2 * interrupt-handling magic
6 * This software is part of the SBCL system. See the README file for
9 * This software is derived from the CMU CL system, which was
10 * written at Carnegie Mellon University and released into the
11 * public domain. The software is in the public domain and is
12 * provided with absolutely no warranty. See the COPYING and CREDITS
13 * files for more information.
17 /* As far as I can tell, what's going on here is:
19 * In the case of most signals, when Lisp asks us to handle the
20 * signal, the outermost handler (the one actually passed to UNIX) is
21 * either interrupt_handle_now(..) or maybe_now_maybe_later(..).
22 * In that case, the Lisp-level handler is stored in interrupt_handlers[..]
23 * and interrupt_low_level_handlers[..] is cleared.
25 * However, some signals need special handling, e.g.
27 * o the SIGSEGV (for e.g. Linux) or SIGBUS (for e.g. FreeBSD) used by the
28 * garbage collector to detect violations of write protection,
29 * because some cases of such signals (e.g. GC-related violations of
30 * write protection) are handled at C level and never passed on to
31 * Lisp. For such signals, we still store any Lisp-level handler
32 * in interrupt_handlers[..], but for the outermost handle we use
33 * the value from interrupt_low_level_handlers[..], instead of the
34 * ordinary interrupt_handle_now(..) or interrupt_handle_later(..).
36 * o the SIGTRAP (Linux/Alpha) which Lisp code uses to handle breakpoints,
37 * pseudo-atomic sections, and some classes of error (e.g. "function
38 * not defined"). This never goes anywhere near the Lisp handlers at all.
39 * See runtime/alpha-arch.c and code/signal.lisp
41 * - WHN 20000728, dan 20010128 */
48 #include <sys/types.h>
56 #include "interrupt.h"
65 #include "genesis/fdefn.h"
66 #include "genesis/simple-fun.h"
67 #include "genesis/cons.h"
71 void run_deferred_handler(struct interrupt_data *data, void *v_context) ;
72 static void store_signal_data_for_later (struct interrupt_data *data,
73 void *handler, int signal,
75 os_context_t *context);
76 boolean interrupt_maybe_gc_int(int signal, siginfo_t *info, void *v_context);
78 void sigaddset_blockable(sigset_t *s)
82 sigaddset(s, SIGQUIT);
83 sigaddset(s, SIGPIPE);
84 sigaddset(s, SIGALRM);
87 sigaddset(s, SIGTSTP);
88 sigaddset(s, SIGCHLD);
90 sigaddset(s, SIGXCPU);
91 sigaddset(s, SIGXFSZ);
92 sigaddset(s, SIGVTALRM);
93 sigaddset(s, SIGPROF);
94 sigaddset(s, SIGWINCH);
95 sigaddset(s, SIGUSR1);
96 sigaddset(s, SIGUSR2);
97 #ifdef LISP_FEATURE_SB_THREAD
98 sigaddset(s, SIG_STOP_FOR_GC);
99 sigaddset(s, SIG_INTERRUPT_THREAD);
103 static sigset_t blockable_sigset;
105 inline static void check_blockables_blocked_or_lose()
107 /* Get the current sigmask, by blocking the empty set. */
108 sigset_t empty,current;
111 thread_sigmask(SIG_BLOCK, &empty, ¤t);
112 for(i=0;i<NSIG;i++) {
113 if (sigismember(&blockable_sigset, i) && !sigismember(¤t, i))
114 lose("blockable signal %d not blocked",i);
118 inline static void check_interrupts_enabled_or_lose(os_context_t *context)
120 struct thread *thread=arch_os_get_current_thread();
121 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
122 lose("interrupts not enabled");
124 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
125 (!foreign_function_call_active) &&
127 arch_pseudo_atomic_atomic(context))
128 lose ("in pseudo atomic section");
131 /* When we catch an internal error, should we pass it back to Lisp to
132 * be handled in a high-level way? (Early in cold init, the answer is
133 * 'no', because Lisp is still too brain-dead to handle anything.
134 * After sufficient initialization has been completed, the answer
136 boolean internal_errors_enabled = 0;
138 struct interrupt_data * global_interrupt_data;
140 /* At the toplevel repl we routinely call this function. The signal
141 * mask ought to be clear anyway most of the time, but may be non-zero
142 * if we were interrupted e.g. while waiting for a queue. */
144 void reset_signal_mask ()
148 thread_sigmask(SIG_SETMASK,&new,0);
151 void block_blockable_signals ()
155 sigaddset_blockable(&block);
156 thread_sigmask(SIG_BLOCK, &block, 0);
161 * utility routines used by various signal handlers
165 build_fake_control_stack_frames(struct thread *th,os_context_t *context)
167 #ifndef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
171 /* Build a fake stack frame or frames */
173 current_control_frame_pointer =
174 (lispobj *)(*os_context_register_addr(context, reg_CSP));
175 if ((lispobj *)(*os_context_register_addr(context, reg_CFP))
176 == current_control_frame_pointer) {
177 /* There is a small window during call where the callee's
178 * frame isn't built yet. */
179 if (lowtag_of(*os_context_register_addr(context, reg_CODE))
180 == FUN_POINTER_LOWTAG) {
181 /* We have called, but not built the new frame, so
182 * build it for them. */
183 current_control_frame_pointer[0] =
184 *os_context_register_addr(context, reg_OCFP);
185 current_control_frame_pointer[1] =
186 *os_context_register_addr(context, reg_LRA);
187 current_control_frame_pointer += 8;
188 /* Build our frame on top of it. */
189 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
192 /* We haven't yet called, build our frame as if the
193 * partial frame wasn't there. */
194 oldcont = (lispobj)(*os_context_register_addr(context, reg_OCFP));
197 /* We can't tell whether we are still in the caller if it had to
198 * allocate a stack frame due to stack arguments. */
199 /* This observation provoked some past CMUCL maintainer to ask
200 * "Can anything strange happen during return?" */
203 oldcont = (lispobj)(*os_context_register_addr(context, reg_CFP));
206 current_control_stack_pointer = current_control_frame_pointer + 8;
208 current_control_frame_pointer[0] = oldcont;
209 current_control_frame_pointer[1] = NIL;
210 current_control_frame_pointer[2] =
211 (lispobj)(*os_context_register_addr(context, reg_CODE));
216 fake_foreign_function_call(os_context_t *context)
219 struct thread *thread=arch_os_get_current_thread();
221 /* context_index incrementing must not be interrupted */
222 check_blockables_blocked_or_lose();
224 /* Get current Lisp state from context. */
226 dynamic_space_free_pointer =
227 (lispobj *)(*os_context_register_addr(context, reg_ALLOC));
228 #if defined(LISP_FEATURE_ALPHA)
229 if ((long)dynamic_space_free_pointer & 1) {
230 lose("dead in fake_foreign_function_call, context = %x", context);
235 current_binding_stack_pointer =
236 (lispobj *)(*os_context_register_addr(context, reg_BSP));
239 build_fake_control_stack_frames(thread,context);
241 /* Do dynamic binding of the active interrupt context index
242 * and save the context in the context array. */
244 fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,thread));
246 if (context_index >= MAX_INTERRUPTS) {
247 lose("maximum interrupt nesting depth (%d) exceeded", MAX_INTERRUPTS);
250 bind_variable(FREE_INTERRUPT_CONTEXT_INDEX,
251 make_fixnum(context_index + 1),thread);
253 thread->interrupt_contexts[context_index] = context;
255 /* no longer in Lisp now */
256 foreign_function_call_active = 1;
259 /* blocks all blockable signals. If you are calling from a signal handler,
260 * the usual signal mask will be restored from the context when the handler
261 * finishes. Otherwise, be careful */
264 undo_fake_foreign_function_call(os_context_t *context)
266 struct thread *thread=arch_os_get_current_thread();
267 /* Block all blockable signals. */
268 block_blockable_signals();
270 /* going back into Lisp */
271 foreign_function_call_active = 0;
273 /* Undo dynamic binding of FREE_INTERRUPT_CONTEXT_INDEX */
277 /* Put the dynamic space free pointer back into the context. */
278 *os_context_register_addr(context, reg_ALLOC) =
279 (unsigned long) dynamic_space_free_pointer;
283 /* a handler for the signal caused by execution of a trap opcode
284 * signalling an internal error */
286 interrupt_internal_error(int signal, siginfo_t *info, os_context_t *context,
289 lispobj context_sap = 0;
291 check_blockables_blocked_or_lose();
292 fake_foreign_function_call(context);
294 /* Allocate the SAP object while the interrupts are still
296 if (internal_errors_enabled) {
297 context_sap = alloc_sap(context);
300 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
302 if (internal_errors_enabled) {
303 SHOW("in interrupt_internal_error");
305 /* Display some rudimentary debugging information about the
306 * error, so that even if the Lisp error handler gets badly
307 * confused, we have a chance to determine what's going on. */
308 describe_internal_error(context);
310 funcall2(SymbolFunction(INTERNAL_ERROR), context_sap,
311 continuable ? T : NIL);
313 describe_internal_error(context);
314 /* There's no good way to recover from an internal error
315 * before the Lisp error handling mechanism is set up. */
316 lose("internal error too early in init, can't recover");
318 undo_fake_foreign_function_call(context); /* blocks signals again */
320 arch_skip_instruction(context);
325 interrupt_handle_pending(os_context_t *context)
327 struct thread *thread;
328 struct interrupt_data *data;
330 check_blockables_blocked_or_lose();
331 check_interrupts_enabled_or_lose(context);
333 thread=arch_os_get_current_thread();
334 data=thread->interrupt_data;
336 /* Pseudo atomic may trigger several times for a single interrupt,
337 * and while without-interrupts should not, a false trigger by
338 * pseudo-atomic may eat a pending handler even from
339 * without-interrupts. */
340 if (data->pending_handler) {
342 /* If we're here as the result of a pseudo-atomic as opposed
343 * to WITHOUT-INTERRUPTS, then INTERRUPT_PENDING is already
344 * NIL, because maybe_defer_handler sets
345 * PSEUDO_ATOMIC_INTERRUPTED only if interrupts are enabled.*/
346 SetSymbolValue(INTERRUPT_PENDING, NIL,thread);
348 /* restore the saved signal mask from the original signal (the
349 * one that interrupted us during the critical section) into the
350 * os_context for the signal we're currently in the handler for.
351 * This should ensure that when we return from the handler the
352 * blocked signals are unblocked */
353 sigcopyset(os_context_sigmask_addr(context), &data->pending_mask);
355 sigemptyset(&data->pending_mask);
356 /* This will break on sparc linux: the deferred handler really wants
357 * to be called with a void_context */
358 run_deferred_handler(data,(void *)context);
363 * the two main signal handlers:
364 * interrupt_handle_now(..)
365 * maybe_now_maybe_later(..)
367 * to which we have added interrupt_handle_now_handler(..). Why?
368 * Well, mostly because the SPARC/Linux platform doesn't quite do
369 * signals the way we want them done. The third argument in the
370 * handler isn't filled in by the kernel properly, so we fix it up
371 * ourselves in the arch_os_get_context(..) function; however, we only
372 * want to do this when we first hit the handler, and not when
373 * interrupt_handle_now(..) is being called from some other handler
374 * (when the fixup will already have been done). -- CSR, 2002-07-23
378 interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
380 os_context_t *context = (os_context_t*)void_context;
381 struct thread *thread=arch_os_get_current_thread();
382 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
383 boolean were_in_lisp;
385 union interrupt_handler handler;
386 check_blockables_blocked_or_lose();
387 check_interrupts_enabled_or_lose(context);
389 #ifdef LISP_FEATURE_LINUX
390 /* Under Linux on some architectures, we appear to have to restore
391 the FPU control word from the context, as after the signal is
392 delivered we appear to have a null FPU control word. */
393 os_restore_fp_control(context);
395 handler = thread->interrupt_data->interrupt_handlers[signal];
397 if (ARE_SAME_HANDLER(handler.c, SIG_IGN)) {
401 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
402 were_in_lisp = !foreign_function_call_active;
406 fake_foreign_function_call(context);
411 "/entering interrupt_handle_now(%d, info, context)\n",
415 if (ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
417 /* This can happen if someone tries to ignore or default one
418 * of the signals we need for runtime support, and the runtime
419 * support decides to pass on it. */
420 lose("no handler for signal %d in interrupt_handle_now(..)", signal);
422 } else if (lowtag_of(handler.lisp) == FUN_POINTER_LOWTAG) {
423 /* Once we've decided what to do about contexts in a
424 * return-elsewhere world (the original context will no longer
425 * be available; should we copy it or was nobody using it anyway?)
426 * then we should convert this to return-elsewhere */
428 /* CMUCL comment said "Allocate the SAPs while the interrupts
429 * are still disabled.". I (dan, 2003.08.21) assume this is
430 * because we're not in pseudoatomic and allocation shouldn't
431 * be interrupted. In which case it's no longer an issue as
432 * all our allocation from C now goes through a PA wrapper,
433 * but still, doesn't hurt */
435 lispobj info_sap,context_sap = alloc_sap(context);
436 info_sap = alloc_sap(info);
437 /* Allow signals again. */
438 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
441 SHOW("calling Lisp-level handler");
444 funcall3(handler.lisp,
451 SHOW("calling C-level handler");
454 /* Allow signals again. */
455 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
457 (*handler.c)(signal, info, void_context);
460 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
464 undo_fake_foreign_function_call(context); /* block signals again */
469 "/returning from interrupt_handle_now(%d, info, context)\n",
474 /* This is called at the end of a critical section if the indications
475 * are that some signal was deferred during the section. Note that as
476 * far as C or the kernel is concerned we dealt with the signal
477 * already; we're just doing the Lisp-level processing now that we
481 run_deferred_handler(struct interrupt_data *data, void *v_context) {
482 /* The pending_handler may enable interrupts (see
483 * interrupt_maybe_gc_int) and then another interrupt may hit,
484 * overwrite interrupt_data, so reset the pending handler before
485 * calling it. Trust the handler to finish with the siginfo before
486 * enabling interrupts. */
487 void (*pending_handler) (int, siginfo_t*, void*)=data->pending_handler;
488 data->pending_handler=0;
489 (*pending_handler)(data->pending_signal,&(data->pending_info), v_context);
493 maybe_defer_handler(void *handler, struct interrupt_data *data,
494 int signal, siginfo_t *info, os_context_t *context)
496 struct thread *thread=arch_os_get_current_thread();
498 check_blockables_blocked_or_lose();
500 if (SymbolValue(INTERRUPT_PENDING,thread) != NIL)
501 lose("interrupt already pending");
502 /* If interrupts are disabled then INTERRUPT_PENDING is set and
503 * not PSEDUO_ATOMIC_INTERRUPTED. This is important for a pseudo
504 * atomic section inside a without-interrupts.
506 if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL) {
507 store_signal_data_for_later(data,handler,signal,info,context);
508 SetSymbolValue(INTERRUPT_PENDING, T,thread);
511 "/maybe_defer_handler(%x,%d),thread=%ld: deferred\n",
512 (unsigned int)handler,signal,thread->os_thread));
516 /* a slightly confusing test. arch_pseudo_atomic_atomic() doesn't
517 * actually use its argument for anything on x86, so this branch
518 * may succeed even when context is null (gencgc alloc()) */
520 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
521 (!foreign_function_call_active) &&
523 arch_pseudo_atomic_atomic(context)) {
524 store_signal_data_for_later(data,handler,signal,info,context);
525 arch_set_pseudo_atomic_interrupted(context);
528 "/maybe_defer_handler(%x,%d),thread=%ld: deferred(PA)\n",
529 (unsigned int)handler,signal,thread->os_thread));
535 "/maybe_defer_handler(%x,%d),thread=%ld: not deferred\n",
536 (unsigned int)handler,signal,thread->os_thread));
542 store_signal_data_for_later (struct interrupt_data *data, void *handler,
544 siginfo_t *info, os_context_t *context)
546 if (data->pending_handler)
547 lose("tried to overwrite pending interrupt handler %x with %x\n",
548 data->pending_handler, handler);
550 lose("tried to defer null interrupt handler\n");
551 data->pending_handler = handler;
552 data->pending_signal = signal;
554 memcpy(&(data->pending_info), info, sizeof(siginfo_t));
556 /* the signal mask in the context (from before we were
557 * interrupted) is copied to be restored when
558 * run_deferred_handler happens. Then the usually-blocked
559 * signals are added to the mask in the context so that we are
560 * running with blocked signals when the handler returns */
561 sigcopyset(&(data->pending_mask),os_context_sigmask_addr(context));
562 sigaddset_blockable(os_context_sigmask_addr(context));
567 maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
569 os_context_t *context = arch_os_get_context(&void_context);
570 struct thread *thread=arch_os_get_current_thread();
571 struct interrupt_data *data=thread->interrupt_data;
572 #ifdef LISP_FEATURE_LINUX
573 os_restore_fp_control(context);
575 if(maybe_defer_handler(interrupt_handle_now,data,
576 signal,info,context))
578 interrupt_handle_now(signal, info, context);
579 #ifdef LISP_FEATURE_DARWIN
580 /* Work around G5 bug */
581 DARWIN_FIX_CONTEXT(context);
586 low_level_interrupt_handle_now(int signal, siginfo_t *info, void *void_context)
588 os_context_t *context = (os_context_t*)void_context;
589 struct thread *thread=arch_os_get_current_thread();
591 #ifdef LISP_FEATURE_LINUX
592 os_restore_fp_control(context);
594 check_blockables_blocked_or_lose();
595 check_interrupts_enabled_or_lose(context);
596 (*thread->interrupt_data->interrupt_low_level_handlers[signal])
597 (signal, info, void_context);
598 #ifdef LISP_FEATURE_DARWIN
599 /* Work around G5 bug */
600 DARWIN_FIX_CONTEXT(context);
605 low_level_maybe_now_maybe_later(int signal, siginfo_t *info, void *void_context)
607 os_context_t *context = arch_os_get_context(&void_context);
608 struct thread *thread=arch_os_get_current_thread();
609 struct interrupt_data *data=thread->interrupt_data;
610 #ifdef LISP_FEATURE_LINUX
611 os_restore_fp_control(context);
613 if(maybe_defer_handler(low_level_interrupt_handle_now,data,
614 signal,info,context))
616 low_level_interrupt_handle_now(signal, info, context);
617 #ifdef LISP_FEATURE_DARWIN
618 /* Work around G5 bug */
619 DARWIN_FIX_CONTEXT(context);
623 #ifdef LISP_FEATURE_SB_THREAD
625 sig_stop_for_gc_handler(int signal, siginfo_t *info, void *void_context)
627 os_context_t *context = arch_os_get_context(&void_context);
628 struct thread *thread=arch_os_get_current_thread();
632 /* need the context stored so it can have registers scavenged */
633 fake_foreign_function_call(context);
636 for(i=1;i<NSIG;i++) sigaddset(&ss,i); /* Block everything. */
637 thread_sigmask(SIG_BLOCK,&ss,0);
639 /* The GC can't tell if a thread is a zombie, so this would be a
640 * good time to let the kernel reap any of our children in that
641 * awful state, to stop them from being waited for indefinitely.
642 * Userland reaping is done later when GC is finished */
643 if(thread->state!=STATE_RUNNING) {
644 lose("sig_stop_for_gc_handler: wrong thread state: %ld\n",
645 fixnum_value(thread->state));
647 thread->state=STATE_SUSPENDED;
649 sigemptyset(&ss); sigaddset(&ss,SIG_STOP_FOR_GC);
651 if(thread->state!=STATE_SUSPENDED) {
652 lose("sig_stop_for_gc_handler: wrong thread state on wakeup: %ld\n",
653 fixnum_value(thread->state));
655 thread->state=STATE_RUNNING;
657 undo_fake_foreign_function_call(context);
662 interrupt_handle_now_handler(int signal, siginfo_t *info, void *void_context)
664 os_context_t *context = arch_os_get_context(&void_context);
665 interrupt_handle_now(signal, info, context);
666 #ifdef LISP_FEATURE_DARWIN
667 DARWIN_FIX_CONTEXT(context);
672 * stuff to detect and handle hitting the GC trigger
675 #ifndef LISP_FEATURE_GENCGC
676 /* since GENCGC has its own way to record trigger */
678 gc_trigger_hit(int signal, siginfo_t *info, os_context_t *context)
680 if (current_auto_gc_trigger == NULL)
683 void *badaddr=arch_get_bad_addr(signal,info,context);
684 return (badaddr >= (void *)current_auto_gc_trigger &&
685 badaddr <((void *)current_dynamic_space + DYNAMIC_SPACE_SIZE));
690 /* manipulate the signal context and stack such that when the handler
691 * returns, it will call function instead of whatever it was doing
695 #if (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
696 int *context_eflags_addr(os_context_t *context);
699 extern lispobj call_into_lisp(lispobj fun, lispobj *args, int nargs);
700 extern void post_signal_tramp(void);
701 void arrange_return_to_lisp_function(os_context_t *context, lispobj function)
703 #if !(defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
704 void * fun=native_pointer(function);
705 void *code = &(((struct simple_fun *) fun)->code);
708 /* Build a stack frame showing `interrupted' so that the
709 * user's backtrace makes (as much) sense (as usual) */
711 /* FIXME: what about restoring fp state? */
712 /* FIXME: what about restoring errno? */
713 #ifdef LISP_FEATURE_X86
714 /* Suppose the existence of some function that saved all
715 * registers, called call_into_lisp, then restored GP registers and
716 * returned. It would look something like this:
724 pushl {address of function to call}
725 call 0x8058db0 <call_into_lisp>
732 * What we do here is set up the stack that call_into_lisp would
733 * expect to see if it had been called by this code, and frob the
734 * signal context so that signal return goes directly to call_into_lisp,
735 * and when that function (and the lisp function it invoked) returns,
736 * it returns to the second half of this imaginary function which
737 * restores all registers and returns to C
739 * For this to work, the latter part of the imaginary function
740 * must obviously exist in reality. That would be post_signal_tramp
743 u32 *sp=(u32 *)*os_context_register_addr(context,reg_ESP);
745 *(sp-15) = post_signal_tramp; /* return address for call_into_lisp */
746 *(sp-14) = function; /* args for call_into_lisp : function*/
747 *(sp-13) = 0; /* arg array */
748 *(sp-12) = 0; /* no. args */
749 /* this order matches that used in POPAD */
750 *(sp-11)=*os_context_register_addr(context,reg_EDI);
751 *(sp-10)=*os_context_register_addr(context,reg_ESI);
753 *(sp-9)=*os_context_register_addr(context,reg_ESP)-8;
754 /* POPAD ignores the value of ESP: */
756 *(sp-7)=*os_context_register_addr(context,reg_EBX);
758 *(sp-6)=*os_context_register_addr(context,reg_EDX);
759 *(sp-5)=*os_context_register_addr(context,reg_ECX);
760 *(sp-4)=*os_context_register_addr(context,reg_EAX);
761 *(sp-3)=*context_eflags_addr(context);
762 *(sp-2)=*os_context_register_addr(context,reg_EBP);
763 *(sp-1)=*os_context_pc_addr(context);
765 #elif defined(LISP_FEATURE_X86_64)
766 u64 *sp=(u64 *)*os_context_register_addr(context,reg_RSP);
767 *(sp-18) = post_signal_tramp; /* return address for call_into_lisp */
769 *(sp-17)=*os_context_register_addr(context,reg_R15);
770 *(sp-16)=*os_context_register_addr(context,reg_R14);
771 *(sp-15)=*os_context_register_addr(context,reg_R13);
772 *(sp-14)=*os_context_register_addr(context,reg_R12);
773 *(sp-13)=*os_context_register_addr(context,reg_R11);
774 *(sp-12)=*os_context_register_addr(context,reg_R10);
775 *(sp-11)=*os_context_register_addr(context,reg_R9);
776 *(sp-10)=*os_context_register_addr(context,reg_R8);
777 *(sp-9)=*os_context_register_addr(context,reg_RDI);
778 *(sp-8)=*os_context_register_addr(context,reg_RSI);
779 /* skip RBP and RSP */
780 *(sp-7)=*os_context_register_addr(context,reg_RBX);
781 *(sp-6)=*os_context_register_addr(context,reg_RDX);
782 *(sp-5)=*os_context_register_addr(context,reg_RCX);
783 *(sp-4)=*os_context_register_addr(context,reg_RAX);
784 *(sp-3)=*context_eflags_addr(context);
785 *(sp-2)=*os_context_register_addr(context,reg_RBP);
786 *(sp-1)=*os_context_pc_addr(context);
788 *os_context_register_addr(context,reg_RDI) = function; /* function */
789 *os_context_register_addr(context,reg_RSI) = 0; /* arg. array */
790 *os_context_register_addr(context,reg_RDX) = 0; /* no. args */
792 struct thread *th=arch_os_get_current_thread();
793 build_fake_control_stack_frames(th,context);
796 #ifdef LISP_FEATURE_X86
797 *os_context_pc_addr(context) = call_into_lisp;
798 *os_context_register_addr(context,reg_ECX) = 0;
799 *os_context_register_addr(context,reg_EBP) = sp-2;
801 *os_context_register_addr(context,reg_UESP) = sp-15;
803 *os_context_register_addr(context,reg_ESP) = sp-15;
805 #elif defined(LISP_FEATURE_X86_64)
806 *os_context_pc_addr(context) = call_into_lisp;
807 *os_context_register_addr(context,reg_RCX) = 0;
808 *os_context_register_addr(context,reg_RBP) = sp-2;
809 *os_context_register_addr(context,reg_RSP) = sp-18;
811 /* this much of the calling convention is common to all
813 *os_context_pc_addr(context) = code;
814 *os_context_register_addr(context,reg_NARGS) = 0;
815 *os_context_register_addr(context,reg_LIP) = code;
816 *os_context_register_addr(context,reg_CFP) =
817 current_control_frame_pointer;
819 #ifdef ARCH_HAS_NPC_REGISTER
820 *os_context_npc_addr(context) =
821 4 + *os_context_pc_addr(context);
823 #ifdef LISP_FEATURE_SPARC
824 *os_context_register_addr(context,reg_CODE) =
825 fun + FUN_POINTER_LOWTAG;
829 #ifdef LISP_FEATURE_SB_THREAD
830 void interrupt_thread_handler(int num, siginfo_t *info, void *v_context)
832 os_context_t *context = (os_context_t*)arch_os_get_context(&v_context);
833 /* The order of interrupt execution is peculiar. If thread A
834 * interrupts thread B with I1, I2 and B for some reason recieves
835 * I1 when FUN2 is already on the list, then it is FUN2 that gets
836 * to run first. But when FUN2 is run SIG_INTERRUPT_THREAD is
837 * enabled again and I2 hits pretty soon in FUN2 and run
838 * FUN1. This is of course just one scenario, and the order of
839 * thread interrupt execution is undefined. */
840 struct thread *th=arch_os_get_current_thread();
842 if (th->state != STATE_RUNNING)
843 lose("interrupt_thread_handler: thread %ld in wrong state: %d\n",
844 th->os_thread,fixnum_value(th->state));
845 get_spinlock(&th->interrupt_fun_lock,(long)th);
846 c=((struct cons *)native_pointer(th->interrupt_fun));
847 arrange_return_to_lisp_function(context,c->car);
848 th->interrupt_fun=(lispobj *)(c->cdr);
849 release_spinlock(&th->interrupt_fun_lock);
854 /* KLUDGE: Theoretically the approach we use for undefined alien
855 * variables should work for functions as well, but on PPC/Darwin
856 * we get bus error at bogus addresses instead, hence this workaround,
857 * that has the added benefit of automatically discriminating between
858 * functions and variables.
860 void undefined_alien_function() {
861 funcall0(SymbolFunction(UNDEFINED_ALIEN_FUNCTION_ERROR));
864 boolean handle_guard_page_triggered(os_context_t *context,void *addr){
865 struct thread *th=arch_os_get_current_thread();
867 /* note the os_context hackery here. When the signal handler returns,
868 * it won't go back to what it was doing ... */
869 if(addr >= CONTROL_STACK_GUARD_PAGE(th) &&
870 addr < CONTROL_STACK_GUARD_PAGE(th) + os_vm_page_size) {
871 /* We hit the end of the control stack: disable guard page
872 * protection so the error handler has some headroom, protect the
873 * previous page so that we can catch returns from the guard page
875 protect_control_stack_guard_page(th,0);
876 protect_control_stack_return_guard_page(th,1);
878 arrange_return_to_lisp_function
879 (context, SymbolFunction(CONTROL_STACK_EXHAUSTED_ERROR));
882 else if(addr >= CONTROL_STACK_RETURN_GUARD_PAGE(th) &&
883 addr < CONTROL_STACK_RETURN_GUARD_PAGE(th) + os_vm_page_size) {
884 /* We're returning from the guard page: reprotect it, and
885 * unprotect this one. This works even if we somehow missed
886 * the return-guard-page, and hit it on our way to new
887 * exhaustion instead. */
888 protect_control_stack_guard_page(th,1);
889 protect_control_stack_return_guard_page(th,0);
892 else if (addr >= undefined_alien_address &&
893 addr < undefined_alien_address + os_vm_page_size) {
894 arrange_return_to_lisp_function
895 (context, SymbolFunction(UNDEFINED_ALIEN_VARIABLE_ERROR));
901 #ifndef LISP_FEATURE_GENCGC
902 /* This function gets called from the SIGSEGV (for e.g. Linux, NetBSD, &
903 * OpenBSD) or SIGBUS (for e.g. FreeBSD) handler. Here we check
904 * whether the signal was due to treading on the mprotect()ed zone -
905 * and if so, arrange for a GC to happen. */
906 extern unsigned long bytes_consed_between_gcs; /* gc-common.c */
909 interrupt_maybe_gc(int signal, siginfo_t *info, void *void_context)
911 os_context_t *context=(os_context_t *) void_context;
912 struct thread *th=arch_os_get_current_thread();
913 struct interrupt_data *data=
914 th ? th->interrupt_data : global_interrupt_data;
916 if(!data->pending_handler && !foreign_function_call_active &&
917 gc_trigger_hit(signal, info, context)){
918 clear_auto_gc_trigger();
919 if(!maybe_defer_handler(interrupt_maybe_gc_int,
920 data,signal,info,void_context))
921 interrupt_maybe_gc_int(signal,info,void_context);
929 /* this is also used by gencgc, in alloc() */
931 interrupt_maybe_gc_int(int signal, siginfo_t *info, void *void_context)
933 os_context_t *context=(os_context_t *) void_context;
935 check_blockables_blocked_or_lose();
936 fake_foreign_function_call(context);
938 /* SUB-GC may return without GCing if *GC-INHIBIT* is set, in
939 * which case we will be running with no gc trigger barrier
940 * thing for a while. But it shouldn't be long until the end
943 * FIXME: It would be good to protect the end of dynamic space
944 * and signal a storage condition from there.
947 /* restore the signal mask from the interrupted context before
948 * calling into Lisp */
950 thread_sigmask(SIG_SETMASK, os_context_sigmask_addr(context), 0);
952 funcall0(SymbolFunction(SUB_GC));
954 undo_fake_foreign_function_call(context);
960 * noise to install handlers
964 undoably_install_low_level_interrupt_handler (int signal,
970 struct thread *th=arch_os_get_current_thread();
971 struct interrupt_data *data=
972 th ? th->interrupt_data : global_interrupt_data;
974 if (0 > signal || signal >= NSIG) {
975 lose("bad signal number %d", signal);
978 if (sigismember(&blockable_sigset,signal))
979 sa.sa_sigaction = low_level_maybe_now_maybe_later;
981 sa.sa_sigaction = handler;
983 sigemptyset(&sa.sa_mask);
984 sigaddset_blockable(&sa.sa_mask);
985 sa.sa_flags = SA_SIGINFO | SA_RESTART;
986 #ifdef LISP_FEATURE_C_STACK_IS_CONTROL_STACK
987 if((signal==SIG_MEMORY_FAULT)
988 #ifdef SIG_INTERRUPT_THREAD
989 || (signal==SIG_INTERRUPT_THREAD)
992 sa.sa_flags|= SA_ONSTACK;
995 sigaction(signal, &sa, NULL);
996 data->interrupt_low_level_handlers[signal] =
997 (ARE_SAME_HANDLER(handler, SIG_DFL) ? 0 : handler);
1000 /* This is called from Lisp. */
1002 install_handler(int signal, void handler(int, siginfo_t*, void*))
1004 struct sigaction sa;
1006 union interrupt_handler oldhandler;
1007 struct thread *th=arch_os_get_current_thread();
1008 struct interrupt_data *data=
1009 th ? th->interrupt_data : global_interrupt_data;
1011 FSHOW((stderr, "/entering POSIX install_handler(%d, ..)\n", signal));
1014 sigaddset(&new, signal);
1015 thread_sigmask(SIG_BLOCK, &new, &old);
1018 sigaddset_blockable(&new);
1020 FSHOW((stderr, "/data->interrupt_low_level_handlers[signal]=%x\n",
1021 (unsigned int)data->interrupt_low_level_handlers[signal]));
1022 if (data->interrupt_low_level_handlers[signal]==0) {
1023 if (ARE_SAME_HANDLER(handler, SIG_DFL) ||
1024 ARE_SAME_HANDLER(handler, SIG_IGN)) {
1025 sa.sa_sigaction = handler;
1026 } else if (sigismember(&new, signal)) {
1027 sa.sa_sigaction = maybe_now_maybe_later;
1029 sa.sa_sigaction = interrupt_handle_now_handler;
1032 sigemptyset(&sa.sa_mask);
1033 sigaddset_blockable(&sa.sa_mask);
1034 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1035 sigaction(signal, &sa, NULL);
1038 oldhandler = data->interrupt_handlers[signal];
1039 data->interrupt_handlers[signal].c = handler;
1041 thread_sigmask(SIG_SETMASK, &old, 0);
1043 FSHOW((stderr, "/leaving POSIX install_handler(%d, ..)\n", signal));
1045 return (unsigned long)oldhandler.lisp;
1052 SHOW("entering interrupt_init()");
1053 sigemptyset(&blockable_sigset);
1054 sigaddset_blockable(&blockable_sigset);
1056 global_interrupt_data=calloc(sizeof(struct interrupt_data), 1);
1058 /* Set up high level handler information. */
1059 for (i = 0; i < NSIG; i++) {
1060 global_interrupt_data->interrupt_handlers[i].c =
1061 /* (The cast here blasts away the distinction between
1062 * SA_SIGACTION-style three-argument handlers and
1063 * signal(..)-style one-argument handlers, which is OK
1064 * because it works to call the 1-argument form where the
1065 * 3-argument form is expected.) */
1066 (void (*)(int, siginfo_t*, void*))SIG_DFL;
1069 SHOW("returning from interrupt_init()");