(¤t, i))
136 lose("blockable signal %d not blocked\n",i);
142 check_interrupts_enabled_or_lose(os_context_t *context)
144 struct thread *thread=arch_os_get_current_thread();
145 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
146 lose("interrupts not enabled\n");
148 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
149 (!foreign_function_call_active) &&
151 arch_pseudo_atomic_atomic(context))
152 lose ("in pseudo atomic section\n");
155 /* When we catch an internal error, should we pass it back to Lisp to
156 * be handled in a high-level way? (Early in cold init, the answer is
157 * 'no', because Lisp is still too brain-dead to handle anything.
158 * After sufficient initialization has been completed, the answer
160 boolean internal_errors_enabled = 0;
162 #ifndef LISP_FEATURE_WIN32
163 static void (*interrupt_low_level_handlers[NSIG]) (int, siginfo_t*, void*);
165 union interrupt_handler interrupt_handlers[NSIG];
167 /* At the toplevel repl we routinely call this function. The signal
168 * mask ought to be clear anyway most of the time, but may be non-zero
169 * if we were interrupted e.g. while waiting for a queue. */
172 reset_signal_mask(void)
174 #ifndef LISP_FEATURE_WIN32
177 thread_sigmask(SIG_SETMASK,&new,0);
182 block_blockable_signals(void)
184 #ifndef LISP_FEATURE_WIN32
185 thread_sigmask(SIG_BLOCK, &blockable_sigset, 0);
190 block_deferrable_signals(void)
192 #ifndef LISP_FEATURE_WIN32
193 thread_sigmask(SIG_BLOCK, &deferrable_sigset, 0);
199 * utility routines used by various signal handlers
203 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
205 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
209 /* Build a fake stack frame or frames */
211 current_control_frame_pointer =
212 (lispobj *)(unsigned long)
213 (*os_context_register_addr(context, reg_CSP));
214 if ((lispobj *)(unsigned long)
215 (*os_context_register_addr(context, reg_CFP))
216 == current_control_frame_pointer) {
217 /* There is a small window during call where the callee's
218 * frame isn't built yet. */
219 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
220 == FUN_POINTER_LOWTAG) {
221 /* We have called, but not built the new frame, so
222 * build it for them. */
223 current_control_frame_pointer[0] =
224 *os_context_register_addr(context, reg_OCFP);
225 current_control_frame_pointer[1] =
226 *os_context_register_addr(context, reg_LRA);
227 current_control_frame_pointer += 8;
228 /* Build our frame on top of it. */
229 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
232 /* We haven't yet called, build our frame as if the
233 * partial frame wasn't there. */
234 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
237 /* We can't tell whether we are still in the caller if it had to
238 * allocate a stack frame due to stack arguments. */
239 /* This observation provoked some past CMUCL maintainer to ask
240 * "Can anything strange happen during return?" */
243 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
246 current_control_stack_pointer = current_control_frame_pointer + 8;
248 current_control_frame_pointer[0] = oldcont;
249 current_control_frame_pointer[1] = NIL;
250 current_control_frame_pointer[2] =
251 (lispobj)(*os_context_register_addr(context, reg_CODE));
255 /* Stores the context for gc to scavange and builds fake stack
258 fake_foreign_function_call(os_context_t *context)
261 struct thread *thread=arch_os_get_current_thread();
263 /* context_index incrementing must not be interrupted */
264 check_blockables_blocked_or_lose();
266 /* Get current Lisp state from context. */
268 dynamic_space_free_pointer =
269 (lispobj *)(unsigned long)
270 (*os_context_register_addr(context, reg_ALLOC));
271 /* fprintf(stderr,"dynamic_space_free_pointer: %p\n", dynamic_space_free_pointer); */
272 #if defined(LISP_FEATURE_ALPHA)
273 if ((long)dynamic_space_free_pointer & 1) {
274 lose("dead in fake_foreign_function_call, context = %x\n", context);
279 current_binding_stack_pointer =
280 (lispobj *)(unsigned long)
281 (*os_context_register_addr(context, reg_BSP));
284 build_fake_control_stack_frames(thread,context);
286 /* Do dynamic binding of the active interrupt context index
287 * and save the context in the context array. */
289 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
291 if (context_index >= MAX_INTERRUPTS) {
292 lose("maximum interrupt nesting depth (%d) exceeded\n", MAX_INTERRUPTS);
295 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
296 make_fixnum(context_index + 1),thread);
298 thread->interrupt_contexts[context_index] = context;
300 /* no longer in Lisp now */
301 foreign_function_call_active = 1;
304 /* blocks all blockable signals. If you are calling from a signal handler,
305 * the usual signal mask will be restored from the context when the handler
306 * finishes. Otherwise, be careful */
308 undo_fake_foreign_function_call(os_context_t *context)
310 struct thread *thread=arch_os_get_current_thread();
311 /* Block all blockable signals. */
312 block_blockable_signals();
314 /* going back into Lisp */
315 foreign_function_call_active = 0;
317 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
321 /* Put the dynamic space free pointer back into the context. */
322 *os_context_register_addr(context, reg_ALLOC) =
323 (unsigned long) dynamic_space_free_pointer
324 | (*os_context_register_addr(context, reg_ALLOC)
327 ((unsigned long)(*os_context_register_addr(context, reg_ALLOC)) & ~LOWTAG_MASK)
328 | ((unsigned long) dynamic_space_free_pointer & LOWTAG_MASK);
333 /* a handler for the signal caused by execution of a trap opcode
334 * signalling an internal error */
336 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
341 fake_foreign_function_call(context);
343 if (!internal_errors_enabled) {
344 describe_internal_error(context);
345 /* There's no good way to recover from an internal error
346 * before the Lisp error handling mechanism is set up. */
347 lose("internal error too early in init, can't recover\n");
350 /* Allocate the SAP object while the interrupts are still
352 context_sap = alloc_sap(context);
354 #ifndef LISP_FEATURE_WIN32
355 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
358 SHOW("in interrupt_internal_error");
360 /* Display some rudimentary debugging information about the
361 * error, so that even if the Lisp error handler gets badly
362 * confused, we have a chance to determine what's going on. */
363 describe_internal_error(context);
365 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
366 continuable ? T : NIL);
368 undo_fake_foreign_function_call(context); /* blocks signals again */
370 arch_skip_instruction(context);
374 interrupt_handle_pending(os_context_t *context)
376 struct thread *thread;
377 struct interrupt_data *data;
379 FSHOW_SIGNAL((stderr, "/entering interrupt_handle_pending\n"));
381 check_blockables_blocked_or_lose();
382 thread=arch_os_get_current_thread();
383 data=thread->interrupt_data;
385 /* If pseudo_atomic_interrupted is set then the interrupt is going
386 * to be handled now, ergo it's safe to clear it. */
387 arch_clear_pseudo_atomic_interrupted(context);
389 if (SymbolValue(GC_INHIBIT,thread)==NIL) {
390 #ifdef LISP_FEATURE_SB_THREAD
391 if (SymbolValue(STOP_FOR_GC_PENDING,thread) != NIL) {
392 /* another thread has already initiated a gc, this attempt
393 * might as well be cancelled */
394 SetSymbolValue(GC_PENDING,NIL,thread);
395 SetSymbolValue(STOP_FOR_GC_PENDING,NIL,thread);
396 sig_stop_for_gc_handler(SIG_STOP_FOR_GC,NULL,context);
399 if (SymbolValue(GC_PENDING,thread) != NIL) {
400 /* GC_PENDING is cleared in SUB-GC, or if another thread
401 * is doing a gc already we will get a SIG_STOP_FOR_GC and
402 * that will clear it. */
403 interrupt_maybe_gc_int(0,NULL,context);
405 check_blockables_blocked_or_lose();
408 /* we may be here only to do the gc stuff, if interrupts are
409 * enabled run the pending handler */
410 if (!((SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) ||
412 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
413 (!foreign_function_call_active) &&
415 arch_pseudo_atomic_atomic(context)))) {
417 /* There may be no pending handler, because it was only a gc
418 * that had to be executed or because pseudo atomic triggered
419 * twice for a single interrupt. For the interested reader,
420 * that may happen if an interrupt hits after the interrupted
421 * flag is cleared but before pseduo-atomic is set and a
422 * pseudo atomic is interrupted in that interrupt. */
423 if (data->pending_handler) {
425 /* If we're here as the result of a pseudo-atomic as opposed
426 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
427 * NIL, because maybe_defer_handler sets
428 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
429 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
431 #ifndef LISP_FEATURE_WIN32
432 /* restore the saved signal mask from the original signal (the
433 * one that interrupted us during the critical section) into the
434 * os_context for the signal we're currently in the handler for.
435 * This should ensure that when we return from the handler the
436 * blocked signals are unblocked */
437 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
439 sigemptyset(&data->pending_mask);
441 /* This will break on sparc linux: the deferred handler really wants
442 * to be called with a void_context */
443 run_deferred_handler(data,(void *)context);
449 * the two main signal handlers:
450 * interrupt_handle_now(..)
451 * maybe_now_maybe_later(..)
453 * to which we have added interrupt_handle_now_handler(..). Why?
454 * Well, mostly because the SPARC/Linux platform doesn't quite do
455 * signals the way we want them done. The third argument in the
456 * handler isn't filled in by the kernel properly, so we fix it up
457 * ourselves in the arch_os_get_context(..) function; however, we only
458 * want to do this when we first hit the handler, and not when
459 * interrupt_handle_now(..) is being called from some other handler
460 * (when the fixup will already have been done). -- CSR, 2002-07-23
464 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
466 os_context_t *context = (os_context_t*)void_context;
467 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
468 boolean were_in_lisp;
470 union interrupt_handler handler;
472 check_blockables_blocked_or_lose();
475 #ifndef LISP_FEATURE_WIN32
476 if (sigismember(&deferrable_sigset,signal))
477 check_interrupts_enabled_or_lose(context);
480 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
481 /* Under Linux on some architectures, we appear to have to restore
482 the FPU control word from the context, as after the signal is
483 delivered we appear to have a null FPU control word. */
484 os_restore_fp_control(context);
488 handler = interrupt_handlers[signal];
490 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
494 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
495 were_in_lisp = !foreign_function_call_active;
499 fake_foreign_function_call(context);
502 FSHOW_SIGNAL((stderr,
503 "/entering interrupt_handle_now(%d, info, context)\n",
506 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
508 /* This can happen if someone tries to ignore or default one
509 * of the signals we need for runtime support, and the runtime
510 * support decides to pass on it. */
511 lose("no handler for signal %d in interrupt_handle_now(..)\n", signal);
513 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
514 /* Once we've decided what to do about contexts in a
515 * return-elsewhere world (the original context will no longer
516 * be available; should we copy it or was nobody using it anyway?)
517 * then we should convert this to return-elsewhere */
519 /* CMUCL comment said "Allocate the SAPs while the interrupts
520 * are still disabled.". I (dan, 2003.08.21) assume this is
521 * because we're not in pseudoatomic and allocation shouldn't
522 * be interrupted. In which case it's no longer an issue as
523 * all our allocation from C now goes through a PA wrapper,
524 * but still, doesn't hurt.
526 * Yeah, but non-gencgc platforms don't really wrap allocation
527 * in PA. MG - 2005-08-29 */
529 lispobj info_sap,context_sap = alloc_sap(context);
530 info_sap = alloc_sap(info);
531 /* Leave deferrable signals blocked, the handler itself will
532 * allow signals again when it sees fit. */
533 #ifdef LISP_FEATURE_SB_THREAD
536 sigemptyset(&unblock);
537 sigaddset(&unblock, SIG_STOP_FOR_GC);
538 #ifdef SIG_RESUME_FROM_GC
539 sigaddset(&unblock, SIG_RESUME_FROM_GC);
541 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
545 FSHOW_SIGNAL((stderr,"/calling Lisp-level handler\n"));
547 funcall3(handler.lisp,
553 FSHOW_SIGNAL((stderr,"/calling C-level handler\n"));
555 #ifndef LISP_FEATURE_WIN32
556 /* Allow signals again. */
557 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
560 (*handler.c)(signal, info, void_context);
563 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
567 undo_fake_foreign_function_call(context); /* block signals again */
570 FSHOW_SIGNAL((stderr,
571 "/returning from interrupt_handle_now(%d, info, context)\n",
575 /* This is called at the end of a critical section if the indications
576 * are that some signal was deferred during the section. Note that as
577 * far as C or the kernel is concerned we dealt with the signal
578 * already; we're just doing the Lisp-level processing now that we
581 run_deferred_handler(struct interrupt_data *data, void *v_context) {
582 /* The pending_handler may enable interrupts and then another
583 * interrupt may hit, overwrite interrupt_data, so reset the
584 * pending handler before calling it. Trust the handler to finish
585 * with the siginfo before enabling interrupts. */
586 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
587 os_context_t *context = arch_os_get_context(&v_context);
589 data->pending_handler=0;
590 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
593 #ifndef LISP_FEATURE_WIN32
595 maybe_defer_handler(void *handler, struct interrupt_data *data,
596 int signal, siginfo_t *info, os_context_t *context)
598 struct thread *thread=arch_os_get_current_thread();
600 check_blockables_blocked_or_lose();
602 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
603 lose("interrupt already pending\n");
604 /* If interrupts are disabled then INTERRUPT_PENDING is set and
605 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
606 * atomic section inside a WITHOUT-INTERRUPTS.
608 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
609 store_signal_data_for_later(data,handler,signal,info,context);
610 SetSymbolValue(INTERRUPT_PENDING, T,thread);
611 FSHOW_SIGNAL((stderr,
612 "/maybe_defer_handler(%x,%d),thread=%lu: deferred\n",
613 (unsigned int)handler,signal,
614 (unsigned long)thread->os_thread));
617 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
618 * actually use its argument for anything on x86, so this branch
619 * may succeed even when context is null (gencgc alloc()) */
621 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
622 /* FIXME: this foreign_function_call_active test is dubious at
623 * best. If a foreign call is made in a pseudo atomic section
624 * (?) or more likely a pseudo atomic section is in a foreign
625 * call then an interrupt is executed immediately. Maybe it
626 * has to do with C code not maintaining pseudo atomic
627 * properly. MG - 2005-08-10 */
628 (!foreign_function_call_active) &&
630 arch_pseudo_atomic_atomic(context)) {
631 store_signal_data_for_later(data,handler,signal,info,context);
632 arch_set_pseudo_atomic_interrupted(context);
633 FSHOW_SIGNAL((stderr,
634 "/maybe_defer_handler(%x,%d),thread=%lu: deferred(PA)\n",
635 (unsigned int)handler,signal,
636 (unsigned long)thread->os_thread));
639 FSHOW_SIGNAL((stderr,
640 "/maybe_defer_handler(%x,%d),thread=%lu: not deferred\n",
641 (unsigned int)handler,signal,
642 (unsigned long)thread->os_thread));
647 store_signal_data_for_later (struct interrupt_data *data, void *handler,
649 siginfo_t *info, os_context_t *context)
651 if (data->pending_handler)
652 lose("tried to overwrite pending interrupt handler %x with %x\n",
653 data->pending_handler, handler);
655 lose("tried to defer null interrupt handler\n");
656 data->pending_handler = handler;
657 data->pending_signal = signal;
659 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
661 FSHOW_SIGNAL((stderr, "/store_signal_data_for_later: signal: %d\n", signal));
664 /* the signal mask in the context (from before we were
665 * interrupted) is copied to be restored when
666 * run_deferred_handler happens. Then the usually-blocked
667 * signals are added to the mask in the context so that we are
668 * running with blocked signals when the handler returns */
669 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
670 sigaddset_deferrable(os_context_sigmask_addr(context));
675 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
677 os_context_t *context = arch_os_get_context(&void_context);
679 struct thread *thread;
680 struct interrupt_data *data;
682 thread=arch_os_get_current_thread();
683 data=thread->interrupt_data;
685 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
686 os_restore_fp_control(context);
689 if(maybe_defer_handler(interrupt_handle_now,data,signal,info,context))
691 interrupt_handle_now(signal, info, context);
692 #ifdef LISP_FEATURE_DARWIN
693 /* Work around G5 bug */
694 DARWIN_FIX_CONTEXT(context);
699 low_level_interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
701 os_context_t *context = (os_context_t*)void_context;
703 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
704 os_restore_fp_control(context);
707 check_blockables_blocked_or_lose();
708 check_interrupts_enabled_or_lose(context);
709 interrupt_low_level_handlers[signal](signal, info, void_context);
710 #ifdef LISP_FEATURE_DARWIN
711 /* Work around G5 bug */
712 DARWIN_FIX_CONTEXT(context);
717 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
719 os_context_t *context = arch_os_get_context(&void_context);
720 struct thread *thread;
721 struct interrupt_data *data;
723 thread=arch_os_get_current_thread();
724 data=thread->interrupt_data;
726 #if defined(LISP_FEATURE_LINUX) || defined(RESTORE_FP_CONTROL_FROM_CONTEXT)
727 os_restore_fp_control(context);
730 if(maybe_defer_handler(low_level_interrupt_handle_now,data,
731 signal,info,context))
733 low_level_interrupt_handle_now(signal, info, context);
734 #ifdef LISP_FEATURE_DARWIN
735 /* Work around G5 bug */
736 DARWIN_FIX_CONTEXT(context);
741 #ifdef LISP_FEATURE_SB_THREAD
744 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
746 os_context_t *context = arch_os_get_context(&void_context);
748 struct thread *thread=arch_os_get_current_thread();
751 if ((arch_pseudo_atomic_atomic(context) ||
752 SymbolValue(GC_INHIBIT,thread) != NIL)) {
753 SetSymbolValue(STOP_FOR_GC_PENDING,T,thread);
754 if (SymbolValue(GC_INHIBIT,thread) == NIL)
755 arch_set_pseudo_atomic_interrupted(context);
756 FSHOW_SIGNAL((stderr,"thread=%lu sig_stop_for_gc deferred\n",
759 /* need the context stored so it can have registers scavenged */
760 fake_foreign_function_call(context);
762 sigfillset(&ss); /* Block everything. */
763 thread_sigmask(SIG_BLOCK,&ss,0);
765 if(thread->state!=STATE_RUNNING) {
766 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
767 fixnum_value(thread->state));
769 thread->state=STATE_SUSPENDED;
770 FSHOW_SIGNAL((stderr,"thread=%lu suspended\n",thread->os_thread));
772 #if defined(SIG_RESUME_FROM_GC)
773 sigemptyset(&ss); sigaddset(&ss,SIG_RESUME_FROM_GC);
775 sigemptyset(&ss); sigaddset(&ss,SIG_STOP_FOR_GC);
778 /* It is possible to get SIGCONT (and probably other
779 * non-blockable signals) here. */
780 #ifdef SIG_RESUME_FROM_GC
783 do { sigwait(&ss, &sigret); }
784 while (sigret != SIG_RESUME_FROM_GC);
787 while (sigwaitinfo(&ss,0) != SIG_STOP_FOR_GC);
790 FSHOW_SIGNAL((stderr,"thread=%lu resumed\n",thread->os_thread));
791 if(thread->state!=STATE_RUNNING) {
792 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
793 fixnum_value(thread->state));
796 undo_fake_foreign_function_call(context);
802 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
804 os_context_t *context = arch_os_get_context(&void_context);
805 interrupt_handle_now(signal, info, context);
806 #ifdef LISP_FEATURE_DARWIN
807 DARWIN_FIX_CONTEXT(context);
812 * stuff to detect and handle hitting the GC trigger
815 #ifndef LISP_FEATURE_GENCGC
816 /* since GENCGC has its own way to record trigger */
818 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
820 if (current_auto_gc_trigger == NULL)
823 void *badaddr=arch_get_bad_addr(signal,info,context);
824 return (badaddr >= (void *)current_auto_gc_trigger &&
825 badaddr <((void *)current_dynamic_space + dynamic_space_size));
830 /* manipulate the signal context and stack such that when the handler
831 * returns, it will call function instead of whatever it was doing
835 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
836 extern int *context_eflags_addr(os_context_t *context);
839 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
840 extern void post_signal_tramp(void);
841 extern void call_into_lisp_tramp(void);
843 arrange_return_to_lisp_function(os_context_t *context, lispobj function)
845 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
846 void * fun=native_pointer(function);
847 void *code = &(((struct simple_fun *) fun)->code);
850 /* Build a stack frame showing `interrupted' so that the
851 * user's backtrace makes (as much) sense (as usual) */
853 /* FIXME: what about restoring fp state? */
854 /* FIXME: what about restoring errno? */
855 #ifdef LISP_FEATURE_X86
856 /* Suppose the existence of some function that saved all
857 * registers, called call_into_lisp, then restored GP registers and
858 * returned. It would look something like this:
866 pushl {address of function to call}
867 call 0x8058db0 <call_into_lisp>
874 * What we do here is set up the stack that call_into_lisp would
875 * expect to see if it had been called by this code, and frob the
876 * signal context so that signal return goes directly to call_into_lisp,
877 * and when that function (and the lisp function it invoked) returns,
878 * it returns to the second half of this imaginary function which
879 * restores all registers and returns to C
881 * For this to work, the latter part of the imaginary function
882 * must obviously exist in reality. That would be post_signal_tramp
885 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
887 #if defined(LISP_FEATURE_DARWIN)
888 u32 *register_save_area = (u32 *)os_validate(0, 0x40);
890 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: preparing to go to function %x, sp: %x\n", function, sp));
891 FSHOW_SIGNAL((stderr, "/arrange_return_to_lisp_function: context: %x, &context %x\n", context, &context));
893 /* 1. os_validate (malloc/mmap) register_save_block
894 * 2. copy register state into register_save_block
895 * 3. put a pointer to register_save_block in a register in the context
896 * 4. set the context's EIP to point to a trampoline which:
897 * a. builds the fake stack frame from the block
899 * c. calls the function
902 *register_save_area = *os_context_pc_addr(context);
903 *(register_save_area + 1) = function;
904 *(register_save_area + 2) = *os_context_register_addr(context,reg_EDI);
905 *(register_save_area + 3) = *os_context_register_addr(context,reg_ESI);
906 *(register_save_area + 4) = *os_context_register_addr(context,reg_EDX);
907 *(register_save_area + 5) = *os_context_register_addr(context,reg_ECX);
908 *(register_save_area + 6) = *os_context_register_addr(context,reg_EBX);
909 *(register_save_area + 7) = *os_context_register_addr(context,reg_EAX);
910 *(register_save_area + 8) = *context_eflags_addr(context);
912 *os_context_pc_addr(context) = call_into_lisp_tramp;
913 *os_context_register_addr(context,reg_ECX) = register_save_area;
916 /* return address for call_into_lisp: */
917 *(sp-15) = (u32)post_signal_tramp;
918 *(sp-14) = function; /* args for call_into_lisp : function*/
919 *(sp-13) = 0; /* arg array */
920 *(sp-12) = 0; /* no. args */
921 /* this order matches that used in POPAD */
922 *(sp-11)=*os_context_register_addr(context,reg_EDI);
923 *(sp-10)=*os_context_register_addr(context,reg_ESI);
925 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
926 /* POPAD ignores the value of ESP: */
928 *(sp-7)=*os_context_register_addr(context,reg_EBX);
930 *(sp-6)=*os_context_register_addr(context,reg_EDX);
931 *(sp-5)=*os_context_register_addr(context,reg_ECX);
932 *(sp-4)=*os_context_register_addr(context,reg_EAX);
933 *(sp-3)=*context_eflags_addr(context);
934 *(sp-2)=*os_context_register_addr(context,reg_EBP);
935 *(sp-1)=*os_context_pc_addr(context);
939 #elif defined(LISP_FEATURE_X86_64)
940 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
941 /* return address for call_into_lisp: */
942 *(sp-18) = (u64)post_signal_tramp;
944 *(sp-17)=*os_context_register_addr(context,reg_R15);
945 *(sp-16)=*os_context_register_addr(context,reg_R14);
946 *(sp-15)=*os_context_register_addr(context,reg_R13);
947 *(sp-14)=*os_context_register_addr(context,reg_R12);
948 *(sp-13)=*os_context_register_addr(context,reg_R11);
949 *(sp-12)=*os_context_register_addr(context,reg_R10);
950 *(sp-11)=*os_context_register_addr(context,reg_R9);
951 *(sp-10)=*os_context_register_addr(context,reg_R8);
952 *(sp-9)=*os_context_register_addr(context,reg_RDI);
953 *(sp-8)=*os_context_register_addr(context,reg_RSI);
954 /* skip RBP and RSP */
955 *(sp-7)=*os_context_register_addr(context,reg_RBX);
956 *(sp-6)=*os_context_register_addr(context,reg_RDX);
957 *(sp-5)=*os_context_register_addr(context,reg_RCX);
958 *(sp-4)=*os_context_register_addr(context,reg_RAX);
959 *(sp-3)=*context_eflags_addr(context);
960 *(sp-2)=*os_context_register_addr(context,reg_RBP);
961 *(sp-1)=*os_context_pc_addr(context);
963 *os_context_register_addr(context,reg_RDI) =
964 (os_context_register_t)function; /* function */
965 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
966 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
968 struct thread *th=arch_os_get_current_thread();
969 build_fake_control_stack_frames(th,context);
972 #ifdef LISP_FEATURE_X86
974 #if !defined(LISP_FEATURE_DARWIN)
975 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
976 *os_context_register_addr(context,reg_ECX) = 0;
977 *os_context_register_addr(context,reg_EBP) = (os_context_register_t)(sp-2);
979 *os_context_register_addr(context,reg_UESP) =
980 (os_context_register_t)(sp-15);
982 *os_context_register_addr(context,reg_ESP) = (os_context_register_t)(sp-15);
983 #endif /* __NETBSD__ */
984 #endif /* LISP_FEATURE_DARWIN */
986 #elif defined(LISP_FEATURE_X86_64)
987 *os_context_pc_addr(context) = (os_context_register_t)call_into_lisp;
988 *os_context_register_addr(context,reg_RCX) = 0;
989 *os_context_register_addr(context,reg_RBP) = (os_context_register_t)(sp-2);
990 *os_context_register_addr(context,reg_RSP) = (os_context_register_t)(sp-18);
992 /* this much of the calling convention is common to all
994 *os_context_pc_addr(context) = (os_context_register_t)(unsigned long)code;
995 *os_context_register_addr(context,reg_NARGS) = 0;
996 *os_context_register_addr(context,reg_LIP) =
997 (os_context_register_t)(unsigned long)code;
998 *os_context_register_addr(context,reg_CFP) =
999 (os_context_register_t)(unsigned long)current_control_frame_pointer;
1001 #ifdef ARCH_HAS_NPC_REGISTER
1002 *os_context_npc_addr(context) =
1003 4 + *os_context_pc_addr(context);
1005 #ifdef LISP_FEATURE_SPARC
1006 *os_context_register_addr(context,reg_CODE) =
1007 (os_context_register_t)(fun + FUN_POINTER_LOWTAG);
1011 #ifdef LISP_FEATURE_SB_THREAD
1013 /* FIXME: this function can go away when all lisp handlers are invoked
1014 * via arrange_return_to_lisp_function. */
1016 interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
1018 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
1020 /* let the handler enable interrupts again when it sees fit */
1021 sigaddset_deferrable(os_context_sigmask_addr(context));
1022 arrange_return_to_lisp_function(context, SymbolFunction(RUN_INTERRUPTION));
1027 /* KLUDGE: Theoretically the approach we use for undefined alien
1028 * variables should work for functions as well, but on PPC/Darwin
1029 * we get bus error at bogus addresses instead, hence this workaround,
1030 * that has the added benefit of automatically discriminating between
1031 * functions and variables.
1034 undefined_alien_function() {
1035 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
1039 handle_guard_page_triggered(os_context_t *context,os_vm_address_t addr)
1041 struct thread *th=arch_os_get_current_thread();
1043 /* note the os_context hackery here. When the signal handler returns,
1044 * it won't go back to what it was doing ... */
1045 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
1046 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
1047 /* We hit the end of the control stack: disable guard page
1048 * protection so the error handler has some headroom, protect the
1049 * previous page so that we can catch returns from the guard page
1050 * and restore it. */
1051 protect_control_stack_guard_page(0);
1052 protect_control_stack_return_guard_page(1);
1054 arrange_return_to_lisp_function
1055 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
1058 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
1059 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
1060 /* We're returning from the guard page: reprotect it, and
1061 * unprotect this one. This works even if we somehow missed
1062 * the return-guard-page, and hit it on our way to new
1063 * exhaustion instead. */
1064 protect_control_stack_guard_page(1);
1065 protect_control_stack_return_guard_page(0);
1068 else if (addr >= undefined_alien_address &&
1069 addr < undefined_alien_address + os_vm_page_size) {
1070 arrange_return_to_lisp_function
1071 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
1077 #ifndef LISP_FEATURE_GENCGC
1078 /* This function gets called from the SIGSEGV (for e.g. Linux, NetBSD, &
1079 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
1080 * whether the signal was due to treading on the mprotect()ed zone -
1081 * and if so, arrange for a GC to happen. */
1082 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
1085 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
1087 os_context_t *context=(os_context_t *) void_context;
1089 if(!foreign_function_call_active && gc_trigger_hit(signal, info, context)){
1090 struct thread *thread=arch_os_get_current_thread();
1091 clear_auto_gc_trigger();
1092 /* Don't flood the system with interrupts if the need to gc is
1093 * already noted. This can happen for example when SUB-GC
1094 * allocates or after a gc triggered in a WITHOUT-GCING. */
1095 if (SymbolValue(GC_PENDING,thread) == NIL) {
1096 if (SymbolValue(GC_INHIBIT,thread) == NIL) {
1097 if (arch_pseudo_atomic_atomic(context)) {
1098 /* set things up so that GC happens when we finish
1100 SetSymbolValue(GC_PENDING,T,thread);
1101 arch_set_pseudo_atomic_interrupted(context);
1103 interrupt_maybe_gc_int(signal,info,void_context);
1106 SetSymbolValue(GC_PENDING,T,thread);
1116 /* this is also used by gencgc, in alloc() */
1118 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
1120 os_context_t *context=(os_context_t *) void_context;
1121 #ifndef LISP_FEATURE_WIN32
1122 struct thread *thread=arch_os_get_current_thread();
1125 fake_foreign_function_call(context);
1127 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
1128 * which case we will be running with no gc trigger barrier
1129 * thing for a while. But it shouldn't be long until the end
1132 * FIXME: It would be good to protect the end of dynamic space
1133 * and signal a storage condition from there.
1136 /* Restore the signal mask from the interrupted context before
1137 * calling into Lisp if interrupts are enabled. Why not always?
1139 * Suppose there is a WITHOUT-INTERRUPTS block far, far out. If an
1140 * interrupt hits while in SUB-GC, it is deferred and the
1141 * os_context_sigmask of that interrupt is set to block further
1142 * deferrable interrupts (until the first one is
1143 * handled). Unfortunately, that context refers to this place and
1144 * when we return from here the signals will not be blocked.
1146 * A kludgy alternative is to propagate the sigmask change to the
1149 #ifndef LISP_FEATURE_WIN32
1150 if(SymbolValue(INTERRUPTS_ENABLED,thread)!=NIL)
1151 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
1152 #ifdef LISP_FEATURE_SB_THREAD
1156 #if defined(SIG_RESUME_FROM_GC)
1157 sigaddset(&new,SIG_RESUME_FROM_GC);
1159 sigaddset(&new,SIG_STOP_FOR_GC);
1160 thread_sigmask(SIG_UNBLOCK,&new,0);
1164 funcall0(SymbolFunction(SUB_GC));
1166 undo_fake_foreign_function_call(context);
1172 * noise to install handlers
1175 #ifndef LISP_FEATURE_WIN32
1176 /* In Linux 2.4 synchronous signals (sigtrap & co) can be delivered if
1177 * they are blocked, in Linux 2.6 the default handler is invoked
1178 * instead that usually coredumps. One might hastily think that adding
1179 * SA_NODEFER helps, but until ~2.6.13 if SA_NODEFER is specified then
1180 * the whole sa_mask is ignored and instead of not adding the signal
1181 * in question to the mask. That means if it's not blockable the
1182 * signal must be unblocked at the beginning of signal handlers.
1184 * It turns out that NetBSD's SA_NODEFER doesn't DTRT in a different
1185 * way: if SA_NODEFER is set and the signal is in sa_mask, the signal
1186 * will be unblocked in the sigmask during the signal handler. -- RMK
1189 static volatile int sigaction_nodefer_works = -1;
1191 #define SA_NODEFER_TEST_BLOCK_SIGNAL SIGABRT
1192 #define SA_NODEFER_TEST_KILL_SIGNAL SIGUSR1
1195 sigaction_nodefer_test_handler(int signal, siginfo_t *info, void *void_context)
1197 sigset_t empty, current;
1199 sigemptyset(&empty);
1200 thread_sigmask(SIG_BLOCK, &empty, ¤t);
1201 /* There should be exactly two blocked signals: the two we added
1202 * to sa_mask when setting up the handler. NetBSD doesn't block
1203 * the signal we're handling when SA_NODEFER is set; Linux before
1204 * 2.6.13 or so also doesn't block the other signal when
1205 * SA_NODEFER is set. */
1206 for(i = 1; i < NSIG; i++)
1207 if (sigismember(¤t, i) !=
1208 (((i == SA_NODEFER_TEST_BLOCK_SIGNAL) || (i == signal)) ? 1 : 0)) {
1209 FSHOW_SIGNAL((stderr, "SA_NODEFER doesn't work, signal %d\n", i));
1210 sigaction_nodefer_works = 0;
1212 if (sigaction_nodefer_works == -1)
1213 sigaction_nodefer_works = 1;
1217 see_if_sigaction_nodefer_works()
1219 struct sigaction sa, old_sa;
1221 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
1222 sa.sa_sigaction = sigaction_nodefer_test_handler;
1223 sigemptyset(&sa.sa_mask);
1224 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_BLOCK_SIGNAL);
1225 sigaddset(&sa.sa_mask, SA_NODEFER_TEST_KILL_SIGNAL);
1226 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &sa, &old_sa);
1227 /* Make sure no signals are blocked. */
1230 sigemptyset(&empty);
1231 thread_sigmask(SIG_SETMASK, &empty, 0);
1233 kill(getpid(), SA_NODEFER_TEST_KILL_SIGNAL);
1234 while (sigaction_nodefer_works == -1);
1235 sigaction(SA_NODEFER_TEST_KILL_SIGNAL, &old_sa, NULL);
1238 #undef SA_NODEFER_TEST_BLOCK_SIGNAL
1239 #undef SA_NODEFER_TEST_KILL_SIGNAL
1242 unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1246 sigemptyset(&unblock);
1247 sigaddset(&unblock, signal);
1248 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1249 interrupt_handle_now_handler(signal, info, void_context);
1253 low_level_unblock_me_trampoline(int signal, siginfo_t *info, void *void_context)
1257 sigemptyset(&unblock);
1258 sigaddset(&unblock, signal);
1259 thread_sigmask(SIG_UNBLOCK, &unblock, 0);
1260 (*interrupt_low_level_handlers[signal])(signal, info, void_context);
1264 undoably_install_low_level_interrupt_handler (int signal,
1269 struct sigaction sa;
1271 if (0 > signal || signal >= NSIG) {
1272 lose("bad signal number %d\n", signal);
1275 if (ARE_SAME_HANDLER(handler, SIG_DFL))
1276 sa.sa_sigaction = handler;
1277 else if (sigismember(&deferrable_sigset,signal))
1278 sa.sa_sigaction = low_level_maybe_now_maybe_later;
1279 /* The use of a trampoline appears to break the
1280 arch_os_get_context() workaround for SPARC/Linux. For now,
1281 don't use the trampoline (and so be vulnerable to the problems
1282 that SA_NODEFER is meant to solve. */
1283 #if !(defined(LISP_FEATURE_SPARC) && defined(LISP_FEATURE_LINUX))
1284 else if (!sigaction_nodefer_works &&
1285 !sigismember(&blockable_sigset, signal))
1286 sa.sa_sigaction = low_level_unblock_me_trampoline;
1289 sa.sa_sigaction = handler;
1291 sigcopyset(&sa.sa_mask, &blockable_sigset);
1292 sa.sa_flags = SA_SIGINFO | SA_RESTART
1293 | (sigaction_nodefer_works ? SA_NODEFER : 0);
1294 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
1295 if((signal==SIG_MEMORY_FAULT)
1296 #ifdef SIG_MEMORY_FAULT2
1297 || (signal==SIG_MEMORY_FAULT2)
1299 #ifdef SIG_INTERRUPT_THREAD
1300 || (signal==SIG_INTERRUPT_THREAD)
1303 sa.sa_flags |= SA_ONSTACK;
1306 sigaction(signal, &sa, NULL);
1307 interrupt_low_level_handlers[signal] =
1308 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1312 /* This is called from Lisp. */
1314 install_handler(int signal, void handler(int, siginfo_t*, void*))
1316 #ifndef LISP_FEATURE_WIN32
1317 struct sigaction sa;
1319 union interrupt_handler oldhandler;
1321 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1324 sigaddset(&new, signal);
1325 thread_sigmask(SIG_BLOCK, &new, &old);
1327 FSHOW((stderr, "/interrupt_low_level_handlers[signal]=%x\n",
1328 (unsigned int)interrupt_low_level_handlers[signal]));
1329 if (interrupt_low_level_handlers[signal]==0) {
1330 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1331 ARE_SAME_HANDLER(handler, SIG_IGN))
1332 sa.sa_sigaction = handler;
1333 else if (sigismember(&deferrable_sigset, signal))
1334 sa.sa_sigaction = maybe_now_maybe_later;
1335 else if (!sigaction_nodefer_works &&
1336 !sigismember(&blockable_sigset, signal))
1337 sa.sa_sigaction = unblock_me_trampoline;
1339 sa.sa_sigaction = interrupt_handle_now_handler;
1341 sigcopyset(&sa.sa_mask, &blockable_sigset);
1342 sa.sa_flags = SA_SIGINFO | SA_RESTART |
1343 (sigaction_nodefer_works ? SA_NODEFER : 0);
1344 sigaction(signal, &sa, NULL);
1347 oldhandler = interrupt_handlers[signal];
1348 interrupt_handlers[signal].c = handler;
1350 thread_sigmask(SIG_SETMASK, &old, 0);
1352 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1354 return (unsigned long)oldhandler.lisp;
1356 /* Probably-wrong Win32 hack */
1364 #ifndef LISP_FEATURE_WIN32
1366 SHOW("entering interrupt_init()");
1367 see_if_sigaction_nodefer_works();
1368 sigemptyset(&deferrable_sigset);
1369 sigemptyset(&blockable_sigset);
1370 sigaddset_deferrable(&deferrable_sigset);
1371 sigaddset_blockable(&blockable_sigset);
1373 /* Set up high level handler information. */
1374 for (i = 0; i < NSIG; i++) {
1375 interrupt_handlers[i].c =
1376 /* (The cast here blasts away the distinction between
1377 * SA_SIGACTION-style three-argument handlers and
1378 * signal(..)-style one-argument handlers, which is OK
1379 * because it works to call the 1-argument form where the
1380 * 3-argument form is expected.) */
1381 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1384 SHOW("returning from interrupt_init()");
1388 #ifndef LISP_FEATURE_WIN32
1390 siginfo_code(siginfo_t *info)
1392 return info->si_code;
1394 os_vm_address_t current_memory_fault_address;
1397 lisp_memory_fault_error(os_context_t *context, os_vm_address_t addr)
1399 /* FIXME: This is lossy: if we get another memory fault (eg. from
1400 * another thread) before lisp has read this, we the information.
1401 * However, since this is mostly informative, we'll live with that for
1402 * now -- some address is better then no address in this case.
1404 current_memory_fault_address = addr;
1405 arrange_return_to_lisp_function(context, SymbolFunction(MEMORY_FAULT_ERROR));